1
|
Jensen SK, Pedersen CET, Fischer-Rasmussen K, Melgaard ME, Brustad N, Kyvsgaard JN, Vahman N, Schoos AMM, Stokholm J, Chawes B, Eliasen A, Bønnelykke K. Genetic predisposition to high BMI increases risk of early life respiratory infections and episodes of severe wheeze and asthma. Eur Respir J 2024; 64:2400169. [PMID: 38811044 DOI: 10.1183/13993003.00169-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND High body mass index (BMI) is an established risk factor for asthma, but the underlying mechanisms remain unclear. OBJECTIVE To increase understanding of the BMI-asthma relationship by studying the association between genetic predisposition to higher BMI and asthma, infections and other asthma traits during childhood. METHODS Data were obtained from the two ongoing Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts. Polygenic risk scores for adult BMI were calculated for each child. Replication was done in the large-scale register-based Integrative Psychiatric Research (iPSYCH) cohort using data on hospitalisation for asthma and infections. RESULTS In the COPSAC cohorts (n=974), the adult BMI polygenic risk score was significantly associated with lower respiratory tract infections (incidence rate ratio (IRR) 1.20, 95% CI 1.08-1.33, false discovery rate p-value (pFDR)=0.005) at age 0-3 years and episodes of severe wheeze (IRR 1.30, 95% CI 1.06-1.60, pFDR=0.04) at age 0-6 years. Lower respiratory tract infections partly mediated the association between the adult BMI polygenic risk score and severe wheeze (proportion mediated: 0.59, 95% CI 0.28-2.24, p-value associated with the average causal mediation effect (pACME)=2e-16). In contrast, these associations were not mediated through the child's current BMI and the polygenic risk score was not associated with an asthma diagnosis or reduced lung function up to age 18 years. The associations were replicated in iPSYCH (n=114 283), where the adult BMI polygenic risk score significantly increased the risk of hospitalisations for lower respiratory tract infections and wheeze or asthma throughout childhood to age 18 years. CONCLUSION Children with genetic predisposition to higher BMI had increased risk of lower respiratory tract infections and severe wheeze, independent of the child's current BMI. These results shed further light on the complex relationship between body mass BMI and asthma.
Collapse
Affiliation(s)
- Signe Kjeldgaard Jensen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Fischer-Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Elsner Melgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Julie Nyholm Kyvsgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Nilo Vahman
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Shared senior author
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Department of Pediatrics, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Shared senior author
| |
Collapse
|
2
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cannon M, Ferrer G, Tesch M, Schipma M. Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms 2024; 12:1407. [PMID: 39065175 PMCID: PMC11279209 DOI: 10.3390/microorganisms12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine shifts in microbial populations regarding richness and diversity from the daily use of a popular over-the-counter nasal spray. In addition, the finding of nasal commensal bacterial species that overlap with the oral microbiome may prove to be potential probiotics for the "gateway microbiomes". Nasal swab samples were obtained before and after using the most popular over-the-counter (OTC) nasal spray in 10 participants aged 18-48. All participants were healthy volunteers with no significant medical histories. The participants were randomly assigned a number by randomizing software and consisted of five men and five women. The sampling consisted of placing a nasal swab atraumatically into the nasal cavity. The samples were preserved and sent to Northwestern University Sequencing Center for whole-genome deep sequencing. After 21 days of OTC nasal spray use twice daily, the participants returned for further nasal microbiome sampling. The microbial analysis included all bacteria, archaea, viruses, molds, and yeasts via deep sequencing for species analysis. The Northwestern University Sequencing Center utilized artificial intelligence analysis to determine shifts in species and strains following nasal spray use that resulted in changes in diversity and richness.
Collapse
Affiliation(s)
- Mark Cannon
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gustavo Ferrer
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Mari Tesch
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Matthew Schipma
- QDSC, NUSeq Core, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Han R, Zhu D, Sha J, Zhao B, Jin P, Meng C. Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy. Cell Biosci 2024; 14:89. [PMID: 38965641 PMCID: PMC11225420 DOI: 10.1186/s13578-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
Collapse
Affiliation(s)
- Ruiming Han
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Boning Zhao
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael ST NE, Atlanta, GA, 30322, USA.
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China.
| |
Collapse
|
5
|
Ober C, Joseph CLM, Novembre J. Population descriptors in asthma and allergy research: Time to regroup. J Allergy Clin Immunol 2024; 154:79-81. [PMID: 38642714 DOI: 10.1016/j.jaci.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Affiliation(s)
- Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Christine L M Joseph
- Department of Public Health Sciences, Center for Allergy, Asthma and Immunology Research, Henry Ford Health System, Detroit, Mich.
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Ill; Department of Ecology and Evolution, University of Chicago, Chicago, Ill.
| |
Collapse
|
6
|
Schoos AMM. Atopic diseases-Diagnostics, mechanisms, and exposures. Pediatr Allergy Immunol 2024; 35:e14198. [PMID: 39016386 DOI: 10.1111/pai.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Epidemiological data suggest that atopic diseases begin in early life and that most cases present clinically during early childhood. The diseases are highly prevalent and increase as communities adopt western lifestyles. Disentangling the pathophysiological mechanisms leading to disease debut is necessary to identify beneficial/harmful exposures so that successful prevention and treatment can be generated. The objective of this review is to explore the definition of atopy and mechanisms of atopic diseases, and to investigate the importance of environmental factors in early life, prior to disease development. First, the distribution of sIgE levels in children is investigated, as this is one of the main criteria for the definition of atopy. Thereafter, it is explored how studies of parental atopic status, sensitization patterns, and early debut and severity of atopic dermatitis have substantiated the theory of an early-life window of opportunity for intervention that precedes the development of atopic diseases in childhood. Then, it is examined whether early-life exposures such as breastfeeding, dogs, cats, and house dust mites in the home perinatally constitute important influencers in this crucial time of life. Finally, it is discussed how these findings could be validated in randomized controlled trials, which might prepare the ground for improved diagnostics and prevention strategies to mitigate the current atopic pandemic.
Collapse
Affiliation(s)
- Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2024:S0091-6749(24)00634-1. [PMID: 38906272 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Szczesny B, Boorgula MP, Chavan S, Campbell M, Johnson RK, Kammers K, Thompson EE, Cox MS, Shankar G, Cox C, Morin A, Lorizio W, Daya M, Kelada SNP, Beaty TH, Doumatey AP, Cruz AA, Watson H, Naureckas ET, Giles BL, Arinola GA, Sogaolu O, Falade AG, Hansel NN, Yang IV, Olopade CO, Rotimi CN, Landis RC, Figueiredo CA, Altman MC, Kenny E, Ruczinski I, Liu AH, Ober C, Taub MA, Barnes KC, Mathias RA. Multi-omics in nasal epithelium reveals three axes of dysregulation for asthma risk in the African Diaspora populations. Nat Commun 2024; 15:4546. [PMID: 38806494 PMCID: PMC11133339 DOI: 10.1038/s41467-024-48507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.
Collapse
Affiliation(s)
- Brooke Szczesny
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meher Preethi Boorgula
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sameer Chavan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica Campbell
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Randi K Johnson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kammers
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Emma E Thompson
- Division of Allergy and Infectious Diseases, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Madison S Cox
- Division of Allergy and Infectious Diseases, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Gautam Shankar
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corey Cox
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andréanne Morin
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Wendy Lorizio
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alvaro A Cruz
- Fundacao ProAR and Federal University of Bahia, Salvador, Bahia, Brazil
| | - Harold Watson
- Faculty of Medical Sciences, The University of the West Indies, Queen Elizabeth Hospital, St. Michael, Bridgetown, Barbados
| | | | - B Louise Giles
- Departments of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Ganiyu A Arinola
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Sogaolu
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegoke G Falade
- Department of Pediatrics, University of Ibadan, and University College Hospital, Ibadan, Nigeria
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics and Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Clive Landis
- Edmund Cohen Laboratory for Vascular Research, George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, The University of the West Indies, Cave Hill Campus, Wanstead, Barbados
| | - Camila A Figueiredo
- Federal University of Bahia and Funda. Program for Control of Asthma in Bahia (ProAR), Salvador, Brazil
- Instituto de Ciências de Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Matthew C Altman
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Eimear Kenny
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew H Liu
- Department of Pediatrics, Childrens Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Carole Ober
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Turki S, Jbali S, Hachicha A, Chouchane H, Sifaoui A, Charfi MR. Facteurs aggravants la rhinite allergique de l’enfant. LA TUNISIE MEDICALE 2024; 102:303-309. [PMID: 38801289 PMCID: PMC11358795 DOI: 10.62438/tunismed.v102i5.4463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Allergic rhinitis (AR) in children is a common condition that is a public health problem. Despite a well-codified treatment, clinical improvement is not the rule. AIM To identify factors affecting the improvement of allergic rhinitis in children under symptomatic treatment. METHODS A 12-year retrospective descriptive study that included children aged 3 to 15 years, followed for allergic rhinitis. The search for explanatory factors for improvement under treatment was done using a binary logistic regression model. RESULTS 52 children were included, with a mean age of 7 years (±3). A familial atopy history was present in 37 patients (71%). The presence of factors aggravating allergy was noted, including antibiotic consumption: 31 patients (60%) and overweight: 15 patients (29%). Associated asthma was noted in 42 patients (81%). The allergenic profile has regained a predominance of dust mite allergy (71%) and a significant frequency of multiallergies (79%). Management included therapeutic education and drug treatment. There was improvement in rhinitis in 27 patients (52%) and improvement in asthma in 26 patients (50%). Overweight and high consumption of antibiotics had a negative impact on the therapeutic outcome. A good therapeutic education had a favorable impact. CONCLUSION AR is a debilitating condition requiring prolonged therapeutic education and drug treatment. The prescription of antibiotics in children with allergic rhinitis should be sparing and weight monitored.
Collapse
Affiliation(s)
- Senda Turki
- Department of Otorhinolaryngology and cervico-facial surgery. Security Forces Hospital, La Marsa,Tunis, Tunisia
| | - Souheil Jbali
- Department of Otorhinolaryngology and cervico-facial surgery. Security Forces Hospital, La Marsa,Tunis, Tunisia
| | - Amani Hachicha
- Department of Otorhinolaryngology and cervico-facial surgery. Security Forces Hospital, La Marsa,Tunis, Tunisia
| | - Hamdi Chouchane
- Department of Otorhinolaryngology and cervico-facial surgery. Security Forces Hospital, La Marsa,Tunis, Tunisia
| | - Aymen Sifaoui
- Department of Otorhinolaryngology and cervico-facial surgery. Security Forces Hospital, La Marsa,Tunis, Tunisia
| | | |
Collapse
|
10
|
Barker-Tejeda TC, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-Antoniano IA, Rey-Stolle MF, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Shanmuganathan M, Britz-McKibbin P, Ubeda C, Francino MP, Barber D, Ibáñez-Sandín MD, Barbas C, Pérez-Gordo M, Villaseñor A. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun 2024; 15:3004. [PMID: 38589361 PMCID: PMC11001937 DOI: 10.1038/s41467-024-47182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elisa Zubeldia-Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Macías-Camero
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Estudios de las Adicciones IEA-CEU, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Paula Cabrera-Freitag
- Pedriatic Allergy Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, and Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - M Pilar Francino
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València / Consejo Superior de Investigaciones Científicas), València, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| |
Collapse
|
11
|
Kelly A, Lavender P. Epigenetic Approaches to Identifying Asthma Endotypes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:130-141. [PMID: 38528381 DOI: 10.4168/aair.2024.16.2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
The prevalence of asthma escalated rapidly in the late 20th century. In 2019, the World Health Organization estimated the global number of people affected by the condition to be approximately 260 million, causing 450,000 deaths during that year. While there have been advances in therapeutics with the emergence of biologics targeting T2-high asthma, there is still little clarity on the mechanisms underlying the origins of both the condition and all of its endotypes. Several biomarkers for particular asthma phenotypes have been documented. These are generally identified from transcriptomics and proteomics protocols and tend to be biased to T2-high phenotypes. In this review, we summarize some suggestions that analysis of epigenomes may provide alternative datasets that inform of broader asthma endotypes and might highlight pathways amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom.
| |
Collapse
|
12
|
Ruiz-Triviño J, Álvarez D, Cadavid J. ÁP, Alvarez AM. From gut to placenta: understanding how the maternal microbiome models life-long conditions. Front Endocrinol (Lausanne) 2023; 14:1304727. [PMID: 38161976 PMCID: PMC10754986 DOI: 10.3389/fendo.2023.1304727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
The microbiome -defined as the microbiota (bacteria, archaea, lower and higher eukaryotes), their genomes, and the surrounding environmental conditions- has a well-described range of physiological functions. Thus, an imbalance of the microbiota composition -dysbiosis- has been associated with pregnancy complications or adverse fetal outcomes. Although there is controversy about the existence or absence of a microbiome in the placenta and fetus during healthy pregnancy, it is known that gut microbiota can produce bioactive metabolites that can enter the maternal circulation and may be actively or passively transferred through the placenta. Furthermore, the evidence suggests that such metabolites have some effect on the fetus. Since the microbiome can influence the epigenome, and modifications of the epigenome could be responsible for fetal programming, it can be experimentally supported that the maternal microbiome and its metabolites could be involved in fetal programming. The developmental origin of health and disease (DOHaD) approach looks to understand how exposure to environmental factors during periods of high plasticity in the early stages of life (e.g., gestational period) influences the program for disease risk in the progeny. Therefore, according to the DOHaD approach, the influence of maternal microbiota in disease development must be explored. Here, we described some of the diseases of adulthood that could be related to alterations in the maternal microbiota. In summary, this review aims to highlight the influence of maternal microbiota on both fetal development and postnatal life, suggesting that dysbiosis on this microbiota could be related to adulthood morbidity.
Collapse
Affiliation(s)
- Jonathan Ruiz-Triviño
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Daniel Álvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Ángela P. Cadavid J.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Angela M. Alvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| |
Collapse
|
13
|
Bisgaard H, Mikkelsen M, Rasmussen MA, Sevelsted A, Schoos AMM, Brustad N, Eliasen AU, Thorsen J, Chawes B, Gürdeniz G, Morin A, Stark K, Stokholm J, Ober C, Pedersen CET, Bønnelykke K. Atopic and non-atopic effects of fish oil supplementation during pregnancy. Thorax 2023; 78:1168-1174. [PMID: 37696621 PMCID: PMC10777305 DOI: 10.1136/thorax-2022-219725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND We recently conducted a double-blinded randomised controlled trial showing that fish-oil supplementation during pregnancy reduced the risk of persistent wheeze or asthma in the child by 30%. Here, we explore the mechanisms of the intervention. METHODS 736 pregnant women were given either placebo or n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the third trimester in a randomised controlled trial. Deep clinical follow-up of the 695 children in the trial was done at 12 visits until age 6 years, including assessment of genotype at the fatty acid desaturase (FADS) locus, plasma fatty acids, airway DNA methylation, gene expression, microbiome and metabolomics. RESULTS Supplementation with n-3 LCPUFA reduced the overall risk of non-atopic asthma by 73% at age 6 (relative risk (RR) 0.27 (95% CI 0.06 to 0.85), p=0.042). In contrast, there was no overall effect on asthma with atopic traits (RR 1.42 (95% CI 0.63 to 3.38), p=0.40), but this was significantly modified by maternal FADS genotype and LCPUFA blood levels (interaction p<0.05), and supplementation did reduce the risk of atopic asthma in the subgroup of mothers with FADS risk variants and/or low blood levels of n-3 LCPUFA before the intervention (RR 0.31 (95% CI 0.11 to 0.75), p=0.016). Furthermore, n-3 LCPUFA significantly reduced the number of infections (croup, gastroenteritis, tonsillitis, otitis media and pneumonia) by 16% (incidence rate ratio 0.84 (95% CI 0.74 to 0.96), p=0.009). CONCLUSIONS n-3 LCPUFA supplementation in pregnancy showed protective effects on non-atopic asthma and infections. Protective effects on atopic asthma depended on maternal FADS genotype and n-3 LCPUFA levels. This indicates that the fatty acid pathway is involved in multiple mechanisms affecting the risk of asthma subtypes and infections. TRIAL REGISTRATION NUMBER NCT00798226.
Collapse
Affiliation(s)
- Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Marianne Mikkelsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Anders U Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Andreanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Ken Stark
- Department of Kinesiology and Human Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Casper Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Steininger H, Moltzau-Anderson J, Lynch SV. Contributions of the early-life microbiome to childhood atopy and asthma development. Semin Immunol 2023; 69:101795. [PMID: 37379671 DOI: 10.1016/j.smim.2023.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
The rapid rise in atopy and asthma in industrialized nations has led to the identification of early life environmental factors that promote these conditions and spurred research into how such exposures may mediate the trajectory to childhood disease development. Over the past decade, the human microbiome has emerged as a key determinant of human health. This is largely due to the increasing appreciation for the myriad of non-mutually exclusive mechanisms by which microbes tune and train host immunity. Microbiomes, particularly those in early life, are shaped by extrinsic and intrinsic factors, including many of the exposures known to influence allergy and asthma risk. This has led to the over-arching hypothesis that such exposures mediate their effect on childhood atopy and asthma by altering the functions and metabolic productivity of microbiomes that shape immune function during this critical developmental period. The capacity to study microbiomes at the genetic and molecular level in humans from the pre-natal period into childhood with well-defined clinical outcomes, offers an unprecedented opportunity to identify early-life and inter-generational determinants of atopy and asthma outcomes. Moreover, such studies provide an integrative microbiome research framework that can be applied to other chronic inflammatory conditions. This review attempts to capture key studies in the field that offer insights into the developmental origins of childhood atopy and asthma, providing novel insights into microbial mediators of maladaptive immunity and chronic inflammatory disease in childhood.
Collapse
Affiliation(s)
- Holly Steininger
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Jacqueline Moltzau-Anderson
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA.
| |
Collapse
|
16
|
Sevelsted A, Pedersen CET, Gürdeniz G, Rasmussen MA, Schullehner J, Sdougkou K, Martin JW, Lasky-Su J, Morin A, Ober C, Schoos AMM, Stokholm J, Bønnelykke K, Chawes B, Bisgaard H. Exposures to perfluoroalkyl substances and asthma phenotypes in childhood: an investigation of the COPSAC2010 cohort. EBioMedicine 2023; 94:104699. [PMID: 37429082 PMCID: PMC10339117 DOI: 10.1016/j.ebiom.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Exposure to perfluoroalkyl substances may affect offspring immune development and thereby increase risk of childhood asthma, but the underlying mechanisms and asthma phenotype affected by such exposure is unknown. METHODS In the Danish COPSAC2010 cohort of 738 unselected pregnant women and their children plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics analyses and calibrated using a targeted pipeline in mothers (gestation week 24 and 1 week postpartum) and children (age ½, 1½ and 6 years). We examined associations between pregnancy and childhood PFOS and PFOA exposure and childhood infections, asthma, allergic sensitization, atopic dermatitis, and lung function measures, and studied potential mechanisms by integrating data on systemic low-grade inflammation (hs-CRP), functional immune responses, and epigenetics. FINDINGS Higher maternal PFOS and PFOA exposure during pregnancy showed association with a non-atopic asthma phenotype by age 6, a protection against sensitization, and no association with atopic asthma or lung function, or atopic dermatitis. The effect was primarily driven by prenatal exposure. There was no association with infection proneness, low-grade inflammation, altered immune responses or epigenetic changes. INTERPRETATIONS Prenatal exposure to PFOS and PFOA, but not childhood exposure, specifically increased the risk of low prevalent non-atopic asthma, whereas there was no effect on atopic asthma, lung function, or atopic dermatitis. FUNDING All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764); The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B); and The Capital Region Research Foundation have provided core support to the COPSAC research center. COPSAC acknowledges the National Facility for Exposomics (SciLifeLab, Sweden) for supporting calibration of the untargeted metabolomics PFAS data. BC and AS has received funding for this project from the European Union's Horizon 2020 research and innovation programme (BC: grant agreement No. 946228 DEFEND; AS: grant agreement No. 864764 HEDIMED).
Collapse
Affiliation(s)
- Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jörg Schullehner
- Research Unit for Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kalliroi Sdougkou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andreanne Morin
- Departments of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Departments of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Vercelli D, Lynch SV. Interactions between host epigenetics and microbiota: Who does what to whom, when, and why? J Allergy Clin Immunol 2023; 151:1465-1467. [PMID: 36720286 PMCID: PMC11479567 DOI: 10.1016/j.jaci.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Tucson, Ariz; Asthma and Airway Disease Research Center, Tucson, Ariz; Arizona Center for the Biology of Complex Diseases, Tucson, Ariz; BIO5 Institute, University of Arizona, Tucson, Ariz.
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Pediatrics, University of California San Francisco, San Francisco, Calif; Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
18
|
Kelly MS, Mohammed A, Okin D, Alba GA, Jesudasen SJ, Flanagan S, Dandawate NA, Gavralidis A, Chang LL, Moin EE, Witkin AS, Hibbert KA, Kadar A, Gordan PL, Bebell LM, Hauptman M, Valeri L, Lai PS. Preferred Language Mediates Association Between Race, Ethnicity, and Delayed Presentation in Critically Ill Patients With COVID-19. Crit Care Explor 2023; 5:e0927. [PMID: 37332365 PMCID: PMC10270487 DOI: 10.1097/cce.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Which social factors explain racial and ethnic disparities in COVID-19 access to care and outcomes remain unclear. OBJECTIVES We hypothesized that preferred language mediates the association between race, ethnicity and delays to care. DESIGN SETTING AND PARTICIPANTS Multicenter, retrospective cohort study of adults with COVID-19 consecutively admitted to the ICU in three Massachusetts hospitals in 2020. MAIN OUTCOME AND MEASURES Causal mediation analysis was performed to evaluate potential mediators including preferred language, insurance status, and neighborhood characteristics. RESULTS Non-Hispanic White (NHW) patients (157/442, 36%) were more likely to speak English as their preferred language (78% vs. 13%), were less likely to be un- or under-insured (1% vs. 28%), lived in neighborhoods with lower social vulnerability index (SVI) than patients from racial and ethnic minority groups (SVI percentile 59 [28] vs. 74 [21]) but had more comorbidities (Charlson comorbidity index 4.6 [2.5] vs. 3.0 [2.5]), and were older (70 [13.2] vs. 58 [15.1] years). From symptom onset, NHW patients were admitted 1.67 [0.71-2.63] days earlier than patients from racial and ethnic minority groups (p < 0.01). Non-English preferred language was associated with delay to admission of 1.29 [0.40-2.18] days (p < 0.01). Preferred language mediated 63% of the total effect (p = 0.02) between race, ethnicity and days from symptom onset to hospital admission. Insurance status, social vulnerability, and distance to the hospital were not on the causal pathway between race, ethnicity and delay to admission. CONCLUSIONS AND RELEVANCE Preferred language mediates the association between race, ethnicity and delays to presentation for critically ill patients with COVID-19, although our results are limited by possible collider stratification bias. Effective COVID-19 treatments require early diagnosis, and delays are associated with increased mortality. Further research on the role preferred language plays in racial and ethnic disparities may identify effective solutions for equitable care.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Adna Mohammed
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Daniel Okin
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - George A Alba
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Shelby Flanagan
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- New England Pediatric Environmental Health Specialty Unit, Boston, MA
| | - Nupur A Dandawate
- Division of Pulmonary, Critical Care and Sleep Medicine, Salem Hospital, Salem, MA
| | - Alexander Gavralidis
- Division of Pulmonary, Critical Care and Sleep Medicine, Salem Hospital, Salem, MA
| | - Leslie L Chang
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Emily E Moin
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alison S Witkin
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kathryn A Hibbert
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Aran Kadar
- Division of Pulmonary Medicine and Critical Care, Newton-Wellesley Hospital, Newton, MA
| | - Patrick L Gordan
- Division of Pulmonary, Critical Care and Sleep Medicine, Salem Hospital, Salem, MA
| | - Lisa M Bebell
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Marissa Hauptman
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY
| | - Peggy S Lai
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
20
|
Azevedo AC, Hilário S, Gonçalves MFM. Microbiome in Nasal Mucosa of Children and Adolescents with Allergic Rhinitis: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020226. [PMID: 36832355 PMCID: PMC9954962 DOI: 10.3390/children10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The human upper respiratory tract comprises the nasal cavity, pharynx and larynx regions and offers distinct microbial communities. However, an imbalance and alterations in the nasal mucosa microbiome enhance the risk of chronic respiratory conditions in patients with allergic respiratory diseases. This is particularly important in children and adolescents once allergic rhinitis (AR) is an inflammatory disorder of the nasal mucosa, often associated with an increase in pulmonary allergic inflammation. Therefore, this systematic review aimed to collect scientific data published concerning the microbial community alterations in nasal mucosa of children and adolescents suffering from AR or in association with adenotonsillar hypertrophy (AH) and allergic rhinoconjunctivitis (ARC). The current study was performed using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Publications related to microbiome alterations in the nasal mucosa in pediatric age, studies including next-generation sequencing platforms, and studies exclusively written in the English language were some of the inclusion criteria. In total, five articles were included. Despite the scarcity of the published data in this research field and the lack of prospective studies, the genera Acinetobacter, Corynebacterium, Dolosigranulum, Haemophilus, Moraxella, Staphylococcus and Streptococcus dominate the nares and nasopharyngeal microbiome of the pediatric population regardless of their age. However, an imbalance in the resident bacterial community in the nasal mucosa was observed. The genera Acinetobacter, and Pseudomonas were more abundant in the nasal cavity of AR and AH children, while Streptococcus and Moraxella were predominant in the hypopharyngeal region of AR infants. An abundance of Staphylococcus spp. was also reported in the anterior nares and hypopharyngeal region of children and adolescents suffering from AR passive smoke exposure and ARC. These records suggest that different nasal structures, ageing, smoke exposure and the presence of other chronic disorders shape the nasal mucosa microbiome. Therefore, the establishment of adequate criteria for sampling would be established for a deeper understanding and a trustworthy comparison of the microbiome alterations in pediatric age.
Collapse
Affiliation(s)
- André Costa Azevedo
- Department of Pediatrics, Unidade Local de Saúde do Alto Minho, 4904-858 Viana do Castelo, Portugal
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: or
| |
Collapse
|
21
|
Tingskov Pedersen CE, Eliasen AU, Ketzel M, Brandt J, Loft S, Frohn LM, Khan J, Brix S, Rasmussen MA, Stokholm J, Chawes B, Morin A, Ober C, Bisgaard H, Pedersen M, Bønnelykke K. Prenatal exposure to ambient air pollution is associated with early life immune perturbations. J Allergy Clin Immunol 2023; 151:212-221. [PMID: 36075322 DOI: 10.1016/j.jaci.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exposure to ambient air pollution has been linked to asthma, allergic rhinitis, and other inflammatory disorders, but little is known about the underlying mechanisms. OBJECTIVE We studied the potential mechanisms leading from prenatal ambient air pollution exposure to asthma and allergy in childhood. METHODS Long-term exposure to nitrogen dioxide (NO2) as well as to particulate matter with a diameter of ≤2.5 and ≤10 μm (PM2.5 and PM10) were modeled at the residence level from conception to 6 years of age in 700 Danish children followed clinically for development of asthma and allergy. Nasal mucosal immune mediators were assessed at age 4 weeks and 6 years, inflammatory markers in blood at 6 months, and nasal epithelial DNA methylation and gene expression at age 6 years. RESULTS Higher prenatal air pollution exposure with NO2, PM2.5, and PM10 was associated with an altered nasal mucosal immune profile at 4 weeks, conferring an increased odds ratio [95% confidence interval] of 2.68 [1.58, 4.62] for allergic sensitization and 2.63 [1.18, 5.81] for allergic rhinitis at age 6 years, and with an altered immune profile in blood at age 6 months conferring increased risk of asthma at age 6 years (1.80 [1.18, 2.76]). Prenatal exposure to ambient air pollution was not robustly associated with immune mediator, epithelial DNA methylation, or gene expression changes in nasal cells at age 6 years. CONCLUSION Prenatal exposure to ambient air pollution was associated with early life immune perturbations conferring risk of allergic rhinitis and asthma. These findings suggest potential mechanisms of prenatal exposure to ambient air pollution on the developing immune system.
Collapse
Affiliation(s)
- Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ulrik Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environment and Health, University of Copenhagen, Copenhagen, Denmark; Department of Public Health, Section of Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University of Copenhagen, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark; Department of Public Health, Section of Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University of Copenhagen, Roskilde, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, Roskilde, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, Roskilde, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreanne Morin
- Department of Human Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marie Pedersen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Baloh CH, Mathias RA. Recent progress in the genetic and epigenetic underpinnings of atopy. J Allergy Clin Immunol 2023; 151:60-69. [PMID: 36608983 PMCID: PMC9987265 DOI: 10.1016/j.jaci.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 01/05/2023]
Abstract
In the past 2 years, there continue to be advances in our understanding of the genetic and epigenetic underpinnings of atopy pertaining to disease risk and disease severity. The joint role of genetics and the environment has been emphasized in multiple studies. Combining genetics with family history, biomarkers, and comorbidities is further refining our ability to predict the development of individual atopic diseases as well as the advancement of the atopic march. Polygenic risk scores will be an important next step for the field moving toward clinical translation of the genetic findings thus far. A systems biology approach, as illustrated by studies of the microbiome and epigenome, will be necessary to fully understand disease development and to develop increasingly targeted therapeutics.
Collapse
Affiliation(s)
- Carolyn H Baloh
- The Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash; Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Division of Allergy and Clinical Immunology, Baltimore, Md.
| |
Collapse
|
23
|
DeVries A, McCauley K, Fadrosh D, Fujimura KE, Stern DA, Lynch SV, Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022; 77:3617-3628. [PMID: 35841380 PMCID: PMC9712226 DOI: 10.1111/all.15442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Collapse
Affiliation(s)
- Avery DeVries
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
| | - Kathryn McCauley
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Douglas Fadrosh
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kei E. Fujimura
- Genetic Disease LabCalifornia Department of Public HealthRichmondCaliforniaUSA
| | - Debra A. Stern
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Donata Vercelli
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
24
|
The Changes in Bacterial Microbiome Associated with Immune Disorder in Allergic Respiratory Disease. Microorganisms 2022; 10:microorganisms10102066. [PMID: 36296340 PMCID: PMC9610723 DOI: 10.3390/microorganisms10102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 12/02/2022] Open
Abstract
Allergic respiratory disease is a worldwide and increasingly prevalent health problem. Many researchers have identified complex changes in the microbiota of the respiratory and intestinal tracts in patients with allergic respiratory diseases. These affect immune response and influence the progression of disease. However, the diversity of bacterial changes in such cases make it difficult to identify a specific microorganism to target for adjustment. Recent research evidence suggests that common bacterial variations present in allergic respiratory disease are associated with immune disorders. This finding could lead to the discovery of potential therapeutic targets in cases of allergic respiratory disease. In this review, we summarize current knowledge of bacteria changes in cases of allergic respiratory disease, to identify changes commonly associated with immune disorders, and thus provide a theoretical basis for targeting therapies of allergic respiratory disease through effective modulation of key bacteria.
Collapse
|
25
|
Kelly MS, Bunyavanich S, Phipatanakul W, Lai PS. The Environmental Microbiome, Allergic Disease, and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2206-2217.e1. [PMID: 35750322 PMCID: PMC9704440 DOI: 10.1016/j.jaip.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 04/26/2023]
Abstract
The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Peggy S Lai
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Mass; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
26
|
Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2244-2251. [PMID: 35724951 PMCID: PMC10566566 DOI: 10.1016/j.jaip.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 06/13/2023]
Abstract
The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| | - Cara Porsche
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
27
|
Chiang TY, Yang YR, Zhuo MY, Yang F, Zhang YF, Fu CH, Lee TJ, Chung WH, Chen L, Chang CJ. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J 2022; 15:100674. [PMID: 36017065 PMCID: PMC9386106 DOI: 10.1016/j.waojou.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Tsai-Yeh Chiang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Yu-Ru Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ming-Ying Zhuo
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Feng Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ying-Fei Zhang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Chia-Hsiang Fu
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ta-Jen Lee
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Hung Chung
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Liang Chen
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Allergy and Immunology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Corresponding author. Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Jung Chang
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
- Corresponding author. Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
28
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
29
|
Chen M, He S, Miles P, Li C, Ge Y, Yu X, Wang L, Huang W, Kong X, Ma S, Li Y, Jiang Q, Zhang W, Cao C. Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol 2022; 12:841995. [PMID: 35310838 PMCID: PMC8928226 DOI: 10.3389/fcimb.2022.841995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Perturbation of the microbiome has numerous associations with the phenotypes and progression in chronic airways disease. However, the differences in the nasal microbiome in asthma and allergic rhinitis (AR) have not been defined. We examined whether the nasal microbiome would vary among different comorbidities in asthma and AR and that those differences may be associated with the severity of asthma. Nasal lavage fluid was collected from 110 participants, including 20 healthy controls, 30 subjects with AR, 30 subjects with asthma and 30 subjects with combined asthma + AR. The Asthma Control Questionnaire (ACQ-7) was used to evaluate asthma control status. Using 16S rRNA bacterial gene sequencing, we analyzed nasal microbiome in patients with asthma, AR, combined asthma + AR, and healthy controls. Bacterial diversity was analyzed in corresponding with α diversity indices (Chao and Shannon index). Compared with healthy controls, the Chao index tended to be lower in subjects with AR (P = 0.001), asthma (P = 0.001), and combined asthma + AR (P = 0.001) when compared with healthy controls. Furthermore, the Shannon index was significantly lower in subjects with asthma (P = 0.013) and comorbid asthma with AR (P = 0.004) than the control subjects. Disparity in the structure and composition of nasal bacteria were also observed among the four groups. Furthermore, patients with combined asthma + AR and isolated asthma were divided into two groups according to the level of disease control: partially or well-controlled and uncontrolled asthma. The mean relative abundance observed in the groups mentioned the genera of Pseudoflavonifractor were dominated in patients with well and partially controlled disease, in both isolated asthma and combined asthma + AR. In subjects with uncontrolled asthma and combined asthma + AR, a lower evenness and richness (Shannon index, P = 0.040) was observed in nasal microbiome composition. Importantly, lower evenness and richness in the nasal microbiome may be associated with poor disease control in combined asthma + AR. This study showed the upper airway microbiome is associated with airway inflammation disorders and the level of asthma control.
Collapse
Affiliation(s)
- Meiping Chen
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Shiyi He
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Phoebe Miles
- Faculty of Humanities and Social Sciences, University of Nottingham Ningbo, Ningbo, China
| | - Chunlin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital, Ningbo, China
| | - Yijun Ge
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Xuechan Yu
- School of Medicine, Ningbo University, Ningbo, China
| | - Linfeng Wang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Weina Huang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Xue Kong
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Shanni Ma
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Yiting Li
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Qingwen Jiang
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Wen Zhang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
- *Correspondence: Chao Cao,
| |
Collapse
|
30
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Soliai MM, Kato A, Helling BA, Stanhope CT, Norton JE, Naughton KA, Klinger AI, Thompson EE, Clay SM, Kim S, Celedón JC, Gern JE, Jackson DJ, Altman MC, Kern RC, Tan BK, Schleimer RP, Nicolae DL, Pinto JM, Ober C. Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Med 2021; 13:157. [PMID: 34629083 PMCID: PMC8504130 DOI: 10.1186/s13073-021-00967-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified thousands of variants associated with asthma and other complex diseases. However, the functional effects of most of these variants are unknown. Moreover, GWASs do not provide context-specific information on cell types or environmental factors that affect specific disease risks and outcomes. To address these limitations, we used an upper airway epithelial cell (AEC) culture model to assess transcriptional and epigenetic responses to rhinovirus (RV), an asthma-promoting pathogen, and provide context-specific functional annotations to variants discovered in GWASs of asthma. METHODS Genome-wide genetic, gene expression, and DNA methylation data in vehicle- and RV-treated upper AECs were collected from 104 individuals who had a diagnosis of airway disease (n=66) or were healthy participants (n=38). We mapped cis expression and methylation quantitative trait loci (cis-eQTLs and cis-meQTLs, respectively) in each treatment condition (RV and vehicle) in AECs from these individuals. A Bayesian test for colocalization between AEC molecular QTLs and adult onset asthma and childhood onset asthma GWAS SNPs, and a multi-ethnic GWAS of asthma, was used to assign the function to variants associated with asthma. We used Mendelian randomization to demonstrate DNA methylation effects on gene expression at asthma colocalized loci. RESULTS Asthma and allergic disease-associated GWAS SNPs were specifically enriched among molecular QTLs in AECs, but not in GWASs from non-immune diseases, and in AEC eQTLs, but not among eQTLs from other tissues. Colocalization analyses of AEC QTLs with asthma GWAS variants revealed potential molecular mechanisms of asthma, including QTLs at the TSLP locus that were common to both the RV and vehicle treatments and to both childhood onset and adult onset asthma, as well as QTLs at the 17q12-21 asthma locus that were specific to RV exposure and childhood onset asthma, consistent with clinical and epidemiological studies of these loci. CONCLUSIONS This study provides evidence of functional effects for asthma risk variants in AECs and insight into RV-mediated transcriptional and epigenetic response mechanisms that modulate genetic effects in the airway and risk for asthma.
Collapse
Affiliation(s)
- Marcus M Soliai
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| | - Atsushi Kato
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Britney A Helling
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - James E Norton
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Aiko I Klinger
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma E Thompson
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Selene M Clay
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Robert C Kern
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce K Tan
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert P Schleimer
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dan L Nicolae
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Jayant M Pinto
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
32
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
33
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
34
|
Vercelli D. Microbiota and human allergic diseases: the company we keep. Curr Opin Immunol 2021; 72:215-220. [PMID: 34182271 DOI: 10.1016/j.coi.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Environmental, maternal and early life microbial/immune networks program human developmental trajectories and health outcomes and strongly modify allergic disease risk. The effects of environmental microbiota are illustrated by the 'farm effect' (the protection against asthma and allergy conferred by growing up on a traditional farm) and other natural experiments in populations exposed to microbe-rich environments. The role of gut microbiome maturation in the asthma/allergy trajectory is demonstrated by the most recent farm studies, which identified microbial metabolites specifically associated with asthma protection, and studies in other cohorts, which defined dynamic microbial community profiles associated with allergic disease phenotypes. Current and future studies in germ-free mice associated with gut microbiota from human disease states are providing novel mechanistic insights into the role of microbiota in shaping immune function and allergic disease susceptibility.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Arizona Center for the Biology of Complex Diseases and Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
35
|
Zhang Y, Tan M, Qian X, Li C, Yue L, Liu Y, Shi S. Interaction between early-life pet exposure and methylation pattern of ADAM33 on allergic rhinitis among children aged 3-6 years in China. Allergy Asthma Clin Immunol 2021; 17:44. [PMID: 33933154 PMCID: PMC8088023 DOI: 10.1186/s13223-021-00526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background Recent research has pointed out the important roles of epigenetic modifications in the development and persistence of allergic rhinitis (AR), especially in relation to DNA methylation of disease-associated genes. We investigated whether AR susceptibility genes were epigenetically regulated, and whether methylation modulation of these genes in response to early-life environment could be a molecular mechanism underlying the risk for AR onset in a cohort of children aged 3–6 years in China. Methods Peripheral blood mononuclear cell (PBMC) samples were collected from 130 children patients, aged 3–6 years and diagnosed with AR; and 154 matched controls to detect promoter methylation in 25 AR susceptibility genes with the MethylTarget approach. Methylation levels were compared for each CpG site, each amplified region, and each gene. In addition, the relationship among DNA methylation, early-life environmental risk factors and AR onset were assessed. Results Maternal allergic history (P = 0.0390) and pet exposure (P = 0.0339) were significantly associated with increased AR risk. Differential methylation analyses were successfully performed for 507 CpG sites, 34 amplified regions and 17 genes and significant hypomethylation was observed in the promoter region of ADAM33 in AR patients [multiple test-corrected (FDR) P-value < 0.05]. Spearman correlation analysis revealed that the hypomethylation of ADAM33 was significantly associated with higher eosinophil counts (Spearman’s ρ: − 0.187, P-value = 0.037). According to the results of the multiple regression analysis, after adjusting for cofounders, the interaction of early-life pet exposure with methylation level of ADAM33 increased the risk for AR onset 1.423 times more in children (95% CI = 0.0290–4.109, P-value = 0.005). Conclusion This study provides evidence that early-life pet exposure and low methylation level of ADAM33 increase AR risk in children, and the interaction between pet exposure and methylation level of ADAM33 may play an important role in the development of AR.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Meiyu Tan
- Department of Laboratory Diagnosis, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoqiong Qian
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Cong Li
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lei Yue
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuehong Liu
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
36
|
Rago D, Pedersen CET, Huang M, Kelly RS, Gürdeniz G, Brustad N, Knihtilä H, Lee-Sarwar KA, Morin A, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Wheelock CE, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Characteristics and Mechanisms of a Sphingolipid-associated Childhood Asthma Endotype. Am J Respir Crit Care Med 2021; 203:853-863. [PMID: 33535020 DOI: 10.1164/rccm.202008-3206oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.
Collapse
Affiliation(s)
- Daniela Rago
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Hanna Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, New York; and
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
37
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|