1
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
2
|
Shahriar SM, An JM, Surwase SS, Lee DY, Lee YK. Enhancing the Therapeutic Efficacy of GLP-1 for Hyperglycemia Treatment: Overcoming Barriers of Oral Gene Therapy with Taurocholic Acid-Conjugated Protamine Sulfate and Calcium Phosphate. ACS NANOSCIENCE AU 2024; 4:194-204. [PMID: 38912289 PMCID: PMC11191724 DOI: 10.1021/acsnanoscienceau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 06/25/2024]
Abstract
Activating the glucagon-like peptide-1 (GLP-1) receptor by oral nucleic acid delivery would be a promising treatment strategy against hyperglycemia due to its various therapeutic actions. However, GLP-1 receptor agonists are effective only in subcutaneous injections because they face multiple barriers due to harsh gastrointestinal tract (GIT) conditions before reaching the site of action. The apical sodium bile acid transporter (ASBT) pathway at the intestinal site could be an attractive target to overcome the problem. Herein, we used our previously established multimodal carrier system utilizing bile salt, protamine sulfate, and calcium phosphate as excipients (PTCA) and the GLP-1 gene as an active ingredient (GENE) to test the effects of different formulation doses against diabetes and obesity. The carrier system demonstrated the ability to protect the GLP-1 model gene encoded within the plasmid at the GIT and transport it via ASBT at the target site. A single oral dose, regardless of quantity, showed the generation of GLP-1 and insulin from the body and maintained the normoglycemic condition by improving insulin sensitivity and blood sugar tolerance for a prolonged period. This oral gene therapy approach shows significantly higher therapeutic efficacy in preclinical studies than currently available US Food and Drug Administration-approved GLP-1 receptor agonists such as semaglutide and liraglutide. Also, a single oral dose of GENE/PTCA is more effective than 20 insulin injections. Our study suggests that oral GENE/PTCA formulation could be a promising alternative to injection-based therapeutics for diabetics, which is effective in long-term treatment and has been found to be highly safe in all aspects of toxicology.
Collapse
Affiliation(s)
- S. M.
Shatil Shahriar
- Department
of Surgery—Transplant and Mary & Dick Holland Regenerative
Medicine Program, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United States
- KB
Biomed Inc., Chungju 27469, Republic of Korea
| | - Jeong Man An
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Sachin S. Surwase
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department
of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical
Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic
of Korea
- Institute
of Nano Science and Technology (INST), Hanyang
University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- KB
Biomed Inc., Chungju 27469, Republic of Korea
- Department
of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department
of Green BioEngineering, Korea National
University of Transportation, Chungju 27469, Republic
of Korea
- 4D
Biomaterials Center, Korea National University
of Transportation, Jeungpyeong 27909, Republic
of Korea
| |
Collapse
|
3
|
Conroy LJ, McCann A, Zhang N, de Gaetano M. The role of nanosystems in the delivery of glucose-lowering drugs for the preemption and treatment of diabetes-associated atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C1398-C1409. [PMID: 38525540 DOI: 10.1152/ajpcell.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Diabetes is one of the most prevalent diseases worldwide. In recent decades, type-2 diabetes has become increasingly common, particularly in younger individuals. Diabetes leads to many vascular complications, including atherosclerosis. Atherosclerosis is a cardiovascular disease characterized by lipid-rich plaques within the vasculature. Plaques develop over time, restricting blood flow, and can, therefore, be the underlying cause of major adverse cardiovascular events, including myocardial infarction and stroke. Diabetes and atherosclerosis are intrinsically linked. Diabetes is a metabolic syndrome that accelerates atherosclerosis and increases the risk of developing other comorbidities, such as diabetes-associated atherosclerosis (DAA). Gold standard antidiabetic medications focus on attenuating hyperglycemia. Though recent evidence suggests that glucose-lowering drugs may have broader applications, beyond diabetes management. This review mainly evaluates the role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as liraglutide and semaglutide in DAA. These drugs mimic gut hormones (incretins), which inhibit glucagon secretion while stimulating insulin secretion, thus improving insulin sensitivity. This facilitates delayed gastric emptying and increased patient satiety; hence, they are also indicated for the treatment of obesity. GLP-1 RAs have significant cardioprotective effects, including decreasing low-density lipoprotein (LDL) cholesterol and triglycerides levels. Liraglutide and semaglutide have specifically been shown to decrease cardiovascular risk. Liraglutide has displayed a myriad of antiatherosclerotic properties, with the potential to induce plaque regression. This review aims to address how glucose-lowering medications can be applied to treat diseases other than diabetes. We specifically focus on how nanomedicines can be used for the site-specific delivery of antidiabetic medicines for the treatment of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Luke James Conroy
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alyssa McCann
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Wang Y, Shi Y, Peng X, Li T, Liang C, Wang W, Zhou M, Yang J, Cheng J, Zhang Z, Hou L. Biochemotaxis-Oriented Engineering Bacteria Expressing GLP-1 Enhance Diabetes Therapy by Regulating the Balance of Immune. Adv Healthc Mater 2024; 13:e2303958. [PMID: 38253022 DOI: 10.1002/adhm.202303958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/24/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is an effective hypoglycemic drug that can repair the pancreas β cells and promote insulin secretion. However, GLP-1 has poor stability and lacks of target ability, which makes it difficult to reach the site of action to exert its efficacy. Here, GLP-1-expressing plasmids are introduced into the Escherichia coli Nissle 1917 (EcN) and a lipid membrane is formed through simple self-assembly on its surface, resulting in an oral delivery system (LEG) capable of resisting the harsh environment of the gastrointestinal tract. The system utilizes the chemotactic properties of probiotics to achieve efficient enrichment at the pancreatic site, and protects islet β cells from destruction by regulating the balance of immune cells. More interestingly, LEG not only continuously produces GLP-1 to restore pancreatic islet β cell function and secrete insulin to control blood sugar levels, but also regulates the intestinal flora and increases the richness and diversity of probiotics. In mice diabetes models, oral administration of LEG only once every other day has good biosafety and compliance, and achieves long-term control of blood glucose. Therefore, this strategy not only provides an oral delivery platform for pancreatic targeting, but also opens up new avenues for reversing diabetes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyuan Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tongtong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenglin Liang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhao Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
6
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
7
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
8
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
9
|
de Souza ML, de Albuquerque Wanderley Sales V, Alves L, Santos WM, Ferraz LR, Lima G, Mendes L, Rolim LA, Neto PJR. A systematic review of functionalized polymeric nanoparticles to improve intestinal permeability of drugs and biological products. Curr Pharm Des 2021; 28:410-426. [PMID: 34348618 DOI: 10.2174/1381612827666210804104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The oral route is the most frequently used and the most convenient route of drug administration, since it has several advantages, such as ease of use, patient compliance and better cost-effectiveness. However, physicochemical and biopharmaceutical limitations of various active pharmaceutical ingredients (API) hinder suitability for this route, including degradation in the gastrointestinal tract, low intestinal permeability and low bioavailability. To overcome these problems, while maintaining therapeutic efficacy, polymeric nanoparticles have attracted considerable attention for their ability to increase drug solubility, promote controlled release, and improve stability. In addition, the functionalization of nanocarriers can increase uptake and accumulation at the target site of action, and intestinal absorption, making it possible to obtain more viable, safe and efficient treatments for oral administration. <P> Objective: This systematic review aimed to seek recent advances in the literature on the use of polymeric nanoparticles functionalization to increase intestinal permeability of APIs that are intended for oral administration. <P> Method: Two bibliographic databases were consulted (PubMed and ScienceDirect). The selected publications and the writing of this systematic review were based on the guidelines mentioned in the PRISMA statement. <P> Results: Out of a total of 3036 studies, 22 studies were included in this article based on our eligibility criteria. The results were consistent for the application of nanoparticle functionalization to increase intestinal permeability. <P> Conclusion: The functionalized polymeric nanoparticles can be considered as carrier systems that improve the intestinal permeability and bioavailability of APIs, with the potential to result, in the future, in the development of oral medicines.
Collapse
Affiliation(s)
- Myla Lôbo de Souza
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | | | - Larissa Alves
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Widson Michael Santos
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Leslie Raphael Ferraz
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Gustavo Lima
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Mendes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos. Federal University of Vale do São Francisco (UNIVASF), Petrolina-PE. Brazil
| | - Pedro José Rolim Neto
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| |
Collapse
|
10
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
11
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
12
|
Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021; 597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are being increasingly exploited in clinical practice for management of type 2 diabetes mellitus due to their ability to lower blood glucose levels and reduce off-target effects of current therapeutics. Nanomaterials had viewed myriad breakthroughs in protecting peptides against degradation and carrying therapeutics to targeted sites for maximizing their pharmacological activity and overcoming limitations associated with their application. This review highlights the latest advances in designing smart multifunctional nanoconstructs and engineering targeted and stimuli-responsive nanoassemblies for delivery of GLP-1 receptor agonists. Furthermore, advanced nanoconstructs of sophisticated supramolecular assembly yet efficient delivery of GLP-1/GLP-1 analogs, nanodevices that mediate intrinsic GLP-1 secretion per se, and nanomaterials with capabilities to load additional moieties for synergistic antidiabetic effects, are demonstrated.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
13
|
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16:62-76. [PMID: 33613730 PMCID: PMC7878460 DOI: 10.1016/j.ajps.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
There are several therapeutic approaches in type 2 diabetes mellitus (T2DM). When diet and exercise fail to control hyperglycemia, patients are forced to start therapy with antidiabetic agents. However, these drugs present several drawbacks that can affect the course of treatment. The major disadvantages of current oral modalities for the treatment of T2DM are mainly depicted in the low bioavailability and the immediate release of the drug, generating the need for an increase in frequency of dosing. In conjugation with the manifestation of adverse side effects, patient compliance to therapy is reduced. Over the past few years nanotechnology has found fertile ground in the development of novel delivery modalities that can potentially enhance anti-diabetic regimes efficacy. All efforts have been targeted towards two main vital steps: (a) to protect the drug by encapsulating it into a nano-carrier system and (b) efficiently release the drug in a gradual as well as controllable manner. However, only a limited number of studies published in the literature used in vivo techniques in order to support findings. Here we discuss the current disadvantages of modern T2DM marketed drugs, and the nanotechnology advances supported by in vivo in mouse/rat models of glucose homeostasis. The generation of drug nanocarriers may increase bioavailability, prolong release and therefore reduce dosing and thus, improve patient compliance. This novel approach might substantially improve quality of life for diabetics. Application of metal nanoformulations as indirect hypoglycemic agents is also discussed.
Collapse
Affiliation(s)
- Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
14
|
Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J Control Release 2020; 326:544-555. [DOI: 10.1016/j.jconrel.2020.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
|
15
|
Tao X, Cai L, Chen L, Ge S, Deng X. Effects of metformin and Exenatide on insulin resistance and AMPKα-SIRT1 molecular pathway in PCOS rats. J Ovarian Res 2019; 12:86. [PMID: 31526389 PMCID: PMC6745801 DOI: 10.1186/s13048-019-0555-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS This study was designed to evaluate the protective effects of AMPKα and SIRT1 on insulin resistance in PCOS rats, and to illuminate the underlying mechanisms. METHODS An in vitro PCOS model was established by DHEA (6 mg/(100 g•d)), and the rats were randomly divided into the metformin group (MF group, n = 11), the exenatide group (EX group, n = 11), the PCOS group (n = 10), and the normal control group (NC group, n = 10). The MF group was administered MF 300 mg/(kg•d) daily. The EX group was subcutaneously injected EX 10μg/(kg•d) daily. After 4 weeks of continuous administration, fasting blood glucose and serum androgen, luteinizing hormone and other biochemical indicators were measured. Western and Real-time PCR were used to determine the expression of AMPKα and SIRT1 in the ovaries of each group. RESULTS After 4 weeks of drug intervention, compared with untreated PCOS group, EX group and MF group had visibly decreased body weight (222.64 ± 16.57, 218.63 ± 13.18 vs 238.30 ± 12.26 g, P = 0.026), fasting blood glucose (7.71 ± 0.72, 8.17 ± 0.54 vs 8.68 ± 0.47 mmol/L, P < 0.01), HOMA-IR (8.26 ± 2.50, 7.44 ± 1.23 vs 12.66 ± 1.44, P < 0.01) and serum androgen (0.09 ± 0.03, 0.09 ± 0.03 vs 0.53 ± 0.41 ng/ml, P < 0.01) and the expressions of AMPKα and SIRT11 were increased progressively (P < 0.05). CONCLUSIONS Both metformin and exenatide can improve the reproductive and endocrine functions of rats with PCOS via the AMPKα-SIRT1 pathway, which may be the molecular mechanism for IR in PCOS and could possibly serve as a therapeutic target.
Collapse
Affiliation(s)
- Xin Tao
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600, Thianhe Road, Guangzhou, Guangdong, People's Republic of China, 510630.
| | - Lisi Cai
- Ultrasound Department, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China, 510080
| | - Lei Chen
- Center for Republic Medicine, The Sixth Affiliated Hospital of GuangZhou Medical University, The People's Hospital of Qingyuan, Qingyuan, Guangdong, People's Republic of China, 511500
| | - Shuqi Ge
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600, Thianhe Road, Guangzhou, Guangdong, People's Republic of China, 510630
| | - Xuanying Deng
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600, Thianhe Road, Guangzhou, Guangdong, People's Republic of China, 510630
| |
Collapse
|
16
|
Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018; 23:E2661. [PMID: 30332830 PMCID: PMC6222903 DOI: 10.3390/molecules23102661] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lihao Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Haotian Wu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
18
|
Martins JP, D'Auria R, Liu D, Fontana F, Ferreira MPA, Correia A, Kemell M, Moslova K, Mäkilä E, Salonen J, Casettari L, Hirvonen J, Sarmento B, Santos HA. Engineered Multifunctional Albumin-Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800462. [PMID: 29855134 DOI: 10.1002/smll.201800462] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The last decade has seen remarkable advances in the development of drug delivery systems as alternative to parenteral injection-based delivery of insulin. Neonatal Fc receptor (FcRn)-mediated transcytosis has been recently proposed as a strategy to increase the transport of drugs across the intestinal epithelium. FcRn-targeted nanoparticles (NPs) could hijack the FcRn transcytotic pathway and cross the epithelial cell layer. In this study, a novel nanoparticulate system for insulin delivery based on porous silicon NPs is proposed. After surface conjugation with albumin and loading with insulin, the NPs are encapsulated into a pH-responsive polymeric particle by nanoprecipitation. The developed NP formulation shows controlled size and homogeneous size distribution. Transmission electron microscopy (TEM) images show successful encapsulation of the NPs into pH-sensitive polymeric particles. No insulin release is detected at acidic conditions, but a controlled release profile is observed at intestinal pH. Toxicity studies show high compatibility of the NPs with intestinal cells. In vitro insulin permeation across the intestinal epithelium shows approximately fivefold increase when insulin is loaded into FcRn-targeted NPs. Overall, these FcRn-targeted NPs offer a toolbox in the development of targeted therapies for oral delivery of insulin.
Collapse
Affiliation(s)
- João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Roberto D'Auria
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Urbino, (PU), 61029, Italy
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mónica P A Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Urbino, (PU), 61029, Italy
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, 4200-135, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, 4585-116, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
19
|
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/16/2017] [Indexed: 05/24/2023]
Abstract
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
20
|
Salonen J, Mäkilä E. Thermally Carbonized Porous Silicon and Its Recent Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703819. [PMID: 29484727 DOI: 10.1002/adma.201703819] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Indexed: 06/08/2023]
Abstract
Recent progress in research on thermally carbonized porous silicon (TCPSi) and its applications is reported. Despite a slow start, thermal carbonization has now started to gain interest mainly due to new emerging areas for applications. These new areas, such as optical sensing, drug delivery, and energy storage, require stable surface chemistry and physical properties. TCPSi is known to have all of these desired properties. Herein, the above-listed properties of TCPSi are summarized, and the carbonization processes, functionalization, and characterization of TCPSi are reviewed. Moreover, some of the emerging fields of TCPSi applications are discussed and recent advances in the fields are introduced.
Collapse
Affiliation(s)
- Jarno Salonen
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
21
|
Zhang L, Shi Y, Song Y, Sun X, Zhang X, Sun K, Li Y. The use of low molecular weight protamine to enhance oral absorption of exenatide. Int J Pharm 2018; 547:265-273. [PMID: 29800739 DOI: 10.1016/j.ijpharm.2018.05.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Although oral delivery of exenatide has significant advantages, its poor permeability through intestinal epithelial membranes and rapid digestion by pepsin and ereptase in the gastrointestinal tract make effective oral delivery of exenatide a formidable challenge. In this study, we constructed a zinc ion (Zn2+) and exenatide complex functionalized nanoparticle (NP) oral delivery system to overcome the above-mentioned issue. Polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) was used as a drug carrier to escape enzymatic degradation in the gastrointestinal tract, and low molecular weight protamine (LMWP) was used as a functional group to increase penetration of NPs into the intestinal epithelium. The functionalized NPs exhibited significantly improved penetration across the intestinal epithelium, as shown by cell uptake and transmembrane transport experiments. Moreover, a significant hypoglycemic effect was observed in diabetic rats. The relative bioavailability of the orally administered functionalized NPs vs. subcutaneous injection was 7.44%, 29-fold that of the exenatide-Zn2+ solution group. These findings indicate that our modification could effectively improve exenatide treatment.
Collapse
Affiliation(s)
- Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xinfeng Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xuemei Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
22
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Moonschi FH, Hughes CB, Mussman GM, Fowlkes JL, Richards CI, Popescu I. Advances in micro- and nanotechnologies for the GLP-1-based therapy and imaging of pancreatic beta-cells. Acta Diabetol 2018; 55:405-418. [PMID: 29264724 DOI: 10.1007/s00592-017-1086-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Therapies to prevent diabetes in particular the progressive loss of β-cell mass and function and/or to improve the dysregulated metabolism associated with diabetes are highly sought. The incretin-based therapy comprising GLP-1R agonists and DPP-4 inhibitors have represented a major focus of pharmaceutical R&D over the last decade. The incretin hormone GLP-1 has powerful antihyperglycemic effect through direct stimulation of insulin biosynthesis and secretion within the β-cells; it normalizes β-cell sensitivity to glucose, has an antiapoptotic role, stimulates β-cell proliferation and differentiation, and inhibits glucagon secretion. However, native GLP-1 therapy is inappropriate due to the rapid post-secretory inactivation by DPP-4. Therefore, incretin mimetics developed on the backbone of the GLP-1 or exendin-4 molecule have been developed to behave as GLP-1R agonists but to display improved stability and clinical efficacy. New formulations of incretins and their analogs based on micro- and nanomaterials (i.e., PEG, PLGA, chitosan, liposomes and silica) and innovative encapsulation strategies have emerged to achieve a better stability of the incretin, to improve its pharmacokinetic profile, to lower the administration frequency or to allow another administration route and to display fewer adverse effects. An important advantage of these formulations is that they can also be used at the targeted non-invasive imaging of the beta-cell mass. This review therefore focuses on the current state of these efforts as the next step in the therapeutic evolution of this class of antidiabetic drugs.
Collapse
Affiliation(s)
- Faruk H Moonschi
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Corey B Hughes
- Barnstable Brown Kentucky Diabetes Center, University of Kentucky, 900 S. Limestone, CTW 469, Lexington, KY, 40536, USA
| | - George M Mussman
- Barnstable Brown Kentucky Diabetes Center, University of Kentucky, 900 S. Limestone, CTW 469, Lexington, KY, 40536, USA
| | - John L Fowlkes
- Barnstable Brown Kentucky Diabetes Center, University of Kentucky, 900 S. Limestone, CTW 469, Lexington, KY, 40536, USA
| | - Chris I Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Iuliana Popescu
- Barnstable Brown Kentucky Diabetes Center, University of Kentucky, 900 S. Limestone, CTW 469, Lexington, KY, 40536, USA.
| |
Collapse
|
24
|
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101:112-123. [PMID: 29329977 DOI: 10.1016/j.peptides.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed.
Collapse
Affiliation(s)
- Patrícia Batista
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Pedro M Castro
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Manuela Pintado
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
| |
Collapse
|
25
|
Cui Y, Shan W, Zhou R, Liu M, Wu L, Guo Q, Zheng Y, Wu J, Huang Y. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of "easy uptake hard transcytosis" of ligand-modified nanoparticles in oral drug delivery. NANOSCALE 2018; 10:1494-1507. [PMID: 29303184 DOI: 10.1039/c7nr06063g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ligand-modified nanoparticles (NPs) are an effective tool to increase the endocytosis efficiency of drugs, but these functionalized NPs face the drawback of "easy uptake hard transcytosis" in the oral delivery of proteins and peptides. Adversely, the resulting deficiency in transcytosis has not attracted much attention. Herein, NPs modified with the low-density lipoprotein receptor (LDLR) ligand NH2-C6-[cMPRLRGC]c-NH2, i.e., peptide-22 (P22NPs) were fabricated to investigate strategies related to the enhancement of transcytosis. By systematically studying the intracellular trafficking of NPs, it was found that reduced transcytosis might be associated with the entrapment of P22NPs in endosomes or lysosomes and limited basolateral exocytosis. On this basis, the prevention of the endolysosomal entrapment of NPs and the acceleration of basolateral exocytosis should be considered as strategies to enhance the transcytosis of NPs. By screening chemicals that could help the endosomal/lysosomal escape of chemicals related to LDLR-mediated transcytosis, it was shown that hemagglutinin-2 (HA2) and metformin had higher abilities to enhance the exocytosis of P22NPs. The transcytosis efficiencies of insulin loaded in P22NPs were also investigated, and a 3.2-fold increase in transcytosis was observed in comparison with free insulin. The transcytosis efficiencies of insulin could be further increased by the addition of metformin or HA2 (3.6-fold or 4.1-fold higher than that of free insulin). Inspiringly, the simultaneous addition of the abovementioned two chemicals led to the highest transcytosis efficiency of insulin, which was up to 5.1-fold higher than that of free insulin. These results demonstrated that endolysosomal entrapment and basolateral exocytosis are two of the most important limiting steps for the "easy uptake hard transcytosis" of orally administered ligand-modified NPs. Moreover, our work provides a new point of view for the design of novel oral drug delivery systems.
Collapse
Affiliation(s)
- Yi Cui
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shi Y, Sun X, Zhang L, Sun K, Li K, Li Y, Zhang Q. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep 2018; 8:726. [PMID: 29335533 PMCID: PMC5768888 DOI: 10.1038/s41598-018-19170-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 01/15/2023] Open
Abstract
To improve the oral efficiency of exenatide, we prepared polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) NPs modified with Fc (NPs-Fc) for exenatide oral delivery. Exenatide was encapsulated into the NPs by the w/o/w emulsion-solvent evaporation method. The particle size of the NPs-Fc was approximately 30 nm larger than that of the unmodified NPs with polydispersity indices in a narrow range (PDIs; PDI < 0.3) as detected by DLS, and the highest encapsulation efficiency of exenatide in the NPs was greater than 80%. Fc-conjugated NPs permeated Caco-2 cells faster and to a greater extent compared to unmodified NPs, as verified by CLSM and flow cytometry. Hypoglycemic effect studies demonstrated that oral administration of exenatide-loaded PEG-PLGA NPs modified by an Fc group extended the hypoglycemic effects compared with s.c. injection of the exenatide solution. Fluorescence-labeled NPs were used to investigate the effects of Fc targeting, and the results demonstrated that the NPs-Fc stayed in the gastrointestinal tract for a longer time in comparison with the unmodified NPs, as shown by the whole-body fluorescence images and fluorescence images of the dissected organs detected by in vivo imaging in live mice. Therefore, Fc-targeted nano-delivery systems show great promise for oral peptide/protein drug delivery.
Collapse
Affiliation(s)
- Yanan Shi
- School of pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Xinfeng Sun
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Liping Zhang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Yantai University, Yantai, 264005, China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, 264003, China
| | - Keke Li
- School of pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Youxin Li
- School of Pharmacy, Yantai University, Yantai, 264005, China. .,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, 264003, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Xu Y, Carradori D, Alhouayek M, Muccioli GG, Cani PD, Préat V, Beloqui A. Size Effect on Lipid Nanocapsule-Mediated GLP-1 Secretion from Enteroendocrine L Cells. Mol Pharm 2017; 15:108-115. [DOI: 10.1021/acs.molpharmaceut.7b00742] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yining Xu
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Dario Carradori
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis
and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis
and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Patrice D. Cani
- Metabolism
and Nutrition Group, Louvain Drug Research Institute, WELBIO (Walloon
Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, 1200 Brussels, Belgium
| | - Véronique Préat
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Ana Beloqui
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
28
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
29
|
Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, Rosenholm J, Salonen J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. NANOSCALE RESEARCH LETTERS 2017; 12:74. [PMID: 28124301 PMCID: PMC5267583 DOI: 10.1186/s11671-017-1853-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/13/2017] [Indexed: 05/09/2023]
Abstract
Silicon-based mesoporous nanoparticles have been extensively studied to meet the challenges in the drug delivery. Functionality of these nanoparticles depends on their properties which are often changing as a function of particle size and surrounding medium. Widely used characterization methods, dynamic light scattering (DLS), and transmission electron microscope (TEM) have both their weaknesses. We hypothesize that conventional light scattering (LS) methods can be used for a rigorous characterization of medium sensitive nanoparticles' properties, like size, stability, and porosity. Two fundamentally different silicon-based nanoparticles were made: porous silicon (PSi) from crystalline silicon and silica nanoparticles (SN) through sol-gel process. We studied the properties of these mesoporous nanoparticles with two different multiangle LS techniques, DLS and static light scattering (SLS), and compared the results to dry-state techniques, TEM, and nitrogen sorption. Comparison of particle radius from TEM and DLS revealed significant overestimation of the DLS result. Regarding to silica nanoparticles, the overestimation was attributed to agglomeration by analyzing radius of gyration and hydrodynamic radius. In case of PSi nanoparticles, strong correlation between LS result and specific surface area was found. Our results suggest that the multiangle LS methods could be used for the size, stability, and structure characterization of mesoporous nanoparticles.
Collapse
Affiliation(s)
- Martti Kaasalainen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20500 Turku, Finland
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, FI-00014 HY Helsinki, Finland
| | - Eva von Haartman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Didem Şen Karaman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20500 Turku, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, FI-00014 HY Helsinki, Finland
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
30
|
Kerdsakundee N, Li W, Martins JP, Liu Z, Zhang F, Kemell M, Correia A, Ding Y, Airavaara M, Hirvonen J, Wiwattanapatapee R, Santos HA. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl Methylcellulose Acetate Succinate Composite for Site-Specific Oral Drug Delivery. Adv Healthc Mater 2017; 6. [PMID: 28714596 DOI: 10.1002/adhm.201700629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Indexed: 11/11/2022]
Abstract
An advanced oral drug delivery system that can effectively deliver drugs with poor oral bioavailability is strongly desirable. Herein, a multifunctional nano-in-micro structured composite is developed by encapsulation of the mucoadhesive poly(methyl vinyl ether-co-maleic acid) modified halloysite nanotubes (HNTs) with the pH-responsive hydroxypropyl methylcellulose acetate succinate by the microfluidics to control the drug release, increase cell-particle interaction, and improve drug absorption. The microparticles show spherical shape, homogeneous particle size distribution (58 ± 1 µm), and pH-responsive dissolution behavior at pH > 6, and they prevent the premature release of curcumin in simulated pH conditions of the stomach and immediately release the curcumin in simulated pH conditions of the small intestine. The surface modification of HNT with mucoadhesive poly(methyl vinyl ether-co-maleic acid) significantly enhances its interactions with the intestinal Caco-2/HT29-MTX cells and the mouse small intestines, and increases the permeability of curcumin across the co-cultured Caco-2/HT29-MTX cell monolayers by about 13 times compared to the free curcumin. Therefore, the developed multifunctional nanotube-mucoadhesive poly(methyl vinyl ether-co-maleic acid)@hydroxypropyl methylcellulose acetate succinate composite is a promising oral drug delivery system for drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Nattha Kerdsakundee
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; Prince of Songkla University; 90110 Hat Yai Thailand
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - João Pedro Martins
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Feng Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry; Faculty of Science; University of Helsinki; FI-00014 Helsinki Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Mikko Airavaara
- Institute of Biotechnology; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; Prince of Songkla University; 90110 Hat Yai Thailand
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Helsinki Institute of Life Science; HiLIFE; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
31
|
Wu L, Liu M, Shan W, Zhu X, Li L, Zhang Z, Huang Y. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release 2017; 262:273-283. [DOI: 10.1016/j.jconrel.2017.07.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
32
|
Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 2017; 130:28-41. [DOI: 10.1016/j.biomaterials.2017.03.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
|
33
|
Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017; 115:257-267. [PMID: 28336368 DOI: 10.1016/j.ejpb.2017.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
As diabetes is a complex disorder being a major cause of mortality and morbidity in epidemic rates, continuous research has been done on new drug types and administration routes. Up to now, a large number of therapeutic peptides have been produced to treat diabetes including insulin, glucagon-like peptide-1 (GLP-1) and its analogs. The most common route of administration of these antidiabetic peptides is parenteral. Due to several drawbacks associated with this invasive route, delivery of these antidiabetic peptides by the oral route has been a goal of pharmaceutical technology for many decades. Dosage form development should focus on overcoming the limitations facing oral peptides delivery as degradation by proteolytic enzymes and poor absorption in the gastrointestinal tract (GIT). This review focuses on currently developed strategies to improve oral bioavailability of these peptide based drugs; evaluating their advantages and limitations in addition to discussing future perspectives on oral peptides delivery. Depending on the previous reports and papers, the area of nanocarriers systems including polymeric nanoparticles, solid lipid nanoparticles, liposomes and micelles seem to be the most promising strategy that could be applied for successful oral peptides delivery; but still further potential attempts are required to be able to achieve the FDA approved oral antidiabetic peptide delivery system.
Collapse
|