1
|
Liu Y, Zheng J, Zhu Z, Huang Z, Hu C, Liu B. Enhanced visible light responsive piezoelectric photocatalysis based on Bi 2S 3 coated BaTiO 3 nanorods heterostructures. J Colloid Interface Sci 2025; 678:657-670. [PMID: 39265337 DOI: 10.1016/j.jcis.2024.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Although the presence of the built-in electric field will solve the problem of carrier complexation in photocatalytic systems to some extent. However, free carriers will quickly shield the stabilized electric field and lose its effect. Therefore, how to introduce the dynamic piezoelectric field into the photocatalytic system has become an imminent problem. Herein, we developed an overcoated, visible light responsive, piezoelectric-assisted photocatalytic system by depositing Bi2S3 photocatalysts with a narrow-band system onto the surface of highly piezo-responsive BaTiO3 nanorods (BTO NRs). The heterojunction structure, bound by Bi-O chemical bonding, enhances carrier transport efficiency under the influence of the piezoelectric field. In the degradation experiments, the first-order rate constant for the degradation of chlortetracycline hydrochloride (CTC) in the BTO NRs/Bi2S3 system with the optimal complex ratio was 0.0276 min-1, which was 3.1 and 7.8 times higher than that of BTO NRs and Bi2S3, respectively. Additionally, we deduced the degradation pathways of CTC through a combination of Density functional theory (DFT) calculations and Liquid Chromatograph Mass Spectrometer (LC-MS), evaluating the toxicity of the intermediates. This complex system, featuring a highly photo-responsive semiconductor as a photo-acceptor deposited on a piezoelectric semiconductor surface providing a dynamic built-in electric field, enhances carrier separation efficiency under optimal light energy utilization conditions. These findings present novel and effective strategies for addressing two primary challenges in photocatalytic systems: low spectral utilization and significant photogenerated carrier complexation.
Collapse
Affiliation(s)
- Yu Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhangmi Huang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
2
|
Slimani Y, Khan A, Nawaz M, Hossain MK, Thakur A. Efficient rhodamine B dye photocatalytic degradation in aqueous media using novel ZnO nanomaterials co-doped with Ce and Dy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124725. [PMID: 38955072 DOI: 10.1016/j.saa.2024.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Water pollution caused by dyes and industrial wastewater poses a significant threat to ecosystems. The purification of such pollutants presents a major challenge. Photocatalysis based on semiconductor materials is a potential wastewater treatment process due to its safety and cost-effectiveness. In the present work, Zn1-2xCexDyxO (x = 0.01-0.05) semiconductors were prepared by the sol-gel auto-ignition method. The samples are denoted CDZO1, CDZO3, and CDZO5 for x = 0.01-0.05, respectively. The X-ray diffraction and Raman spectroscopy results revealed the formation of ZnO hexagonal phase wurtzite structure for all synthesized compositions. Different structural properties were determined. It was found that the lattice parameters and the unit cell volume increased, while the crystallite size diminished as x varied from 0.01 to 0.05. Transmission electron microscopy observations confirmed the formation of nanoparticles with the desired chemical compositions. The specific surface area (SSA) values are found to be 39.95 m2/g, 48.62 m2/g, and 51.36 m2/g for CDZO1, CDZO5, and CDZO5 samples, respectively. The reflectance spectra were recorded to examine the optical properties of the different nanoparticles. The values of the optical band gap were 3.221, 3.225, and 3.239 eV for CDZO1, CDZO3, and CDZO5 samples, respectively. In addition, the photocatalytic performance towards RhB dye degradation for the different samples was assessed. It was established that the CDZO3 sample with a moderate SSA value exhibited the superior photocatalytic performance among the other as-prepared samples wherein the percentage of degradation efficiency, and kinetic constant rate attained their maximum values of 98.22 % and 0.0521 min-1, respectively within 75 min. As per the obtained findings, it is evident that the Zn1-2xCexDyxO photocatalyst has prominent potential for use in the degradation of dyes and offers a useful route for impeding the recombination of electron-hole pairs of zinc oxide material.
Collapse
Affiliation(s)
- Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Box 5040, Dhahran 31261, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Kamal Hossain
- Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Box 5040, Dhahran 31261, Saudi Arabia
| | - Atul Thakur
- Centre for Nanotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
3
|
Song J, Chen L, Zhou Y, Yuan Z, Niu Y, Wei Z. Efficient adsorptive separation of Cu(II) from Ph by ZIF-8 constructed with sodium alginate polymer backbone. Int J Biol Macromol 2024; 279:135501. [PMID: 39260660 DOI: 10.1016/j.ijbiomac.2024.135501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
With the rapid development of industrialization, the removal of heavy metal ions and small organic molecules from wastewater has triggered a hot debate. ZIF-8 was grown on a sodium alginate backbone using an in situ growth technique, the core-shell P-SMG@ZIF-8 was synthesized. It was also characterized by FTIR, XRD, SEM, UV-Vis and XPS, and the optimal conditions and mechanism of adsorption were explored. At pH 2.0, a contact time of 200 min, and 298 K, removal of Cu(II) and Ph up to 80.2 %, 65.6 % by P-SMG@ZIF-8, adsorption behavior consistent with Langmuir model for pseudo-secondary rates, the saturated adsorption of Cu(II) and Ph could reach up to 83.5812 mg/g and 78.1779 mg/g, respectively. And the adsorbed P-SMG@ZIF-8 is easy to separate and reusable, which is a cost-effective and efficient natural product-based adsorption material.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China.
| | - Lijun Chen
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China
| | - Yingnan Zhou
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China
| | - Zhiwen Yuan
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China
| | - Yuhua Niu
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China
| | - Zhiqiang Wei
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China
| |
Collapse
|
4
|
Zhang F, Ma N, He L, Lin H, Wei S, Zhao X, You C, Cai L, Wang F. Efficient adsorption of flavonoids on amino-functionalized ZIF-8/chitosan aerogels. Int J Biol Macromol 2024; 282:136928. [PMID: 39490487 DOI: 10.1016/j.ijbiomac.2024.136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Covalent organic structures (MOFs), known for their exceptional properties in separation and purification, have garnered significant attention. However, applying MOF-based adsorbents in complex flavonoid separation scenarios remains challenging. In this study, we successfully synthesized adsorbent materials capable of efficiently adsorbing flavonoids using a vacuum freeze-drying method. The materials were derived from a cross-linked chitosan aerogel functionalized with amino-substituted zeolite imidazolium ester skeleton (ZIF-8). The ZIF-8-NH2, synthesized via in situ substitution of 2-aminobenzimidazole within the ZIF-8 framework, exhibits a smaller pore size than mono ligand ZIF-8. Due to its synergistic interaction with chitosan's biocompatibility and porous structure, the aerogel material (ZIF-8-NH2/CS) exhibited outstanding adsorption capacities (183.37 mg/g, 226.34 mg/g, and 187.16 mg/g) in standard solutions (T = 318 K, rpm = 200) of luteolin, quercetin, and rutin, along with high adsorption rates (71.3 ± 2.3 %, 72.4 ± 1.4 %, and 70.7 ± 3.5 %). And showed rapid adsorption in the first 60 min. After 5 cycles, the adsorption capacity of ZIF-8-NH2/CS aerogel remained at 80.5 % of the adsorption capacity of the initial cycle, and therefore, ZIF-8-NH2/CS aerogel has a good potential for reusability. Additionally, the adsorption process adhered to pseudo-first-order and pseudo-second-order kinetic models, alongside Langmuir and Freundlich isothermal adsorption models. This study introduces novel ideas and methods for the extraction and separation of flavonoids. Furthermore, the developed ZIF-8-NH2/CS aerogels with amino functionality hold promise for diverse applications in separating and purifying bioactive substances.
Collapse
Affiliation(s)
- Feiyue Zhang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lingxiao He
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangyu Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinxu Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Lingchao Cai
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
5
|
Vijayasree VP, Abdul Manan NS. Bio-inspired magnetic chitosan/Iron oxide macromolecules for multiple anionic dyes adsorption from aqueous media. Int J Biol Macromol 2024; 277:134103. [PMID: 39047997 DOI: 10.1016/j.ijbiomac.2024.134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Organic anionic dyes are major water pollutants due to their low degradability caused by complex aromatic structures. Not only do they exert toxic, mutagenic, teratogenic, tumorigenic, and genotoxic effects, but they also decrease fertility and cause irritation to the skin and respiratory system in humans. This long-term toxicity has detrimental effects on aquatic organisms and their surroundings, resulting in an imbalanced ecosystem. In this study, a Cs@Fe3O4 magnetic biosorbent was synthesised to uptake three anionic dyes and characterised for FTIR, BET/BJH, XRD, TGA, VSM, and FESEM analyses. The biosorbent average surface area was confirmed to be 52.6524 m2/g, with average pore sizes of 7.3606 nm and 6.9823 nm for adsorption-desorption processes, respectively. Batch adsorption studies pH values, contact times, temperature, initial dye concentrations, and adsorbent dosages were examined. Several isotherm and kinetic models were studied to determine the adsorption mechanism. The adsorption data of these dyes at equilibrium was observed to match Langmuir's isotherm and pseudo-second-order kinetic models. The thermodynamic study revealed that the adsorption process for these dyes was an exothermic reaction. Maximum adsorption capacities for congo red, methyl orange, and metanil yellow were 117.77 mg/g, 137.77 mg/g, and 155.57 mg/g, respectively. The reusability of recovered Cs@Fe3O4 after dye adsorption was evaluated up to five continuous adsorption-desorption cycles for its possible industrial applications.
Collapse
Affiliation(s)
- V P Vijayasree
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ninie Suhana Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Center for Ionic Liquids, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Tong H, He R, Chen G, Tong Z, Dang M, Li J, Wu D, Qian D. Synthesis of a novel cost-effective double-ligand Zr-based MOF via an inverted modulator strategy towards enhanced adsorption and photodegradation of tetracycline. J Colloid Interface Sci 2024; 671:732-741. [PMID: 38823114 DOI: 10.1016/j.jcis.2024.05.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Developing visible-light response photocatalysts with high activity and adsorption alongside sustainability is vitally important to environmental restoration. Here, we fabricated a novel metal organic framework (MOF) with cost-effective double-ligands (fumaric acid and 2-aminoterephthalic acid as ligand precursors, denoted as MA-MOF) via a facile solvothermal method. Specifically, crystalline [Zr6O4(OH)4(fumarate)6] (MOF-801) can be only formed with monocarboxylic acids as modulators. Therefore, in the construction of crystalline double-ligand MA-MOF, the absence of monocarboxylic acid modulators successfully prevents the formation of crystalline MOF-801. Instead, the crystalline double-ligand MA-MOF is formed. Properties of MA-MOFs including the surface area, porosity, charge transfer resistance, and energy level position can be adjusted via altering the ratio of ligands. The optimal sample, MA-MOF2 (prepared with a molar ratio of fumaric acid and 2-aminoterephthalic acid being 2:1), shows a total 94.6% removal of tetracycline via adsorption and photodegradation, far exceeding the corresponding single-ligand counterparts. This work proposes an innovative inverted modulator strategy for constructing double-ligand MOFs.
Collapse
Affiliation(s)
- Haixia Tong
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology & Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha 410114, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruidong He
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology & Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha 410114, China
| | - Gao Chen
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology & Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha 410114, China
| | - Zhuo Tong
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology & Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha 410114, China
| | - Mingming Dang
- Department of Resources and Environment, Hunan Nonferrous Metals Vocational and Technical College, Zhuzhou 41200, Hunan, China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China
| | - Daoxin Wu
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology & Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha 410114, China.
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Bagheri A, Khabbaz SH, Rafati AA. Comparison of the natural and surfactant-modified zeolites in the adsorption efficiency of sunset yellow food dye from aqueous solutions. Sci Rep 2024; 14:22511. [PMID: 39341877 PMCID: PMC11439025 DOI: 10.1038/s41598-024-72859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The removal of Sunset Yellow (E110) on natural zeolite and zeolite modified with the cationic surfactant cetyl pyridinium chloride (CPC) was studied using the adsorption method. The structural characteristics of the surfactant-modified zeolite (SMZ-CPC) were investigated using X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, and the scanning electron microscopy (SEM) images. The effect of different parameters on the adsorption process, such as equilibration time and amount of adsorbent at 298 K, were determined using UV-Vis spectroscopy. The maximum dye removal percentage on SMZ-CPC was obtained with 0.08 g of adsorbent in 30 min. The results show that the zeolite modified with CPC surfactant (SMZ) has a higher adsorption capacity for Sunset Yellow than the unmodified zeolite (natural form). The experimental adsorption data were nonlinearly analyzed using isotherm equations such as Langmuir, Freundlich, Temkin, Langmuir-Freundlich (or Sips), and Extended Langmuir (EL). The experimental data were better fitted with the Sips isotherm. The adsorption kinetic data were analyzed using eight models in nonlinear forms: the pseudo-first-order (PFO), pseudo-second-order (PSO), integrated kinetic Langmuir (IKL), Elovich, intraparticle diffusion (IPD), mixed order rate equation (MOE), fractal-like pseudo-first-order (FL-PFO) and fractal-like pseudo-second-order (FL-PSO). According to the results of the coefficient of determination (R2), Elovich kinetic model well expressed E110 adsorption onto SMZ-CPC. Most of the dye removal takes place in less than 5 min and the maximum adsorption capacity is 5.06 mg/g. The results of this study show that zeolite modified with cationic surfactant is an effective adsorbent for removal anionic dyes from an aqueous solution.
Collapse
Affiliation(s)
- Ahmad Bagheri
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| | - Shima H Khabbaz
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
8
|
Talha N, El-Sherbeeny AM, Zoubi WA, Abukhadra MR. Synergetic studies on the thermochemical activation and polyaniline integration on the adsorption properties of natural coal for chlorpyrifos pesticide: steric and energetic studies. Sci Rep 2024; 14:21116. [PMID: 39256397 PMCID: PMC11387739 DOI: 10.1038/s41598-024-70676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.
Collapse
Affiliation(s)
- Norhan Talha
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
9
|
Lee KC, Hsu SC, Huang JH, Wang KS, Pang WK, Hu CW, Jiang YJ, Cho EC, Weng HC, Liu TY. Construction of dual Z-scheme Ag 3VO 4-BiVO 4/InVO 4 photocatalysts using vanadium source from spent catalysts for contaminated water treatment and bacterial inactivation. CHEMOSPHERE 2024; 363:142746. [PMID: 38969223 DOI: 10.1016/j.chemosphere.2024.142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.
Collapse
Affiliation(s)
- Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No. 134, Sec. 2, Heping E. Road, Da-an District, Taipei City, 106, Taiwan; PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
| | - Shih-Chieh Hsu
- Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, No.2, Zuonan Rd., Nanzi District, Kaohsiung City, 81126, Taiwan
| | - Kuan-Syun Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Wei Kong Pang
- Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
| | - Chih-Wei Hu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yi-Jhen Jiang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan.
| | - Huei Chu Weng
- Department of Mechanical Engineering, Chung Yuan Christian University, No. 200, Chungpei Road, Chungli District, Taoyuan City, 32023, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan; College of Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
10
|
Peighambardoust SJ, Vatankhah M, Mohammadzadeh Pakdel P, Foroutan R, Mohammadi R. Carboxymethyl cellulose/activated carbon/hydroxyapatite composite adsorbent for remediation of methylene blue from water media. Int J Biol Macromol 2024; 276:133764. [PMID: 38992529 DOI: 10.1016/j.ijbiomac.2024.133764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
In the present study, activated carbon (AC), activated carbon/hydroxyapatite (AC/HAp), and carboxymethyl cellulose/activated carbon/hydroxyapatite (CMC/AC/HAp) composite adsorbents were prepared to remediation of methylene blue (MB) from water media. The pyrolysis method used the Pine cone as a natural precursor to synthesize AC. FTIR, XRD, Raman, BET, TEM, and SEM-Dot mapping techniques were applied to characterize synthesized adsorbents. Experimental results demonstrated that the maximum removal efficiency of AC, AC/HAp, and CMC/AC/HAp adsorbents under optimum conditions of pH 8, adsorbent dose 1 g/L, contact time 60 min, initial concentration 10 mg/L, and temperature 25 °C was computed to be 98.75, 98.86, and 98.93 %, respectively. Kinetic and equilibrium data were well-fitted with pseudo-second-order and Langmuir models, respectively. The maximum monolayer adsorption capacity of AC, AC/HAp, and CMC/AC/HAp was determined to be 40, 44.248, and 43.86 mg/g, respectively. FTIR results showed that hydrogen bonding and electrostatic interactions are the main mechanisms of the adsorption process. Results of the thermodynamic study showed that the adsorption process is spontaneous and exothermic. Finally, AC, AC/HAp, and CMC/AC/HAp composite adsorbents can be used as promising adsorbents for the remediation of MB from wastewater.
Collapse
Affiliation(s)
| | - Mahdiyeh Vatankhah
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran.
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
11
|
Chen W, Zhao Y, Yu B, Owens G, Chen Z. Enhanced removal of 2,4-dichlorophenol by a novel biotic-abiotic hybrid system based on zeolitic imidazolate framework-8. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134936. [PMID: 38889456 DOI: 10.1016/j.jhazmat.2024.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biotic-abiotic hybrid systems have recently emerged as a potential technique for stable and efficient removal of persistent contaminants due to coupling of microbial catabolic with abiotic adsorption/redox processes. In this study, Burkholderia vietnamensis C09V (B.V.C09V) was successfully integrated with a Zeolitic Imidazolate Framework-8 (ZIF-8) to construct a state-of-art biotic-abiotic system using polyvinyl alcohol/ sodium alginate (PVA/SA) as media. The biotic-abiotic system (PVA/SA-ZIF-8 @B.V.C09V) was able to remove 99.0 % of 2,4-DCP within 168 h, which was much higher than either PVA/SA, PVA/SA-ZIF-8 or PVA/SA@B.V.C09V (53.8 %, 72.6 % and 67.2 %, respectively). Electrochemical techniques demonstrated that the carrier effect of PVA/SA and the driving effect of ZIF-8 collectively accelerated electron transfer processes associated with enzymatic reactions. In addition, quantitative-PCR (Q-PCR) revealed that ZIF-8 stimulated B.V.C09V to up-regulate expression of tfdB, tfdC, catA, and catC genes (2.40-, 1.68-, 1.58-, and 1.23-fold, respectively), which encoded the metabolism of related enzymes. Furthermore, the effect of key physical, chemical, and biological properties of PVA/SA-ZIF-8 @B.V.C09V on 2,4-DCP removal were statistically investigated by Spearman correlation analysis to identify the key factors that promoted synergistic removal of 2,4-DCP. Overall, this study has created an innovative new strategy for the sustainable remediation of 2,4-DCP in aquatic environments.
Collapse
Affiliation(s)
- Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian Province 350007, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bing Yu
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian Province 350007, China.
| |
Collapse
|
12
|
Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe 2O 4): Synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol 2024; 274:133318. [PMID: 38917917 DOI: 10.1016/j.ijbiomac.2024.133318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
13
|
Shan LL, Wang RS, Lai HT, Zhu ZB, Chen Y, Ni ZY, Pang CL, Zhang QZ. Treating waste with waste: adsorption behavior and mechanism of phosphate in water by modified phosphogypsum biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50411-50426. [PMID: 39093397 DOI: 10.1007/s11356-024-34272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The use of green methods to treat industrial waste and waste reuse has become a key environmental issue. In order to achieve this goal, this study treated waste phosphogypsum (PG) and produced modified PG biochar to adsorb and remove phosphorus from PG leachate, so that the PG pollution problem was controlled. In this study, PG was modified with sodium carbonate (Na2CO3) to prepare a modified PG biochar that was used for the removal of phosphorus-containing wastewater. An X-ray diffraction (XRD) analysis of the modified PG revealed that the main component was calcium carbonate (CaCO3), and a suitable amount of modified PG could load calcium oxide (CaO) onto the biochar and improve its physical properties. The experimental results showed that the modified PG biochar had a maximum phosphorus adsorption capacity of 132 mg/g. A further investigation of the mechanism of adsorption revealed the importance of electrostatic attraction and chemical precipitation, and it was found that the CaO in the modified PG biochar could effectively facilitate the conversion of phosphate to hydroxylapatite (Ca5(PO4)3OH) in water. The phosphorus removal rate from leachate obtained from a landfill containing PG was 99.38% for a specific dose of the modified PG biochar. In this study, a PG pollution control technology was developed to realize the goal of replacing waste with waste.
Collapse
Affiliation(s)
- Li-Li Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Ruo-Shan Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Hai-Tao Lai
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Ze-Bing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Yu Chen
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Zhu-Ye Ni
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Chang-Long Pang
- Jiangxi ZXDH Environmental Protection Industry Tecnology Institute Co., Ltd., Nanchang, 330000, China
| | - Qiu-Zhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
14
|
Zhang T, Wan X, Chen H, Luo J, Ran Y, Xie L, Li Y, Zhang YF. Incorporation of copper ion promoted adsorption of anionic dye (Acid Yellow 36) by acrolein-crosslinked polyethyleneimine/chitosan hydrogel: Adsorption, dynamics, and mechanisms. Int J Biol Macromol 2024; 274:133281. [PMID: 38906358 DOI: 10.1016/j.ijbiomac.2024.133281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In this study, a novel adsorbent, A-PEI/CS-Cu2+, was developed by crosslinking polyethyleneimine/chitosan hydrogel with acrolein and loading it with copper ions. The adsorption process of A-PEI/CS-Cu2+ on the anionic dye acid yellow 36 (AY36) was investigated by kinetic, isothermal and thermodynamic modeling. It was noteworthy that A-PEI/CS-Cu2+ exhibited rapid adsorption with a 90 % removal rate achieved within just 5 min, which was much faster than the adsorption rate of A-PEI/CS without load of copper ions and showed its potential for rapid adsorption applications. The maximum adsorption capacity for AY36 could reach up to 3114 mg g-1. In addition, the high concentration of saline wastewater was found to have almost no effect on the adsorption reaction in the salt effect test experiment. In five desorption-regeneration cycle experiments, the sample exhibited good recyclability and regeneration performance. The driving force of the adsorption process mainly originated from the electrostatic interaction, hydrogen bonding, and intermolecular interaction, in which the addition of copper ions led to the enhancement of the electrostatic interaction and chelation between A-PEI/CS-Cu2+ and AY36. Overall, the findings suggest the excellent potential of A-PEI/CS-Cu2+ for rapid and efficient adsorption, as well as its suitability for practical applications in wastewater treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xin Wan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Hui Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Jiaqi Luo
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yi Ran
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lingying Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
15
|
Sirajudheen P, Vigneshwaran S, Thomas N, Selvaraj M, Venkatesan K, Park CM. Fabrication of MoS 2 restrained magnetic chitosan polysaccharide composite for the photocatalytic degradation of organic dyes. Carbohydr Polym 2024; 335:122071. [PMID: 38616093 DOI: 10.1016/j.carbpol.2024.122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Chitosan (CS) polysaccharide is expected to exhibit greater ionic conductivity, which can be attributed to its increased amino group content when it is blended with different semiconducting materials. Herein, the work used this conducting ability of chitosan and prepared a heterogeneous MoS2-induced magnetic chitosan (MF@CS) composite via the co-precipitation method, which was used to scrutinize the catalytic performance with Methylene Blue (MB) and Malachite Green (MG) dyes by visible light irradiation. The saturation magnetization value of the MF@CS composite is found to be 7.8 emu/g, which is less when compared to that of pristine Fe3O4 (55.7 emu/g) particles. The bandgap of the MF@CS composite is ∼ 2.17eV, which exceeds the bandgap (Eg) of bare MoS2 of 1.80 eV. The maximum color removal of 96.3 % and 93.4 % for MB and MG dyestuffs is recognized in the exposure of the visible spectrum, respectively. At a starting dye dosage of 30 mg/L, 0.1 g/L of MF@CS, a pH level of 8-11, and 70 min of contact with direct light. The photocatalyst provides extremely good durability for a maximum of five phases. Hence, the MF@CS matrix is a viable and appropriate substance for the efficient treatment of effluents containing dye molecules.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala 676306, India.
| | - Sivakumar Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University-Global Campus, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do 16705, Republic of Korea
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Nirmalagiri P.O, Kuthuparamba, Kannur, Kerala 670701, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61413, Saudi Arabia
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
16
|
Ibrahim SM, Al-Harby NF, El-Molla SA, Ibrahim ES. New combined experimental and DFT studies for adsorption of sole Azo-dye or binary cationic dyes from aqueous solution. Sci Rep 2024; 14:14756. [PMID: 38926540 PMCID: PMC11208540 DOI: 10.1038/s41598-024-65649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Textile-toxic synthetic dyes, which possess complex aromatic structures, are emitted into wastewater from various branches. To address this issue, the adsorption process was applied as an attractive method for the removal of dye contaminants from water in this article. An unprecedented integrated experimental study has been carried out, accompanied by theoretical simulations at the DFT-B3LYP/6-31G (d,P) level of theory to investigate how single Maxilon Blue GRL (MxB) dye or and its mixture with MG (Malachite Green) dyes interact with the adsorbent and compare the obtained results with the data obtained through experimentation. The full geometry optimization revealed the physical adsorption of dyes on the Al2O3 surface. Non-linear optical properties (NLO) results emphasized that the complex MG-Al2O3-MxB is a highly promising material in photo-applications, and the adsorbed binary system is energetically more favorable compared to the adsorbed sole dye system. The experimental results for (MxB) dye adsorption onto γ-Al2O3 affirmed that the optimum conditions to get more than 98% uptake were at dye concentration 100 ppm, pH 10, adsorbent content 0.05 g, and equilibrium time only 20 min. The kinetic and isothermal studies revealed that the adsorption accepted with the pseudo-second-order and Freundlich isotherm model, respectively. The removal efficiency of the mixture of MxB and MG dyes was the highest but did not change clearly with increasing the % of any of them. The details of the interaction mechanisms of the sole and binary dyes were proven.
Collapse
Affiliation(s)
- Shaimaa M Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt.
| | - Nouf F Al-Harby
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
| | - Sahar A El-Molla
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| | - El-Shimaa Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| |
Collapse
|
17
|
Yin L, Zhang S, Liu B, Zheng Q, Wang Z, Qu R. Investigation of the photolysis process of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) and polystyrene (PS) microplastics: Plastics aging effect, transformation products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172394. [PMID: 38636850 DOI: 10.1016/j.scitotenv.2024.172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) and persistent pollutants (POPs) are new pollutants that are extensively studied worldwide. To fill the gaps that the degradation processes and mechanisms of polycyclic aromatic hydrocarbons (PAHs) on the surface of most MPs are still unclear, the photochemical transformation of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) MPs and polystyrene (PS) MPs in water were investigated and compared. The photolysis of BaA on the surface of PS in water proceeded easier than that on PVC within the 48 h irradiation period, with the pseudo-first-order rate constant of 0.0489 min-1 and 0.0181 min-1, respectively, which can be ascribed to the smaller particle size and more OH production of PS MPs. Due to the light competition between the chromophore and BaA as well as the light-shielding effect, aged MPs showed an inhibitory effect on the degradation of BaA compared with pristine MPs. For BaA/PVC MPs system, the degradation of BaA in real water was not significantly affected by coexisting ions and humic acid (HA) (p < 0.05), while slight inhibitory effect on the degradation of BaA appeared for PS MPs in different water matrices (UP: 86.97 %, YR: 84.47 %, PR: 81.42 % and HR: 83.21 %). According to the electron paramagnetic resonance (EPR) test, quenching experiment and probe experiment, the relative contribution of direct photolysis (PVC: 82.02 %; PS: 69.54 %) and indirect photolysis (PVC: 17.98 %; PS: 30.46 %) was confirmed. A total of 14 products were identified, and the product types were not affected by plastics aging. The results of the toxicity assessment indicated that although some intermediate products remained toxic to aquatic organisms, the toxicity of most products was lower than that of BaA. This study provides new insights into the environmental fate of PAHs and the role of MPs in the photolysis process of contaminants in surface water.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qing Zheng
- School Marine & Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
18
|
Yılmazoğlu M, Kanmaz N, Demircivi P. Constructing the synergistic effects of chitosan and ionic liquid on SPEEK polymer for efficient adsorption of crystal violet dye. Int J Biol Macromol 2024; 271:132638. [PMID: 38797296 DOI: 10.1016/j.ijbiomac.2024.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In the study, a novel chitosan biopolymer and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (IL)-incorporated sulfonated poly (ether ether ketone) (SPEEK) composite (Ch-IL@SPEEK) was prepared for adsorption of cationic crystal violet (CV) dye. The proposed composite was well characterized by several techniques. CV adsorption performance was examined via batch studies by varying various variables involving adsorbent dosage, contact time pH and temperature. The isotherm results were demonstrated the adsorption characters of the processes were Langmuirian. The maximum adsorption capacity was determined as 77.66 mg g-1 for the composite which was significantly higher than SPEEK (qmax = 45.36 mg g-1). The determined equilibrium time of the operated system was 360 min and the kinetic model was assessed as Elovich. At low pHs the protonated surface groups repelled the positively charged CV and the adsorption rate increased with increasing pH. The process is spontaneous and favorable as it proceeds via endothermic interactions. Furthermore, even at the end of 5 successful adsorption cycles, 77.86 % CV removal was obtained. Remarkable efficiencies were also achieved in the removal performance of different organic pollutants. Based on the reported results, Ch-IL@SPEEK composite were exhibited as an impressive adsorbent material for adsorption processes.
Collapse
Affiliation(s)
- Mesut Yılmazoğlu
- Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200 Yalova, Turkey
| | - Nergiz Kanmaz
- Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200 Yalova, Turkey.
| | - Pelin Demircivi
- Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200 Yalova, Turkey
| |
Collapse
|
19
|
Dai K, Chen L, Aryee AA, Yang P, Han R, Qu L. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH 2-MIL-53(Al/Zr) sodium alginate gel spheres. Int J Biol Macromol 2024; 271:132637. [PMID: 38795565 DOI: 10.1016/j.ijbiomac.2024.132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Metal-organic frameworks are emerging inorganic-organic hybrid materials that can be self-assembled from metal ions and organic ligands via coordination bonds. These materials possess large specific surface area, tunable pore structure, abundant active center, diversity of functional groups as well as high mechanical and thermal stability which promote their applications in adsorption and catalysis studies. In this study, NH2-MIL-53(Al/Zr) was prepared and embedded into sodium alginate gel spheres (NH2-MIL-53(Al/Zr)-SA) and its adsorption properties towards TC and DCF in solution were investigated. According to XRD and FTIR analysis, the structure of the raw material was not changed after making the gel spheres. The maximum adsorption towards TC (pH =3) and DCF (pH =5) reached 98.5 mg·g-1 and 192 mg·g-1, respectively. The process was consistent with Langmuir and Freundlich, suggesting that there was both monolayer and multilayer adsorption which infers the presence of physical adsorption (intra-particle diffusion) and non-homogeneous chemical adsorption. The thermodynamic parameters showed that the adsorption process was a spontaneous entropy increasing reaction. The regeneration rate of spent NH2-MIL-53(Al/Zr)-SA could still reach 99.1 % after three cycles, indicating good regeneration performance. This study can provide a basis for the application of NH2-MIL-53(Al/Zr)-SA in wastewater treatment.
Collapse
Affiliation(s)
- Kailu Dai
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Peifeng Yang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Nguyen DTC, Jalil AA, Hassan NS, Nguyen LM, Nguyen DH, Tran TV. Synthesis of magnetic MFe 2O 4 (M = Ni, Co, Zn, Fe) supported on porous carbons derived from Bidens pilosa weed and their adsorptive comparison of toxic dyes. CHEMOSPHERE 2024; 358:142087. [PMID: 38657696 DOI: 10.1016/j.chemosphere.2024.142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Bidens pilosa is classified as an invasive plant and has become a problematic weed to many agricultural crops. This species strongly germinates, grows and reproduces and competing for nutrients with local plants. To lessen the influence of Bidens pilosa, therefore, converting this harmful species into carbon materials as adsorbents in harm-to-wealth and valorization strategies is required. Here, we synthesized a series of magnetic composites based on MFe2O4 (M = Ni, Co, Zn, Fe) supported on porous carbon (MFOAC) derived from Bidens pilosa by a facile hydrothermal method. The Bidens pilosa carbon was initially activated by condensed H3PO4 to increase the surface chemistry. We observed that porous carbon loaded NiFe2O4 (NFOAC) reached the highest surface area (795.7 m2 g-1), followed by CoFe2O4/AC (449.1 m2 g-1), Fe3O4/AC (426.1 m2 g-1), ZnFe2O4/AC (409.5 m2 g-1). Morphological results showed nanoparticles were well-dispersed on the surface of carbon. RhB, MO, and MR dyes were used as adsorbate to test the adsorption by MFOAC. Effect of time (0-360 min), concentration (5-50 mg L-1), dosage (0.05-0.2 g L-1), and pH (3-9) on dyes adsorption onto MFOAC was investigated. It was found that NFOAC obtained the highest maximum adsorption capacity against dyes, RhB (107.96 mg g-1) < MO (148.05 mg g-1) < MR (153.1 mg g-1). Several mechanisms such as H bonding, π-π stacking, cation-π interaction, and electrostatic interaction were suggested. With sufficient stability and capacity, NFOAC can be used as potential adsorbent for real water treatment systems.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam
| | - Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
21
|
Derikvand H, Tahmasebi N, Barzegar S. Construction of a direct Z-scheme Cs 3Bi 2Cl 9/g-C 3N 4 heterojunction composite for efficient photocatalytic degradation of various pollutants in water: Performance, kinetics and degradation mechanism. CHEMOSPHERE 2024; 355:141879. [PMID: 38570050 DOI: 10.1016/j.chemosphere.2024.141879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The use of emerging composite materials has been booming to remove environmental pollutants. The aim of this research is to develop a new composite based on Cs3Bi2Cl9 perovskite and graphitic carbon nitride (g-C3N4) to investigate the photocatalytic performance under visible light irradiation. To achieve this, we produce the Cs3Bi2Cl9/g-C3N4 heterojunctions through a simple self-assembly synthesis. The as-synthesized composites are characterized using XRD, FTIR, FESEM, TEM, BET and EDX techniques. The photocatalytic performance of Cs3Bi2Cl9/g-C3N4 is examined in the degradation of various water contaminants, including 4-nitrophenol (4-NP), tetracycline antibiotic (TC), methylene blue (MB) and methyl orange (MO). The experimental results indicate the superior photocatalytic performance of the composites in the degradation of pollutants compared to pure Cs3Bi2Cl9 and g-C3N4. The 10% Cs3Bi2Cl9/g-C3N4 composite achieves the optimal degradation efficiency of 100, 92, 98.7, and 85.1% of 4-NP, TC, MB, and MO, respectively. This superior photocatalytic activity attributes to improved optical and electrochemical properties, including enhanced absorption ability, narrowing band gap, promoted separation efficiency of photogenerated carriers, and a high redox potential, which is confirmed by UV-vis DRS, PL, EIS, and CV analyses. The 10% Cs3Bi2Cl9/g-C3N4 composite also demonstrates high photocatalytic stability after four consecutive cycles. Radical trapping tests show that superoxide radicals (•O2-), holes (h+), and hydroxyl radicals (•OH) contribute to the photocatalytic process. Based on the obtained data, a direct Z-scheme heterojunction mechanism is proposed. Overall, this research offers a new stable photocatalyst with excellent prospect for photocatalytic applications.
Collapse
Affiliation(s)
- Hamed Derikvand
- Department of Physics, Jundi-Shapur University of Technology, Dezful, Iran
| | - Nemat Tahmasebi
- Department of Physics, Jundi-Shapur University of Technology, Dezful, Iran.
| | - Shahram Barzegar
- Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| |
Collapse
|
22
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Vajedi FS, Rasoolzadeh R, Angnes L, Santos ECS, Silva LDPC. Ultrasensitive Aptasensing Platform for the Detection of β-Amyloid-42 Peptide Based on MOF Containing Bimetallic Porphyrin Graphene Oxide and Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:2218-2239. [PMID: 38527228 DOI: 10.1021/acsabm.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The prompt detection of diseases hinges on the accessibility and the capability to identify relevant biomarkers. The integration of aptamers and the incorporation of nanomaterials into signal transducers have not only expedited but also enhanced the development of nanoaptasensors, enabling heightened sensitivity and selectivity. Here, the bimetallic nickel-cobalt-porphyrin metal-organic framework ((Ni + Cu)TPyP MOF) is regarded as an electron mediator, immobilization platform for an Alzheimer aptamer and to increase the electrochemical signal for the detection of the main biomarker of Alzheimer's disease (AD), amyloid β (Aβ-42). Furthermore, the ((Ni + Cu)TPyP MOF) was combined with reduced graphene oxide (rGO) and gold nanoparticles (AuNPs), on a gold electrode (GE) to provide an efficient interface for immobilizing aptamer strands. Concurrently, the incorporation of rGO and AuNPs imparts enhanced electrical conductivity and efficacious catalytic activity, establishing them as adept electrochemical indicators. Owing to the superior excellent electrical conductivity of rGO and AuNPs, coupled with the presence of ample mesoporous channels and numerous Ni and Cu metal sites within (Ni + Cu)TPyP MOF, this nanostructure with abundant functional groups is proficient in immobilizing a substantial quantity of aptamer. These interactions are achieved through robust π-π stacking and electrostatic interactions, alongside the high affinity between the thiol group of the aptamer and AuNPs concurrently. The as-prepared ternary (Au@(Ni + Cu)TPyP MOF/rGO) nanostructure electrode exhibited an enhancement in its electrochemically active surface area of about 7 times, compared with the bare electrode and the Aβ-42 redox process is highly accelerated, so the peak currents are significantly higher than those obtained with bare GE substrate. Under the optimized conditions, the designed aptasensor had the quantitative detection of Aβ-42 with a low detection limit of 48.6 fg mL-1 within the linear range of 0.05 pg mL-1 to 5 ng mL-1 by differential pulse voltammetry (DPV), accompanied by precise reproducibility, satisfactory stability (95.6% of the initial activity after 10 days), and minimal impact of interfering agents. Recorded results in human blood plasma demonstrated the high efficacy of porphyrin MOF system sensing even in the clinical matrix. The great performance of this aptasensor indicates that our new design of Au@(Ni + Cu)TPyP MOF/rGO nanostructure provides more opportunities for the detection of chemical signals in early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahimeh Sadat Vajedi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Reza Rasoolzadeh
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, 24020-141 Rio de Janeiro, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Evelyn C S Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT Bl A, 21941-909 Rio de Janeiro, Brazil
| | - Ludmila de Paula Cabral Silva
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Niterói, 24210-240 Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Tran GT, Nguyen TTT, Nguyen DTC, Tran TV. Tecoma stans floral extract-mediated synthesis of MgFe 2O 4/ZnO nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26806-26823. [PMID: 38453761 DOI: 10.1007/s11356-024-32780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.
Collapse
Affiliation(s)
- Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
25
|
Duarte EDV, Ribeiro NFDP, da Silva MGC, Vieira MGA, de Carvalho SML. Pirarucu hydroxyapatite applied to ternary competitive adsorption of synthetic basic dyes as contaminants of emerging concern: kinetic, equilibrium, and ANN studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26942-26960. [PMID: 38503954 DOI: 10.1007/s11356-024-32968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
This study investigated the single and multicomponent adsorption of three emerging pollutants, the basic dyes Rhodamine 6G (R6G), Auramine-O (AO), and Brilliant Green (BG) by using hydroxyapatite synthesized from Pirarucu scales as adsorbent (HAP). The adsorption process was studied using seven different systems: AO-single, R6G-single, BG-single, R6G + AO, BG + AO, BG + R6G, and R6G + AO + BG. For kinetics, the initial concentration of each adsorbate per system was 50 mg/L, the results showed that the singular adsorption of these dyes was best-represented by the pseudo-second-order model (qAO = 62.54 mg/g, qR6G = 7.91 mg/g, qBG = 62.40 mg/g), however, the multicomponent adsorption was well-fitted by a pseudo-first-order model (ternary system: qAO = 56.21 mg/g, qR6G = 14.95 mg/g, qBG = 60.62 mg/g). For equilibrium, the initial concentration of each adsorbate per system was 10-300 mg/L, and the single adsorption systems were best represented by the Langmuir model. Nonetheless, the results displayed in the multicomponent mixture showed the presence of inflection points of AO and R6G whenever BG was present in solution with C0 > 150 mg/L, thus indicating that BG has greater affinity with HAP. The presence of inflection points in the curves represented a limitation for applying traditional equilibrium models, thus, an artificial neural network (ANN) was applied to non-linear curve fit this process and satisfactorily predicted the kinetics and equilibrium data. Finally, the analysis of thermodynamics for the ternary mixture revealed that the adsorption process is spontaneous (ΔG < 0), endothermic (ΔH > 0), and increases to a disorganized state as the temperature rises (ΔS > 0).
Collapse
|
26
|
Sun X, Talha N, Ahmed AM, Rafea MA, Alenazi NA, Abukhadra MR. Steric and energetic studies on the influence of cellulose on the adsorption effectiveness of Mg trapped hydroxyapatite for enhanced remediation of chlorpyrifos and omethoate pesticides. Int J Biol Macromol 2024; 265:130711. [PMID: 38490378 DOI: 10.1016/j.ijbiomac.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.
Collapse
Affiliation(s)
- Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China.
| | - Norhan Talha
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
27
|
Nguyen DTC, Jalil AA, Hassan NS, Nguyen LM, Nguyen DH, Tran TV. Optimization of hydrothermal synthesis conditions of Bidens pilosa-derived NiFe 2O 4@AC for dye adsorption using response surface methodology and Box-Behnken design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32691-6. [PMID: 38468003 DOI: 10.1007/s11356-024-32691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
The presence of stable and hazardous organic dyes in industrial effluents poses significant risks to both public health and the environment. Activated carbons and biochars are widely used adsorbents for removal of these pollutants, but they often have several disadvantages such as poor recoverability and inseparability from water in the post-adsorption process. Incorporating a magnetic component into activated carbons can address these drawbacks. This study aims to optimizing the production of NiFe2O4-loaded activated carbon (NiFe2O4@AC) derived from a Bidens pilosa biomass source through a hydrothermal method for the adsorption of Rhodamine B (RhB), methyl orange (MO), and methyl red (MR) dyes. Response surface methodology (RSM) and Box-Behnken design (BBD) were applied to analyze the key synthesis factors such as NiFe2O4 loading percentage (10-50%), hydrothermal temperature (120-180 °C), and reaction time (6-18 h). The optimized condition was found at a NiFe2O4 loading of 19.93%, a temperature of 135.55 °C, and a reaction time of 16.54 h. The optimum NiFe2O4@AC demonstrated excellent sorption efficiencies of higher than 92.98-97.10% against all three dyes. This adsorbent was characterized, exhibiting a well-developed porous structure with a high surface area of 973.5 m2 g-1. Kinetic and isotherm were studied with the best fit of pseudo-second-order, and Freundlich or Temkin. Qmax values were determined to be 204.07, 266.16, and 177.70 mg g-1 for RhB, MO, and MR, respectively. By selecting HCl as an elution, NiFe2O4@AC could be efficiently reused for at least 4 cycles. Thus, the Bidens pilosa-derived NiFe2O4@AC can be a promising material for effective and recyclable removal of dye pollutants from wastewater.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| | - Aishah Abdul Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia.
- Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Nurul Sahida Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| |
Collapse
|
28
|
Gaber MM, Samy M, El-Bestawy EA, Shokry H. Effective degradation of tetracycline and real pharmaceutical wastewater using novel nanocomposites of biosynthesized ZnO and carbonized toner powder. CHEMOSPHERE 2024; 352:141448. [PMID: 38354865 DOI: 10.1016/j.chemosphere.2024.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In this study, novel nanohybrids of biosynthesized zinc oxide (ZnO) and magnetite-nanocarbon (Fe3O4-NC) obtained from the carbonization of toner powder waste were fabricated and investigated for persulfate (PS) activation for the efficient degradation of tetracycline (TCN). The chemical and physical properties of the synthesized catalysts were analyzed using advanced techniques. ZnO/Fe3O4-NC nanohybrid with mass ratio 1:2, respectively in the presence of PS showed the highest TCN removal efficiency compared to the individual components (ZnO and Fe3O4-NC) and other nanohybrids with mass ratios of 1:1 and 2:1. The results indicated that efficient degradation of TCN could be attained at pH 3-7. The optimum operating parameters were TCN concentration of 12.8 mg/L, PS concentration of 7 Mm, and catalyst dose of 0.55 g/L. The high stability of ZnO/Fe3O4-NC (1:2) nanocomposite was assured by the slight drop in TCN degradation percentage from 97.27% to 85.45% after five successive runs under the optimum conditions and the concentrations of leached iron and zinc into the solution were monitored. The quenching experiments explored that the prevailing reactive entities were sulfate radicals. Additionally, the degradation of TCN in various water matrices was investigated, and a degradation pathway was suggested. Further, degradation of real pharmaceutical waste was conducted showing that the removal efficiencies of TCN, total organic carbon (TOC), and chemical oxygen demand (COD) were 89.79, 80.65, and 78.64% after 2 h under the optimum conditions. The effectiveness of the proposed system (ZnO/Fe3O4-NC (1:2) @ PS) for the degradation of real samples compiled from industrial effluents as well as its inexpensiveness and green nature qualify this system for the full-scale application.
Collapse
Affiliation(s)
- Mohamed Mohamed Gaber
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt; Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Mahmoud Samy
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Ebtesam A El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
29
|
Sakhaei Niroumand J, Peighambardoust SJ, Mohammadi R. Tetracycline decontamination from aqueous media using nanocomposite adsorbent based on starch-containing magnetic montmorillonite modified by ZIF-67. Int J Biol Macromol 2024; 259:129263. [PMID: 38191117 DOI: 10.1016/j.ijbiomac.2024.129263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
In the present study, starch/zeolitic imidazole framework-67 (ZIF-67) modified magnetic montmorillonite nanocomposite adsorbent to remove tetracycline (TC) as an emerging antibiotic-based contaminant from aqueous media. The surface properties of the adsorbents were investigated using FTIR, XRD, SEM, EDX-Map, XPS, TEM, BET, and VSM analysis. The specific surface area of MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite samples were found to be 15.63, 20.54, and 588.41 m2/g, respectively. The influence of pH, adsorbent amount, initial TC concentration, temperature, contact time, and coexisting ions on TC elimination was explored in a batch adsorption system. The kinetic and equilibrium data were well matched with the pseudo-second-order and Langmuir isotherm models, respectively. The maximum monolayer adsorption capacities of TC were obtained to be 40.24, 66.1, and 135.2 mg/g by MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite adsorbents, respectively. Also, thermodynamic studies illustrated that the TC adsorption process is exothermic and spontaneous. Furthermore, the magnetic nanocomposite adsorbent St/MMT-MnFe2O4-ZIF-67 showed good reusability and could be recycled for up to five cycles. This excellent adsorption performance, coupled with the facile separation of the magnetic nanocomposite, gave St/MMT-MnFe2O4-ZIF-67 a high potential for TC removal from aqueous media.
Collapse
Affiliation(s)
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
30
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|