1
|
Jurasova V, Andel R, Katonova A, Veverova K, Zuntychova T, Horakova H, Vyhnalek M, Kolarova T, Matoska V, Blennow K, Hort J. CSF neurogranin levels as a biomarker in Alzheimer's disease and frontotemporal lobar degeneration: a cross-sectional analysis. Alzheimers Res Ther 2024; 16:199. [PMID: 39242539 PMCID: PMC11378641 DOI: 10.1186/s13195-024-01566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND There is initial evidence suggesting that biomarker neurogranin (Ng) may distinguish Alzheimer's disease (AD) from other neurodegenerative diseases. Therefore, we assessed (a) the discriminant ability of cerebrospinal fluid (CSF) Ng levels to distinguish between AD and frontotemporal lobar degeneration (FTLD) pathology and between different stages within the same disease, (b) the relationship between Ng levels and cognitive performance in both AD and FTLD pathology, and (c) whether CSF Ng levels vary by apolipoprotein E (APOE) polymorphism in the AD continuum. METHODS Participants with subjective cognitive decline (SCD) (n = 33), amnestic mild cognitive impairment (aMCI) due to AD (n = 109), AD dementia (n = 67), MCI due to FTLD (n = 25), and FTLD dementia (n = 29) were recruited from the Czech Brain Aging Study. One-way analysis of covariance (ANCOVA) assessed Ng levels in diagnostic subgroups. Linear regressions evaluated the relationship between CSF Ng levels, memory scores, and APOE polymorphism. RESULTS Ng levels were higher in aMCI-AD patients compared to MCI-FTLD (F[1, 134] = 15.16, p < .001), and in AD-dementia compared to FTLD-dementia (F[1, 96] = 4.60, p = .029). Additionally, Ng levels were higher in FTLD-dementia patients compared to MCI-FTLD (F[1, 54]= 4.35, p = .034), lower in SCD participants compared to aMCI-AD (F[1, 142] = 10.72, p = .001) and AD-dementia (F[1, 100] = 20.90, p < .001), and did not differ between SCD participants and MCI-FTLD (F[1, 58]= 1.02, p = .491) or FTLD-dementia (F[1, 62]= 2.27, p = .051). The main effect of diagnosis across the diagnostic subgroups on Aβ1-42/Ng ratio was significant too (F[4, 263]=, p < .001). We found a non-significant association between Ng levels and memory scores overall (β=-0.25, p = .154) or in AD diagnostic subgroups, and non-significant differences in this association between overall AD APOE ε4 carriers and non-carriers (β=-0.32, p = .358). CONCLUSIONS In this first study to-date to assess MCI and dementia due to AD or FTLD within one study, elevated CSF Ng appears to be an early biomarker of AD-related impairment, but its role as a biomarker appears to diminish after dementia diagnosis, whereby dementia-related underlying processes in AD and FTLD may begin to merge. The Aβ1-42/Ng ratio discriminated AD from FTLD patients better than Ng alone. CSF Ng levels were not related to memory in AD or FTLD, suggesting that Ng may be a marker of the biological signs of disease state rather than cognitive deficits.
Collapse
Affiliation(s)
- Vanesa Jurasova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic.
| | - Ross Andel
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Alzbeta Katonova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Katerina Veverova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Terezie Zuntychova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hana Horakova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tereza Kolarova
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Jácome D, Cotrufo T, Andrés-Benito P, Lidón L, Martí E, Ferrer I, Del Río JA, Gavín R. miR-519a-3p, found to regulate cellular prion protein during Alzheimer's disease pathogenesis, as a biomarker of asymptomatic stages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167187. [PMID: 38653354 DOI: 10.1016/j.bbadis.2024.167187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.
Collapse
Affiliation(s)
- Dayaneth Jácome
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.
| | - Tiziana Cotrufo
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Pol Andrés-Benito
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Eulàlia Martí
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Functional Genomics of Neurodegenerative Diseases, Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; CIBERESP (Centro en Red de Epidemiología y Salud Pública), Spain.
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| |
Collapse
|
3
|
Wagemann O, Liu H, Wang G, Shi X, Bittner T, Scelsi MA, Farlow MR, Clifford DB, Supnet-Bell C, Santacruz AM, Aschenbrenner AJ, Hassenstab JJ, Benzinger TLS, Gordon BA, Coalier KA, Cruchaga C, Ibanez L, Perrin RJ, Xiong C, Li Y, Morris JC, Lah JJ, Berman SB, Roberson ED, van Dyck CH, Galasko D, Gauthier S, Hsiung GYR, Brooks WS, Pariente J, Mummery CJ, Day GS, Ringman JM, Mendez PC, St. George-Hyslop P, Fox NC, Suzuki K, Okhravi HR, Chhatwal J, Levin J, Jucker M, Sims JR, Holdridge KC, Proctor NK, Yaari R, Andersen SW, Mancini M, Llibre-Guerra J, Bateman RJ, McDade E. Downstream Biomarker Effects of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer Disease: The DIAN-TU-001 Randomized Clinical Trial. JAMA Neurol 2024; 81:582-593. [PMID: 38683602 PMCID: PMC11059071 DOI: 10.1001/jamaneurol.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024]
Abstract
Importance Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] β = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] β = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] β = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] β = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] β = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] β = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] β = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration ClinicalTrials.gov Identifier: NCT04623242.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Xinyu Shi
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | | | - Marzia A. Scelsi
- F. Hoffmann-La Roche Products Ltd, Welwyn Garden City, United Kingdom
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - David B. Clifford
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Charlene Supnet-Bell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Anna M. Santacruz
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Jason J. Hassenstab
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Brian A. Gordon
- Department of Radiology, Washington University in St Louis, St Louis, Missouri
| | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Laura Ibanez
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Richard J. Perrin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - James J. Lah
- Department of Neurology, School of Medicine Emory University, Atlanta, Georgia
| | - Sarah B. Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham
| | | | - Douglas Galasko
- Department of Neurology, University of California, San Diego
| | - Serge Gauthier
- Department of Neurology & Psychiatry, McGill University, Montréal, Québec, Canada
| | - Ging-Yuek R. Hsiung
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William S. Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Jérémie Pariente
- Department of Neurology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Catherine J. Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville
| | - John M. Ringman
- Department of Neurology, University of Southern California, Los Angeles
| | - Patricio Chrem Mendez
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | | | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hamid R. Okhravi
- Department of Geriatrics, Eastern Virginia Medical School, Norfolk
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | - Roy Yaari
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Jorge Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
4
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
5
|
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease. Brain 2024; 147:12-25. [PMID: 37540027 PMCID: PMC11484517 DOI: 10.1093/brain/awad267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-β). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
6
|
Wang L, Sang B, Zheng Z. The risk of dementia or cognitive impairment in patients with cataracts: a systematic review and meta-analysis. Aging Ment Health 2024; 28:11-22. [PMID: 37416949 DOI: 10.1080/13607863.2023.2226616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES The aim of this study was to investigate whether cataract disease is associated with the risk of developing dementia or cognitive impairment. METHODS A systematic search of the literature in PubMed, the Extracts Database (Embase), the Cochrane Library and the Web of Science databases was performed from the inception data of each database until 1 September 2022. Sensitivity analyses were performed to assess the robustness and reliability of the overall findings. All extracted data were statistically analyzed using Stata software v.16.0. Publication bias was assessed using funnel plots and the Egger test. RESULTS There were 11 publications included in this study, which consisted of 489,211participants, spanning 10 countries from 2012 to 2022. Aggregation suggested that cataracts were associated with cognitive impairment (odds ratio [OR] = 1.32; 95% CI: 1.21-1.43; I 2 = 45.4.%; p = 0.000). The presence of cataracts is significantly associated with an increased risk of developing all-cause dementia (relative risk [RR] = 1.17; 95% CI: 1.08-1.26; I2 = 0.0%; p = 0.000). In subgroup analyses, having cataracts may increase the risk of Alzheimer's disease (hazard ratio [HR] = 1.28; 95% CI: 1.13-1.45; I2 = 0.0%; p = 0.000) and vascular dementia (HR = 1.35; 95% CI = 1.06-1.73; I2 = 0.0%, p = 0.015). The data from the Egger's test showed no significant evidence of publication bias. CONCLUSIONS Cataracts are associated with the risk of cognitive impairment and dementia, including Alzheimer's disease, and vascular dementia.
Collapse
Affiliation(s)
- Luping Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Bowen Sang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zuyan Zheng
- Department of Acupuncture, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhao S, Ye B, Chi H, Cheng C, Liu J. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer's disease using single-cell sequencing. Heliyon 2023; 9:e17454. [PMID: 37449151 PMCID: PMC10336450 DOI: 10.1016/j.heliyon.2023.e17454] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Background Ovarian cancer (OC) is a common tumor of the female reproductive system, while Alzheimer's disease (AD) is a prevalent neurodegenerative disease that primarily affects cognitive function in the elderly. Monocytes are immune cells in the blood that can enter tissues and transform into macrophages, thus participating in immune and inflammatory responses. Overall, monocytes may play an important role in Alzheimer's disease and ovarian cancer. Methods The CIBERSORT algorithm results indicate a potential crucial role of monocytes/macrophages in OC and AD. To identify monocyte marker genes, single-cell RNA-seq data of peripheral blood mononuclear cells (PBMCs) from OC and AD patients were analyzed. Enrichment analysis of various cell subpopulations was performed using the "irGSEA" R package. The estimation of cell cycle was conducted with the "tricycle" R package, and intercellular communication networks were analyzed using "CellChat". For 134 monocyte-associated genes (MRGs), bulk RNA-seq data from two diseased tissues were obtained. Cox regression analysis was employed to develop risk models, categorizing patients into high-risk (HR) and low-risk (LR) groups. The model's accuracy was validated using an external GEO cohort. The different risk groups were evaluated in terms of immune cell infiltration, mutational status, signaling pathways, immune checkpoint expression, and immunotherapy. To identify characteristic MRGs in AD, two machine learning algorithms, namely random forest and support vector machine (SVM), were utilized. Results Based on Cox regression analysis, a risk model consisting of seven genes was developed in OC, indicating a better prognosis for patients in the LR group. The LR group had a higher tumor mutation burden, immune cell infiltration abundance, and immune checkpoint expression. The results of the TIDE algorithm and the IMvigor210 cohort showed that the LR group was more likely to benefit from immunotherapy. Finally, ZFP36L1 and AP1S2 were identified as characteristic MRGs affecting OC and AD progression. Conclusion The risk profile containing seven genes identified in this study may help further guide clinical management and targeted therapy for OC. ZFP36L1 and AP1S2 may serve as biomarkers and new therapeutic targets for patients with OC and AD.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, 225000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
8
|
Xu K, Zheng P, Zhao S, Feng J, Pu J, Wang J, Zhao S, Wang H, Chen J, Xie P. Altered MANF and RYR2 concentrations associated with hypolipidemia in the serum of patients with schizophrenia. J Psychiatr Res 2023; 163:142-149. [PMID: 37210832 DOI: 10.1016/j.jpsychires.2023.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is associated with abnormal serum lipid profiles, but their relationship is poorly understood. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an important regulator of lipid metabolism. Previous studies have shown its involvement in the pathogenesis of numerous neuropsychiatric disorders, while its role in SCZ is still unknown. Therefore, this study was conducted to examine serum MANF levels in patients with SCZ, and to investigate the potential relationship between MANF, serum lipid levels and SCZ. The results showed that total cholesterol (TC) levels were significantly lower in 225 patients with SCZ than in 233 healthy controls (HCs). According to Ingenuity Pathway Analysis, hypolipidemia is associated with SCZ via MANF/ryanodine receptor 2 (RYR2) pathway. This theory was supported by another sample set, which showed significantly lower MANF levels and higher RYR2 levels in the serum of 170 SCZ patients compared to 80 HCs. Moreover, MANF and RYR2 levels both were significantly correlated with the severity of psychotic symptoms and TC levels. In addition, a model consisting of MANF and RYR2 was found to be effective in distinguishing SCZ patients from HCs. These findings suggested that the MANF/RYR2 pathway might serve as a bridge between hypolipidemia and SCZ, and MANF and RYR2 held promise as biomarkers for SCZ.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Shuqian Zhao
- Department of Clinical Psychology, Chongqing Mental Health Centre, Chongqing, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
11
|
Kawarabayashi T, Nakamura T, Miyashita K, Segawa T, Fukamachi I, Sugawara T, Oka H, Ishizawa K, Amari M, Kasahara H, Makioka K, Ikeda Y, Takatama M, Shoji M. Clinical Evaluation of Cerebrospinal Fluid p217tau and Neurofilament Light Chain Levels in Patients with Alzheimer's Disease or Other Neurological Diseases. J Alzheimers Dis 2023; 96:1623-1638. [PMID: 38007650 PMCID: PMC10741340 DOI: 10.3233/jad-230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The cerebrospinal fluid (CSF) levels of tau phosphorylated at threonine 217 (p217tau) or 181 (p181tau), and neurofilament light chain (NfL) are definite biomarkers of tauopathy and neurodegeneration in Alzheimer's disease (AD). OBJECTIVE To validate their utility in excluding other neurological diseases and age-related changes in clinical settings. METHODS We developed monoclonal antibodies against p217tau and NfL, established novel ELISAs, and analyzed 170 CSF samples from patients with AD or other neurological diseases. RESULTS In AD, p217tau is a more specific and abundant CSF component than p181tau. However, CSF NfL levels increase age-dependently and to a greater extent in central and peripheral nervous diseases than in AD. CONCLUSIONS CSF p217tau correlates better with AD neurodegeneration than other tau-related biomarkers and the major phosphorylated tau species. The clinical usage of NfL as a neurodegeneration biomarker in AD requires exclusion of various central and peripheral neurological diseases.
Collapse
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | - Takashi Sugawara
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Hironori Oka
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Kunihiko Ishizawa
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Masakuni Amari
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
| | - Masamitsu Takatama
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Neurology, Gunma University Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
12
|
MANF/EWSR1/ANXA6 pathway might as the bridge between hypolipidemia and major depressive disorder. Transl Psychiatry 2022; 12:527. [PMID: 36585419 PMCID: PMC9803680 DOI: 10.1038/s41398-022-02287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) involves changes in lipid metabolism, but previous findings are contradictory. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is considered to be a regulator of lipid metabolism. To date, the function of MANF has been studied in many brain disorders, but not in MDD. Therefore, to better understand the role of lipids in MDD, this study was conducted to examine lipid levels in the serum of MDD patients and to investigate the potential function of MANF in MDD. First, the data on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum from 354 MDD patients and 360 healthy controls (HCs) were collected and analyzed. The results showed that there were significantly lower concentrations of TC and LDL-C in MDD patients compared with HCs, and TC levels were positively correlated with LDL-C levels. Bioinformatics analysis indicated that MANF/EWSR1/ANXA6 pathway might serve as the connecting bridge through which hypolipidemia played a functional role in MDD. Second, to verify this hypothesis, serum samples were collected from 143 MDD patients, and 67 HCs to measure the levels of MANF, EWSR1, and ANXA6 using ELISA kits. The results showed that compared to HCs, MDD patients had a significantly lower level of MANF and higher levels of ANXA6 and EWSR1, and these molecules were significantly correlated with both TC level and Hamilton Depression Rating Scales (HDRS) score. In addition, a discriminative model consisting of MANF, EWSR1, and ANXA6 was identified. This model was capable of distinguishing MDD subjects from HCs, yielded an area under curve of 0.9994 in the training set and 0.9569 in the testing set. Taken together, our results suggested that MANF/EWSR1/ANXA6 pathway might act as the bridge between hypolipidemia and MDD, and these molecules held promise as potential biomarkers for MDD.
Collapse
|
13
|
Bai J, Wan Z, Wang M, Wu X, Wang T, Zhang Y, Xue Y, Xu H, Peng Q. Association of cognitive function with Neurofilament light chain in the aqueous humor of human eye. Front Aging Neurosci 2022; 14:1027705. [PMID: 36408096 PMCID: PMC9671656 DOI: 10.3389/fnagi.2022.1027705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2024] Open
Abstract
Objectives To evaluate the predictive clinical role of neurofilament light chain (NfL), amyloid-β (Aβ), glial fibrillary acidic protein (GFAP), and phosphorylated tau at threonine 181 (p-tau181) proteins in human aqueous humor (AH) and quantify the retinal macular microvascular parameters by optical coherence tomography angiography (OCTA) as early diagnostic markers of Alzheimer's disease (AD). Methods This prospective, single-site, cross-sectional, cohort study enrolled 55 participants, including 38 patients with neovascular age-related macular degeneration (nAMD) and 17 individuals with senile cataracts. The single-molecule array platform was used to quantitatively measure the levels of AH NfL, Aβ40, Aβ42, GFAP, and p-tau181 proteins in AH. The mini-mental state examination (MMSE) score was used to assess the global cognitive function. OCTA scan with 6 × 6 mm macular area was used to quantify the retinal thickness and microvascular densities of superficial retinal capillary plexuses and deep retinal capillary plexuses. Results NfL, Aβ40, Aβ42, GFAP, and p-tau181 were detected in all AH samples by Simoa platform. Individuals with cataract had higher concentrations of NfL and p-tau181 but lower Aβ40 and Aβ42 and similar GFAP compared to those with nAMD. Lower MMSE scores showed a negative correlation with NfL concentration of AH not only in the nAMD group (p = 0.043), but also in the cataract group (p = 0.032). However, the MMSE scores were not associated with the levels of Aβ40, Aβ42, GFAP, or p-Tau181. Further analysis found that the Aβ40 and Aβ42 concentrations showed a strong positive correlation (p < 0.0001). In addition, the NfL concentration showed a mild positive correlation with that of GFAP in the cataract group (p = 0.021). Although it has not reached statistical significance, there was a correlation between the levels of NfL and Aβ42 in the nAMD group (p = 0.051). Moreover, the macular superficial vessel density values had a negative correlation with the concentration of NfL (p = 0.004) but a positive correlation with MMSE scores (p = 0.045). The macular deep vessel density values were negatively correlated with the concentration of p-tau181 (p = 0.031) and positively correlated with MMSE scores (p = 0.020). Conclusion The examination of AD-related biomarkers in human AH and OCTA may improve the ocular-based AD detection methods and contribute to forestalling the progression of preclinical AD.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xue Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
15
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
16
|
Bahado-Singh RO, Radhakrishna U, Gordevičius J, Aydas B, Yilmaz A, Jafar F, Imam K, Maddens M, Challapalli K, Metpally RP, Berrettini WH, Crist RC, Graham SF, Vishweswaraiah S. Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells 2022; 11:1744. [PMID: 35681440 PMCID: PMC9179874 DOI: 10.3390/cells11111744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949−0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95−1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Juozas Gordevičius
- Vugene, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA;
| | - Buket Aydas
- Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI 48226, USA;
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Faryal Jafar
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Khaled Imam
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Michael Maddens
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Kshetra Challapalli
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
| | - Wade H. Berrettini
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| |
Collapse
|
17
|
Vasunilashorn SM, Dillon ST, Chan NY, Fong TG, Joseph M, Tripp B, Xie Z, Ngo LH, Lee CG, Elias JA, Otu HH, Inouye SK, Marcantonio ER, Libermann TA. Proteome-Wide Analysis Using SOMAscan Identifies and Validates Chitinase-3-Like Protein 1 as a Risk and Disease Marker of Delirium Among Older Adults Undergoing Major Elective Surgery. J Gerontol A Biol Sci Med Sci 2022; 77:484-493. [PMID: 35239952 PMCID: PMC8893174 DOI: 10.1093/gerona/glaa326] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Delirium (an acute change in cognition) is a common, morbid, and costly syndrome seen primarily in aging adults. Despite increasing knowledge of its epidemiology, delirium remains a clinical diagnosis with no established biomarkers to guide diagnosis or management. Advances in proteomics now provide opportunities to identify novel markers of risk and disease progression for postoperative delirium and its associated long-term consequences (eg, long-term cognitive decline and Alzheimer's disease [AD]). METHODS In a nested matched case-control study (18 delirium/no-delirium pairs) within the Successful Aging after Elective Surgery study (N = 556), we evaluated the association of 1305 plasma proteins preoperatively [PREOP] and on postoperative day 2 [POD2]) with delirium using SOMAscan. Generalized linear models were applied to enzyme-linked immunosorbant assay (ELISA) validation data of one protein across the full cohort. Multi-protein modeling included delirium biomarkers identified in prior work (C-reactive protein, interleukin-6 [IL6]). RESULTS We identified chitinase-3-like-protein-1 (CHI3L1/YKL-40) as the sole delirium-associated protein in both a PREOP and a POD2 predictor model, a finding confirmed by ELISA. Multi-protein modeling found high PREOP CHI3L1/YKL-40 and POD2 IL6 increased the risk of delirium (relative risk [95% confidence interval] Quartile [Q]4 vs Q1: 2.4[1.2-5.0] and 2.1[1.1-4.1], respectively). CONCLUSIONS Our identification of CHI3L1/YKL-40 in postoperative delirium parallels reports of CHI3L1/YKL-40 and its association with aging, mortality, and age-related conditions including AD onset and progression. This highlights the type 2 innate immune response, involving CHI3L1/YKL-40, as an underlying mechanism of postoperative delirium, a common, morbid, and costly syndrome that threatens the independence of older adults.
Collapse
Affiliation(s)
- Sarinnapha M Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simon T Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Noel Y Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tamara G Fong
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Marie Joseph
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bridget Tripp
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Boston, Massachusetts, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Boston, Massachusetts, USA
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sharon K Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Edward R Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Fefer G, Panek WK, Khan MZ, Singer M, Westermeyer H, Mowat FM, Murdoch DM, Case B, Olby NJ, Gruen ME. Use of Cognitive Testing, Questionnaires, and Plasma Biomarkers to Quantify Cognitive Impairment in an Aging Pet Dog Population. J Alzheimers Dis 2022; 87:1367-1378. [PMID: 35431246 PMCID: PMC9177825 DOI: 10.3233/jad-215562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Aging dogs may suffer from canine cognitive dysfunction syndrome (CCDS), a condition in which cognitive decline is associated with amyloid pathology and cortical atrophy. Presumptive diagnosis is made through physical examination, exclusion of systemic/metabolic conditions, and completion of screening questionnaires by owners. OBJECTIVE This study aimed to determine whether cognitive function could be quantified in aging pet dogs, and to correlate cognitive testing with validated questionnaires and plasma neurofilament light chain (pNfL) concentration. METHODS Thirty-nine dogs from fifteen breeds were recruited (9.3 to 15.3 years). Owners completed the Canine Dementia Scale (CADES) and Canine Cognitive Dysfunction Rating scale (CCDR). Executive control and social cues were tested, and pNfL was measured with single molecule array assay. Comparisons were made between cognitive testing scores, CADES, CCDR scores, and pNfL. RESULTS CADES scoring classified five dogs as severe CCDS, six as moderate, ten as mild, and eighteen as normal. CCDR identified seven dogs at risk of CCDS and thirty-two as normal. Cognitive testing was possible in the majority of dogs, although severely affected dogs were unable to learn tasks. CADES score correlated with sustained attention duration (r = -0.47, p = 0.002), inhibitory control (r = -0.51, p = 0.002), detour (r = -0.43, p = 0.001), and pNfL (r = 0.41, p = 0.025). Concentration of pNfL correlated with inhibitory control (r = -0.7, p≤0.001). The CCDR scale correlated with performance on inhibitory control (r = -0.46, p = 0.005). CONCLUSION Our findings suggest that a multi-dimensional approach using a combination of questionnaires, specific cognitive tests, and pNfL concentration can be used to quantify cognitive decline in aging pet dogs.
Collapse
Affiliation(s)
- Gilad Fefer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Wojciech K. Panek
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Michael Z. Khan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Matthew Singer
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hans Westermeyer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Freya M. Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Wisconsin, 53706, USA
| | - David M. Murdoch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Beth Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Natasha J. Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Margaret E. Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA,Correspondence: Corresponding Author, , 919-513-6500
| |
Collapse
|
19
|
Roveta F, Cermelli A, Boschi S, Ferrandes F, Grassini A, Marcinnò A, Spina M, Rubino E, Borsello T, Vercelli A, Rainero I. Synaptic Proteins as Fluid Biomarkers in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 90:1381-1393. [PMID: 36278349 DOI: 10.3233/jad-220515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synaptic disruption precedes neuronal death and correlates with clinical features of Alzheimer's disease (AD). The identification of fluid biomarkers of synaptic damage is emerging as a goal for early and accurate diagnosis of the disease. OBJECTIVE To perform a systematic review and meta-analysis to determine whether fluid biomarkers of synaptic damage are impaired in AD. METHODS PubMed, Scopus, EMBASE, and Web of Science were searched for articles reporting synaptic proteins as fluid biomarkers in AD and cognitively unimpaired (CU) individuals. Pooled effect sizes were determined using the Hedge G method with random effects. Questions adapted from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42021277487). RESULTS The search strategy identified 204 articles that were assessed for eligibility. A total of 23 studies were included in the systematic review and 15 were included in the meta-analysis. For Neurogranin, 827 AD and 1,237 CU subjects were included in the meta-analysis, showing a significant increase in cerebrospinal fluid of patients with AD compared to CU individuals, with an effect size of 1.01 (p < 0.001). A significant increase in SNAP-25 and GAP-43 levels in CSF of patients with AD was observed. CONCLUSION Neurogranin, SNAP-25, and GAP-43 are possible biomarkers of synaptic damage in AD, and other potential synaptic biomarkers are emerging. This meta-analysis also revealed that there are still relatively few studies investigating these biomarkers in patients with AD or other dementias and showed wide heterogeneity in literature.
Collapse
Affiliation(s)
- Fausto Roveta
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Aurora Cermelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Fabio Ferrandes
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alberto Grassini
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Andrea Marcinnò
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Margherita Spina
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Elisa Rubino
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences University of Milano, Milan, Italy
- Mario Negri Institute for Pharmacological Research, University of Milano, Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| |
Collapse
|
20
|
Mavroudis I, Chowdhury R, Petridis F, Karantali E, Chatzikonstantinou S, Balmus IM, Luca IS, Ciobica A, Kazis D. YKL-40 as a Potential Biomarker for the Differential Diagnosis of Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010060. [PMID: 35056368 PMCID: PMC8777884 DOI: 10.3390/medicina58010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, associated with extensive neuronal loss, dendritic and synaptic changes resulting in significant cognitive impairment. An increased number of studies have given rise to the neuroinflammatory hypothesis in AD. It is widely accepted that AD brains show chronic inflammation, probably triggered by the presence of insoluble amyloid beta deposits and neurofibrillary tangles (NFT) and is also related to the activation of neuronal death cascade. In the present study we aimed to investigate the role of YKL-40 levels in the cerebrospinal fluid (CSF) in the diagnosis of AD, and to discuss whether there are further potential roles of this protein in the management and treatment of AD. We conducted an online search on PubMed, Web of Science, and the Cochrane library databases from 1990 to 2021. The quantitative analysis showed that the levels of YKL-40 were significantly higher in Alzheimer’s disease compared to controls, to mild cognitive impairment (MCI) AD (MCI-AD) and to stable MCI. They were also increased in MCI-AD compared to stable MCI. The present study shows that the CSF levels of YKL-40 could be potentially used as a biomarker for the prognosis of mild cognitive impairment and the likelihood of progression to AD, as well as for the differential diagnosis between AD and MCI.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Rumana Chowdhury
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, ”Alexandru Ioan Cuza” University of Iasi, Alexandru Lapsuneanu Street, No. 26, 700057 Iasi, Romania;
| | - Iuliana Simona Luca
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| |
Collapse
|
21
|
Soluble amyloid-beta isoforms predict downstream Alzheimer's disease pathology. Cell Biosci 2021; 11:204. [PMID: 34895338 PMCID: PMC8665586 DOI: 10.1186/s13578-021-00712-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background Changes in soluble amyloid-beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. Methods We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. Results Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. Conclusions Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00712-3.
Collapse
|
22
|
Guan H, Wang C, Tao D. MRI-based Alzheimer's disease prediction via distilling the knowledge in multi-modal data. Neuroimage 2021; 244:118586. [PMID: 34563678 DOI: 10.1016/j.neuroimage.2021.118586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimer's disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fusion of multi-modal data can effectively improve the prediction accuracy, their applications are largely restricted by the limited availability or high cost of multi-modal data. Building an effective prediction model using only magnetic resonance imaging (MRI) remains a challenging research topic. In this work, we propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction. In contrast to existing distillation algorithms, the proposed multi-instance probabilities demonstrate a superior capability of representing the complicated atrophy distributions, and can guide the MRI-based network to better explore the input MRI. To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information. Experiments demonstrate the advantage of our framework, suggesting its potentials in the data-limited clinical settings.
Collapse
Affiliation(s)
- Hao Guan
- School of Computer Science, The University of Sydney, Australia
| | - Chaoyue Wang
- School of Computer Science, The University of Sydney, Australia.
| | - Dacheng Tao
- School of Computer Science, The University of Sydney, Australia; JD Explore Academy, China.
| |
Collapse
|
23
|
Peles PRH, Salvador LDS, Souza LCD, Caramelli P. Accuracy of the Brief Cognitive Screening Battery for diagnosing Alzheimer's disease defined by cerebrospinal fluid biomarkers and AT(N) classification: a case-control study. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 80:23-29. [PMID: 34816970 PMCID: PMC9651505 DOI: 10.1590/0004-282x-anp-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Validation of cognitive instruments for detection of Alzheimer's disease (AD) based on correlation with diagnostic biomarkers allows more reliable identification of the disease. OBJECTIVES To investigate the accuracy of the Brief Cognitive Screening Battery (BCSB) in the differential diagnosis between AD, non-AD cognitive impairment (both defined by cerebrospinal fluid [CSF] biomarkers) and healthy cognition, and to correlate CSF biomarker results with cognitive performance. METHODS Overall, 117 individuals were evaluated: 45 patients with mild cognitive impairment (MCI) or mild dementia within the AD continuum defined by the AT(N) classification [A+T+/-(N)+/]; 27 non-AD patients with MCI or mild dementia [A-T+/-(N)+/-]; and 45 cognitively healthy individuals without CSF biomarker results. All participants underwent evaluation using the BCSB. RESULTS The total BCSB and delayed recall (DR) scores of the BCSB memory test showed high diagnostic accuracy, as indicated by areas under the ROC curve (AUC): 0.89 and 0.87, respectively, for discrimination between AD and non-AD versus cognitively healthy controls. Similarly, total BCSB and DR displayed high accuracy (AUC-ROC curves of 0.89 and 0.91, respectively) for differentiation between AD and controls. BCSB tests displayed low accuracy for differentiation between AD and non-AD. The CSF levels of biomarkers correlated significantly, though weakly, with DR. CONCLUSIONS Total BCSB and DR scores presented good accuracy for differentiation between patients with a biological AD diagnosis and cognitively healthy individuals, but low accuracy for differentiating AD from non-AD patients.
Collapse
Affiliation(s)
- Patrícia Regina Henrique Peles
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| | - Larissa de Souza Salvador
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Belo Horizonte MG, Brazil
| | - Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Belo Horizonte MG, Brazil
| |
Collapse
|
24
|
Dansson HV, Stempfle L, Egilsdóttir H, Schliep A, Portelius E, Blennow K, Zetterberg H, Johansson FD. Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:151. [PMID: 34488882 PMCID: PMC8422748 DOI: 10.1186/s13195-021-00886-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/08/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND In Alzheimer's disease, amyloid- β (A β) peptides aggregate in the lowering CSF amyloid levels - a key pathological hallmark of the disease. However, lowered CSF amyloid levels may also be present in cognitively unimpaired elderly individuals. Therefore, it is of great value to explain the variance in disease progression among patients with A β pathology. METHODS A cohort of n=2293 participants, of whom n=749 were A β positive, was selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to study heterogeneity in disease progression for individuals with A β pathology. The analysis used baseline clinical variables including demographics, genetic markers, and neuropsychological data to predict how the cognitive ability and AD diagnosis of subjects progressed using statistical models and machine learning. Due to the relatively low prevalence of A β pathology, models fit only to A β-positive subjects were compared to models fit to an extended cohort including subjects without established A β pathology, adjusting for covariate differences between the cohorts. RESULTS A β pathology status was determined based on the A β42/A β40 ratio. The best predictive model of change in cognitive test scores for A β-positive subjects at the 2-year follow-up achieved an R2 score of 0.388 while the best model predicting adverse changes in diagnosis achieved a weighted F1 score of 0.791. A β-positive subjects declined faster on average than those without A β pathology, but the specific level of CSF A β was not predictive of progression rate. When predicting cognitive score change 4 years after baseline, the best model achieved an R2 score of 0.325 and it was found that fitting models to the extended cohort improved performance. Moreover, using all clinical variables outperformed the best model based only on a suite of cognitive test scores which achieved an R2 score of 0.228. CONCLUSION Our analysis shows that CSF levels of A β are not strong predictors of the rate of cognitive decline in A β-positive subjects when adjusting for other variables. Baseline assessments of cognitive function accounts for the majority of variance explained in the prediction of 2-year decline but is insufficient for achieving optimal results in longer-term predictions. Predicting changes both in cognitive test scores and in diagnosis provides multiple perspectives of the progression of potential AD subjects.
Collapse
Affiliation(s)
- Hákon Valur Dansson
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Lena Stempfle
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Hildur Egilsdóttir
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, UCL, London, UK
| | - Fredrik D Johansson
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
25
|
GW9508 ameliorates cognitive dysfunction via the external treatment of encephalopathy in Aβ 1-42 induced mouse model of Alzheimer's disease. Eur J Pharmacol 2021; 909:174362. [PMID: 34297968 DOI: 10.1016/j.ejphar.2021.174362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023]
Abstract
The functions and mechanisms of GPR40 receptor to ameliorating the Alzheimer's disease (AD) by external treatment of encephalopathy remain unknown. In present study, the typical Aβ1-42 induced mice model was applied to explore the functions and mechanisms of GPR40 receptor by external treatment of encephalopathy in AD. GPR40 agonist GW9508 and antagonist GW1100 were given by i.g injection to activate/inhibit the GPR40 receptor respectively in the gut of AD mouse which illustrated the function and mechanism of GPR40 receptor in ameliorating AD symptoms by external treatment of encephalopathy. A series of behavioral experiments were used to investigate the cognitive function and memory ability of mice, while molecular biology experiments such as Western blot, ELISA, flow cytometry were used to detect the corresponding changes of signaling pathways. The results revealed that intragastric administrated GW9508 could significantly ameliorate cognitive deficits of AD mouse, up-regulate the expression levels of gut-brain peptides both in blood circulation and hypothalamus thus up-regulate the expression levels of α-MSH in hypothalamus, while the negative autophagy-related proteins and inflammation-related proteins were down-regulated correspondingly. Meanwhile, GW9508 could also inhibit the pathological process of neuroinflammation in microglia. GW1100 reversed the effects of GW9508 significantly. These results suggested that GPR40 was an underlying therapeutic target for the external treatment of encephalopathy related to AD and GPR40 agonist could be explored as the emerging AD therapeutic drug.
Collapse
|
26
|
de Oliveira FF, Miraldo MC, de Castro-Neto EF, de Almeida SS, Matas SLDA, Bertolucci PHF, Naffah-Mazzacoratti MDG. Associations of Neuropsychiatric Features with Cerebrospinal Fluid Biomarkers of Amyloidogenesis and Neurodegeneration in Dementia with Lewy Bodies Compared with Alzheimer's Disease and Cognitively Healthy People. J Alzheimers Dis 2021; 81:1295-1309. [PMID: 33935098 DOI: 10.3233/jad-210272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Behavioral features may reflect proteinopathies predicting pathophysiology in neurodegenerative diseases. OBJECTIVE We aimed to investigate associations of cerebrospinal fluid biomarkers of amyloidogenesis and neurodegeneration with neuropsychiatric features in dementia with Lewy bodies (DLB) compared with late-onset Alzheimer's disease (AD) and cognitively healthy people. METHODS Consecutive outpatients with DLB were paired with outpatients with AD according to sex, dementia stage, and cognitive scores, and with cognitively healthy controls according to sex and age to investigate associations of cerebrospinal fluid amyloid-β (Aβ)42, Aβ40, Aβ38, total tau, phospho-tau Thr181, α-synuclein, ubiquitin, and neurofilament light with neuropsychiatric features according to APOEɛ4 carrier status. RESULTS Overall, 27 patients with DLB (78.48±9.0 years old, eleven APOEɛ4 carriers) were paired with 27 patients with AD (81.00±5.8 years old, twelve APOEɛ4 carriers) and 27 controls (78.48±8.7 years old, four APOEɛ4 carriers); two thirds were women. Behavioral burden was more intense in DLB. Biomarker ratios reflecting amyloidogenesis and neurodegeneration in DLB were more similar to those in AD when patients carried APOEɛ4 alleles. After corrections for false discovery rates, the following associations remained significant: in DLB, dysphoria was associated with tauopathy and indirect measures of amyloidogenesis, while in AD, agitation, and night-time behavior disturbances were associated with tauopathy, and delusions were associated with tauopathy and indirect measures of amyloidogenesis. CONCLUSION Biomarker ratios were superior to Aβ and tau biomarkers predicting neuropsychiatric symptoms when associations with isolated biomarkers were not significant. At the end, APOEɛ4 carrier status influenced amyloidogenesis and tau pathology in DLB and in AD, and axonal degeneration only in DLB.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marjorie Câmara Miraldo
- Department of Neurology and Neurosurgery Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eduardo Ferreira de Castro-Neto
- Department of Neurology and Neurosurgery Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Luiz de Andrade Matas
- Department of Neurology and Neurosurgery Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | |
Collapse
|
27
|
Torrado-Carvajal A, Toschi N, Albrecht DS, Chang K, Akeju O, Kim M, Edwards RR, Zhang Y, Hooker JM, Duggento A, Kalpathy-Cramer J, Napadow V, Loggia ML. Thalamic neuroinflammation as a reproducible and discriminating signature for chronic low back pain. Pain 2021; 162:1241-1249. [PMID: 33065737 DOI: 10.1097/j.pain.0000000000002108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Using positron emission tomography, we recently demonstrated elevated brain levels of the 18 kDa translocator protein (TSPO), a glial activation marker, in chronic low back pain (cLBP) patients, compared to healthy controls (HCs). Here, we first sought to replicate the original findings in an independent cohort (15 cLBP, 37.8 ± 12.5 y/o; 18 HC, 48.2 ± 12.8 y/o). We then trained random forest machine learning algorithms based on TSPO imaging features combining discovery and replication cohorts (totaling 25 cLBP, 42.4 ± 13.2 y/o; 27 HC, 48.9 ± 12.6 y/o), to explore whether image features other than the mean contain meaningful information that might contribute to the discrimination of cLBP patients and HC. Feature importance was ranked using SHapley Additive exPlanations values, and the classification performance (in terms of area under the curve values) of classifiers containing only the mean, other features, or all features was compared using the DeLong test. Both region-of-interest and voxelwise analyses replicated the original observation of thalamic TSPO signal elevations in cLBP patients compared to HC (P < 0.05). The random forest-based analyses revealed that although the mean is a discriminating feature, other features demonstrate similar level of importance, including the maximum, kurtosis, and entropy. Our observations suggest that thalamic neuroinflammatory signal is a reproducible and discriminating feature for cLBP, further supporting a role for glial activation in human cLBP, and the exploration of neuroinflammation as a therapeutic target for chronic pain. This work further shows that TSPO signal contains a richness of information that the simple mean might fail to capture completely.
Collapse
Affiliation(s)
- Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA, United States
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, HMS, Boston, MA, United States
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andrea Duggento
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Figgie MP, Appleby BS. Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses 2021; 13:v13050789. [PMID: 33925126 PMCID: PMC8146465 DOI: 10.3390/v13050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are difficult to recognize as many symptoms are shared among other neurologic pathologies and the full spectra of symptoms usually do not appear until late in the disease course. Additionally, many commonly used laboratory markers are non-specific to prion disease. The recent introduction of second-generation real time quaking induced conversion (RT-QuIC) has revolutionized pre-mortem diagnosis of prion disease due to its extremely high sensitivity and specificity. However, RT-QuIC does not provide prognostic data and has decreased diagnostic accuracy in some rarer, atypical prion diseases. The objective of this review is to provide an overview of the current clinical utility of fluid-based biomarkers, neurodiagnostic testing, and brain imaging in the diagnosis of prion disease and to suggest guidelines for their clinical use, with a focus on rarer prion diseases with atypical features. Recent advancements in laboratory-based testing and imaging criteria have shown improved diagnostic accuracy and prognostic potential in prion disease, but because these diagnostic tests are not sensitive in some prion disease subtypes and diagnostic test sensitivities are unknown in the event that CWD transmits to humans, it is important to continue investigations into the clinical utility of various testing modalities.
Collapse
Affiliation(s)
- Mark P. Figgie
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian S. Appleby
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
29
|
Shen H, Han C, Yang Y, Guo L, Sheng Y, Wang J, Li W, Zhai L, Wang G, Guan Q. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer's disease. Brain Behav 2021; 11:e02063. [PMID: 33587329 PMCID: PMC8035446 DOI: 10.1002/brb3.2063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/01/2020] [Accepted: 01/17/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study was mainly conducted to explore the expression changes of GSDMD and conventional markers (including T-Tau, Tau181p, and Aβ1-42 ) in the cerebrospinal fluid among patients with Alzheimer's disease (AD) and vascular dementia (VD), followed by determination of role of GSDMD in diagnosing and identifying AD and VD. METHODS In this study, 60 patients with VD, 60 patients with AD, and 50 healthy controls were enrolled. Lumbar puncture was performed to collect cerebrospinal fluid samples. Patients with VD and patients with AD were evaluated using the Mini-Mental State Examination (MMSE) scale, Montreal Cognitive Assessment (MoCA) scale, Clinical Dementia Rating (CDR) scale, Activity of Daily Living (ADL) scale, and Neuropsychiatric Inventory (NPI) questionnaire, aiming to determine the behavioral ability of patients. ELISA kit was purchased to determine the levels of GSDMD, T-Tau, Tau181p, and Aβ1-42 in cerebrospinal fluid, and the expression of inflammatory factors, IL-1β and IL-6, was also detected. RESULTS (1) The levels of GSDMD, T-Tau, and Tau181p in the cerebrospinal fluid were higher in patients with AD than those of patients with VD and healthy controls, while the levels of Aβ1-42 in the cerebrospinal fluid were lower in patients with AD than that in healthy controls and patients with VD. (2) GSDMD had good diagnostic accuracy in AD. Additionally, GSDMD, T-Tau, Tau181p, and Aβ1-42 had good discrimination accuracy in distinguishing AD and VD. (3) The expression levels of inflammatory factors (IL-1β and IL-6) in cerebrospinal fluid were higher in patients with AD than those of healthy controls and patients with VD, which were positively correlated with GSDMD expression. CONCLUSION The expression of GSDMD was increased in patients with AD, which could be used as a biomarker for AD diagnosis and identification from VD.
Collapse
Affiliation(s)
- Heping Shen
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Genghuan Wang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
30
|
Karantali E, Kazis D, Chatzikonstantinou S, Petridis F, Mavroudis I. The role of neurofilament light chain in frontotemporal dementia: a meta-analysis. Aging Clin Exp Res 2021; 33:869-881. [PMID: 32306372 DOI: 10.1007/s40520-020-01554-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most frequent dementia, after Alzheimer's, in patients under the age of 65. It encompasses clinical entities characterized by behavioral, language, and executive control dysfunction. Neurofilament light chain (NfL) is a new, non-disease specific, widely studied biomarker indicative of axonal injury and degeneration. Various studies have previously explored the role of NfL in the diagnostic process, monitoring, and prognosis of dementia. The current systematic review and meta-analysis include all the available data concerning the role of NfL in frontotemporal dementia and its use as a potential biomarker in differentiating patients with FTD from (a) healthy individuals, (b) Alzheimer's dementia, (c) Dementia with Lewy bodies, (d) Motor Neuron disease, (e) Parkinsonian syndromes, and (f) psychiatric disorders. We also analyze the utility of NfL in distinguishing specific FTD subgroups. Neurofilament light chain has a potential role in differentiating patients with frontotemporal dementia from healthy controls, patients with Alzheimer's dementia, and psychiatric disorders. Higher NfL levels were also noted in patients with semantic primary progressive aphasia (PPA) when compared with behavioral FTD and non-fluent PPA patients. Further studies exploring the use of NfL in frontotemporal dementia are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Fivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals, Leeds, UK
- Medical School, Cyprus University, Nicosia, Cyprus
| |
Collapse
|
31
|
AbdulAzeem Y, Bahgat WM, Badawy M. A CNN based framework for classification of Alzheimer’s disease. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05799-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Wang Z, Yang J, Zhu W, Tang Y, Jia J. The synaptic marker neurogranin as a disease state biomarker in Alzheimer's disease: a systematic review and meta-analysis. Int J Neurosci 2021; 132:1245-1253. [PMID: 33527855 DOI: 10.1080/00207454.2021.1881087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Synaptic degeneration is the pathologic foundation of cognitive decline in the Alzheimer's disease (AD) continuum. We aimed to determine whether cerebrospinal fluid (CSF) synaptic marker neurogranin (Ng) is a disease state or a disease stage biomarker in the AD continuum.Methods: Studies comparing CSF Ng levels among AD, mild cognitive impairment (MCI) and healthy participants were included. Studies were eligible if the correlation between CSF Ng levels and Mini-Mental Status Examination (MMSE) scores was investigated.Results: Twenty-one studies met our inclusion criteria (n = 4515). The magnitude of effect sizes was more apparent in AD (standardized mean difference [SMD] = 1.72; 95% confidence interval [CI] = 1.23-2.22), than in MCI (SMD = 0.82; 95% CI = 0.29-1.34) compared to control populations. These results suggest that CSF Ng can discriminate AD and MCI from control populations, implying that synaptic degeneration worsens as patients progress from MCI to AD. However, there was a very weak correlation between CSF Ng levels and MMSE scores (r = -0.15; 95% CI = -0.21--0.08) among the whole populations, suggesting that an increment of CSF Ng is best considered a biological evidence of disease state in the AD continuum.Conclusion: Our study provides evidence that the synaptic marker CSF Ng can be used as a disease state biomarker for the AD continuum. Because synaptic degeneration is a distinct pathologic event from amyloid deposition and neurofibrillary tangle formation, CSF Ng may provide an important supplementation to the AT(N) biomarker system to reveal the sequence of neuropathology.
Collapse
Affiliation(s)
- Zhibin Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianwei Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Zhu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
33
|
Kokkinou M, Beishon LC, Smailagic N, Noel-Storr AH, Hyde C, Ukoumunne O, Worrall RE, Hayen A, Desai M, Ashok AH, Paul EJ, Georgopoulou A, Casoli T, Quinn TJ, Ritchie CW. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst Rev 2021; 2:CD010945. [PMID: 33566374 PMCID: PMC8078224 DOI: 10.1002/14651858.cd010945.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dementia is a syndrome that comprises many differing pathologies, including Alzheimer's disease dementia (ADD), vascular dementia (VaD) and frontotemporal dementia (FTD). People may benefit from knowing the type of dementia they live with, as this could inform prognosis and may allow for tailored treatment. Beta-amyloid (1-42) (ABeta42) is a protein which decreases in both the plasma and cerebrospinal fluid (CSF) of people living with ADD, when compared to people with no dementia. However, it is not clear if changes in ABeta42 are specific to ADD or if they are also seen in other types of dementia. It is possible that ABeta42 could help differentiate ADD from other dementia subtypes. OBJECTIVES To determine the accuracy of plasma and CSF ABeta42 for distinguishing ADD from other dementia subtypes in people who meet the criteria for a dementia syndrome. SEARCH METHODS We searched MEDLINE, and nine other databases up to 18 February 2020. We checked reference lists of any relevant systematic reviews to identify additional studies. SELECTION CRITERIA We considered cross-sectional studies that differentiated people with ADD from other dementia subtypes. Eligible studies required measurement of participant plasma or CSF ABeta42 levels and clinical assessment for dementia subtype. DATA COLLECTION AND ANALYSIS Seven review authors working independently screened the titles and abstracts generated by the searches. We collected data on study characteristics and test accuracy. We used the second version of the 'Quality Assessment of Diagnostic Accuracy Studies' (QUADAS-2) tool to assess internal and external validity of results. We extracted data into 2 x 2 tables, cross-tabulating index test results (ABeta42) with the reference standard (diagnostic criteria for each dementia subtype). We performed meta-analyses using bivariate, random-effects models. We calculated pooled estimates of sensitivity, specificity, positive predictive values, positive and negative likelihood ratios, and corresponding 95% confidence intervals (CIs). In the primary analysis, we assessed accuracy of plasma or CSF ABeta42 for distinguishing ADD from other mixed dementia types (non-ADD). We then assessed accuracy of ABeta42 for differentiating ADD from specific dementia types: VaD, FTD, dementia with Lewy bodies (DLB), alcohol-related cognitive disorder (ARCD), Creutzfeldt-Jakob disease (CJD) and normal pressure hydrocephalus (NPH). To determine test-positive cases, we used the ABeta42 thresholds employed in the respective primary studies. We then performed sensitivity analyses restricted to those studies that used common thresholds for ABeta42. MAIN RESULTS We identified 39 studies (5000 participants) that used CSF ABeta42 levels to differentiate ADD from other subtypes of dementia. No studies of plasma ABeta42 met the inclusion criteria. No studies were rated as low risk of bias across all QUADAS-2 domains. High risk of bias was found predominantly in the domains of patient selection (28 studies) and index test (25 studies). The pooled estimates for differentiating ADD from other dementia subtypes were as follows: ADD from non-ADD: sensitivity 79% (95% CI 0.73 to 0.85), specificity 60% (95% CI 0.52 to 0.67), 13 studies, 1704 participants, 880 participants with ADD; ADD from VaD: sensitivity 79% (95% CI 0.75 to 0.83), specificity 69% (95% CI 0.55 to 0.81), 11 studies, 1151 participants, 941 participants with ADD; ADD from FTD: sensitivity 85% (95% CI 0.79 to 0.89), specificity 72% (95% CI 0.55 to 0.84), 17 studies, 1948 participants, 1371 participants with ADD; ADD from DLB: sensitivity 76% (95% CI 0.69 to 0.82), specificity 67% (95% CI 0.52 to 0.79), nine studies, 1929 participants, 1521 participants with ADD. Across all dementia subtypes, sensitivity was greater than specificity, and the balance of sensitivity and specificity was dependent on the threshold used to define test positivity. AUTHORS' CONCLUSIONS Our review indicates that measuring ABeta42 levels in CSF may help differentiate ADD from other dementia subtypes, but the test is imperfect and tends to misdiagnose those with non-ADD as having ADD. We would caution against the use of CSF ABeta42 alone for dementia classification. However, ABeta42 may have value as an adjunct to a full clinical assessment, to aid dementia diagnosis.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge , Cambridge, UK
| | | | - Chris Hyde
- Exeter Test Group, College of Medicine and Health, University of Exeter Medical School, University of Exeter, Exeter , UK
| | - Obioha Ukoumunne
- NIHR CLAHRC South West Peninsula (PenCLAHRC), University of Exeter Medical School, Exeter, UK
| | | | - Anja Hayen
- Department of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Meera Desai
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Abhishekh Hulegar Ashok
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College , London, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Cousins KAQ, Irwin DJ, Wolk DA, Lee EB, Shaw LMJ, Trojanowski JQ, Da Re F, Gibbons GS, Grossman M, Phillips JS. ATN status in amnestic and non-amnestic Alzheimer's disease and frontotemporal lobar degeneration. Brain 2020; 143:2295-2311. [PMID: 32666090 DOI: 10.1093/brain/awaa165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Under the ATN framework, CSF analytes provide evidence of the presence or absence of Alzheimer's disease pathological hallmarks: amyloid plaques (A), phosphorylated tau (T), and accompanying neurodegeneration (N). Still, differences in CSF levels across amnestic and non-amnestic variants or due to co-occurring pathologies might lead to misdiagnoses. We assess the diagnostic accuracy of CSF markers for amyloid, tau, and neurodegeneration in an autopsy cohort of 118 Alzheimer's disease patients (98 amnestic; 20 non-amnestic) and 64 frontotemporal lobar degeneration patients (five amnestic; 59 non-amnestic). We calculated between-group differences in CSF concentrations of amyloid-β1-42 peptide, tau protein phosphorylated at threonine 181, total tau, and the ratio of phosphorylated tau to amyloid-β1-42. Results show that non-amnestic Alzheimer's disease patients were less likely to be correctly classified under the ATN framework using independent, published biomarker cut-offs for positivity. Amyloid-β1-42 did not differ between amnestic and non-amnestic Alzheimer's disease, and receiver operating characteristic curve analyses indicated that amyloid-β1-42 was equally effective in discriminating both groups from frontotemporal lobar degeneration. However, CSF concentrations of phosphorylated tau, total tau, and the ratio of phosphorylated tau to amyloid-β1-42 were significantly lower in non-amnestic compared to amnestic Alzheimer's disease patients. Receiver operating characteristic curve analyses for these markers showed reduced area under the curve when discriminating non-amnestic Alzheimer's disease from frontotemporal lobar degeneration, compared to discrimination of amnestic Alzheimer's disease from frontotemporal lobar degeneration. In addition, the ATN framework was relatively insensitive to frontotemporal lobar degeneration, and these patients were likely to be classified as having normal biomarkers or biomarkers suggestive of primary Alzheimer's disease pathology. We conclude that amyloid-β1-42 maintains high sensitivity to A status, although with lower specificity, and this single biomarker provides better sensitivity to non-amnestic Alzheimer's disease than either the ATN framework or the phosphorylated-tau/amyloid-β1-42 ratio. In contrast, T and N status biomarkers differed between amnestic and non-amnestic Alzheimer's disease; standard cut-offs for phosphorylated tau and total tau may thus result in misclassifications for non-amnestic Alzheimer's disease patients. Consideration of clinical syndrome may help improve the accuracy of ATN designations for identifying true non-amnestic Alzheimer's disease.
Collapse
Affiliation(s)
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Leslie M J Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Fulvio Da Re
- School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
35
|
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, Pastor P. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol 2020; 28:1142-1152. [PMID: 33236496 DOI: 10.1111/ene.14658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Recently, some emerging cerebrospinal fluid (CSF) markers have been proposed as diagnostic tools for Alzheimer disease (AD) that can have an effect on disease progression. We analyze the accuracy of these CSF markers for diagnosis of AD in reference to brain amyloid positron emission tomography (PET). We also investigated whether they help in differentiating AD from other dementias and examined their influence in tracing the progression to dementia. METHODS Amyloid-β (Aβ) 1-42, total tau (t-tau), phosphorylated tau, Aβ40 , Aβ38 , beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), neurogranin (ng), phosphorylated neurofilament heavy-chain, and α-synuclein (α-syn) CSF levels were analyzed in 319 subjects, among whom 57 also underwent an amyloid PET scan. We also analyzed longitudinal clinical data from 239 subjects. RESULTS Emerging CSF markers, especially ng/BACE-1 ratio (area under the curve = 0.77) and their combinations with core AD CSF markers (all AUCs >0.85), showed high accuracy to discriminate amyloid PET positivity. Subjects with AD had higher CSF BACE-1, ng, and α-syn levels than those with non-AD dementia. CSF t-tau/α-syn ratio was higher in subjects with dementia with Lewy bodies than in those with frontotemporal dementia. Most emerging/core AD ratios predicted a faster conversion from mild cognitive impairment (MCI) stage to AD and appeared to be helpful when core AD CSF markers were discordant. In addition, the rate of cognitive decline was associated with all CSF core AD markers, several emerging/core AD two-marker ratios, and CSF ng levels. CONCLUSIONS These results suggest that emerging biomarkers in conjunction with core AD markers improve diagnosis of AD, are associated with the conversion from MCI into AD, and predict a faster progression of dementia.
Collapse
Affiliation(s)
- Ignacio Álvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Jose Manuel González
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Montse Ysamat
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Juan Pablo Tartari
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Maria Carcel
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Britta Brix
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Philipp Arendt
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain.,Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|
36
|
Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int J Mol Sci 2020; 21:ijms21228630. [PMID: 33207731 PMCID: PMC7697920 DOI: 10.3390/ijms21228630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Collapse
|
37
|
Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H. Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:147. [PMID: 33183357 PMCID: PMC7663867 DOI: 10.1186/s13195-020-00704-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer’s disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood.
Collapse
Affiliation(s)
- Filippo Baldacci
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France. .,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France.,Qynapse, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images (www.cati-neuroimaging.com), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, F-75013, Paris, France
| | - Marie Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | | | | |
Collapse
|
38
|
Neurogranin and VILIP-1 as Molecular Indicators of Neurodegeneration in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21218335. [PMID: 33172069 PMCID: PMC7664397 DOI: 10.3390/ijms21218335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) and visinin-like protein 1 (VILIP-1) are promising candidates for Alzheimer's Disease (AD) biomarkers closely related to synaptic and neuronal degeneration. Both proteins are involved in calcium-mediated pathways. The meta-analysis was performed in random effects based on the ratio of means (RoM) with calculated pooled effect size. The diagnostic utility of these proteins was examined in cerebrospinal fluid (CSF) of patients in different stages of AD compared to control (CTRL). Ng concentration was also checked in various groups with positive (+) and negative (-) amyloid beta (Aβ). Ng highest levels of RoM were observed in the AD (n = 1894) compared to CTRL (n = 2051) group (RoM: 1.62). Similarly, the VILIP-1 highest values of RoM were detected in the AD (n = 706) compared to CTRL (n = 862) group (RoM: 1.34). Concentrations of both proteins increased in more advanced stages of AD. However, Ng seems to be an earlier biomarker for the assessment of cognitive impairment. Ng appears to be related with amyloid beta, and the highest levels of Ng in CSF was observed in the group with pathological Aβ+ status. Our meta-analysis confirms that Ng and VILIP-1 can be useful CSF biomarkers in differential diagnosis and monitoring progression of cognitive decline. Although, an additional advantage of the protein concentration Ng is the possibility of using it to predict the risk of developing cognitive impairment in normal controls with pathological levels of Aβ1-42. Analyses in larger cohorts are needed, particularly concerning Aβ status.
Collapse
|
39
|
Mazzucchi S, Palermo G, Campese N, Galgani A, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics 2020; 17:543-559. [PMID: 33028119 DOI: 10.1080/14789450.2020.1831388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.
Collapse
Affiliation(s)
- Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France.,Brain & Spine Institute (ICM), INSERM U1127 , Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP , Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| |
Collapse
|
40
|
Subramanian ML, Vig V, Chung J, Fiorello MG, Xia W, Zetterberg H, Blennow K, Zetterberg M, Shareef F, Siegel NH, Ness S, Jun GR, Stein TD. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res Ther 2020; 12:111. [PMID: 32943089 PMCID: PMC7500015 DOI: 10.1186/s13195-020-00677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. METHODS This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5-1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. RESULTS NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10-5), Aβ42 (p = 2.8 × 10-4), and t-tau (p = 5.5 × 10-7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10-4), IL-16 (p = 2.2 × 10-4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10-4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10-6), Vegf-C (p = 8.6 × 10-6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10-4), Tie-2 (p = 6.3 × 10-4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10-4). CONCLUSION NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients' clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye.
Collapse
Affiliation(s)
- Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA.
| | - Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Marissa G Fiorello
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Farah Shareef
- Department of Ophthalmology, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
41
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Nunnari G, Di Rosa M. Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. Brain Res 2020; 1749:147127. [PMID: 32949560 DOI: 10.1016/j.brainres.2020.147127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia with still unknown pathogenesis. Several cytokines and chemokines are involved in the pathogenesis of AD. Among the chemokines, the CXCR4/CXCL12 complex has been shown to play an important role in the pathogenetic development of AD. We investigated the expression levels of CXCR4 / CXCL12 in fifteen brain regions of healthy non-demented subjects (NDHC) (2139 sample) and AD patients (1170 sample) stratified according to sex and age. Furthermore, we correlated their expressions with the Neurogranin (NRGN) and CHI3L1 levels, two inflamm-aging markers. We highlighted that CXCR4 gene expression levels were age-correlated in the brain of NDHC subjects and that AD nullified this correlation. A similar trend, but diametrically opposite was observed for CXCL12. Its expression was decreased during the aging in both sexes, and in the brains of AD patients, it underwent an inversion of the trend, only and exclusively in females. Brains of AD patients expressed high CXCR4 and CHI3L1, and low CXCL12 and Neurogranin levels compared to NDHC subjects. Both CXCR4 and CXCL12 correlated significantly with CHI3L1 and Neurogranin expression levels, regardless of disease. Furthermore, we showed a selective modulation of CXCL12 and CXCR4 only in specific brain regions. Taken together our results demonstrate that CXCL12 and CXCR4 are linked to Neurogranin and CHI3L1 expression levels and the relationship between postsynaptic damage and microglial activation in AD could be shown using all these genes. Further confirmations are needed to demonstrate the close link between these genes.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy.
| |
Collapse
|
42
|
Woollacott IO, Nicholas JM, Heller C, Foiani MS, Moore KM, Russell LL, Paterson RW, Keshavan A, Schott JM, Warren JD, Heslegrave A, Zetterberg H, Rohrer JD. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype. Dement Geriatr Cogn Disord 2020; 49:56-76. [PMID: 32344399 PMCID: PMC7513620 DOI: 10.1159/000506282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer's disease (AD) but have not been explored in detail across the spectrum of FTD. METHODS We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD, n = 20; primary progressive aphasia [PPA], n = 44: nfvPPA, n = 16, svPPA, n = 11, lvPPA, n = 14, PPA-NOS, n = 3) were included. 10/64 had familial FTD, with mutations in GRN(n = 3), MAPT(n = 4), or C9orf72 (n = 3). 15/64 had neurodegenerative biomarkers consistent with AD pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) and β-amyloid 1-42 (Aβ42), with each other, and with age and disease du-ration. RESULTS CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. GRN mutation carriers had higher levels of both proteins than controls and C9orf72 expansion carriers, and YKL-40 was higher in MAPT mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not chitotriosidase was associated with age, but not disease duration. CONCLUSION CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to be highly elevated in FTD due to GRN mutations, while YKL-40 is increased in individuals with MAPT mutations. As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response to neurodegeneration in FTLD.
Collapse
Affiliation(s)
- Ione O.C. Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Martha S. Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Katrina M. Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Lucy L. Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ross W. Paterson
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,*Dr. Jonathan D. Rohrer, Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London WC1N 3BG (UK),
| |
Collapse
|
43
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
44
|
Wright LM, Stein TD, Jun G, Chung J, McConnell K, Fiorello M, Siegel N, Ness S, Xia W, Turner KL, Subramanian ML. Association of Cognitive Function with Amyloid-β and Tau Proteins in the Vitreous Humor. J Alzheimers Dis 2020; 68:1429-1438. [PMID: 30856114 DOI: 10.3233/jad-181104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The eye may serve as source for diagnostic testing for early detection of Alzheimer's disease (AD). Examination of amyloid-β (Aβ) and tau protein content in human vitreous and its correlation to neuro-cognition may improve ocular-based AD detection methods. OBJECTIVE To evaluate levels of Aβ and tau protein in human vitreous humor and investigate the clinical predictive role of these proteins as early diagnostic markers of AD. METHODS A prospective, single-center, multi-surgeon cohort study. Vitreous humor samples from 80 eyes were measured quantitatively for Aβ40-42, pTau, and tTau. Linear regression was used to test associations between AD biomarker levels, Mini-Mental State Exam (MMSE), and serum apolipoprotein E (APOE) allele status, with adjustment for age, sex, and education level of patients. RESULTS Lower MMSE scores were significantly associated with lower levels of vitreous Aβ40 (p = 0.015), Aβ42 (p = 0.0066), and tTau (p = 0.0085), and these biomarkers were not associated with any pre-existing eye conditions. Presence of the ɛ4 allele and the ɛ2 allele approached significance with reduced Aβ40 level (p = 0.053) and increased p-Tau level (p = 0.056), respectively. CONCLUSION Patients with poor cognitive function have significantly lower vitreous humor levels of AD-related biomarkers Aβ40, Aβ42, and tTau. These biomarkers do not correlate with underlying eye conditions, suggesting their specificity in association with cognitive change. This is the first study to our knowledge to correlate cognition with AD-related proteins in the vitreous humor. Results suggest ocular proteins may have a role for early dementia detection in individuals at risk for AD.
Collapse
Affiliation(s)
- Lauren M Wright
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA.,VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Gyungah Jun
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jaeyoon Chung
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kate McConnell
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Marissa Fiorello
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Veterans Affairs Medical Center, Bedford, MA, USA
| | - Kelley L Turner
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
45
|
Different Clinical Contexts of Use of Blood Neurofilament Light Chain Protein in the Spectrum of Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4667-4691. [PMID: 32772223 DOI: 10.1007/s12035-020-02035-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
One of the most pressing challenges in the clinical research of neurodegenerative diseases (NDDs) is the validation and standardization of pathophysiological biomarkers for different contexts of use (CoUs), such as early detection, diagnosis, prognosis, and prediction of treatment response. Neurofilament light chain (NFL) concentration is a particularly promising candidate, an indicator of axonal degeneration, which can be analyzed in peripheral blood with advanced ultrasensitive methods. Serum/plasma NFL concentration is closely correlated with cerebrospinal fluid NFL and directly reflects neurodegeneration within the central nervous system. Here, we provide an update on the feasible CoU of blood NFL in NDDs and translate recent findings to potentially valuable clinical practice applications. As NFL is not a disease-specific biomarker, however, blood NFL is an easily accessible biomarker with promising different clinical applications for several NDDs: (1) early detection and diagnosis (i.e., amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, atypical parkinsonisms, sporadic late-onset ataxias), (2) prognosis (Huntington's disease and Parkinson's disease), and (3) prediction of time to symptom onset (presymptomatic mutation carriers in genetic Alzheimer's disease and spinocerebellar ataxia type 3).
Collapse
|
46
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
47
|
Cisbani G, Koppel A, Knezevic D, Suridjan I, Mizrahi R, Bazinet RP. Peripheral cytokine and fatty acid associations with neuroinflammation in AD and aMCI patients: An exploratory study. Brain Behav Immun 2020; 87:679-688. [PMID: 32135194 DOI: 10.1016/j.bbi.2020.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Dunja Knezevic
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ivonne Suridjan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
48
|
Long non-coding RNA CCAT2 as a potential serum biomarker for diagnosis and prognosis of multiple myeloma. Ann Hematol 2020; 99:2159-2171. [DOI: 10.1007/s00277-020-04161-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
|
49
|
Seino Y, Nakamura T, Kawarabayashi T, Hirohata M, Narita S, Wakasaya Y, Kaito K, Ueda T, Harigaya Y, Shoji M. Cerebrospinal Fluid and Plasma Biomarkers in Neurodegenerative Diseases. J Alzheimers Dis 2020; 68:395-404. [PMID: 30814356 DOI: 10.3233/jad-181152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) amyloid-β (Aβ)42 and tau are biomarkers for Alzheimer's disease (AD); however, the effects of other neurodegenerative processes on these biomarkers remain unclear. We measured Aβ40, Aβ42, total tau, phosphorylated-tau, and α-synuclein in CSF and plasma using matched samples from various neurodegenerative diseases to expand our basic knowledge on these biomarkers and their practical applications. A total of 213 CSF and 183 plasma samples were analyzed from cognitively unimpaired subjects, and patients with Alzheimer's disease dementia (ADD), mild cognitive impairment (MCI), non-AD dementias, and other neurological diseases. The CSF/plasma ratios of Aβ40 and Aβ42 were approximately 25:1. Aβ40/42 ratios in CSF and plasma were both 10:1. The CSF total tau/P181tau ratio was 6:1. The CSF/plasma α-synuclein ratio was 1:65. Significantly decreased Aβ42 levels and an increased Aβ40/42 ratio in CSF in ADD/MCI suggested that these relationships were specifically altered in AD. Increased total tau levels in ADD/MCI, encephalopathy, and multiple system atrophy, and increased P181tau in ADD/MCI indicated that these biomarkers corresponded to neurodegeneration and tauopathy, respectively. Although CSF α-synuclein levels were increased in ADD/MCI, there was no merit in measuring α-synuclein in CSF or plasma as a biomarker. The combination of biomarkers by the Aβ40/42 ratio×p181tau reflected specific changes due to the AD pathology in ADD/MCI. Thus, CSF Aβ40, Aβ42, p181tau, and tau were identified as biomarkers for aggregated Aβ associated state (A), aggregated tau associated state (T), and neurodegeneration state (N) pathologies in AD based on the NIA-AA criteria. Overlaps in these biomarkers need to be considered in clinical practice for differential diagnoses of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takumi Nakamura
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mie Hirohata
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sakiko Narita
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhito Wakasaya
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kozue Kaito
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Yasuo Harigaya
- Department of Neurology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
50
|
Manniche C, Simonsen AH, Hasselbalch SG, Andreasson U, Zetterberg H, Blennow K, Høgh P, Juhler M, Hejl AM. Cerebrospinal Fluid Biomarkers to Differentiate Idiopathic Normal Pressure Hydrocephalus from Subcortical Ischemic Vascular Disease. J Alzheimers Dis 2020; 75:937-947. [PMID: 32390628 DOI: 10.3233/jad-200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) remains a challenge to differentiate from subcortical ischemic vascular disease (SIVD). Despite major research efforts, the cerebrospinal fluid (CSF) biomarker profiles of the two diseases are still not known in detail. OBJECTIVE To determine if novel CSF biomarkers, neurofilament light (NFL) reflecting axonal damage, the synaptic protein neurogranin (NG), and the astroglial marker chitinase-3-like protein 1 (YKL-40), and the core Alzheimer's disease (AD) biomarkers, amyloid-β 42 (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), can differentiate iNPH from SIVD. Patients with AD and healthy controls (HC) were included for comparison purposes. METHODS Patients with iNPH (n = 28), SIVD (n = 30), AD (n = 57), and HC (n = 33) were retrospectively included from the Danish Dementia Biobank. All patients with iNPH had effect of shunt surgery with a follow-up period of 4 to 69 months. CSF biomarkers were measured using immunoassays. RESULTS Lower levels of NFL, NG, Aβ42, and t-tau were found in patients with iNPH versus SIVD, while YKL-40 and p-tau were similar in the two diseases. NFL and Aβ42 were the most reliable biomarkers to differentiate iNPH from SIVD with an area under the curve (AUC) on 0.82 and 0.80, respectively. Combining NFL with Aβ42, t-tau, and p-tau resulted in an AUC of 0.90, which was equivalent to the diagnostic accuracy of all six biomarkers combined. CONCLUSION An addition of NFL to the CSF panel of Aβ42, t-tau, and p-tau may improve the differentiation of iNPH from SIVD.
Collapse
Affiliation(s)
- Christina Manniche
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|