1
|
William McKeage J, Zheng Hao Tan A, James Taberner A. Jet injection through microneedles for large volume subcutaneous delivery. Int J Pharm 2024:124887. [PMID: 39471887 DOI: 10.1016/j.ijpharm.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Subcutaneous (SC) drug delivery offers several advantages over intravenous (IV) delivery including: self-administration, improved patient experience, and reduced treatment costs. Unfortunately, each SC delivery is currently limited to ∼ 2.25 mL with IV administration required when the delivery volume exceeds this value. In this work, we explore a new technique for large volume subcutaneous drug delivery that uses microneedles to break through the epidermis then forms the liquid drug into many small jets that penetrate past the ends of the microneedles and into the subcutaneous (or muscle) tissue. By performing multiple simultaneous injections, this delivery approach avoids the volume limitations of SC delivery, and thus may be able to greatly increase the volume we can deliver to this space. Here, we present a novel multi-jet prototype that forms seven simultaneous jets through 30G needles that have been shortened to have an exposed length of just ∼ 1mm. The jet speed, shape, and volume of jets formed through these microneedles are measured to assess the consistency of jet production through the microneedles. We then perform jet injections of volumes up to 3.9 mL into ex vivo porcine tissue. The results demonstrate the successful delivery (>95 %) of 3.9 mL in just 0.3 s using jet injection performed through microneedles. This volume is almost double the maximum volume of current autoinjectors and the perceived limit for subcutaneous injection (2.25 mL). We also find that jet speeds of 70 m/s and below do not achieve complete delivery of 3.9 mL with our prototype system, and that the addition of microneedles leads to more consistent large volume delivery than equivalent needle-free injections. These results demonstrate the promise of multi-jet injection through microneedles to accommodate volumes much greater than current autoinjectors, and thus potentially allow patient self-administration in many more delivery applications.
Collapse
Affiliation(s)
- James William McKeage
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand.
| | - Andrew Zheng Hao Tan
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand
| | - Andrew James Taberner
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand; Department of Engineering Science, Faculty of Engineering, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Lawal I, de Castro Araujo Valente D, Khusnatdinov E, Elliott B, Carruth B, Penttila C, Marston J. Effect of orientation angle for needle-free jet injection. Int J Pharm 2024; 664:124612. [PMID: 39179006 DOI: 10.1016/j.ijpharm.2024.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
In this paper, we report on the delivery efficiency of needle-free jet injections using injectors with typical jet speed vj≈140m/s, orifice diameter do=157μm, and volume V=0.1 mL. The target substrates were either hydrogel tissue phantoms or porcine tissues combined with excised human skin. The novelty of this study is two-fold: First, we investigate the influence of injection angle relative to the skin surface, and second, we also study the influence of the jet path relative to the orientation of muscle fibers. While most commercial jet injectors employ a fitting that would render the device normal to the skin surface, recent studies have proposed oblique injections, which may be beneficial for intradermal or subcutaneous tissue injection. Furthermore, for deeper intramuscular injections, we propose that an angled jet path taking the muscle fiber orientation into account may result in a bolus or dispersion zone that is conducive to increased cellular uptake of the drug.
Collapse
Affiliation(s)
- Idera Lawal
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | | | - Emil Khusnatdinov
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Brian Elliott
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Breanna Carruth
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Clayton Penttila
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
3
|
William McKeage J, Janet Full H, Zheng Hao Tan A, James Taberner A. The effect of temperature-dependent drug viscosity on needle-free jet injection. Int J Pharm 2024; 666:124777. [PMID: 39369766 DOI: 10.1016/j.ijpharm.2024.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Highly viscous drugs cannot be delivered through a needle. Typically, this means that these drugs are formulated at lower concentrations, demanding higher delivery volumes, which often must be delivered intravenously. Jet injection may provide an important solution for viscous drug delivery. Jet injection is a needle-free drug delivery technique whereby a liquid drug is formed into a hair-thin (∼200 µm) high-speed (>100 m/s) jet that penetrates and delivers itself into tissue. While it may seem that it would be just as difficult to form a viscous drug into a high-speed jet as it is to force it down a needle, this is not the case. Recent work has revealed that 'viscous-heating' during jet injection can result in significant temperature increase, and resultant viscosity decrease, in a thin outer-layer of the jet; this phenomenon effectively results in the drug 'self-lubricating' as it passes through a jet injection orifice. Despite the potential for this finding to revolutionise the subcutaneous delivery of high-viscosity drugs, little further work in this area has since been reported on. In this work we develop finite element models of needle-free injection to investigate how viscous heating affects jet production, how heat exchange with the orifice material influences this process, and to what extent jet production is affected by the initial temperature of the fluid. We then conduct novel high-speed measurements of jet and orifice temperature changes due to viscous heating. We find that viscous heating is responsible for approximately doubling the speed of jets that can be produced with very viscous fluid (1 Pa·s) at room temperature. The thermal conductivity of the orifice can transfer heat away from the perimeter of the jet, and thus reduce the lubricating effect of viscous heating. We then show that by preheating 99 % glycerol (1 Pa·s) from 7 °C to 37 °C the jet speed can be increased 6-fold. We also demonstrate the successful delivery of a very viscous glycerol solution using preheated jet injection into ex vivo porcine tissue. Given that 99 % glycerol is 10- to 100-fold more viscous than current protein therapeutics, our findings demonstrate the potential for jet injection, with or without additional drug preheating, to deliver drug formulations, needle-free, that are much more viscous than those currently delivered through needles.
Collapse
Affiliation(s)
| | - Hazel Janet Full
- Auckland Bioengineering Institute, the University of Auckland, New Zealand
| | | | - Andrew James Taberner
- Auckland Bioengineering Institute, the University of Auckland, New Zealand; Department of Engineering Science, Faculty of Engineering, the University of Auckland, New Zealand
| |
Collapse
|
4
|
Wang W, Men L, Wang Y, Shi C, Yin H, Li H, Zhou H, Du J. Effect of needle-free injection on psychological insulin resistance and insulin dosage in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1379830. [PMID: 38803476 PMCID: PMC11129580 DOI: 10.3389/fendo.2024.1379830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background and objective Psychological insulin resistance (PIR), which refers to the reluctance of diabetic patients to use insulin, is a frequently encountered clinical issue. Needle-free injection (NFI) offers advantages in terms of expediting insulin absorption and mitigating adverse reactions related to injection. To evaluate the effects of subcutaneous injection of insulin aspart 30 with NFI on PIR and insulin dosage in patients with type 2 diabetes mellitus (T2DM). Methods Sixty-four patients with T2DM participated in this randomized, prospective, open, crossover study. Insulin aspart 30 was administered subcutaneously to each subject via QS-P NFI and Novo Pen 5 (NP) successively. The effects of NFI on PIR were analyzed. Differences in insulin dosage, glycemic variability, and injection safety were compared at similar levels of glycemic control. Results After the administration of NFI, the insulin treatment attitude scale score decreased (53.7 ± 7.3 vs. 58.9 ± 10.7, p<0.001), the insulin treatment adherence questionnaire score increased (46.3 ± 4.9 vs. 43.8 ± 7.1, p<0.001), and the insulin treatment satisfaction questionnaire score increased (66.6 ± 10.5 vs. 62.4 ± 16.5, p<0.001). At the same blood glucose level, NFI required a smaller dosage of insulin aspart 30 compared with that of NP (30.42 ± 8.70 vs. 33.66 ± 9.13 U/d, p<0.001). There were no differences in glycemic variability indices (standard deviation, mean amplitude of glycemic excursion or coefficient of variation) between the two injection methods. Compared with NP, NFI did not increase the incidence of hypoglycemia (17.2% vs. 14.1%, p=0.774), and it decreased the incidence of induration (4.7% vs. 23.4%, p=0.002) and leakage (6.3% vs. 20.3%, p=0.022) while decreasing the pain visual analog scale score (2.30 ± 1.58 vs. 3.11 ± 1.40, p<0.001). Conclusion NFI can improve PIR in patients with T2DM and be used with a smaller dose of insulin aspart 30 while maintaining the same hypoglycemic effect. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2400083658.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Men
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongbo Wang
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunhong Shi
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huihui Yin
- Nursing Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Han Li
- Nursing Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haicheng Zhou
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Evans KM, Chen SH, Souna AJ, Stranick SJ, Soles CL, Chan EP. The Projectile Perforation Resistance of Materials: Scaling the Impact Resistance of Thin Films to Macroscale Materials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384826 DOI: 10.1021/acsami.3c05130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
From drug delivery to ballistic impact, the ability to control or mitigate the puncture of a fast-moving projectile through a material is critical. While puncture is a common occurrence, which can span many orders of magnitude in the size, speed, and energy of the projectile, there remains a need to connect our understanding of the perforation resistance of materials at the nano- and microscale to the actual behavior at the macroscale that is relevant for engineering applications. In this article, we address this challenge by combining a new dimensional analysis scheme with experimental data from micro- and macroscale impact tests to develop a relationship that connects the size-scale effects and materials properties during high-speed puncture events. By relating the minimum perforation velocity to fundamental material properties and geometric test conditions, we provide new insights and establish an alternative methodology for evaluating the performance of materials that is independent of the impact energy or the specific projectile puncture experiment type. Finally, we demonstrate the utility of this approach by assessing the relevance of novel materials, such as nanocomposites and graphene for real-world impact applications.
Collapse
Affiliation(s)
- Katherine M Evans
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Shawn H Chen
- National Institute of Standards and Technology, Materials Measurement Sciences Division, Gaithersburg, Maryland 20899, United States
| | - Amanda J Souna
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Stephan J Stranick
- National Institute of Standards and Technology, Materials Measurement Sciences Division, Gaithersburg, Maryland 20899, United States
| | - Christopher L Soles
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| | - Edwin P Chan
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
van der Ven DL, Morrone D, Quetzeri-Santiago MA, Fernandez Rivas D. Microfluidic jet impact: Spreading, splashing, soft substrate deformation and injection. J Colloid Interface Sci 2023; 636:549-558. [PMID: 36652830 DOI: 10.1016/j.jcis.2023.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Needle-free injections using microfluidic jets could be optimized by reducing splashing and controlling injection depth. However, this is impeded by an incomplete understanding on how jet characteristics influence impact outcome. We hypothesise that exploring the relation between microfluidic jet characteristics and substrate shear modulus on impact behavior will assist in predicting and giving insights on the impact outcome on skin and injection endpoints. EXPERIMENTS To do so, a setup using microfluidic chips, at varying laser powers and stand-off distances, was used to create thermocavitation generated microfluidic jets with ranging characteristics (velocity: 7-77 m/s, diameter: 35-120 μm, Weber-number: 40-4000), which were impacted on substrates with different shear modulus. FINDINGS Seven impact regimes were found, depending on jet Weber-number and substrate shear modulus, and we identified three thresholds: i) spreading/splashing threshold, ii) dimple formation threshold, and iii) plastic/elastic deformation threshold. The regimes show similarity to skin impact, although the opacity of skin complicated determining the threshold values. Additionally, we found that jet velocity has a higher predictive value for injection depth compared to the Weber-number, and consequently, the jet-diameter. Our findings provide fundamental knowledge on the interaction between microfluidic jets and substrates, and are relevant for optimizing needle-free injections.
Collapse
Affiliation(s)
- Diana L van der Ven
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Davide Morrone
- Nanovea SRL, Via Balegno 1, 10040 Rivalta di Torino, Italy
| | - Miguel A Quetzeri-Santiago
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - David Fernandez Rivas
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
7
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
8
|
Quetzeri-Santiago MA, Fernandez Rivas D. Cavity dynamics after the injection of a microfluidic jet onto capillary bridges. SOFT MATTER 2023; 19:245-257. [PMID: 36511786 PMCID: PMC9811641 DOI: 10.1039/d2sm01285e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The ballistics of solid and liquid objects (projectiles) impacting on liquids and soft solids (targets) generally results in the creation and expansion of an air cavity inside the impacted object. The dynamics of cavity expansion and collapse depends on the projectile inertia as well as on the target properties. In this paper we study the impact of microfluidic jets generated by thermocavitation processes on a capillary bridge between two parallel planar walls. Different capillary bridge types were studied, Newtonian liquids, viscoelastic liquids and agarose gels. Thus, we compare the cavity formation and collapse between a wide range of material properties. Moreover, we model the critical impact velocity of a jet traversing a capillary bridge type. For agarose gels with a storage modulus of 176 Pa, the critical velocity is well predicted by the model used for liquids. However, the predicted critical velocity for liquids deviates for agarose gels with a storage modulus of 536 Pa and 3961 Pa. Additionally, we show different types of cavity collapse, depending on the Weber number and the capillary bridge properties. We conclude that the type of collapse determines the number and size of entrained bubbles. Furthermore, we study the effects of wettability on the adhesion forces and contact line dissipation. We also conclude that upon cavity collapse, for hydrophobic walls a Worthington jet is energetically favourable. In contrast, for hydrophilic walls, the contact line dissipation is in the same order of magnitude of the energy of the impacted jet, suppressing the Worthington jet formation. Our results provide strategies for preventing bubble entrapment and give an estimation of the cavity dynamics, of relevance for, among others, needle-free injection applications.
Collapse
Affiliation(s)
- Miguel A Quetzeri-Santiago
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| |
Collapse
|
9
|
Rosselló JM, Ohl CD. Bullet jet as a tool for soft matter piercing and needle-free liquid injection. BIOMEDICAL OPTICS EXPRESS 2022; 13:5202-5211. [PMID: 36425620 PMCID: PMC9664874 DOI: 10.1364/boe.469486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
The collapse of a laser-induced vapor bubble near a solid boundary usually ends in a liquid jet. When the boundary is from a soft material the jetting may pierce the liquid-solid interface and result in the injection of liquid into it. A particular impulsive jet flow can be generated when a laser pulse is focused just below the free surface of a thin liquid layer covering a gelatin sample used as a surrogate of biological tissue. Here, a downwards jet forms from a liquid splash at the free surface and then penetrates through the liquid layer into the soft boundary. In the present manuscript we report on the use of this novel jet, termed "bullet" jet, to pierce soft materials and we explore its potential to become an optical needle-free injection platform. The dynamics and depth of the injection is studied as a function of the elasticity of the solid and the liquid properties. Injections of up to 4 mm deep into 4 %w/w gelatin within 0.5 ms are observed. The advantages of the bullet jet over other kinds of impulsively generated jets with lasers are discussed.
Collapse
|
10
|
Design and Analysis: Servo-Tube-Powered Liquid Jet Injector for Drug Delivery Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The current state of commercially available needle-free liquid jet injectors for drug delivery offers no way of controlling the output pressure of the device in real time, as the driving mechanism for these injectors provides a fixed delivery pressure profile. In order to improve the delivery efficiency as well as the precision of the targeted tissue depth, it is necessary to develop a power source that can accurately control the plunger velocity. The duration of a liquid jet injection can vary from 10 to 100 ms, and it generate acceleration greater than 2 g (where g is the gravity); thus, a platform for real-time control must exhibit a response time greater than 1 kHz and good accuracy. Improving the pioneering work by Taberner and others whereby a Lorentz force actuator based upon a voice coil is designed, this study presents a prototype injector system with greater controllability based on the use of a fully closed-loop control system and a classical three-phase linear motor consisting of three fixed coils and multiple permanent magnets. Apart from being capable of generating jets with a required stagnation pressure of 15–16 MPa for skin penetration and liquid injection, as well as reproducing typical injection dynamics using commercially available injectors, the novelty of this proposed platform is that it is proven to be capable of shaping the real-time jet injection pressure profile, including pulsed injection, so that it can later be tailored for more efficient drug delivery.
Collapse
|
11
|
Hankare P, Agrawala A, Menezes V. High-Speed Jet Injector for Pharmaceutical Applications. J Med Device 2022. [DOI: 10.1115/1.4054549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A shock wave-driven needle-free syringe was developed and tested for liquid jet delivery into an artificial skin model and porcine skin samples. The device could deliver an adequate volume of liquid to a depth sufficient for drug dissemination in skin samples. The device is equipped with a splash-proof conduit and a silencer for smooth operation. The concept is expected to minimize the pain of liquid injection by a) minimally breaching the blood vessels in the skin, b) reducing trauma, inflammation and aiding regeneration of the incised spot by the liquid of the jet, and c) preserving most of the micro-circulation system in the target, enabling an effective drug uptake. A theoretical model that predicts jet penetration into viscoelastic targets is derived and presented. A sound agreement has been observed between the experimental jet penetration depths and the corresponding theoretical predictions. The development can offer a cost-effective, minimally invasive health care solution for immunization and drug delivery.
Collapse
Affiliation(s)
- Priyanka Hankare
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| | - Ashish Agrawala
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| | - Viren Menezes
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
12
|
Bik L, van Doorn M, Hansen ACN, Janfelt C, Olesen UH, Haedersdal M, Lerche CM, Hendel K. In vivo dermal delivery of bleomycin with electronic pneumatic injection: drug visualization and quantification with mass spectrometry. Expert Opin Drug Deliv 2022; 19:213-219. [PMID: 35107046 DOI: 10.1080/17425247.2022.2035719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Intralesional bleomycin (BLM) administration by needle injection is effective for keloids and common warts but has significant drawbacks, including treatment-related pain and highly operator-depended success rates. Electronic pneumatic injection (EPI) is a promising, less painful, needle-free delivery method that potentially enables more precise and controlled dermal drug delivery. Here, we aimed to explore the cutaneous pharmacokinetics, biodistribution patterns and tolerability of BLM administered by EPI in vivo. RESEARCH DESIGN AND METHODS In a pig model, EPI with BLM or saline (SAL) were evaluated after 1, 48 and 216 hours. Mass spectrometry quantification and imaging were used to assess BLM concentrations and biodistribution patterns in skin biopsies. Tolerability was assessed by scoring local skin reactions (LSR) and measuring transepidermal water loss (TEWL). RESULTS Directly after BLM injection a peak concentration of 109.2 µg/cm3 (43.9-175.2) was measured in skin biopsies. After 9 days BLM was undetectable. EPI resulted in a focal BLM biodistribution in the mid-dermal delivery zone resembling a triangular shape. Mild LSRs were resolved spontaneously and TEWL was unaffected. CONCLUSIONS BLM administered by EPI resulted in quantifiable and focal mid-dermal distribution of BLM. The high skin bioavailability holds a great potential for clinical effects and warrants further evaluation in future human studies.
Collapse
Affiliation(s)
- Liora Bik
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Martijn van Doorn
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anders C N Hansen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Uffe H Olesen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Hendel
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Wang Z, Song D, Wang J, Xiong L, Shi T, Zhang C, Di L, Zhang C, Zhang Y, Li H, Liu X, Liu J, Zhang Y. Simulation and experimental study on the influence of needle-free jet injection nozzle structure on injection performance. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Bik L, Wolkerstorfer A, Bekkers V, Prens EP, Haedersdal M, Bonn D, van Doorn MBA. Needle-free jet injection-induced small-droplet aerosol formation during intralesional bleomycin therapy. Lasers Surg Med 2021; 54:572-579. [PMID: 34931319 PMCID: PMC9303553 DOI: 10.1002/lsm.23512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Needle-free jet injectors are frequently used in dermatological practice. Injection-generated small-droplet aerosols could be harmful upon inhalation when chemotherapeutics, like bleomycin, are used. Here, we aim to explore jet injector-induced small-droplet aerosol formation of bleomycin in relation to air ventilation and to provide safety measures for clinical practice. MATERIALS AND METHODS With a professional particle sensor, we measured airborne aerosol particles (0.2-10.0 µm) after electronic pneumatic injection (EPI), spring-loaded jet injection (SLI), and needle injection (NI) of bleomycin and saline (100 μl) on ex vivo human skin. Three levels of air ventilation were explored: no ventilation, room ventilation, and room ventilation with an additional smoke evacuator. RESULTS EPI and SLI induced significant small-droplet aerosol formation compared with none after NI (0.2-1.0 µm; no ventilation). The largest bleomycin aerosol generation was observed for the smallest particles (0.2-1.0 µm) with 673.170 (528.802-789.453) aerosol particles/liter air (EPI; no ventilation). Room ventilation and smoke evacuation led to a reduction of ≥99% and 100% of measured aerosols, respectively. CONCLUSION Jet injectors generate a high number of small-droplet aerosols, potentially introducing harmful effects to patients and healthcare personnel. Room ventilation and smoke evacuation are effective safety measures when chemotherapeutics are used in clinical practice.
Collapse
Affiliation(s)
- Liora Bik
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Albert Wolkerstorfer
- Department of Dermatology, Amsterdam UMC Medical Center, Amsterdam, The Netherlands
| | - Vazula Bekkers
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Errol P Prens
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Merete Haedersdal
- Department of Dermatology, Bispebjerg hospital, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn B A van Doorn
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Gao Q, Henley A, Noël G, Der Khatchadourian Z, Taqi D, Abusamak M, He Z, Grœn S, Taher R, Menassa K, Velly A, Emami E, Mongeau L, Tamimi F. Needle-free Mental Incisive Nerve Block:In vitro, Cadaveric, and Pilot Clinical Studies. Int J Pharm 2021; 609:121197. [PMID: 34666143 DOI: 10.1016/j.ijpharm.2021.121197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
The present study aimed to optimize Needle-Free Liquid Jet Injection (NFLJI) for Mental Incisive Nerve Blocks (MINB) and evaluate its clinical safety and feasibility. A MINB protocol was developed and optimized by series of NFLJI experiments in soft tissue phantoms and cadavers, then validated in two pilot Randomized Controlled Trials (RCT). The NFLJI penetration depth was found to be directly proportional to the supply pressure and volume. High-pressure NFLJIs (620 kPa or above) created maximum force and total work significantly greater than needle injections. Low-pressure NFLJIs (413 kPa), however, produced results similar to those of needle injections. Additionally, high-pressure NFLJIs created jet impingement pressure and maximum jet penetration pressure higher than low-pressure NFLJIs. Pilot RCTs revealed that high-pressure NFLJI caused a high risk of discomfort (60%) and paresthesia (20%); meanwhile, low-pressure NFLJI was less likely to cause complications (0%). The preliminary success rates of MINB from cadavers using NFLJIs and needles were 83.3% and 87.5%. In comparison, those from RCTs are 60% and 70%, respectively. To conclude, NFLJI supply pressure can be adjusted to achieve effective MINB with minimal complications. Furthermore, the cadaver study and pilot RCTs confirmed the feasibility for further non-inferiority RCT.
Collapse
Affiliation(s)
- Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Anna Henley
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Geoffroy Noël
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Zixin He
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Swen Grœn
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Rani Taher
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Karim Menassa
- Medical International Technology Canada Inc, Montreal, Canada
| | - Ana Velly
- Faculty of Dentistry, McGill University, Montreal, Canada; Lady Davis Institute, Department of Dentistry, SMBD, Jewish General Hospital, Montreal, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, Canada.
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Needle-Free Jet Injectors' Geometry Design and Drug Diffusion Process Analysis. Appl Bionics Biomech 2021; 2021:5199278. [PMID: 34790258 PMCID: PMC8592715 DOI: 10.1155/2021/5199278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
In order to study the injection and diffusion process of the drug in the subcutaneous tissue of a needle-free jet injectors (NFJIs) in detail and understand the influence of different nozzle geometry on the diffusion process of the drug, in this paper, numerical simulations were performed to study the diffusion process of the drug in the subcutaneous tissue of NFJIs with cylindrical nozzle. On this basis, the differences of the drug diffusion process with different nozzle geometries were analyzed. The results show that the drug diffused in the shape of ellipsoid in the subcutaneous tissue. The penetration of the drug into the subcutaneous tissue is deeper under the condition of conical nozzle and conical cylindrical nozzle at the same time. However, it takes longer to spread to the interface between skin and subcutaneous tissue in reverse.
Collapse
|
17
|
A Needle-Free Jet Injection System for Controlled Release and Repeated Biopharmaceutical Delivery. Pharmaceutics 2021; 13:pharmaceutics13111770. [PMID: 34834185 PMCID: PMC8620904 DOI: 10.3390/pharmaceutics13111770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Swift vaccination is necessary as a response to disease outbreaks and pandemics; otherwise, the species under attack is at risk of a high fatality rate or even mass extinction. Statistics suggest that at least 16 billion injections are administered worldwide every year. Such a high rate of needle/syringe injection administration worldwide is alarming due to the risk of needle-stick injuries, disease spread due to cross-contamination and the reuse of needles, and the misuse of needles. In addition, there are production, handling, and disposal costs. Needle phobia is an additional issue faced by many recipients of injections with needles. In addition to a detailed literature review highlighting the need for needle-free injection systems, a compressed air-driven needle-free jet injection system with a hydro-pneumatic mechanism was designed and developed by employing an axiomatic design approach. The proposed injection system has higher flexibility, uninterrupted force generation, and provides the possibility of delivering repeated injections at different tissue depths from the dermis to the muscle (depending on the drug delivery requirements) by controlling the inlet compressed air pressure. The designed needle-free jet injector consists of two primary circuits: the pneumatic and the hydraulic circuit. The pneumatic circuit is responsible for driving, pressurizing, and repeatability. The hydraulic circuit precisely injects and contains the liquid jet, allowing us to control the volume of the liquid jet at elevated pressure by offering flexibility in the dose volume per injection. Finally, in this paper we report on the successful design and working model of an air-driven needle-free jet injector for 0.2–0.5 mL drug delivery by ex vivo experimental validation.
Collapse
|
18
|
Velagacherla V, Suresh A, Mehta CH, Nayak UY. Advances and challenges in nintedanib drug delivery. Expert Opin Drug Deliv 2021; 18:1687-1706. [PMID: 34556001 DOI: 10.1080/17425247.2021.1985460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Nintedanib (N.T.B) is an orally administered tyrosine kinase inhibitor that has been approved recently by U.S.F.D.A for idiopathic pulmonary fibrosis (I.P.F) and systemic sclerosis-associated interstitial lung disease (S.Sc-I.L.D). N.T.B is also prescribed in COVID-19 patients associated with I.P.F. However, it has an extremely low bioavailability of around 4.7%, and hence, researchers are attempting to address this drawback by different approaches. AREAS COVERED This review article focuses on enlisting all the formulation attempts explored by researchers to increase the bioavailability of N.T.B while also providing meaningful insight into the unexplored areas in formulation development, such as targeting of the lymphatic system and transdermal delivery. All the patents on the formulation development of N.T.B have also been summarized. EXPERT OPINION N.T.B has the potential to act on multiple diseases that are still being discovered, but its extremely low bioavailability is a challenge that is to be dealt with for obtaining the full benefit. Few studies have been performed aiming at improving the bioavailability, but there are unexplored areas that can be used, a few of which are explained in this article. However, the ability to reproduce laboratory results when scaling up to the industry level is the only factor to be taken into consideration.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
Mohizin A, Kim JK. Dispersion profile of a needle-free jet injection depends on the interfacial property of the medium. Drug Deliv Transl Res 2021; 12:384-394. [PMID: 34480298 DOI: 10.1007/s13346-021-01049-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
Injections into or through the skin are common drug or vaccine administration routes, which can be achieved with conventional needles, microneedles, or needle-free jet injections (NFJI). Understanding the transport mechanism of these injected fluids is critical for the development of effective drug administration devices. NFJI devices are distinct from traditional injection techniques by their route and time scale, which relies on a propelled microjet with sufficient energy to penetrate the skin surface and deliver the drug into the targeted region. The injected fluid interacts with multiple skin tissue layers and interfaces, which implies that the corresponding injection profile is dependent on their mechanical properties. In this study, we address the lack of fundamental knowledge on the impact of these interfaces on the injection profiles of NFJI devices.
Collapse
Affiliation(s)
- Abdul Mohizin
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
20
|
Miyazaki Y, Usawa M, Kawai S, Yee J, Muto M, Tagawa Y. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet. Sci Rep 2021; 11:14544. [PMID: 34267280 PMCID: PMC8282861 DOI: 10.1038/s41598-021-94018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the fluid-tissue interaction of needle-free injection by evaluating the dynamics of the cavity induced in body-tissue simulant and the resulting unsteady mechanical stress field. Temporal evolution of cavity shape, stress intensity field, and stress vector field during the injection of a conventional injection needle, a proposed highly focused microjet (tip diameter much smaller than capillary nozzle), and a typical non-focused microjet in gelatin were measured using a state-of-the-art high-speed polarization camera, at a frame rate up to 25,000 f.p.s. During the needle injection performed by an experienced nurse, high stress intensity lasted for an order of seconds (from beginning of needle penetration until end of withdrawal), which is much longer than the order of milliseconds during needle-free injections, causing more damage to the body tissue. The cavity induced by focused microjet resembled a funnel which had a narrow tip that penetrated deep into tissue simulant, exerting shear stress in low intensity which diffused through shear stress wave. Whereas the cavity induced by non-focused microjet rebounded elastically (quickly expanded into a sphere and shrank into a small cavity which remained), exerting compressive stress on tissue simulant in high stress intensity. By comparing the distribution of stress intensity, tip shape of the focused microjet contributed to a better performance than non-focused microjet with its ability to penetrate deep while only inducing stress at lower intensity. Dynamic mechanical interaction revealed in this research uncovered the importance of the jet shape for the development of minimally invasive medical devices.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masashi Usawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shuma Kawai
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Jingzu Yee
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masakazu Muto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiyuki Tagawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
| |
Collapse
|
21
|
Rane YS, Marston JO. Transient modelling of impact driven needle-free injectors. Comput Biol Med 2021; 135:104586. [PMID: 34242869 DOI: 10.1016/j.compbiomed.2021.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
Needle-free jet injectors (NFJIs) are one of the alternatives to hypodermic needles for transdermal drug delivery. These devices use a high-velocity jet stream to puncture the skin and deposit drugs in subcutaneous tissue. NFJIs typically exhibit two phases of jet injection - namely - an initial peak-pressure phase (< 5 ms), followed by a constant jet speed injection phase (≳ 5 ms). In NFJIs, jet velocity and jet diameter are tailored to achieve the required penetration depth for a particular target tissue (e.g., intradermal, intramuscular, etc.). Jet diameter and jet velocity, together with the injectant volume, guide the design of the NFJI cartridge and thus the required driving pressure. For device manufacturers, it is important to rapidly and accurately estimate the cartridge pressure and jet velocities to ensure devices can achieve the correct operational conditions and reach the target tissue. And thus, we seek to understand how cartridge design and fluid properties affect the jet velocity and pressure profiles in this process. Starting with experimental plunger displacement data, transient numerical simulations were performed to study the jet velocity profile and stagnation pressure profile. We observe that fluid viscosity and cartridge-plunger friction are the two most important considerations in tailoring the cartridge geometry to achieve a given jet velocity. Using empirical correlations for the pressure loss for a given cartridge geometry, we extend the applicability of an existing mathematical approach to accurately predict the jet hydrodynamics. By studying a range of cartridge geometries such as asymmetric sigmoid contractions, we see that the power of actuation sources and nozzle geometry can be tailored to deliver drugs with different fluid viscosities to the intradermal region.
Collapse
Affiliation(s)
- Yatish S Rane
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
22
|
Rane YS, Thomas JB, Fisher P, Broderick KE, Marston JO. Feasibility of using negative pressure for jet injection applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Han HS, Hong JY, Kwon TR, Lee SE, Yoo KH, Choi SY, Kim BJ. Mechanism and clinical applications of needle-free injectors in dermatology: Literature review. J Cosmet Dermatol 2021; 20:3793-3801. [PMID: 33682249 DOI: 10.1111/jocd.14047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Needle-free jet injectors are devices that deliver drugs using a high-speed jet without a needle. Recent studies have significantly increased our understanding of the mechanisms of needle-free jet injectors, and technical advancements have broadened the scope of application of the device. AIMS We aimed to provide an up-to-date review of previous literature regarding the mechanism of action and clinical applications of needle-free jet injectors in dermatology field. METHODS We conducted a PUBMED search for studies on needle-free jet injectors using the following parameters: "Pneumatic injector" OR "needleless injector" OR "needle-free injector" OR "jet injector." Among 191 results, 72 articles focusing on their mechanisms of action, cutaneous delivery patterns, and clinical applications in dermatology were selected for review. RESULTS Significant clinical evidence has been published confirming the potential of needle-free jet injectors in treating various dermatologic conditions. In particular, these devices have the potential to be used in various skin remodeling treatment, especially in skin rejuvenation procedures by injecting various esthetic materials. CONCLUSION As proven by accumulated experience, the applications of NFJIs are not restricted to vaccine or insulin delivery in dermatology field. However, this literature review shows that until now, there are no clinical guidelines that standardize the optimal parameters when using NFJIs on various clinical settings. Therefore, further studies should be performed in order to investigate the full potential of these devices in dermatology, to ensure safe and effective outcomes in clinical practice.
Collapse
Affiliation(s)
- Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Ji Yeon Hong
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sung Eun Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Young Choi
- Department of Dermatology, Seoul Paik Hospital Inje University College of Medicine, Seoul, South Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Potent Intradermal Gene Expression of Naked Plasmid DNA in Pig Skin Following Pyro-drive Jet Injection. J Pharm Sci 2020; 110:1310-1315. [PMID: 33253725 DOI: 10.1016/j.xphs.2020.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023]
Abstract
Intradermal administration of naked DNA with a conventional needle syringe is a simple and inexpensive method to expose an encoded antigen to the dermal immune system. We aimed to enhance intradermal gene expression with a pyro-drive jet injector using pig skin, which is similar in structure and biomechanical properties to human skin. When Cy3-labeled plasmid (pCy3) was applied to pig skin with the jet injector, pCy3 was distributed preferentially in the intradermal tissue. Precise localization analysis revealed that pCy3 was also detected in the intracellular nucleus, and the frequency was substantially higher with the jet injector than with a needle syringe. When a luciferase expression plasmid (pLuc) was injected transdermally, the luciferase activity was 380-fold higher with the jet injector than with a needle syringe. Furthermore, immunohistochemistry analysis showed that the epidermis was positive for luciferase protein expression. These data indicate that the jet injector facilitates stable intradermal administration, resulting in more efficient gene expression compared to that with conventional syringe methods. Thus, intradermal administration of an antigen-expression plasmid with the pyro-drive jet injector may provide a clinically viable method for future gene therapy.
Collapse
|
26
|
Babaiasl M, Boccelli S, Chen Y, Yang F, Ding JL, Swensen JP. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications. Med Biol Eng Comput 2020; 58:1845-1872. [PMID: 32514828 DOI: 10.1007/s11517-020-02182-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/26/2020] [Indexed: 11/25/2022]
Abstract
The use of waterjet technology is now prevalent in medical applications including surgery, soft tissue resection, bone cutting, waterjet steerable needles, and wound debridement. The depth of the cut (DOC) of a waterjet in soft tissue is an important parameter that should be predicted in these applications. For instance, for waterjet-assisted surgery, selective cutting of tissue layers is a must to avoid damage to deeper tissue layers. For our proposed fracture-directed waterjet steerable needles, predicting the cut depth of the waterjet in soft tissue is important to develop an accurate motion model, as well as control algorithms for this class of steerable needles. To date, most of the proposed models are only valid in the conditions of the experiments and if the soft tissue or the system properties change, the models will become invalid. The model proposed in this paper is formulated to allow for variation in parameters related to both the waterjet geometry and the tissue. In this paper, first the cut depths of waterjet in soft tissue simulants are measured experimentally, and the effect of tissue stiffness, waterjet velocity, and nozzle diameter are studied on DOC. Then, a model based on the properties of the tissue and the waterjet is proposed to predict the DOC of waterjet in soft tissue. In order to verify the model, soft tissue properties (constitutive response and fracture toughness) are measured using low strain rate compression tests, Split-Hopkinson-Pressure-Bar (SHPB) tests, and fracture toughness tests. The results show that the proposed model can predict the DOC of waterjet in soft tissue with acceptable accuracy if the tissue and waterjet properties are known. Graphical Abstract (Left) An overview of the problems of traditional steerable needles and the solutions provided by waterjet steerable needles. (A) Traditional tip-steerable needles and tip-bent needles suffer from poor curvature, especially in soft tissues. (B) Traditional steerable needles are unable to accomplish many bends because the cutting force only results from drastic tissue deformation. (C) The first step for realization of waterjet steerable needles is to understand and model the interaction between waterjet and soft tissues at the tip (predictive model for depth of cut). (D) Then, the equilibrium between shapes cut in the tissue and the straight elastic needle should be understood. (Right) Waterjet steerable needles in which the direction of the tissue fracture is contr olled by waterjet and then the flexible needle follows. The first step for waterjet steerable needle realization is to predict the depth of waterjet cut.
Collapse
Affiliation(s)
- Mahdieh Babaiasl
- M3 Robotics Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA.
| | - Stefano Boccelli
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, 20156, Italy
| | - Yao Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Fan Yang
- M3 Robotics Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - Jow-Lian Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| | - John P Swensen
- M3 Robotics Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
27
|
Rane YS, Marston JO. Computational study of fluid flow in tapered orifices for needle-free injectors. J Control Release 2020; 319:382-396. [DOI: 10.1016/j.jconrel.2020.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
28
|
Mohizin A, Kim JK. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors. Comput Biol Med 2020; 118:103642. [PMID: 32174321 DOI: 10.1016/j.compbiomed.2020.103642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 01/12/2023]
Abstract
Needle-free jet injectors are non-invasive systems having intradermal drug delivery capabilities. At present, they revolutionize the next phase of drug delivery and therapeutic applications in the medical industry. An efficiently designed injection chamber can reduce the energy consumption required to achieve the maximum penetration depth in skin tissue. In this study, the authors explored the effect of various geometrical parameters using a computational fluid dynamics tool. Peak stagnation pressure during the initial phase of the injection procedure was considered as the quantifier for comparison because of its proportional relationship with the initial penetration depth during the injection process. Peak stagnation pressure indicates the maximum energy transformation that could happen between the microjet and skin tissues for an injection procedure. The results of this study indicated a tradeoff that exists between the attainable density and velocity of the microjet on the skin surface with variation in nozzle diameter; the optimum nozzle diameter was found to be within 200-250 μm under the present conditions. The authors also observed a discrepancy in the peak stagnation pressure value for lower filling ratios with variation in chamber diameter; hence, filling ratio of at least 50% was recommended for such systems. Furthermore, a 150% increase in the peak stagnation pressure was obtained with an angle of entry of 10°. In general, this study could provide valuable insights into the effect of geometrical parameters in the fluid dynamics characteristics of propelled microjets from the nozzle of a needle-free jet injector. Such information could be useful for the design of a mechanically driven needle-free jet injector having limited control over the energizing mechanism.
Collapse
Affiliation(s)
- Abdul Mohizin
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
29
|
McKeage JW, Abeysekera N, Ruddy BP, Nielsen PMF, Taberner AJ. Laterally Dispersing Nozzles for Needle-assisted Jet Injection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1686-1689. [PMID: 31946221 DOI: 10.1109/embc.2019.8856319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most transdermal drug delivery systems are designed to inject drugs through the skin in a direction normal to the skin surface. However, in some applications, such as local anaesthesia, it is desirable to disperse the drug in a direction parallel to the surface of the skin. In this paper we present nozzles for needle-assisted jet injection that are designed to laterally disperse the fluid drug at a chosen depth in tissue. These nozzles were manufactured by laser machining holes in the walls of 0.57 mm (24 G) hypodermic needles, and sealing the ends of the needles. An existing controllable jet injection system was used to test the nozzles. High-speed video recordings were taken to examine the shape of the high-speed jets emitted from the orifices, and jet injections into post mortem porcine tissue were performed to evaluate the resulting dispersion pattern. These injections demonstrated the ability of these nozzles to achieve a widely spread dispersion at a depth of 3 mm to 4 mm in tissue. We observed that the widest dispersion occurred at the same depth as the orifices, and dispersion was greater in the direction of the jets. Further investigation, including an in vivo study, is now required to evaluate whether this technique can reduce the time, cost or pain associated with transdermal local anaesthetic delivery.
Collapse
|
30
|
Brennan KA, Ruddy BP, Nielsen PMF, Taberner AJ. Spatially resolved diffuse imaging for high-speed depth estimation of jet injection. JOURNAL OF BIOPHOTONICS 2019; 12:e201900205. [PMID: 31596035 DOI: 10.1002/jbio.201900205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/06/2023]
Abstract
We investigate the use of spatially resolved diffuse imaging to track a fluid jet delivered at high speed into skin tissue. A jet injector with a short needle to deliver drugs beneath the dermis, is modified to incorporate a laser beam into the jet, which is ejected into ex vivo porcine tissue. The diffuse light emitted from the side and top of the tissue sample is recorded using high-speed videography. Similar experiments, using a depth-controlled fiber optic source, generate a reference dataset. The side light distribution is related to source depth for the controlled-source experiments and used to track the effective source depth of the injections. Postinjection X-ray images show agreement between the jet penetration and ultimate light source depth. The surface light intensity profile is parameterized with a single parameter and an exponential function is used to relate this parameter to source depth for the controlled-source data. This empirical model is then used to estimate the effective source depth from the surface profile of the injection experiments. The depth estimates for injections into fat remain close to the side depth estimates, with a root-mean-square error of 1.1 mm, up to a source depth of 8 mm.
Collapse
Affiliation(s)
- Kieran A Brennan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Cu K, Bansal R, Mitragotri S, Fernandez Rivas D. Delivery Strategies for Skin: Comparison of Nanoliter Jets, Needles and Topical Solutions. Ann Biomed Eng 2019; 48:2028-2039. [PMID: 31617044 PMCID: PMC7329764 DOI: 10.1007/s10439-019-02383-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Drug diffusion within the skin with a needle-free micro-jet injection (NFI) device was compared with two well-established delivery methods: topical application and solid needle injection. A permanent make-up (PMU) machine, normally used for dermal pigmentation, was utilized as a solid needle injection method. For NFIs a continuous wave (CW) laser diode was used to create a bubble inside a microfluidic device containing a light absorbing solution. Each method delivered two different solutions into ex vivo porcine skin. The first solution consisted of a red dye (direct red 81) and rhodamine B in water. The second solution was direct red 81 and rhodamine B in water and glycerol. We measured the diffusion depth, width and surface area of the solutions in all the injected skin samples. The NFI has a higher vertical dispersion velocity of 3 × 105μm/s compared to topical (0.1 μm/s) and needle injection (53 μm/s). The limitations and advantages of each method are discussed, and we conclude that the micro-jet injector represents a fast and minimally invasive injection method, while the solid needle injector causes notable tissue damage. In contrast, the topical method had the slowest diffusion rate but causes no visible damage to the skin.
Collapse
Affiliation(s)
- Katharina Cu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - David Fernandez Rivas
- Mesoscale Chemical Systems, MESA + Institute, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
32
|
Rohilla P, Rane YS, Lawal I, Le Blanc A, Davis J, Thomas JB, Weeks C, Tran W, Fisher P, Broderick KE, Simmons JA, Marston JO. Characterization of jets for impulsively-started needle-free jet injectors: Influence of fluid properties. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Brennan KA, Ruddy BP, Nielsen PMF, Taberner AJ. Classification of diffuse light emission profiles for distinguishing skin layer penetration of a needle-free jet injection. BIOMEDICAL OPTICS EXPRESS 2019; 10:5081-5092. [PMID: 31646031 PMCID: PMC6788588 DOI: 10.1364/boe.10.005081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
In this work, a system is developed for tracking the skin layer to which a needle-free jet injection of fluid has penetrated by incorporating a laser beam into the jet, and measuring the diffuse light emitted from skin tissue. Monitoring the injection in this way offers the ability to improve the reliability of drug delivery with this transdermal delivery method. A laser beam, axially aligned with a jet of fluid, created a distribution of diffuse light around the injection site that varied as the injection progressed. High-speed videography was used to capture the diffuse light emission from laser-coupled jet injections into samples of porcine skin, fat, and muscle. The injection produced a distribution of diffuse light around the injection site that varied as the injection descended. A classifier, trained to distinguish whether the light source was located in the fat or muscle from surface intensity profile measurements, correctly identified the injected layer in 97.2 % of the cases when cross-examined against estimates using the light distribution emitted from the side of the sample.
Collapse
Affiliation(s)
- Kieran A. Brennan
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Bryan P. Ruddy
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, 70 Symonds Street, Auckland, New Zealand
| |
Collapse
|
34
|
Rohilla P, Marston JO. In-vitro studies of jet injections. Int J Pharm 2019; 568:118503. [DOI: 10.1016/j.ijpharm.2019.118503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 11/15/2022]
|
35
|
Simmons JA, Davis J, Thomas J, Lopez J, Le Blanc A, Allison H, Slook H, Lewis P, Holtz J, Fisher P, Broderick KE, Marston JO. Characterization of skin blebs from intradermal jet injection: Ex-vivo studies. J Control Release 2019; 307:200-210. [PMID: 31252035 DOI: 10.1016/j.jconrel.2019.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023]
Abstract
This paper presents results from an ex-vivo study of intradermal jet injections, which is an attractive method to achieve both needle-free and fractional dose delivery of vaccines. Due to the fact that fluid properties of many novel therapeutics and vaccines can vary significantly, a key parameter for our study is the fluid viscosity, whilst the main focus is on determining the best correlation between the delivered volume and geometrical dimensions of the fluid deposit. For this we use a combination of top-view (skin wheal), underside (below the dermis), and cross-section (true skin bleb) perspectives and find that the top-view alone, as done in clinical practice, is insufficient to estimate the volume deposited in the dermis. Overall, the best correlation is found between the injection volume and cross-sectional diameter, however there is significant variation amongst the different fluids. For mean injection volumes of 60 μL the mean bleb diameter is ≈8 mm, with mean aspect ratio h¯/d=0.38, indicating the blebs are mostly oblate. However, the shape varies with viscosity and the higher viscosity does not spread laterally to the same degree as lower viscosity fluids. In addition, our high-speed video observations of the injection process, reveal some interesting dynamics of the jet injection method, and we modeled the bleb growth with an exponential saturation.
Collapse
Affiliation(s)
- Jonathan A Simmons
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America; Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Justin Davis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - James Thomas
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Juan Lopez
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Andrew Le Blanc
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Allison
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Slook
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Lewis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Joshua Holtz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Fisher
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Kate E Broderick
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
36
|
Xing Y, Xie X, Xu J, Liu J, He Q, Yang W, Zhang N, Li X, Wang L, Fu J, Zhou J, Gao B, Ming J, Liu X, Lai J, Liu T, Shi M, Ji Q. Efficacy and safety of a needle-free injector in Chinese patients with type 2 diabetes mellitus treated with basal insulin: a multicentre, prospective, randomised, crossover study. Expert Opin Drug Deliv 2019; 16:995-1002. [PMID: 31359813 DOI: 10.1080/17425247.2019.1649251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To evaluate the efficacy and safety of a needle-free injector in Chinese patients with type 2 diabetes mellitus treated with basal insulin. Methods: 62 patients with type 2 diabetes were enrolled in a multicenter, randomised, prospective, open-label, crossover study. All patients received subcutaneous insulin glargine administered by a needle-free injector or a glargine pen for 7 ~ 14 days, and were then crossed over after wash out. Results: Patients in the insulin needle-free injector (NFI) and glargine pen (GP) groups achieved similar fasting blood glucose control . However, the dosage of insulin required to achieve the target FBG level in the NFI group was lower than in the GP group (16.14 ± 5.13 U/day vs 19.25 ± 6.20 U/day, respectively; p = 0.0046). This difference was more significant in patients who received higher insulin dosages compared with those receiving lower dosages. Use of the needle-free injector was also associated with significantly less pain (p < 0.001) and less fear of injection (p < 0.001) than glargine pens. Conclusion: The use of a needle-free injector can significantly lower the dosage of insulin required to achieve good glycemic control and reduce topical adverse reactions and the fear of injections as well, which help to improve patient compliance. Clinical Trial Registration Number KY20172077-1; NCT03420040.
Collapse
Affiliation(s)
- Ying Xing
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Xiaomin Xie
- Department of Endocrinology, The first People's Hospital , YinChuan , China
| | - Jing Xu
- Department of Endocrinology, The Second affiliated hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jianrong Liu
- Department of Endocrinology, Changan Hospital , Xi'an , China
| | - Qingzhen He
- Department of Endocrinology, Xi'an Gaoxin Hospital , Xi'an , China
| | - Wenjuan Yang
- Department of Endocrinology, Shaanxi Aerospace Hospital , Xi'an , China
| | - Nana Zhang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Li Wang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Bin Gao
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Jie Ming
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Xiangyang Liu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Jingbo Lai
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Tao Liu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Min Shi
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University , Xi'an , Shaanxi , China
| |
Collapse
|
37
|
Controlled Release Using Gas Detonation in Needle-Free Liquid Jet Injections for Drug Delivery. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of new drug therapies has resulted in a need for drug delivery that can deal with increased drug concentration and viscosities. Needle-free liquid jet injection has shown great potential as a platform for administering some of these revolutionary therapies. This investigation explores the detonative combustion phenomenon in gases as a simple and efficient means of powering needle-free liquid jet injection systems. A preliminary, large-scale prototype injector was designed and developed. In contrast with the widely used air-powered and electrical driven needle-free injectors, the proposed detonation-driven mechanism provides equivalent liquid jet evolution and performance but can efficiently provide a controllable power source an order magnitude higher in strength by varying combustible mixtures and initial conditions. The simplicity and power output associated with this concept aid in improving current needle-free liquid injector design, especially for delivery of high volume, high viscosity drugs, including monoclonal antibodies, which target precise locations in skin tissue.
Collapse
|
38
|
Marston JO, Lacerda CMR. Characterization of jet injection efficiency with mouse cadavers. J Control Release 2019; 305:101-109. [PMID: 31112720 DOI: 10.1016/j.jconrel.2019.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/29/2023]
Abstract
Needle-free drug delivery is highly sought after for reduction in sharps waste, prevention of needle-stick injuries, and potential for improved drug dispersion and uptake. Whilst there is a wealth of literature on the array of different delivery methods, jet injection is proposed as the sole candidate for delivery of viscous fluids, which is especially relevant with the advent of DNA-based vaccines. The focus of this study was therefore to assess the role of viscosity and jet configuration (i.e. stand-off relative to the skin) upon injection efficiency for a fixed spring-loaded system (Bioject ID Pen). We performed this assessment in the context of mouse cadavers and found that the dominant factor in determining success rates was the time from euthanasia, which was taken as a proxy for the stiffness of the underlying tissue. For overall injection efficiency, ANOVA tests indicated that stiffness was highly significant (P < < 0.001), stand-off was moderately significant (P < 0.1), and viscosity was insignificant. In contrast, both viscosity and standoff were found to be significant (P < 0.01) when evaluating the percentage delivered intradermally. Using high-resolution micro-computed tomography (μ-CT), we also determined the depth and overall dispersion pattern immediately after injection.
Collapse
Affiliation(s)
- Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| |
Collapse
|
39
|
|
40
|
Computational fluid dynamics of impinging microjet for a needle-free skin scar treatment system. Comput Biol Med 2018; 101:61-69. [DOI: 10.1016/j.compbiomed.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 11/21/2022]
|
41
|
Leoni G, Lyness A, Ginty P, Schutte R, Pillai G, Sharma G, Kemp P, Mount N, Sharpe M. Preclinical development of an automated injection device for intradermal delivery of a cell-based therapy. Drug Deliv Transl Res 2018; 7:695-708. [PMID: 28812281 PMCID: PMC5574955 DOI: 10.1007/s13346-017-0418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current methods for intradermal delivery of therapeutic products in clinical use include manual injection via the Mantoux technique and the use of injection devices, primarily developed for the delivery of vaccines and small molecules. A novel automated injection device is presented specifically designed for accurate delivery of multiple doses of product through a number of adjustable injection parameters, including injection depth, dose volume and needle insertion speed. The device was originally conceived for the delivery of a cell-based therapy to patients with skin wounds caused by epidermolysis bullosa. A series of preclinical studies was conducted (i) to evaluate the performance of the pre-production model (PreCTCDV01) and optimise the final design, (ii) to confirm that a cell therapy product can be effectively delivered through the injection system and (iii) to test whether the device can be safely and effectively operated by potential end-users. Results from these studies confirmed that the device is able to consistently deliver repeated doses of a liquid to the intradermal layer in an ex vivo skin model. In addition, the device can support delivery of a cell therapy product through a customised microbore tubing without compromising cell viability. Finally, the device was shown to be safe and easy to use as evidenced by usability testing. The clinical device has since been granted European market access and plans for clinical use are currently underway. The device is expected to find use in the emerging area of cell therapies and a broad spectrum of traditional parenteral drug delivery applications.
Collapse
Affiliation(s)
- Giulia Leoni
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Alex Lyness
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Patrick Ginty
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Rindi Schutte
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Gopalan Pillai
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Gayatri Sharma
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Paul Kemp
- Intercytex Ltd, 5 Vale Road, Stockport, SK6 3LE, UK
| | - Natalie Mount
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Michaela Sharpe
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
42
|
Abstract
Background Jet injection can be defined as a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers a drug. Despite 75 years of existence, it never reached its full potential as a strategic tool to deliver medications through the skin. Objective The aim of this review was to evaluate and summarize the evolution of jet injection intradermal drug delivery method including technological advancements and new indications for use. Methods A review of the literature was performed with no limits placed on publication date. Results Needleless injectors not only reduce pain during drug delivery but also confine the drug more evenly in the dermis. Understanding skin properties of the injection site is a key factor to obtain optimal results as well as setting the right parameters of the jet injector. Until the advent of disposable jet injectors/cartridges, autoclaving of the injector remains the only reliable method to eliminate the risk of infection. Needle-free intradermal injection using corticosteroids and/or local anesthetics is well documented with promising indications being developed. Limitations Limitations of the review include low-quality evidence, small sample sizes, varying treatment parameters, and publication bias. Conclusion New developments may help reconsider the use of jet injection technology. Future studies should focus on measurable optimized parameters to insure a safe and effective outcome.
Collapse
Affiliation(s)
- Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, QC, Canada.,MUHC Dermatology Service, Department of Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
43
|
McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. The effect of jet speed on large volume jet injection. J Control Release 2018; 280:51-57. [PMID: 29723614 DOI: 10.1016/j.jconrel.2018.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 01/18/2023]
Abstract
Jet injection presents a promising alternative to needle and syringe injection for transdermal drug delivery. The controllability of recently-developed jet injection devices now allows jet speed to be modulated during delivery, and has enabled efficient and accurate delivery of volumes up to 0.3 mL. However, recent attempts to inject larger volumes of up to 1 mL using the same methods have highlighted the different requirements for successful delivery at these larger volumes. This study aims to establish the jet speed requirements for delivery of 1 mL of liquid using a controllable, voice coil driven injection device. Additionally, the effectiveness of a two-phase jet speed profile is explored (where jet speed is deliberately decreased toward the end of the injection) and compared to the constant jet speed case. A controllable jet injection device was developed to deliver volumes of 1 mL of liquid at jet speeds >140 m/s. This device was used to deliver a series of injections into post-mortem porcine tissue in single and two-phase jet speed profiles. Single-phase injections were performed over the range 80 m/s to 140 m/s. Consistent delivery success (>80% of the liquid delivered) was observed at a jet speed of 130 m/s or greater. Consistent penetration into the muscle layer coincided with delivery success. Two-phase injections of 1 mL were performed with a first phase volume of 0.15 mL, delivered at 140 m/s, while the injection of the remainder of fluid was delivered at a second phase speed that was varied over the range 60 m/s to 120 m/s. Ten two-phase injections were performed with a second phase speed of 100 m/s producing a mean delivery volume of 0.8 mL ± 0.2 mL, while the single-phase injections at 100 m/s achieved a mean delivery volume of 0.4 mL ± 0.3 mL. These results demonstrate that a reduced jet speed can be used in the later stages of a 1 mL injection to achieve delivery success at a reduced energy cost. We found that a jet speed approaching 100 m/s was required following initial penetration to successfully deliver 1 mL, whereas speeds as low as 50 m/s have been used for volumes of <0.3 mL. These findings provide valuable insight into the effect of injection volume and speed on delivery success; this information is particularly useful for devices that have the ability to vary jet speed during drug delivery.
Collapse
Affiliation(s)
- James W McKeage
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
44
|
A Mathematical Model and Experimental Verification of Optimal Nozzle Diameter in Needle-Free Injection. J Pharm Sci 2018; 107:1086-1094. [DOI: 10.1016/j.xphs.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022]
|
45
|
Subburaj J, Datey A, Gopalan J, Chakravortty D. Insights into the mechanism of a novel shockwave-assisted needle-free drug delivery device driven by in situ-generated oxyhydrogen mixture which provides efficient protection against mycobacterial infections. J Biol Eng 2017; 11:48. [PMID: 29255479 PMCID: PMC5727940 DOI: 10.1186/s13036-017-0088-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Needle-free, painless and localized drug delivery has been a coveted technology in the area of biomedical research. We present an innovative way of trans-dermal vaccine delivery using a miniature detonation-driven shock tube device. This device utilizes~2.5 bar of in situ generated oxyhydrogen mixture to produce a strong shockwave that accelerates liquid jets to velocities of about 94 m/s. Method Oxyhydrogen driven shock tube was optimized for efficiently delivering vaccines in the intradermal region in vivo. Efficiency of vaccination was evaluated by pathogen challenge and host immune response. Expression levels of molecular markers were checked by qRT-PCR. Results High efficiency vaccination was achieved using the device. Post pathogen challenge with Mycobacterium tuberculosis, 100% survival was observed in vaccinated animals. Immune response to vaccination was significantly higher in the animals vaccinated using the device as compared to conventional route of vaccination. Conclusion A novel device was developed and optimized for intra dermal vaccine delivery in murine model. Conventional as well in-house developed vaccine strains were used to test the system. It was found that the vaccine delivery and immune response was at par with the conventional routes of vaccination. Thus, the device reported can be used for delivering live attenuated vaccines in the future.
Collapse
Affiliation(s)
| | - Akshay Datey
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Jagadeesh Gopalan
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
Battula N, Menezes V, Bhalekar S, Bhalekar SH, Nejad SM, Hosseini H. Impulse-powered needle-free syringe for vaccine/drug injection. Technol Health Care 2017; 25:1131-1138. [PMID: 28946604 DOI: 10.3233/thc-171022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A needle-free vaccine/drug injector that works by virtue of the impulse of a moving shock wave is presented in this communication. The device can deliver controlled micro-volumes of liquid vaccines into skin and soft tissue targets in human with minimal invasion. The operation of the injector was investigated by delivering a dyed liquid into human skin samples and soft tissue models. The depth of penetration of the liquid was examined by histology of the targeted human skin samples. The delivery mechanics and the depth of penetration were analyzed theoretically with an elastic model for the skin and a viscoelastic model for the soft tissue targets, and a good agreement with experiments was observed. The current liquid vaccine/drug delivery technique can reduce pain, trauma and contamination, and can offer a cost-effective, needle-free, health-care solution.
Collapse
Affiliation(s)
- N Battula
- Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - V Menezes
- Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - S Bhalekar
- Departments of ENT & Pathology, D.Y. Patil University School of Medicine, Nerul, Navi Mumbai, India
| | - S H Bhalekar
- Departments of ENT & Pathology, D.Y. Patil University School of Medicine, Nerul, Navi Mumbai, India
| | - S M Nejad
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, Japan
| | - H Hosseini
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Mckeage JW, Brennan KA, Hogan NC, Hunter IW, Ruddy BP, Nielsen PMF, Taberner AJ. High-speed X-ray analysis of liquid delivery during jet injection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:296-299. [PMID: 29059869 DOI: 10.1109/embc.2017.8036821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effect of varying velocity during jet injection on the dispersion of fluid into tissue is investigated using a custom-built X-ray imaging system. Injections are performed into ex-vivo porcine abdominal tissue using a voice coil actuated injection device. Single velocity and two-phase velocity injections reveal the complex nature of the dispersion of the fluid jet in layered tissue and highlight the effects of changing the jet velocity following the initial penetration of the liquid into the tissue.
Collapse
|
48
|
Chen K, Pan M, Liu T. Design and Analysis of a Continuous Split Typed Needle-Free Injection System for Animal Vaccination. Open Biomed Eng J 2017; 11:59-71. [PMID: 28761560 PMCID: PMC5510567 DOI: 10.2174/1874120701711010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/18/2017] [Accepted: 05/23/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Liquid needle-free injection devices (NFIDs) employ a high-velocity liquid jet to deliver drugs and vaccine through transdermal injection. NFIDs for animal vaccination are more complicated than those used for human beings for their much larger and more flexible power sources, as well as rapid, repetitive and continuous injection features. Method: In the paper, spring-powered NFID is designed for animal vaccine injection. For convenience, the device is a split into a power source and handheld injector. A mathematical model is proposed to calculate the injection pressure, taking into the account pressure loss and the strain energy loss in the bendable tube due to elastic deformation. An experimental apparatus was build to verify the calculation results. Results and Conclusion: Under the same system conditions, the calculation results of the dynamic injection pressure match the experimental results. It is found that the bendable tube of the split typed NFID has significant impact on the profile of the injection pressure. The initial peak pressure is less than the initial peak pressure of NFID without bendable tube, and there is occurrence time lag of the peak pressure. The mathematical model is the first attempt to reveal the relationship between the injection pressure and the system variables of split typed NFID.
Collapse
Affiliation(s)
- Kai Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Min Pan
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Tingting Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
49
|
Hogan NC, Anahtar MN, Taberner AJ, Hunter IW. Delivery of immunoreactive antigen using a controllable needle-free jet injector. J Control Release 2017; 258:73-80. [PMID: 28479095 DOI: 10.1016/j.jconrel.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Intradermal immunization of mice against hepatitis B surface antigen (HBsAg) using a novel real-time controlled jet injector was assessed by comparison with intradermal and subcutaneous injection of antigen using a 27G needle and syringe. Three doses of aluminium-absorbed HBsAg were delivered at 0, 14, and 28days. Antibodies to HBsAg were detected only in mice injected with antigen with antibody levels increasing with secondary injections. Mice vaccinated by intradermal injection using the jet injector or subcutaneous needle injection exhibited comparable immune responses at day 47. Differences in titer observed between intradermal jet injected and needle injected animals reflect differences in the volume of antigen delivered. With the exception of minor bleeding at the injection site in a few animals injected either by jet injection or needle, no adverse events were observed in any of the mice used in the study.
Collapse
Affiliation(s)
- N Catherine Hogan
- BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | - Andrew J Taberner
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, New Zealand
| | - Ian W Hunter
- BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Mukda P, Pianthong K, Seehanam W. A New Concept of Needle-Free Jet Injector by the Impact Driven Method. J Med Device 2017. [DOI: 10.1115/1.4035563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.
Collapse
Affiliation(s)
- Prachya Mukda
- Faculty of Engineering, Department of Mechanical Engineering, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand e-mail:
| | - Kulachate Pianthong
- Faculty of Engineering, Department of Mechanical Engineering, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand e-mail:
| | - Wirapan Seehanam
- Faculty of Engineering, Department of Mechanical Engineering, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand e-mail:
| |
Collapse
|