1
|
Santos GL, Dias Costa EF, Dalla Costa AP, Zanesco AM, Simoes MR, Rogério F, Demolin DMR, Navarro CDC, Velloso LA, Francisco A, Castilho RF. Influence of Mitochondrial NAD(P) + Transhydrogenase (NNT) on Hypothalamic Inflammation and Metabolic Dysfunction Induced by a High-Fat Diet in Mice. Horm Metab Res 2024. [PMID: 39481390 DOI: 10.1055/a-2420-6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The mitochondrial protein NAD(P)+ transhydrogenase (NNT) has been implicated in the metabolic derangements observed in obesity. Mice with the C57BL/6J genetic background bear a spontaneous mutation in the Nnt gene and are known to exhibit increased susceptibility to diet-induced metabolic disorders. Most of the studies on NNT in the context of diet-induced obesity have compared C57BL/6J mice with other mouse strains, where differences in genetic background can serve as confounding factors. Moreover, these studies have predominantly employed a high-fat diet (HFD) consisting of approximately 60% of calories from fat, which may not accurately mimic real-world fat-rich diets. In this study, we sought to examine the role of NNT in diet-induced hypothalamic inflammation and metabolic syndrome by using a congenic mice model lacking NNT, along with a HFD providing approximately 45% of calories from fat. Our findings indicate that mice lacking NNT were more protected from HFD-induced weight gain but presented a worse performance on glucose tolerance test, albeit not in insulin tolerance test. Interestingly, the brown adipose tissue of HFD-fed Nnt +/+ mice presented a greater mass and a higher whole-tissue ex-vivo oxygen consumption rate. Also, HFD increased the expression of the inflammatory markers Il1β, Tlr4 and Iba1 in the hypothalamus of Nnt -/- mice. In conclusion, our study highlights the importance of NNT in the context of diet-induced obesity and metabolic syndrome, indicating its contribution to mitigate hypothalamic inflammation and suggesting its role in the brown adipose tissue increased mass.
Collapse
Affiliation(s)
| | | | | | - Ariane Maria Zanesco
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcela Reymond Simoes
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Rogério
- Department of Pathology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniele Masselli Rodrigues Demolin
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Lício Augusto Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Annelise Francisco
- Department of Experimental Medical Science, Lunds Universitet, Lund, Sweden
- Department of Pathology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
2
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
3
|
Entrup GP, Unadkat A, Warheit-Niemi HI, Thomas B, Gurczynski SJ, Cui Y, Smith AM, Gallagher KA, Moore BB, Singer K. Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:317-327. [PMID: 38905107 PMCID: PMC11250913 DOI: 10.4049/jimmunol.2400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/23/2024]
Abstract
Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.
Collapse
Affiliation(s)
| | - Aayush Unadkat
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | | | - Brooke Thomas
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Yuxiao Cui
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | | | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
4
|
Booijink R, Ramachandran P, Bansal R. Implications of innate immune sexual dimorphism for MASLD pathogenesis and treatment. Trends Pharmacol Sci 2024; 45:614-627. [PMID: 38853100 DOI: 10.1016/j.tips.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Growing evidence suggests that metabolic dysfunction-associated steatotic liver disease (MASLD) is significantly higher in men versus women. Increased prevalence is observed in postmenopausal women, suggesting that age and sex (hormones) influence MASLD development and progression. Molecular data further reveal that sex regulates the innate immune responses with an essential role in MASLD progression. To date, there has been limited focus on the role of innate immune sexual dimorphism in MASLD, and differences between men and women are not considered in the current drug discovery landscape. In this review, we summarize the sex disparities and innate immune sexual dimorphism in MASLD pathogenesis. We further highlight the importance of harnessing sexual dimorphism in identifying therapeutic targets, developing pharmacological therapies, and designing (pre-) clinical studies for the personalized treatment for MASLD.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, UK
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
5
|
Randall TD, Meza-Perez S. Immunity in adipose tissues: Cutting through the fat. Immunol Rev 2024; 324:4-10. [PMID: 38733141 PMCID: PMC11262970 DOI: 10.1111/imr.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis-each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures. Importantly, immune cell functions in adipose tissues are often linked to the metabolic functions of adipocytes and vice versa. These reciprocal interactions and how they influence both immune and metabolic functions will be discussed in each article. In the first article, Wang et al.,11 discuss adipose-associated macrophages and how obesity and metabolism impact their phenotype and function. Several articles in this issue discuss T cells as either contributors to, or regulators of, inflammatory responses in adipose tissues. Valentine and Nikolajczyk12 provide insights into the role of T cells in obesity-associated inflammation and their contribution to metabolic dysfunction, whereas an article from Kallies and Vasanthakumar13 and another from Elkins and Li14 describe adipose-associated Tregs and how they help prevent inflammation and maintain metabolic homeostasis. Articles from Okabe35 as well as from Daley and Benezech15 discuss the structure and function of fat-associated lymphoid clusters (FALCs) that are prevalent in some adipose tissues and support local immune responses to pathogens, gut-derived microbes and fat-associated antigens. Finally, an article from Meher and McNamara16 describes how innate-like B1 cells in adipose tissues regulate cardiometabolic disease. Importantly, these articles highlight the physical and functional attributes of adipose tissues that are different between mice and humans, the metabolic and immune differences between various adipose depots in the body and the differences in immune cells, adipose tissues and metabolic functions between the sexes. At the end of this preface, we highlight how these differences are critically important for our understanding of anti-tumor immunity to cancers that metastasize to a specific example of visceral adipose tissue, the omentum. Together, these articles identify some unanswered mechanistic questions that will be important to address for a better understanding of immunity in adipose tissues.
Collapse
Affiliation(s)
- Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Lin ZH, Zhong LY, Jiang HB, Zhu C, Wei FF, Wu Y, Song LH. Elucidation of the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus on rats fed a western-style diet via a multi-omics approach. Food Res Int 2024; 187:114345. [PMID: 38763637 DOI: 10.1016/j.foodres.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Long-term consumption of Western-style diet (WSD) can lead to metabolic disorders and dysbiosis of gut microbiota, presenting a critical risk factor for various chronic conditions such as fatty liver disease. In the present study, we investigated the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus kisonensis on rats fed a WSD. Male Sprague-Dawley (SD) rats, aged six weeks and weighing 180 ± 10 g, were randomly assigned to one of three groups: the normal control group (NC, n = 7), the WSD group (HF, n = 7), and the WSD supplemented with a co-fermented whole grain quinoa with black barley (FQB) intervention group (HFF, n = 7). The findings indicated that FQB was effective in suppressing body weight gain, mitigating hepatic steatosis, reducing perirenal fat accumulation, and ameliorating pathological damage in the livers and testicular tissues of rats. Additionally, FQB intervention led to decreased levels of serum uric acid (UA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). These advantageous effects can be ascribed to the regulation of FQB on gut microbiota dysbiosis, which includes the restoration of intestinal flora diversity, reduction of the F/B ratio, and promotion of probiotics abundance, such as Akkermansia and [Ruminococcus] at the genus level. The study employed the UPLC-Q-TOF-MSE technique to analyze metabolites in fecal and hepatic samples. The findings revealed that FQB intervention led to a regression in the levels of specific metabolites in feces, including oxoadipic acid and 20a, 22b-dihydroxycholesterol, as well as in the liver, such as pyridoxamine, xanthine and xanthosine. The transcriptome sequencing of liver tissues revealed that FQB intervention modulated the mRNA expression of specific genes, including Cxcl12, Cidea, and Gck, known for their roles in anti-inflammatory and anti-insulin resistance mechanisms in the context of WSD. Our findings indicate that co-fermented whole-grain quinoa with black barley has the potential to alleviate metabolic disorders and chronic inflammation resulting from the consumption of WSD.
Collapse
Affiliation(s)
- Zi-Han Lin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling-Yue Zhong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Bin Jiang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fen-Fen Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Hua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Pontifex MG, Vauzour D, Muller M. Sexual dimorphism in the context of nutrition and health. Proc Nutr Soc 2024; 83:109-119. [PMID: 37665115 DOI: 10.1017/s0029665123003610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Diets and dietary constituents that we consume have a considerable impact on disease risk. Intriguingly these effects may be modulated to some extent by sex. Lack of female representation in nutritional studies as well as a lack of stratification by sex has and continues to limit our understanding of these sex × diet interactions. Here we provide an overview of the current and available literature describing how exposure to certain dietary patterns (Western-style diet, Mediterranean diet, vegetarian/vegan, ketogenic diet) and dietary constituents (dietary fibre, PUFA and plant bioactive) influences disease risk in a sex-specific manner. Interestingly, these sex differences appear to be highly disease-specific. The identification of such sex differences in response to diet stresses the importance of sex stratification in nutritional research.
Collapse
Affiliation(s)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Braga Tibaes JR, Barreto Silva MI, Wollin B, Vine D, Tsai S, Richard C. Sex differences in systemic inflammation and immune function in diet-induced obesity rodent models: A systematic review. Obes Rev 2024; 25:e13665. [PMID: 38072656 DOI: 10.1111/obr.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 02/28/2024]
Abstract
Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.
Collapse
Affiliation(s)
| | - Maria Ines Barreto Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Santi D, Lotti F, Sparano C, Rastrelli G, Isidori AM, Pivonello R, Barbonetti A, Salonia A, Minhas S, Krausz C, Vignozzi L, Maggi M, Corona G. Does an increase in adipose tissue 'weight' affect male fertility? A systematic review and meta-analysis based on semen analysis performed using the WHO 2010 criteria. Andrology 2024; 12:123-136. [PMID: 37226894 DOI: 10.1111/andr.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Obesity negatively impact on the metabolism of sex hormones, leading to reduced testosterone serum levels. However, how the obesity could negatively impact on the overall gonadal function, particularly on male fertility, remained unclear so far. OBJECTIVE To systematically review evidences regarding the influence of body weight excess on the sperm production. METHODS A meta-analysis was conducted, searching all prospective and retrospective observational studies reporting male subjects older than 18 years old, with body weight excess from overweight to severe obesity were considered. Only studies using the V edition of the World Health Organization (WHO) manual for semen analysis interpretation were considered. No specific interventions were considered. Search was focused on studies comparing overweight/obese to normal weight subjects. RESULTS Twenty-eight studies were considered. Total sperm count and sperm progressive motility were significantly lower in overweight compared to normal weight subjects. Meta-regression analyses demonstrated that patients' age impacted on sperm parameters. Similarly, obese men showed lower sperm concentration, total sperm number, progressive and total motilities, and normal morphology lower than normal weight subjects. Reduced sperm concentration in obese men was influenced by age, smoking habit, varicocele, and total testosterone serum levels at meta-regression analyses. CONCLUSIONS The male potential fertility is reduced in subjects with increased body weight, compared to normal weight men. The higher was the increased body weight, the worst was the sperm quantity/quality. This result comprehensively included obesity among non-communicable risk factor for male infertility, shedding new lights on the negative impact of increased body weight on overall gonadal function.
Collapse
Affiliation(s)
- Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Unit of Endocrinology, Department of Medical Specialties, AziendaOspedaliero-Universitaria of Modena, Modena, Italy
| | - Francesco Lotti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Clotilde Sparano
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Centre for Rare Diseases (Endo-ERN accredited), Policlinico Umberto I Hospital, Rome, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università Federico II di Napoli, Naples, Italy
- UNESCO, Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Arcangelo Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Suks Minhas
- Department of Urology, Imperial College NHS Healthcare, London, UK
| | - Csilla Krausz
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Maggi
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
11
|
Wayland JL, Doll JR, Lawson MJ, Stankiewicz TE, Oates JR, Sawada K, Damen MSMA, Alarcon PC, Haslam DB, Trout AT, DeFranco EA, Klepper CM, Woo JG, Moreno-Fernandez ME, Mouzaki M, Divanovic S. Thermoneutral Housing Enables Studies of Vertical Transmission of Obesogenic Diet-Driven Metabolic Diseases. Nutrients 2023; 15:4958. [PMID: 38068816 PMCID: PMC10708424 DOI: 10.3390/nu15234958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.
Collapse
Affiliation(s)
- Jennifer L. Wayland
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R. Doll
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew J. Lawson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E. Stankiewicz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jarren R. Oates
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Keisuke Sawada
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle S. M. A. Damen
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pablo C. Alarcon
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Andrew T. Trout
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Emily A. DeFranco
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Corie M. Klepper
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica G. Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Stansbury CM, Dotson GA, Pugh H, Rehemtulla A, Rajapakse I, Muir LA. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 2023; 8:e171701. [PMID: 37651193 PMCID: PMC10619435 DOI: 10.1172/jci.insight.171701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
Collapse
Affiliation(s)
- Cooper M. Stansbury
- Department of Computational Medicine and Bioinformatics
- The Michigan Institute for Computational Discovery and Engineering
| | | | - Harrison Pugh
- Department of Computational Medicine and Bioinformatics
| | | | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
13
|
Ulbricht RJ, Rivas CA, Marino H, Snyder E, James D, Makhloufi J, Johnson N, Zimmerman S, Wang J. Sex-specific effect of P2Y 2 purinergic receptor on glucose metabolism during acute inflammation. Front Endocrinol (Lausanne) 2023; 14:1248139. [PMID: 37701898 PMCID: PMC10494456 DOI: 10.3389/fendo.2023.1248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
The sex of an animal impacts glucose sensitivity, but little information is available regarding the mechanisms causing that difference, especially during acute inflammation. We examined sex-specific differences in the role of the P2Y2 receptor (P2Y2R) in glucose flux with and without LPS challenge. Male and female wild-type and P2Y2R knockout mice (P2Y2R-/-) were injected with LPS or saline and glucose tolerance tests (GTT) were performed. P2Y2R, insulin receptor, and GLUT4 transporter gene expression was also evaluated. Female mice had reduced fasting plasma glucose and females had reduced glucose excursion times compared to male mice during GTT. P2Y2R-/- males had significantly decreased glucose flux throughout the GTT as compared to all female mice. Acute inflammation reduced fasting plasma glucose and the GTT area under the curve in both sexes. While both wild-type and P2Y2R-/- male animals displayed reduced fasting glucose in LPS treatment, female mice did not have significant difference in glucose tolerance, suggesting that the effects of P2Y2R are specific to male mice, even under inflammatory conditions. Overall, we conclude that the role for the purinergic receptor, P2Y2R, in regulating glucose metabolism is minimal in females but plays a large role in male mice, particularly in the acute inflammatory state.
Collapse
Affiliation(s)
- Randi J. Ulbricht
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cho AR, Suh E, Oh H, Cho BH, Gil M, Lee YK. Low Muscle and High Fat Percentages Are Associated with Low Natural Killer Cell Activity: A Cross-Sectional Study. Int J Mol Sci 2023; 24:12505. [PMID: 37569879 PMCID: PMC10419953 DOI: 10.3390/ijms241512505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to investigate whether body fat and muscle percentages are associated with natural killer cell activity (NKA). This was a cross-sectional study, conducted on 8058 subjects in a medical center in Korea. The association between the muscle and fat percentage tertiles and a low NKA, defined as an interferon-gamma level lower than 500 pg/mL, was assessed. In both men and women, the muscle mass and muscle percentage were significantly low in participants with a low NKA, whereas the fat percentage, white blood cell count, and C-reactive protein (CRP) level were significantly high in those with a low NKA. Compared with the lowest muscle percentage tertile as a reference, the fully adjusted odd ratios (ORs) (95% confidence intervals (CIs)) for a low NKA were significantly lower in T2 (OR: 0.69; 95% CI: 0.55-0.86) and T3 (OR: 0.74; 95% CI: 0.57-0.95) of men, and T3 (OR: 0.76; 95% CI: 0.59-0.99) of women. Compared with the lowest fat percentage tertile as a reference, the fully adjusted OR was significantly higher in T3 of men (OR: 1.31; 95% CI: 1.01-1.69). A high muscle percentage was significantly inversely associated with a low NKA in men and women, whereas a high fat percentage was significantly associated with a low NKA in men.
Collapse
Affiliation(s)
- A-Ra Cho
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul 06062, Republic of Korea; (E.S.); (H.O.)
| | - Hyoju Oh
- Chaum Life Center, CHA University, Seoul 06062, Republic of Korea; (E.S.); (H.O.)
| | - Baek Hwan Cho
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam 13605, Republic of Korea;
| | - Yun-Kyong Lee
- Chaum Life Center, CHA University, Seoul 06062, Republic of Korea; (E.S.); (H.O.)
| |
Collapse
|
15
|
Warde KM, Smith LJ, Basham KJ. Age-related Changes in the Adrenal Cortex: Insights and Implications. J Endocr Soc 2023; 7:bvad097. [PMID: 37564884 PMCID: PMC10410302 DOI: 10.1210/jendso/bvad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological function. This process affects all organs including the adrenal cortex, which normally functions to produce essential steroid hormones including mineralocorticoids, glucocorticoids, and androgens. With increasing age, features such as reduced adrenal cortex size, altered zonation, and increased myeloid immune cell infiltration substantially alter the structure and function of the adrenal cortex. Many of these hallmark features of adrenal cortex aging occur both in males and females, yet are more enhanced in males. Hormonally, a substantial reduction in adrenal androgens is a key feature of aging, which is accompanied by modest changes in aldosterone and cortisol. These hormonal changes are associated with various pathological consequences including impaired immune responses, decreased bone health, and accelerated age-related diseases. One of the most notable changes with adrenal aging is the increased incidence of adrenal tumors, which is sex dimorphic with a higher prevalence in females. Increased adrenal tumorigenesis with age is likely driven by both an increase in genetic mutations as well as remodeling of the tissue microenvironment. Novel antiaging strategies offer a promising avenue to mitigate adrenal aging and alleviate age-associated pathologies, including adrenal tumors.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Mikhailova L, Minchenko A, Soroko I, Khlusov I, Litvinova L. Adipocyte- and Monocyte-Mediated Vicious Circle of Inflammation and Obesity (Review of Cellular and Molecular Mechanisms). Int J Mol Sci 2023; 24:12259. [PMID: 37569635 PMCID: PMC10418857 DOI: 10.3390/ijms241512259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Larisa Mikhailova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Anastasia Minchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Irina Soroko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
17
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
18
|
Shin S, Nam HY. Effect of Obesity and Osteocalcin on Brain Glucose Metabolism in Healthy Participants. Brain Sci 2023; 13:889. [PMID: 37371372 DOI: 10.3390/brainsci13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
We evaluated the effects of obesity and osteocalcin on glucose metabolism in the brain. A total of 179 healthy men were enrolled in this study. After preprocessing positron emission tomography images, including by performing coregistration, spatial normalization, and smoothing, regression analysis was conducted to identify the correlation between body mass index, osteocalcin, and brain glucose metabolism. Body mass index was positively correlated with brain glucose metabolism in the anterior lobe of the right cerebellum, the anterior and posterior lobes of the left cerebellum, the right middle frontal gyrus (Brodmann area 9), the right cingulate gyrus (Brodmann area 32), the right anterior cingulate (Brodmann area 32), the left middle frontal gyrus (Brodmann area 10), and the subgyral area of the left frontal lobe. Osteocalcin was negatively correlated with glucose metabolism in the anterior lobe of the left cerebellum. Body mass index was positively correlated with brain glucose metabolism in the prefrontal cortex and cerebellum. Osteocalcin levels were negatively correlated with brain glucose metabolism in the left cerebellum.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 06351, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 06351, Republic of Korea
| |
Collapse
|
19
|
The Effect of Two-Generation Exposure to a High-Fat Diet on Craniofacial Morphology in Rats. J Clin Med 2023; 12:jcm12051903. [PMID: 36902691 PMCID: PMC10003827 DOI: 10.3390/jcm12051903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to examine the sexual dimorphism effect of two-generation exposure to a high-fat diet (HFD) on the craniofacial growth of rat offspring. Ten eleven-week-old pregnant Wistar rats were fed either a control or HFD from day 7 of pregnancy until the end of lactation. Twelve male and female offspring from the control-diet-fed mothers were assigned to the CM (control male, n = 6) and CF (control female, n = 6) groups. The other twelve from the HFD-fed mothers were assigned to the HFD male (HFDM, n = 6) and HFD female (HFDF, n = 6) groups. HFDM and HFDF rats continued with an HFD. The offspring's weight and fasting blood sugar levels were measured every two weeks. The craniofacial and dental morphologies were studied from lateral X-rays of the head at ten weeks old. The HFDM rats showed an increased body weight and larger neurocranial parameters compared with the CM group. Furthermore, there were slightly significant differences in body weight and viscerocranial parameters between the rats in the HFDF and CF groups. In conclusion, two-generational exposure to an HFD had a greater effect on the male offspring's body weight and craniofacial morphology.
Collapse
|
20
|
Sex Differences of Radiation Damage in High-Fat-Diet-Fed Mice and the Regulatory Effect of Melatonin. Nutrients 2022; 15:nu15010064. [PMID: 36615722 PMCID: PMC9823527 DOI: 10.3390/nu15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The consumption of a high-fat diet (HFD) and exposure to ionizing radiation (IR) are closely associated with many diseases. To evaluate the interaction between HFDs and IR-induced injury, we gave mice whole abdominal irradiation (WAI) to examine the extent of intestinal injury under different dietary conditions. Melatonin (MLT) is a free radical scavenger that effectively prevents hematopoietic, immune, and gastrointestinal damage induced by IR. However, its effects on WAI-induced intestinal injury in HFD-fed mice remain unclear. We demonstrated that MLT can promote intestinal structural repair following WAI and enhance the regeneration capacity of Lgr5+ intestinal stem cells. In addition, we investigated the effects of radiation damage on sexual dimorphism in HFD-fed mice. The results showed that the degree of IR-induced intestinal injury was more severe in the HFD-fed female mice. MLT preserved the intestinal microbiota composition of HFD-fed mice and increased the abundance of Bacteroides and Proteobacteria in male and female mice, respectively. In conclusion, MLT may reduce the negative effects of HFD and IR, thereby providing assistance in preserving the structure and function of the intestine.
Collapse
|
21
|
Zhao L, Zhou T, Chen J, Cai W, Shi R, Duan Y, Yuan L, Xing C. Colon specific delivery of miR-155 inhibitor alleviates estrogen deficiency related phenotype via microbiota remodeling. Drug Deliv 2022; 29:2610-2620. [PMID: 35938574 PMCID: PMC9364735 DOI: 10.1080/10717544.2022.2108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Compelling data have indicated menopause-associated increase in cardiovascular disease in women, while the underlying mechanisms remain largely unknown. It is established that changes of intestinal microbiota affect cardiovascular function in the context of metabolic syndrome. We here aimed to explore the possible link between host intestinal function, microbiota, and cardiac function in the ovariectomy (OVX) mouse model. Mice were ovariectomized to induce estrogen-related metabolic syndrome and cardiovascular defect. Microbiota was analyzed by 16s rRNA sequencing. miRNA and mRNA candidates expression were tested by qPCR. Cardiac function was examined by echocardiography. Colon specific delivery of miRNA candidates was achieved by oral gavage of Eudragit S100 functionalized microspheres. In comparison with the sham-operated group, OVX mice showed compromised cardiac function, together with activated inflammation in the visceral adipose tissue and heart. Lactobacillus abundance was significantly decreased in the gut of OVX mice. Meanwhile, miR-155 was mostly upregulated in the intestinal epithelium and thus the feces over other candidates, which in turn decreased Lactobacillus abundance in the intestine when endocytosed. Oral delivery of miR-155 antagonist restored the protective microbiota and thus protected the cardiac function in the OVX mice. This study has established a possible regulatory axis of intestinal miRNAs-microbiota-estrogen deficiency related phenotype in the OVX model. Colon specific delivery of therapeutic miRNAs would possibly restore the microbiota toward protective phenotype in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianmei Chen
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenbin Cai
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruijing Shi
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Yan S, Zhou J, Zhang H, Lin Z, Khambu B, Liu G, Ma M, Chen X, Chalasani N, Yin X. Promotion of diet-induced obesity and metabolic syndromes by BID is associated with gut microbiota. Hepatol Commun 2022; 6:3349-3362. [PMID: 36382356 PMCID: PMC9701492 DOI: 10.1002/hep4.2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence has indicated an expanding functional network of B-cell lymphoma 2 (BCL-2) family proteins beyond regulation of cell death and survival. Here, we examined the role and mechanisms of BH3 interacting-domain death agonist (BID), a pro-death BCL-2 family member, in the development of diet-induced metabolic dysfunction. Mice deficient in bid (bid-/- ) were resistant to high-fat diet (HFD)-induced obesity, hepatic steatosis, and dyslipidemia with an increased insulin sensitivity. Indirect calorimetry analysis indicated that bid deficiency increased metabolic rate and decreased respiratory exchange ratio, suggesting a larger contribution of lipids to overall energy expenditure. While expression of several genes related to lipid accumulation was only increased in wild-type livers, metabolomics analysis revealed a consistent reduction in fatty acids but an increase in certain sugars and Krebs cycle intermediates in bid-/- livers. Gut microbiota (GM) analysis indicated that HFD induced gut dysbiosis with differential patterns in wild-type and in bid-/- mice. Notably, abrogation of GM by antibiotics during HFD feeding eliminated the beneficial effects against obesity and hepatic steatosis conferred by the bid deficiency. Conclusion: These results indicate that the protective role of bid-deficiency against diet-induced metabolic dysfunction interacts with the function of GM.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jun Zhou
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA,Digestive Health InstituteUniversity of IllinoisUrbanain IllinoisUSA
| | - Zhen Lin
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Bilon Khambu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gang Liu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Michelle Ma
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Naga Chalasani
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Xiao‐Ming Yin
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
23
|
Shi H, Schweren LJS, Ter Horst R, Bloemendaal M, van Rooij D, Vasquez AA, Hartman CA, Buitelaar JK. Low-grade inflammation as mediator between diet and behavioral disinhibition: A UK Biobank study. Brain Behav Immun 2022; 106:100-110. [PMID: 35944739 DOI: 10.1016/j.bbi.2022.07.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary patterns have been associated with variations in behavior. However, evidence has been limited and mixed, and the underlying mechanism remains unclear. OBJECTIVE Extend a previous study reporting significant associations between food patterns and behavioral disinhibition and explore whether low-grade inflammation is linked to behaviors and mediates the association between diet and behavioral disinhibition. DESIGN Among participants of the UK Biobank (UKB) we extracted a single behavioral disinhibition principal component using the UKB touchscreen questionnaire, Mental Health Questionnaire (MHQ), and registered diagnoses. We identified four dietary patterns (prudent diet, elimination of wheat/dairy/eggs, meat-based diet, full-cream dairy consumption) by using the Food Frequency Questionnaire (FFQ). Immune biomarkers and an aggregated inflammation score (INFLA-score) were used to characterize low-grade inflammation. Associations between dietary patterns and immune biomarkers, between immune biomarkers and disinhibition were assessed, with adjustment for demographics, lifestyle factors, and somatic health conditions. Next, mediation analyses were run to examine whether the association between dietary patterns and disinhibition was partially explained by inflammatory levels. We also conducted subgroup analyses to explore whether associations and the mediation effect differed by sex, age, ethnicity/race, body-mass-index (BMI), and socioeconomic status (SES). RESULTS The prudent diet was negatively, and the meat-based diet was positively associated with several pro-inflammatory biomarkers. Most immune biomarkers were positively associated with disinhibition (numbers of lymphocytes (βstandardized = 0.082, p < 0.001), monocytes (βstandardized = 0.043, p < 0.001), neutrophils (βstandardized = 0.071, p < 0.001), platelets (βstandardized = 0.022, p < 0.001), leukocytes (βstandardized = 0.093, p < 0.001), C-reactive protein (βstandardized = 0.051, p < 0.001), and for INFLA-score (βstandardized = 0.074, p < 0.001). In the mediation model, the INFLA-score mediated the association between prudent diet and meat-based diet and disinhibition score, with a significant indirect effect of low-grade inflammation for the prudent diet-disinhibition association (βstandardized = -0.007, p < 0.001) and for meat-disinhibition association (βstandardized = 0.001, p < 0.001)). Although all effects were small, covariates and interaction term adjustments did not attenuate the effects, and neither did most subgroup-only analyses. CONCLUSIONS The prudent diet was associated with a lower disinhibition score and this effect was partially mediated by the lower inflammation. Reversely, the meat-based diet was linked to more inflammation, which was associated with more disinhibition. Our findings suggest mediating effects of immune function in the relationship between diet and behavioral disinhibition. However further alternative designs such as interventional trials are needed to establish causal effects.
Collapse
Affiliation(s)
- Huiqing Shi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands.
| | - Lizanne J S Schweren
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam Bloemendaal
- Department of Psychiatry, and Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Alejandro Arias Vasquez
- Department of Psychiatry, and Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Gelderland, the Netherlands
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, Gelderland, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen Gelderland, the Netherlands
| |
Collapse
|
24
|
Yerlikaya FH, Eryavuz Onmaz D. Inflammation and Bone Turnover Markers in Adult Obesity. J Clin Densitom 2022; 25:470-474. [PMID: 36057471 DOI: 10.1016/j.jocd.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022]
Abstract
Obesity is a condition of abnormally increased body fat resulting from increased energy intake relative to energy expenditure. Excess body weight is a risk factor for many somatic and psychological disorders, including cardiovascular disease, type 2 diabetes mellitus, osteoarthritis, and cancer types. Bone metabolism, bone turnover, and mineral content are altered in severe obesity. This review will focus on the relationship between inflammation and bone biomarkers in adult obesity.
Collapse
Affiliation(s)
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey.
| |
Collapse
|
25
|
Xiao Y, Li Y, Cai Z, Xie J. Investigation on the Correlation of Anxiety Degree with Family Atmosphere in Children with Precocious Puberty. Emerg Med Int 2022; 2022:3269807. [PMID: 36193542 PMCID: PMC9525782 DOI: 10.1155/2022/3269807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This research sets out to explore the correlation of anxiety degree with family atmosphere in children with precocious puberty (PP), so as to provide a reference for future treatment of PP. Methods Eighty-one cases of PP were visited between January 2021 and March 2021, and their direct relatives were selected as the research population for retrospective analysis. After admission, children and their direct relatives completed a questionnaire survey on the quality of life and social anxiety of children with PP. Children were assigned to the research group and the control group based on their anxiety scores. The intergroup differences in daily activities, diet, and family status, as well as children's and parents' psychological status, were identified, and the relationship between anxiety degree in PP children and family atmosphere was discussed. Results The children's anxiety score was (6.17 ± 4.26), and they were divided into groups according to the median, with 30 cases in the research group and 51 cases in the control group. The two cohorts were similar in dietary status and children's physiological status (P > 0.05); however, the research group exhibited a greater number of cases who used electronic products for 2-3 h daily and watched romantic TV series (movies). The daily exercise time of the research group is lower than that of the control group (P < 0.05). In the research group, the monthly family income and the number of family companions and very harmonious families were significantly lower, while the number of divorces or remarriages increased (P < 0.05). The survey results on parents' psychological status also showed better psychological states in patients in the control group (P < 0.05). Conclusion The anxiety level of PP children is closely related to the family atmosphere. In future clinical treatment of children with PP, it will also be necessary to pay attention to and adjust the family relationship of the children, which is of great significance for relieving PP-associated anxiety.
Collapse
Affiliation(s)
- Yongbei Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zhengrong Cai
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiao Xie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
26
|
Prochnik A, Burgueño AL, Rubinstein MR, Marcone MP, Bianchi MS, Gonzalez Murano MR, Genaro AM, Wald MR. Sexual dimorphism modulates metabolic and cognitive alterations under HFD nutrition and chronic stress exposure in mice. Correlation between spatial memory impairment and BDNF mRNA expression in hippocampus and spleen. Neurochem Int 2022; 160:105416. [PMID: 36055604 DOI: 10.1016/j.neuint.2022.105416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
AIMS The accumulated evidence suggests that lifestyle - specifically dietary habits and stress exposure - plays a detrimental role in health. The purpose of the present study was to analyze the interplay of stress, diet, and sex in metabolic and cognitive alterations. MAIN METHODS For this purpose, one-month-old C57Bl/6J mice were fed with a standard diet or high-fat diet (HFD). After eight weeks, one subgroup of mice from each respective diet was exposed to 20 weeks of chronic mild stress (CMS), whilst the others were left undisturbed. KEY FINDINGS After 28 weeks of HFD feeding, mice from both sexes were overweight, with an increase in caloric intake and abdominal and subcutaneous fat pads. Stress exposure induced a decrease in body weight, related to a decrease in caloric efficiency in both males and females. Results indicate that males are more susceptible than the females in modulating metabolic and cognitive functions under HFD and CMS. Although both sexes demonstrated HFD-induced weight gain, fat accumulation, insulin resistance, high cholesterol, only males exposed to CMS but not females have (i) impaired glucose tolerance with higher glucose level; (ii) significant prolonged latency in Barnes test, suggesting cognitive impairment; (iii) increased IFN-gamma expression in hippocampus, suggesting greater neuroinflammatory response; (iv) poorer cognitive performance related to a decrease in hippocampal and spleen BDNF mRNA expression. SIGNIFICANCE The main finding in this study is the presence of a sexual dimorphism in modulating metabolic and cognitive functions under HFD and CMS, showing males are more susceptible than females. In addition, poorer cognitive performance was related to a decrease in hippocampal BDNF mRNA expression. Interestingly, these changes were observed in the spleen as well.
Collapse
Affiliation(s)
- Andrés Prochnik
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Mara R Rubinstein
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María P Marcone
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María S Bianchi
- Instituto de Biología y Medicina Experimental. CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María R Gonzalez Murano
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Ana M Genaro
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina; Primera Cátedra de Farmacología. Facultad de Medicina, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina.
| | - Miriam R Wald
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Lee H, Woo SM, Jang H, Kang M, Kim SY. Cancer depends on fatty acids for ATP production: A possible link between cancer and obesity. Semin Cancer Biol 2022; 86:347-357. [PMID: 35868515 DOI: 10.1016/j.semcancer.2022.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022]
Abstract
Several metabolic pathways for the supply of adenosine triphosphate (ATP) have been proposed; however, the major source of reducing power for ADP in cancer remains unclear. Although glycolysis is the source of ATP in tumors according to the Warburg effect, ATP levels do not differ between cancer cells grown in the presence and absence of glucose. Several theories have been proposed to explain the supply of ATP in cancer, including metabolic reprograming in the tumor microenvironment. However, these theories are based on the production of ATP by the TCA-OxPhos pathway, which is inconsistent with the Warburg effect. We found that blocking fatty acid oxidation (FAO) in the presence of glucose significantly decreased ATP production in various cancer cells. This suggests that cancer cells depend on fatty acids to produce ATP through FAO instead of glycolysis. We observed that cancer cell growth mainly relies on metabolic nutrients and oxygen systemically supplied through the bloodstream instead of metabolic reprogramming. In a spontaneous mouse tumor model (KrasG12D; Pdx1-cre), tumor growth was 2-fold higher in mice fed a high-fat diet (low-carbo diet) that caused obesity, whereas a calorie-balanced, low-fat diet (high-carbo diet) inhibited tumor growth by 3-fold compared with that in mice fed a control/normal diet. This 5-fold difference in tumor growth between mice fed low-fat and high-fat diets suggests that fat-induced obesity promotes cancer growth, and tumor growth depends on fatty acids as the primary source of energy.
Collapse
Affiliation(s)
- Ho Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Sang Myung Woo
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea; Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Mingyu Kang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea; New Cancer Cure-Bio Co., Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea; New Cancer Cure-Bio Co., Goyang, Gyeonggi-do 10408, Republic of Korea.
| |
Collapse
|
28
|
Adivi A, JoAnn L, Simpson N, McDonald JD, Lund AK. Traffic-generated air pollution - Exposure mediated expression of factors associated with demyelination in a female apolipoprotein E -/- mouse model. Neurotoxicol Teratol 2022; 90:107071. [PMID: 35016995 PMCID: PMC8904307 DOI: 10.1016/j.ntt.2022.107071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Epidemiology studies suggest that exposure to ambient air pollution is associated with demyelinating diseases in the central nervous system (CNS), including multiple sclerosis (MS). The pathophysiology of MS results from an autoimmune response involving increased inflammation and demyelination in the CNS, which is higher in young (adult) females. Exposure to traffic-generated air pollution is associated with neuroinflammation and other detrimental outcomes in the CNS; however, its role in the progression of pathologies associated with demyelinating diseases has not yet been fully characterized in a female model. Thus, we investigated the effects of inhalation exposure to mixed vehicle emissions (MVE) in the brains of both ovary-intact (ov+) and ovariectomized (ov-) female Apolipoprotein (ApoE-/-) mice. Ov + and ov- ApoE-/- mice were exposed via whole-body inhalation to either filtered air (FA, controls) or mixed gasoline and diesel vehicle emissions (MVE: 200 PM μg/m3) for 6 h/d, 7 d/wk., for 30 d. We then analyzed MVE-exposure mediated alterations in myelination, the presence of CD4+ and CD8+ T cells, reactive oxygen species (ROS), myelin oligodendrocyte protein (MOG), and expression of estrogen (ERα and ERβ) and progesterone (PROA/B) receptors in the CNS. MVE-exposure mediated significant alterations in myelination across multiple regions in the cerebrum, as well as increased CD4+ and CD8+ staining. There was also an increase in ROS production in the CNS of MVE-exposed ov- and ov + ApoE-/- mice. Ov- mice displayed a reduction in cerebral ERα mRNA expression, compared to ov + mice; however, MVE exposure resulted in an even further decrease in ERα expression, while ERβ and PRO A/B were unchanged across groups. These findings collectively suggest that inhaled MVE-exposure may mediate estrogen receptor expression alterations associated with increased CD4+/CD8+ infiltration, regional demyelination, and ROS production in the CNS of female ApoE-/- mice.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Lucero JoAnn
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Nicholas Simpson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 87108
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA, 76201.,Corresponding author at: University of North Texas, EESAT – 215, 1704 W. Mulberry, Denton, TX 76201,
| |
Collapse
|
29
|
Varghese M, Clemente J, Lerner A, Abrishami S, Islam M, Subbaiah P, Singer K. Monocyte Trafficking and Polarization Contribute to Sex Differences in Meta-Inflammation. Front Endocrinol (Lausanne) 2022; 13:826320. [PMID: 35422759 PMCID: PMC9001155 DOI: 10.3389/fendo.2022.826320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is associated with systemic inflammation and immune cell recruitment to metabolic tissues. Sex differences have been observed where male mice challenged with high fat diet (HFD) exhibit greater adipose tissue inflammation than females demonstrating a role for sex hormones in differential inflammatory responses. Circulating monocytes that respond to dietary lipids and chemokines and produce cytokines are the primary source of recruited adipose tissue macrophages (ATMs). In this study, we investigated sexual dimorphism in biological pathways in HFD-fed ATMs from male and female mice by RNA-seq. We also conducted chemotaxis assays to investigate sex differences in the migration of monocytes isolated from bone marrow from male and female mice toward a dietary saturated lipid - palmitate (PA), and a chemokine - monocyte chemoattractant protein 1 (MCP1), factors known to stimulate myeloid cells in obesity. ATM RNA-Seq demonstrated sex differences of both metabolic and inflammatory activation, including pathways for chemokine signaling and leukocyte trans-endothelial migration. In vivo monocyte transfer studies demonstrated that male monocytes traffic to female adipose tissue to generate ATMs more readily. In chemotaxis assays, lean male monocytes migrated in greater numbers than females toward PA and MCP1. With short-term HFD, male and female monocytes migrated similarly, but in chronic HFD, male monocytes showed greater migration than females upon PA and MCP1 stimulation. Studies with monocytes from toll-like receptor 4 knockout mice (Tlr4-/- ) demonstrated that both males and females showed decreased migration than WT in response to PA and MCP1 implying a role for TLR4 in monocyte influx in response to meta-inflammation. Overall, these data demonstrate the role of sexual dimorphism in monocyte recruitment and response to metabolic stimuli that may influence meta-inflammation in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Perla Subbaiah
- Department of Statistics and Mathematics, Oakland University, Rochester, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Kanakadurga Singer,
| |
Collapse
|