1
|
Wang C, Liu X, Yin X, Lee M, Yang Y, Wee A, Li K, Paul Chen J. Zirconium-based nanoclusters as molecular robots for water decontamination. J Colloid Interface Sci 2025; 678:938-945. [PMID: 39270393 DOI: 10.1016/j.jcis.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Water contamination owing to anionic pollutants is a persisting and ubiquitous global threat. The current remediation technologies are mostly low in efficiency, expensive in materials and often associated with complicated processes. Herein, we report a characteristic zirconium-based nanocluster that can work as molecular robots for the efficient remediation of anions-contaminated water with great effectiveness and molecular-level accuracy. It exhibits a stimuli-responsive behavior to facilitate the water treatment process: dissolve in acidic aqueous solutions for molecular-level decontamination and quickly aggregate for post-remediation collection. It can precisely capture the representative anionic pollutants, whilst featuring satisfactory capacities (ca. 175 mg-arsenic/g, 60 mg-chromium/g, 45 mg-fluoride/g, 70 mg-phosphorus/g, respectively), super-fast kinetics (finishing uptake within seconds, which is two to four orders of magnitude faster than typical sorbents), as well as multi-cycle applications without appreciable loss of activity. The coexisting common ions show no effect on the target uptake. The responsible active site investigation shows that four active sites are responsible for the monovalent pollutant removal, and the active sites work in pairs to capture divalent chromate species. Cost analysis shows its economical applicability in practical applications. This work would lead to the development of effective water decontamination with higher effectiveness, more convenience, lower cost and more practical application value.
Collapse
Affiliation(s)
- Chenghong Wang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117456, Singapore; Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xinlei Liu
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Melanie Lee
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Yang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Andrew Wee
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Kang Li
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | - J Paul Chen
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117456, Singapore; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Chen X, Wang C, Chen M, Hu H, Huang J, Jiang T, Zhang Q. Enhanced Cd 2+ removal from aqueous solution using olivine and magnesite combination: New insights into the mechanochemical synergistic effect. J Environ Sci (China) 2025; 147:714-725. [PMID: 39003084 DOI: 10.1016/j.jes.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 07/15/2024]
Abstract
In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.
Collapse
Affiliation(s)
- Xiaofang Chen
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Wang
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Min Chen
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huimin Hu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Junwei Huang
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ting Jiang
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwu Zhang
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Xiong Z, Sheng Q, Wen Z, Chen L, He L, Sheng X. Deletion of pyoverdine-producing pvdA increases cadmium stabilization by Pseudomonas umsongensis CR14 in cadmium-polluted solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135623. [PMID: 39191008 DOI: 10.1016/j.jhazmat.2024.135623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
In this study, the effects of the Cd-resistant and pyoverdine-producing strain Pseudomonas umsongensis CR14 on Cd stabilization and the mechanisms were investigated. Compared with the control, CR14 markedly reduced the Cd concentration in a Cd-containing solution. The genes pvdA, 4498, 4499, and pchF, which are associated with pyoverdine production, were identified in CR14. Subsequently, CR14 and the CR14ΔpvdA, CR14Δ4498, CR14Δ4499, and CR14ΔpchF mutants were characterized for their effects on Cd stabilization in solution. After 72 h of incubation, the CR14ΔpchF and CR14ΔpvdA mutants significantly decreased Cd concentrations compared with CR14. Notably, the CR14ΔpvdA mutant showed a greater impact on Cd stabilization than the other mutants. Compared with CR14, this mutant brought a lower Cd concentration in the solution, with higher levels of cell surface-adsorbed and intracellular accumulated Cd, content of lipopolysaccharide (LPS), expression of the LPS-producing genes lptD and lpxL, and cell surface particles. Additionally, compared with CR14, the CR14ΔpvdA mutant demonstrated increased interactions between the hydroxyl, carboxyl, amino, or ether groups and Cd. These results suggest that the CR14ΔpvdA mutant immobilized Cd by increasing LPS production and cell surface particle numbers, upregulating the expression of LPS-producing genes, and increasing cell surface adsorption and intracellular accumulation in Cd-polluted solutions.
Collapse
Affiliation(s)
- Zhihui Xiong
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qi Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhenyu Wen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lei Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
4
|
Wu L, Garg S, Waite TD. Progress and challenges in the use of electrochemical oxidation and reduction processes for heavy metals removal and recovery from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135581. [PMID: 39216250 DOI: 10.1016/j.jhazmat.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Heavy metals-laden industrial wastewater represents both a threat to ecosystems and human health and, in some instances, a potential source of valuable metals however the presence of organic ligands that bind the metals in heavy metal complexes (HMCs) renders metal removal (and, where appropriate, recovery) difficult. Electrochemical-based oxidation and reduction processes represent a potentially promising means of degrading the organic ligands and reducing their ability to retain the metals in solution. In this state-of-the-art review, we provide a comprehensive overview of the current status on use of electrochemical redox technologies for organic ligand degradation and subsequent heavy metal removal and recovery from industrial wastewaters. The principles and degradation mechanism of common organic ligands by various types of electrochemical redox technologies are discussed in this review and consideration given to recent progress in electrode materials synthesis, cell architecture, and operation of electrochemical redox systems. Furthermore, we highlight the current challenges in application of electrochemical redox technologies for treatment of HMC-containing wastewaters including (i) limited understanding of the chemical composition of industrial wastewaters, (ii) constrained mass transfer process affecting the direct/indirect electron transfer, (iii) absence of approaches to convert recovered metal into high-value-added products, and (iv) restricted semi-or full-industrial-scale application of these technologies. Potential strategies for improvement are accordingly provided to guide efforts in addressing these challenges in future research.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Kumari S, Chowdhry J, Kumar M, Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. ENVIRONMENTAL RESEARCH 2024; 260:119782. [PMID: 39142462 DOI: 10.1016/j.envres.2024.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India
| | | | - Manish Kumar
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| |
Collapse
|
6
|
Wen J, Dan Y, Liu X, Li H. Promoting microalgal biofilm formation by crushed oyster shell-hydroxyapatite layer on micropatterned aluminum coating for heavy metal ions removal. Colloids Surf B Biointerfaces 2024; 243:114168. [PMID: 39190939 DOI: 10.1016/j.colsurfb.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Microalgal biomass has shown inspiring potential for the heavy metal removal from wastewater, and forming microalgal biofilm is one of the sustainable methods for the microalgal biomass production. Here we report the formation of microalgal biofilm by accelerated colonization of typical algae Chlorella on thermal sprayed aluminum (Al) coatings with biologically modified surfaces. Micro-patterning surface treatment of the Al coatings promotes the attachment of Chlorella from 6.31 % to 17.51 %. Further enhanced algae attachment is achieved through liquid flame spraying a bioactive crushed oyster shell-hydroxyapatite (CaCO3-HA) composite top layer on the micropatterned coating, reaching 46.03-49.62 % of Chlorella attachment ratio after soaking in Chlorella suspension for 5 days. The rapidly formed microalgal biofilm shows an adsorption ratio of 95.43 % and 85.23 % for low concentration Zn2+ and Cu2+ in artificial seawater respectively within 3 days. Quick interaction has been realized between heavy metal ions and the negatively-charged extracellular polymeric substances (EPS) matrix existing in the biofilm. Fourier transform infrared spectroscopy (FTIR) results indicate that both carboxyl and phosphoryl groups of biofilms are crucial in the adsorption of Cu2+ and the adsorption of Zn2+ is due to the hydroxyl and phosphate groups. Meanwhile, the biofilm could act as a barrier to protect Chlorella against the attack of the heavy metal ions with relatively low concentrations in aqueous solution. The route of quick cultivating microalgal biofilm on marine structures through constructing biological layer on their surfaces would give insight into developing new techniques for removing low concentration heavy metal ions from water for environmental bioremediation.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Dan
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Shanmugavel A, Rene ER, Balakrishnan SP, Krishnakumar N, Jose SP. Heavy metal ion sensing strategies using fluorophores for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 260:119544. [PMID: 38969312 DOI: 10.1016/j.envres.2024.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Abinaya Shanmugavel
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | | | - Sujin P Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
8
|
Yang W, Chen T, Jia H, Li J, Liu B. Preparation and Electrochemical Applications of Magnéli Phase Titanium Suboxides: A Review. Chemistry 2024; 30:e202402188. [PMID: 39149925 DOI: 10.1002/chem.202402188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Magnéli phase titanium suboxides (M-TSOs) belong to a type of sub-stoichiometric titanium oxides based on the crystal structure of rutile TiO2. They possess a unique shear structure, granting them exceptional electrical conductivity and corrosion resistance. These two advantages are crucial for electrode materials in electrochemistry, hence the significant interest from numerous researchers. However, the preparation of M-TSOs is uneconomic due to high temperature reduction and other complex synthesis process, thus limiting their practical application in electrochemical fields. This review delves into the crystal structure, properties, and synthesis methods of M-TSOs, and touches on their applications as electrocatalysts in wastewater treatment and electrochemical water splitting. Furthermore, it highlights the research challenges and potential future research directions in M-TSOs.
Collapse
Affiliation(s)
- Wenduo Yang
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Tongxiang Chen
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Hanze Jia
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Jing Li
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Baodan Liu
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| |
Collapse
|
9
|
Pinheiro CP, Tokura BK, Germano NS, de Moraes MA, Bresolin ITL. Adsorption of amoxicillin by chitosan and alginate biopolymers composite beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35293-4. [PMID: 39466532 DOI: 10.1007/s11356-024-35293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Due to its widespread use and incomplete breakdown in the human body, amoxicillin has been detected in receiving water bodies. This raises significant concerns, like the promotion of antibiotic resistance, toxicity towards aquatic life, disruption of the natural balance of microbial communities within these water bodies, and the struggle of effectively removal by the traditional wastewater treatment plants. Consequently, exploring new processes to complement the existing methods is crucial. Adsorption, a promising highly efficient, selective, and versatile technique, can effectively remove contaminants, making it useful in various industries such as water treatment, pharmaceuticals, and environmental remediation. Several adsorbents are documented in the literature for drug adsorption; however, their fabrication often involves more complex steps and substances compared to chitosan and alginate, which are natural polymers that are biocompatible, non-toxic, and biodegradable. Their tunable properties and ease of modification enhance their efficacy in environmental remediation. Therefore, the novelty of this article is to understand the interaction of amoxicillin with chitosan and alginate adsorbents easily synthetized using the dripping technique. This approach allows us to explore basic principles that can be applied to more complex systems in future studies. The optimal pH for both beads was found to be 4, with adsorption capacities of 74.2 ± 0.3 mg g-1 for alginate and 80.4 ± 0.2 mg g-1 for chitosan, using 1 g of adsorbent. Kinetics studies indicated that external diffusion governs adsorption for alginate, while internal diffusion governs adsorption for chitosan. This approach underscores the potential of chitosan and alginate beads as effective adsorbents for mitigating antibiotic contamination in water systems, offering a sustainable complement to traditional treatment methods.
Collapse
Affiliation(s)
- Cláudio Pereira Pinheiro
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Beatriz Kaori Tokura
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Natália Soares Germano
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas - UNICAMP, Av. Albert Einstein, 500, Campinas, SP, 13083-852, Brazil
| | - Igor Tadeu Lazzarotto Bresolin
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil.
| |
Collapse
|
10
|
Wang YN, Wu JT, Li BH, Yang Y, Li J, Zhang B. Ultrafast and Highly Selective Sequestration of Radioactive Barium Ions by a Layered Thiostannate. Inorg Chem 2024; 63:20664-20674. [PMID: 39428638 DOI: 10.1021/acs.inorgchem.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
As a simulant of hazardous 226Ra2+, the simultaneously selective and rapid elimination of radioactive 133Ba2+ ions from geothermal water is necessary but still challenging. In this paper, we demonstrated the usability of a layered thiostannate with facile synthesis and inexpensive cost, namely, K2xSn4-xS8-x (KTS-3, x = 0.65-1), for the remediation of radioactive 133Ba2+ in multiple conditions, including sorption isotherm, kinetics, and the influences of competitive inorganic/organic ions, pH values, and dosages. KTS-3 has a strong barium uptake ability (171.3 mg/g) and an ultrafast adsorption kinetics (about 2 min). Impressively, it can achieve a high preference for barium regardless of the excessive interference ions (Na+, K+, Mg2+, Ca2+, and humic acid) and acidic/alkaline environments, with the largest distribution coefficient Kd value reaching 6.89 × 105 mL/g. Also, the Ba2+-laden products can be easily eluted by a concentrated KCl solution, and its adsorption performances for barium resist well even after five consecutive cycles. In addition, owing to the regular appearance and excellent mechanical strength, the prepared KTS-3/PAN (PAN = polyacrylonitrile) granule displays a good removal efficiency in the flowing ion-exchange column. These advantages mentioned above render it very promising for the effective and efficient cleanup of radioactive 133Ba2+-contaminated wastewater.
Collapse
Affiliation(s)
- Ya-Ning Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jin-Ting Wu
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bao-Han Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Yan Yang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jun Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bo Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| |
Collapse
|
11
|
Yin C, Zhang Y, Tao Y, Zhu X. Competitive adsorption behavior and adsorption mechanism of limestone and activated carbon in polymetallic acid mine water treatment. Sci Rep 2024; 14:23561. [PMID: 39384806 PMCID: PMC11464747 DOI: 10.1038/s41598-024-74240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Acid mine water (AMD) can cause significant environmental hazards due to its high concentration of metal ions, so the development of effective treatment methods is essential to mitigate its impact. In this study, adsorption experiments were conducted using limestone (LS) and activated carbon (AC) to explore the adsorption efficiency for different concentrations of metal ions. Adsorption was evaluated by static and competitive batch tests. The adsorbent mechanism was investigated using analytical techniques such as SEM, FTIR and XRD. The efficacy of LS and AC for competitive adsorption of Fe, Mn, Zn and Cu ions from AMD was evaluated. The study analyzed the effect of environmental conditions such as initial concentration and ionic strength on the adsorption efficiency. The results showed that LS showed high adsorption capacity for Fe and Cu, but was less effective in competitive adsorption of Mn. AC showed superior adsorption performance for Fe and Cu under competitive conditions due to its high surface area and functional groups. Both adsorbents showed selective efficacy influenced by the physicochemical properties of metal ions. This study helps to guide the optimization of adsorbents in AMD treatment and highlights the importance of selecting suitable materials based on specific metal ion properties.
Collapse
Affiliation(s)
- Chang Yin
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongbo Zhang
- Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yongjiang Tao
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xueping Zhu
- Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
12
|
Li Z, Xiao X, Xu T, Chu S, Wang H, Jiang K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules 2024; 29:4757. [PMID: 39407684 PMCID: PMC11477854 DOI: 10.3390/molecules29194757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Lead (Pb) and cadmium (Cd) are toxic pollutants that are prevalent in wastewater and pose a serious threat to the natural environment. In this study, a new immobilized bacterial microsphere (CYB-SA) was prepared from corn stalk biochar and Klebsiella grimontii by sodium alginate encapsulation and vacuum freeze-drying technology. The removal effect of CYB-SA on Pb(II) and Cd(II) in a monometallic contaminated solution was studied. The results showed that the removal of Pb(II) and Cd(II) by CYB-SA was 99.14% and 83.35% at a dosage of 2.0 g/L and pH = 7, respectively, which was 10.77% and 18.58% higher than that of biochar alone. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb(II) and Cd(II) by CYB-SA at 40 °C were 278.69 mg/g and 71.75 mg/g, respectively. A combination of the kinetic model, the isothermal adsorption model, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main adsorption mechanisms of CYB-SA encompass functional group complexation, ion exchange, electrostatic attraction and physical adsorption. The findings of this study offer practical and theoretical insights into the development of highly efficient adsorbents for heavy metals.
Collapse
Affiliation(s)
- Zaiquan Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Xu Xiao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Tao Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Shiyu Chu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Hui Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Ke Jiang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
13
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
14
|
Salem M, Souissi R, Jebali K, Trabelsi W, Abderrazak H, Souissi F. Cadmium recovery from acid leachates of Tunisian phosphoric acid purification residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60587-60600. [PMID: 39388089 DOI: 10.1007/s11356-024-35150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The management of cadmium-rich sludges, which are pollutant residues from the phosphorus industry, including the valorization of these sludges through the selective recovery of heavy metals, is a promising prospect. However, there is still a need to develop recovery methods that are both optimized for efficiency, cost-effectiveness, and environmentally friendly. This study aims to enhance cadmium extraction from the polymetallic sludge by optimizing the processes of sulfuric acid (SA) leaching and sodium sulfide precipitation. Key parameters including SA concentration, temperature, solid/liquid ratio, and stirring velocity were optimized to maximize the heavy metals extraction. Over 90% of the Cd and Zn present in the sludge were successfully extracted. Subsequently, investigates the selective precipitation of metal sulfide from acidic leachates (pH < 2), focusing particularly on cadmium. Through the optimization of chemical precipitation parameters (Na2S concentration, temperature, and reaction time), more than 99% of the cadmium was selectively recovered as CdS. The precipitates underwent analysis for mineralogy, chemistry, purity, and particle size. XRD analyses indicated CdS formation in "Greenockite" and "Hawleyite" forms, confirmed by SEM-EDS data, revealing fine powder consisting of micro and nanoparticles (< 0.5 µm) with varied spherical shapes.
Collapse
Affiliation(s)
- Marzougui Salem
- LMU Laboratory, National Institute for Research and Physico-chemical Analysis, Sidi Thabet Technopole, Tunis, Tunisia.
- Department of Geology, Faculty of Sciences of Tunis, El Manar University, Tunis, Tunisia.
| | - Radhia Souissi
- LMU Laboratory, National Institute for Research and Physico-chemical Analysis, Sidi Thabet Technopole, Tunis, Tunisia
| | - Kais Jebali
- Support Research and Technology Transfer Unit, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | | | - Houyem Abderrazak
- LMU Laboratory, National Institute for Research and Physico-chemical Analysis, Sidi Thabet Technopole, Tunis, Tunisia
| | - Fouad Souissi
- LMU Laboratory, National Institute for Research and Physico-chemical Analysis, Sidi Thabet Technopole, Tunis, Tunisia
- Department of Geology, Faculty of Sciences of Tunis, El Manar University, Tunis, Tunisia
| |
Collapse
|
15
|
Sharma A, Goel H, Sharma S, Rathore HS, Jamir I, Kumar A, Thimmappa SC, Kesari KK, Kashyap BK. Cutting edge technology for wastewater treatment using smart nanomaterials: recent trends and futuristic advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58263-58293. [PMID: 39298031 DOI: 10.1007/s11356-024-34977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Water is a vital component of our existence. Many human activities, such as improper waste disposal from households, industries, hospitals, and synthetic processes, are major contributors to the contamination of water streams. It is the responsibility of every individual to safeguard water resources and reduce pollution. Among the various available wastewater treatment (WWT) methods, smart nanomaterials stand out for their effectiveness in pollutant removal through absorption and adsorption. This paper examines the application of valuable smart nanomaterials in treating wastewater. Various nanomaterials, including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), nanoadsorbents, nanometals, nanofilters, nanocatalysts, carbon nanotubes (CNTs), nanosilver, nanotitanium dioxide, magnetic nanoparticles, nanozero-valent metallic nanoparticles, nanocomposites, nanofibers, and quantum dots, are identified as promising candidates for WWT. These smart nanomaterials efficiently eliminate toxic substances, microplastics, nanoplastics, and polythene particulates from wastewater. Additionally, the paper discusses comparative studies on the purification efficiency of nanoscience technology versus conventional methods.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, School of Basic and Applied Sciences, Career Point University, Kota, 325003, Rajasthan, India
| | - Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, 110042, Delhi, India
| | - Saurabh Sharma
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, 140307, Chandigarh, India
| | - Hanumant Singh Rathore
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Abhishek Kumar
- Department of Molecular Biology and Genetic Engineering, BAC Sabour, Bihar Agricultural University Sabour, Bhagalpur, 813210, Bihar, India
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150, Espoo, Finland
- University Center for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, Uttar Pradesh, India.
| |
Collapse
|
16
|
Chimerad M, Borjian P, Pathak P, Fasano J, Cho HJ. A Miniaturized, Fuel-Free, Self-Propelled, Bio-Inspired Soft Actuator for Copper Ion Removal. MICROMACHINES 2024; 15:1208. [PMID: 39459082 PMCID: PMC11509375 DOI: 10.3390/mi15101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
We present a novel miniaturized, gear-shaped, fuel-free actuator capable of autonomously propelling itself in an aquatic environment to absorb heavy metals, such as copper ions. While hydrogel-based absorbents are promising solutions for cationic pollutant remediation, their stationary nature limits their effectiveness in areas where contaminants are unevenly distributed. To address this, we developed a bio-inspired soft actuator that mimics natural propulsion mechanisms. The Marangoni effect, driven by its inherent chemical properties, demonstrated a self-propelled motion without requiring external fuel. The proof-of-concept actuator generated a plane motion lasting up to 2 h and swept over an area approximately 400 times bigger than its size. By harnessing the chemical and optical properties of the hydrogel, we efficiently removed and quantitatively analyzed copper ions through a colorimetric method. This innovative integration of self-propelled movement and efficient copper ion absorption underscores its potential for advancing miniaturized devices in environmental remediation, paving the way for more active and efficient pollutant removal systems in challenging aquatic environments.
Collapse
Affiliation(s)
| | | | | | | | - Hyoung J. Cho
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL 32816, USA; (M.C.); (P.B.); (P.P.); (J.F.)
| |
Collapse
|
17
|
Escamilla P, Monteleone M, Percoco RM, Mastropietro TF, Longo M, Esposito E, Fuoco A, Jansen JC, Elliani R, Tagarelli A, Ferrando-Soria J, Amendola V, Pardo E, Armentano D. BioMOF@PAN Mixed Matrix Membranes as Fast and Efficient Adsorbing Materials for Multiple Heavy Metals' Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51182-51194. [PMID: 39269435 DOI: 10.1021/acsami.4c12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Heavy metal ions are a common source of water pollution. In this study, two novel membranes with biobased metal-organic frameworks (BioMOFs) embedded in a polyacrylonitrile matrix with tailored porosity were prepared via nonsolvent induced phase separation methods and designed to efficiently adsorb heavy metal ions from oligomineral water. Under optimized preparation conditions, stable membranes with high MOF loading up to 50 wt % and a cocontinuous sponge-like morphology and a high water permeability of 50-60 L m-2 h-1 bar-1 were obtained. The tortuous flow path in combination with a low water flow rate guarantees maximum contact time between the fluid and the MOFs, and thus a high heavy metal capture efficiency in a single pass. The performances of these BioMOF@PAN membranes were investigated in the dynamic regime for the simultaneous removal of Pb2+, Cd2+, and Hg2+ heavy metals from aqueous environments in the presence of common interfering ions. The new composite adsorbing membranes are capable of reducing the concentration of heavy metal pollutants in a single pass and at much higher efficiency than previously reported membranes. The enhanced performance of the mixed matrix membranes is attributed to the presence of multiple recognition sites which densely decorate the BioMOF channels: (i) the thioether groups, deriving from the S-methyl-l-cysteine and (S)-methionine amino acid residues, able to recognize and capture Pb2+ and Hg2+ ions and (ii) the oxygen atoms of the oxamate moieties, which preferentially interact with Cd2+ ions, as revealed by single crystal X-ray diffraction. The flexibility of the pore environments allows these sites to work synergically for the simultaneous capture of different metal ions. The stability of the membranes for a potential regeneration process, a key-factor for the effective feasibility of the process in real life applications, was also evaluated and confirmed less than 1% capacity loss in each cycle.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Marcello Monteleone
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Teresa F Mastropietro
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Elisa Esposito
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Valeria Amendola
- Dipartimento di Chimica Generale, Università di Pavia, via T. Taramelli, 12, Pavia 27100, Italy
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| |
Collapse
|
18
|
Yang Y, Zhang J, Dong S, Li M, Yang P, Meng H, Xiao J. Sustainable Cr(VI) reduction in a membrane-less TPBC-MFC driven by solid watermelon rind. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122637. [PMID: 39326072 DOI: 10.1016/j.jenvman.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Sustainable Cr(VI) reduction by microbial fuel cell (MFC) is a major challenge due to the electrode passivation and available electron donors. In this study, the chromate removal across a period of more than three months in a membrane-less TPBC-MFC with solid watermelon rind (SWMR) as electron donors was investigated. The TPBC benefited the Cr(VI) reduction and voltage output owing to the enhanced mass transfer. The average Cr(VI) removal efficiency (RE) of 97%, effluent COD of 80 mg/L and voltage output of 130 mV were achieved during the long-term operation on the TPBC-MFC. The SEM-EDS analysis showed that all biofilms were predominated by rod- and coccus-shaped bacteria and the Cr(VI) reduction was mainly carried out by the S-cathode. The XPS, XRD and FT-IR analysis revealed that the major product of cathodic Cr(VI) reduction was a Cr(III) precipitate in the form of Cr(OH)3. Microbial community structure disclosed that fermentation microorganisms (e.g. Anaeroarcus) and electroactive bacteria (e.g. Porphyromonadaceae) jointly responsible for SWMR degradation and electricity generation were dominant at the anode, while the chromate-associated microorganisms (e.g. Comamonadaceae and Cloacibacterium) dominated at the cathode. The biofilms adsorbing Cr(OH)3 precipitates fell off from the cathode periodically to avoid the passivation. Overall, our study suggests a really sustainable approach with which a goal of simultaneously reusing watermelon rind, reducing Cr(VI) and producing electricity was attained perfectly.
Collapse
Affiliation(s)
- Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Jinkui Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Sijia Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Minjie Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Pan Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Heng Meng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou Chuangyuan Environment Technology Co. Ltd., Wenzhou, Zhejiang, 325036, China.
| |
Collapse
|
19
|
Majiya H, Clegg F, Sammon C. A chemometric approach using I-optimal design for optimising Pb(II) removal using bentonite-chitosan composites and beads. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122557. [PMID: 39316879 DOI: 10.1016/j.jenvman.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
This paper reports adsorption studies of Pb(II) ions onto Bentonite-Chitosan (Bt-Ch) composites or beads when using an I-optimal design experiment approach. Three adsorption factors (pH, adsorbent dosage, and initial concentration) were optimised whilst simultaneously investigating multiple adsorbents. The Bt-Ch composites and beads (type A and B) adsorbents were made using weight ratios 90%/10% and differed characteristically due to their preparation methods of solution blending and precipitation, respectively. A batch procedure was used for adsorption experiments, and the amounts of Pb(II) ions (adsorbed onto Bt-Ch composites/beads) were analysed using inductively coupled plasma optical emission spectrometry (ICP-OES). Adsorption experimental parameters were analysed and optimised by using a response surface method (I-optimal design) generated from Design-Expert® 13.0 software. The main achievements of this study were to intensify the understanding and application of I-optimal experimental designs, which allow simultaneous determination of adsorption capacities and efficiencies across multiple adsorbents in an economical manner. A reduced quadratic model provided the best fit for the experimental data and exhibited minimal deviation between predicted and experimental values. This was evidenced by the very small covariance (CV) values of 1.81% and 1.33% observed for adsorption capacity and adsorption efficiency, respectively, also suggesting high reproducibility. It was observed that the adsorption factors studied (pH, adsorbent dose, and initial concentration) have a more pronounced effect on the adsorption capacity (F-value = 714.37) compared to adsorption efficiency (F-value = 140.62). Adsorbent dosage was found to have the greatest effect on adsorption capacity, while the initial pH of Pb(II) solution had the greatest effect on adsorption efficiency. Under optimal conditions, the adsorption capacities of beads-A (73.2 mg/g) and beads-B (77.6 mg/g) were found to be higher than that of the corresponding composite (51.7 mg/g). Whilst the optimum adsorption efficiency values for all three adsorbents were ∼100% (with ranges of pH 2-5, initial concentrations 50-200 mg/L, and adsorbent dosage 0.05-0.5 mg). The desirability indexes for the optimised conditions for these respective responses (and each adsorbent) were found to be within the ranges of 0.892-0.974 and 0.945-0.967 for adsorption capacity and adsorption efficiency, respectively. These high desirability index values for both responses indicate that the optimised conditions lead to very good performance for both measures. The information obtained in this study provides detailed understanding of the adsorption phenomena of the adsorbents studied. It gives confidence in the use of I-optimal designs to be applied as a chemometric tool for the specific adsorbents studied herein and others.
Collapse
Affiliation(s)
- Hassan Majiya
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, South Yorkshire, UK; Department of Chemistry, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Minna Road, Lapai 911101, Niger, Nigeria.
| | - Francis Clegg
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, South Yorkshire, UK.
| | - Chris Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, South Yorkshire, UK
| |
Collapse
|
20
|
Kawai Y, Yamamoto Y, Kiyohara K. Selective adsorption of divalent and trivalent cations in porous electrodes. J Chem Phys 2024; 161:094701. [PMID: 39225524 DOI: 10.1063/5.0222272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The capacitive deionization technology uses the electrochemical adsorption of ions in porous electrodes to desalinate seawater or brackish water. Recently, capacitive deionization has gained significant attention as a technology for selective adsorption of ionic species from multicomponent aqueous electrolytes. To investigate the mechanism of selective adsorption at the molecular level, we performed molecular dynamics simulations of aqueous electrolytes and porous electrodes with different divalent or trivalent ions, electrode pore sizes, and applied voltages. We calculated the free energy barriers preventing ions from entering the pores of the electrode and the structure of the water molecules near the ions and the electrode surface under various conditions. Our results suggest that, when the pore and ion sizes are comparable, the steric and electrostatic interactions between the hydrated ions and electrode pores are comparable in magnitude. Moreover, the relative importance of the two interactions can be reversed by slight changes in the external conditions, such as the ion size, valence of the ions, electrode pore size, and applied voltage. Thus, by finely tuning the electrode pore size and the applied voltage, it may be possible to selectively adsorb a particular ionic species from a multicomponent electrolyte through capacitive deionization using a porous electrode.
Collapse
Affiliation(s)
- Yusuke Kawai
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Yuji Yamamoto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Kenji Kiyohara
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
21
|
Takeda N, Fukushi K, Okuyama A, Takahashi Y. Solid-liquid partitioning and speciation of Pb(II) and Cd(II) on goethite under high pH conditions, as examined by subnanomolar heavy metal analysis, X-ray absorption spectroscopy, and surface complexation modeling. CHEMOSPHERE 2024; 363:142766. [PMID: 38969214 DOI: 10.1016/j.chemosphere.2024.142766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The adsorption of heavy metals on iron oxides generally increases with pH and is almost complete at neutral to slightly alkaline pH. However, almost complete adsorption on a linear scale does not imply sufficient removal of the heavy metals in terms of their toxicity. Here, we elucidated the chemical reactions that determine the solid-liquid partitioning of Pb(II) and Cd(II) on goethite at high pH. While the removal of both heavy metals was almost complete on a linear scale above pH 7 for Pb(II) and pH 9 for Cd(II), the dissolved metal concentrations decreased on a logarithmic scale with pH, reaching minima at around pH 10 for Pb(II) and pH 10-11 for Cd(II), and then they increased with pH thereafter. The XAFS spectra of Pb(II)- or Cd(II)-adsorbed goethite prepared at pH > 11 were almost the same as those at neutral pH, suggesting that removal of the heavy metals from solution was achieved by a single adsorption reaction over the entire pH range. Based on the observed macroscopic and microscopic adsorption behaviors at high pH, a robust surface complexation model was developed to predict the solid-liquid partitioning of divalent heavy metals over the entire pH range.
Collapse
Affiliation(s)
- Natsumi Takeda
- Division of Natural System, Graduate School of Natural Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanzawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Akihiro Okuyama
- Division of Natural System, Graduate School of Natural Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Santhamoorthy M, Ranganathan S, Fathima Arul Sigamani L, Kim SC, Pandiaraj S, Manoharadas S, Lin MC, Kumarasamy K, Phan TTV. Dimercaprol-modified mesoporous silica nanoparticles for efficient removal of toxic mercury ions from aqueous solution. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:401. [PMID: 39196434 DOI: 10.1007/s10653-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
A surface-modified mesoporous silica nanoparticle containing dimercaprol monomers was created utilizing the sol-gel condensation process, using tetraethyl orthosilicate (TEOS) as the silica source and poloxamer as the structure directing agent. To accomplish this synthesis, 3-glycidoxypropyl triethoxysilane (GPTS, 20 mol%) was incorporated into the silica walls during the sol-gel condensation process, along with TEOS. Furthermore, dimercaprol (DM) monomers were incorporated onto silica surfaces by a ring-opening reaction between GPTS epoxy groups, and dimercaprol hydroxyl groups. The prepared dimercaprol-modified silica adsorbent (MSN-DT NPs) material has been studied using a variety of instruments, including XRD, FT-IR, N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG) analysis, and zeta potential analysis. The MSN-DT NPs material selectively adsorbs mercury ions, with a high adsorption amount of 125 mg/g and a removal capability of roughly ~ 90% from the original metal ion mixture comprising other competing metals such as Pb2+, Ni2+, Fe2+, and Zn2+. The MSN-DT NPs adsorbent shows recyclable qualities for up to five cycles when treated with an acidic aqueous solution (0.1 M HCl). As a result, the MSN-DT NPs adsorbent may be regenerated and reused up to five times without losing its adsorption effectiveness. The experimental findings showed that the MSN-DT NPs adsorbent may be employed to selectively remove hazardous Hg2+ ions from an aqueous solution.
Collapse
Affiliation(s)
- Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Suresh Ranganathan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Tamil Nadu, Coimbatore, 641021, India
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC.
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Viet Nam.
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Viet Nam.
| |
Collapse
|
23
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
24
|
Du L, Li X, Lu X, Guo Y. The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173478. [PMID: 38815828 DOI: 10.1016/j.scitotenv.2024.173478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Covalent organic frameworks (COFs) are a novel type of porous materials, with unique properties, such as large specific surface areas, high porosity, pronounced crystallinity, tunable pore sizes, and easy functionalization, and thus have received considerable attention in recent years. COFs play an essential role in the catalytic degradation, adsorption, and separation of heavy metals, radionuclides. In recent years, considering several outstanding characteristics of COFs, including their good thermal/chemical stability, high crystallinity, and remarkable adsorption capacity, they have been widely used in the removal of various environment pollutants. This review primarily discusses the synthesis strategies of COFs along with their diverse synthesis methods, and provides a comprehensive summary and analysis of recent research advances in the use of COFs for removing heavy metal ions and radionuclides from water bodies. Additionally, the adsorption mechanism of COFs with regard to metal ions was determined by analyzing the structural characteristics of COFs. Finally, the future research directions on COFs adsorb rare earth element was discussed.
Collapse
Affiliation(s)
- Lili Du
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
25
|
Almutairi ST. Fabrication and catalytic activity of TiO 2/Fe 3O 4 and Fe 3O 4/β-cyclodextrin nanocatalysts for safe treatment of industrial wastewater. Heliyon 2024; 10:e35400. [PMID: 39170368 PMCID: PMC11336569 DOI: 10.1016/j.heliyon.2024.e35400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The rapid industrial growth has led to increased production of wastewater containing pollutants like heavy metals and organic compounds. These pollutants pose risks to human health and the environment if not properly treated. Engineered nanocatalyst materials (ENMs) are a burgeoning technology that show promise for treating industrial wastewater. Metal oxide ENMs, such as Fe3O4@β-cyclodextrin and Fe3O4@TiO2, have demonstrated efficient removal of heavy metals and methylene blue from wastewater. Fe3O4@TiO2 was found to be more effective than Fe3O4@β-cyclodextrin in removing these pollutants. The highest removal efficiencies were observed at a concentration of 40 mg/g and pH 8. Copper showed the highest removal efficiency (160.5 mg/g), followed by nickel (77.09 mg/g), lead (56.0 mg/g), and cadmium (46.05 mg/g). For methylene blue, the highest removal efficiency was also observed at a concentration of 40 mg/g and pH 8 (91.16 %). Lead (90.5 %), copper (90.48 %), nickel (83.34 %), and cadmium (77.58 %) were also efficiently removed. These findings highlight the potential of Fe3O4@TiO2 as a promising material for industrial wastewater treatment, offering cleaner and safer water for human health and the environment. ENMs have the potential to revolutionize wastewater treatment processes.
Collapse
Affiliation(s)
- Safer Tale Almutairi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
26
|
Li Z, Xu N, Ren J, Hao H, Gao R, Kong X, Yan H, Hua X, Peng YK, Ma S, O'Hare D, Zhao Y. Theory-driven design of cadmium mineralizing layered double hydroxides for environmental remediation. Chem Sci 2024; 15:13021-13031. [PMID: 39148794 PMCID: PMC11323326 DOI: 10.1039/d4sc02860k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g-1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g-1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
Collapse
Affiliation(s)
- Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Nuo Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jing Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University 010021 Hohhot Inner Mongolia P. R. China
| | - Rui Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University 010021 Hohhot Inner Mongolia P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiao Hua
- Department of Chemistry, Lancaster University Lancaster LA1 4YB UK
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong Hong Kong Hong Kong SAR 999077 P. R. China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 Zhejiang P. R. China
| |
Collapse
|
27
|
Ratnitsai V, Wongjaikham W, Wongsawaeng D, Kohmun K, Santibenchakul S, Narkpiban K. Synthesis of amidoxime adsorbent prepared by radiation grafting on upcycled low-density polyethylene sheet for removal of heavy metals from wastewater. Sci Rep 2024; 14:18594. [PMID: 39127783 PMCID: PMC11316828 DOI: 10.1038/s41598-024-69320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The issue of discharging waste, especially heavy metals from industrial activities into the environment, not only adversely impacts environmental quality but also has impacts on communities and human health. Removal and reduction of heavy metal contamination in rivers and wastewater are, therefore, critical initiatives that require significant attention. This work studied the removal of heavy metals, including Zn(II), Cu(II), As(III), and Pb(II) by utilizing an upcycled amidoxime low-density polyethylene sheet (AO-sheet). The synthesized AO-sheet was analyzed for various physical properties, including scanning electron microscope, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. For the batch adsorption experiment, parameters affecting adsorption capacity were studied: initial concentration, submerging time, and pH. Adsorption isotherms were also studied. The results of the heavy metal adsorption study showed that the initial concentration was the most significant parameter; the higher the initial concentration, the greater the adsorption capacity. The adsorption capacity of Zn(II) and Pb(II) increased with submersion time, which achieved 21.07 and 0.855 mg/g-adsorbent, respectively, after four weeks of submersion under the highest initial concentration studied. The adsorption capacity of Cu(II) was 7.98 mg/g-adsorbent after two weeks of optimal adsorption duration under the highest initial concentration studied. The adsorption capacity of As(II) was 1.07 mg/g-adsorbent after one week of optimal submersion time under the highest initial concentration studied. Moreover, the appropriate pH range for effective adsorption of Zn(II), Cu(II), and Pb(II) was identified as 8-9, while for As(III), it was 6-8, with an adsorption duration of 0.43 weeks (3 days). From the Langmuir isotherm, it was found that the adsorption of this work was characterized by monolayer adsorption. The results demonstrate that the AO-sheet can be effectively used to remove heavy metals from wastewater. Its potential for reusability was up to 8 cycles, with the Zn(II) adsorption capacity being reduced to about 20.37%.
Collapse
Affiliation(s)
- Vareeporn Ratnitsai
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Wijittra Wongjaikham
- Research Unit On Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit On Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Kanokporn Kohmun
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Somtop Santibenchakul
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| | - Koranat Narkpiban
- Department of Innovation for Health and Beauty, Faculty of Science and Technology, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand
| |
Collapse
|
28
|
Alhaithloul HAS, Alsudays IM, Zaki EG, Elsaeed SM, Mubark AE, Salib L, Safwat G, Niedbała G, Diab A, Abdein MA, Alharthi A, Zakai SA, Elkelish A. Retrieval of Cu 2+ and Cd 2+ ions from aqueous solutions using sustainable guar gum/PVA/montmorillonite nanocomposite films: effect of temperature and adsorption isotherms. Front Chem 2024; 12:1393791. [PMID: 39161956 PMCID: PMC11330845 DOI: 10.3389/fchem.2024.1393791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 08/21/2024] Open
Abstract
Uncontrolled or improperly managed wastewater is considered toxic and dangerous to plants, animals, and people, as well as negatively impacting the ecosystem. In this research, the use of we aimed to prepare polymer nanocomposites (guar gum/polyvinyl alcohol, and nano-montmorillonite clay) for eliminating heavy metals from water-based systems, especially Cu2+ and Cd2+ ions. The synthesis of nanocomposites was done by the green method with different ratios of guar gum to PVA (50/50), (60/40), and (80/20) wt%, in addition to glycerol that acts as a cross-linker. Fourier-transform infrared spectroscopy (FT-IR) analysis of the prepared (guar gum/PVA/MMT) polymeric nano-composites' structure and morphology revealed the presence of both guar gum and PVA's functional groups in the polymeric network matrix. Transmission electron microscopy (TEM) analysis was also performed, which verified the creation of a nanocomposite. Furthermore, theromgravimetric analysis (TGA) demonstrated the biocomposites' excellent thermal properties. For those metal ions, the extreme uptake was found at pH 6.0 in each instance. The Equilibrium uptake capacities of the three prepared nanocomposites were achieved within 240 min. The maximal capacities were found to be 95, 89 and 84 mg/g for Cu2+, and for Cd2+ were found to be 100, 91, 87 mg/g for guar gum (80/20, 60/40 and 50/50), respectively. The pseudo-2nd-order model with R2 > 0.98 was demonstrated to be followed by the adsorption reaction, according to the presented results. In less than 4 hours, the adsorption equilibrium was reached. Furthermore, a 1% EDTA solution could be used to revitalize the metal-ion-loaded nanocomposites for several cycles. The most promising nanocomposite with efficiency above 90% for the removal of Cu2+ and Cd2+ ions from wastewater was found to have a guar (80/20) weight percentage, according to the results obtained.
Collapse
Affiliation(s)
| | | | | | | | - Amal E. Mubark
- Semi-Pilot Plant Department, Nuclear Materials Authority, Cairo, Egypt
| | - Lurana Salib
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Mohamed A. Abdein
- Seeds Development Department, El-Nada Misr Scientific Research and Development Projects, Mansoura, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
29
|
Devrajani SK, Ahmed Z, Qambrani NA, Kanwal S, Sundaram UM, Mubarak NM. Mechanism of arsenic removal using brown seaweed derived impregnated with iron oxide biochar for batch and column studies. Sci Rep 2024; 14:18102. [PMID: 39103501 PMCID: PMC11300829 DOI: 10.1038/s41598-024-69117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Water contaminated with arsenic presents serious health risks, necessitating effective and sustainable removal methods. This article proposes a method for removing arsenic from water by impregnating biochar with iron oxide (Fe2O3) from brown seaweed (Sargassum polycystum). After the seaweed biomass was pyrolyzed at 400 °C, iron oxide was added to the biochar to increase its adsorptive sites and surface functional groups, which allowed the binding of arsenic ions. Batch studies were conducted to maximize the effects of variables, including pH, contact time, arsenic concentration, and adsorbent dosage, on arsenic adsorption. The maximum arsenic adsorption efficiency of 96.7% was achieved under optimal conditions: pH 6, the adsorbent dosage of 100 mg, the initial arsenic concentration of 0.25 mg/L, and a contact time of 90 min. Langmuir and Freundlich's isotherms favored the adsorption process, while the kinetics adhered to a pseudo-second-order model, indicating chemisorption as the controlling step. Column studies revealed complete saturation after 200 min, and the adsorption behavior fits both the Adams-Bohart and Thomas models, demonstrating the potential for large-scale application. The primary mechanism underlying the interaction between iron-modified biochar and arsenic ions is surface complexation, enhanced by increased surface area and porosity. This study highlights the significant contribution of iron-modified biochar derived from macroalgae as an effective and sustainable solution for arsenic removal from water.
Collapse
Affiliation(s)
- Satesh Kumar Devrajani
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
- U.S Pakistan Center for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology (MUET), Jamshoro, 76060, Pakistan.
| | - Zubair Ahmed
- U.S Pakistan Center for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology (MUET), Jamshoro, 76060, Pakistan
| | - Naveed Ahmed Qambrani
- U.S Pakistan Center for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology (MUET), Jamshoro, 76060, Pakistan
| | - Sania Kanwal
- U.S Pakistan Center for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology (MUET), Jamshoro, 76060, Pakistan
| | - Uma Maheswari Sundaram
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India.
| |
Collapse
|
30
|
Nagpal M, Siddique MA, Sharma K, Sharma N, Mittal A. Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:731-757. [PMID: 39141032 DOI: 10.2166/wst.2024.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Artificial intelligence (AI) is increasingly being applied to wastewater treatment to enhance efficiency, improve processes, and optimize resource utilization. This review focuses on objectives, advantages, outputs, and major findings of various AI models in the three key aspects: the prediction of removal efficiency for both organic and inorganic pollutants, real-time monitoring of essential water quality parameters (such as pH, COD, BOD, turbidity, TDS, and conductivity), and fault detection in the processes and equipment integral to wastewater treatment. The prediction accuracy (R2 value) of AI technologies for pollutant removal has been reported to vary between 0.64 and 1.00. A critical aspect explored in this review is the cost-effectiveness of implementing AI systems in wastewater treatment. Numerous countries and municipalities are actively engaging in pilot projects and demonstrations to assess the feasibility and effectiveness of AI applications in wastewater treatment. Notably, the review highlights successful outcomes from these initiatives across diverse geographical contexts, showcasing the adaptability and positive impact of AI in revolutionizing wastewater treatment on a global scale. Further, insights on the ethical considerations and potential future directions for the use of AI in wastewater treatment plants have also been provided.
Collapse
Affiliation(s)
- Mudita Nagpal
- Department of Applied Sciences, Vivekananda Institute of Professional Studies-Technical Campus, Delhi 110034, India E-mail:
| | - Miran Ahmad Siddique
- Department of Applied Sciences, Vivekananda Institute of Professional Studies-Technical Campus, Delhi 110034, India
| | - Khushi Sharma
- Department of Applied Sciences, Vivekananda Institute of Professional Studies-Technical Campus, Delhi 110034, India
| | - Nidhi Sharma
- Department of Applied Sciences, Vivekananda Institute of Professional Studies-Technical Campus, Delhi 110034, India
| | - Ankit Mittal
- Department of Chemistry, Shyam Lal College, University of Delhi, Delhi 110032, India
| |
Collapse
|
31
|
Silva MC, do Nascimento Monte C, de Souza JR, Selfe ACC, Ishihara JH. Mapping of metals contamination in coastal sediments around the world in the last decades: A bibliometric analysis and systematic review. MARINE POLLUTION BULLETIN 2024; 205:116572. [PMID: 38878414 DOI: 10.1016/j.marpolbul.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
The quality of coastal sediments contaminated by metals has been discussed for decades worldwide. However, there is a lack of information on the current situation and trends in this research field. For this reason, this is the first study to present an integrated analysis of bibliometric mapping and systematic review, using the Scopus database. The subject has grown exponentially, with a notable increase in citations and predicted increases for the coming years. The Chinese Academy of Sciences and Chinese authors were highlighted. The main areas of study were the Yellow Sea, Adriatic Sea and Persian Gulf. The main metals related were Cu, Pb, Zn, Cr and Cd, linked to anthropogenic sources such as agriculture, domestic sewage and mining and industry activities. The IGEO proved to be the main index for assessing pollution. This research is useful for pointing out the needs of future research, supporting the development of this topic.
Collapse
Affiliation(s)
- Matheus Cavalcante Silva
- Postgraduate Program in Geosciences (Geochemistry), Fluminense Federal University, R. Mario Santos Braga, 30, Niterói, RJ CEP 24020-140, Brazil.
| | | | - Jadelene Ramos de Souza
- Faculty of Sanitary and Environmental Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| | - Ana Cristina Cavalcante Selfe
- Faculty of Sanitary and Environmental Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| | - Junior Hiroyuki Ishihara
- Centre for Amazonian Development in Engineering, Federal University of Pará, Rodovia BR 422 km 13 - Vila Permanente, Tucuruí, PA CEP 68464-000, Brazil
| |
Collapse
|
32
|
Thirupathi K, Santhamoorthy M, Suresh R, Wadaan MA, Lin MC, Kim SC, Kumarasamy K, Phan TTV. Synthesis of bis(2-aminoethyl)amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb 2+ ions from wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:357. [PMID: 39083123 DOI: 10.1007/s10653-024-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Rapid growth in the industry has released large quantities of contaminants, particularly metal discharges into the environment. Heavy metal poisoning in water bodies has become a major problem due to its toxicity to living organisms. In this study, we developed a 3-chloropropyl triethoxysilane incorporated mesoporous silica nanoparticle (SBA-15) based adsorbent utilizing the sol-gel process and Pluronic 123 (P123) as a structure-directing surfactant. Furthermore, the produced SBA-15 NPs were functionalized with bis(2-aminoethyl)amine (BDA) using the surface grafting approach. The physical and chemical properties of the prepared SBA-15@BDA NPs were determined using a variety of instruments, including small-angle X-ray diffraction (SAXS), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption, thermogravimetric, particle size distribution, and zeta potential analysis. The MSN has a large surface area of up to 574 m2/g, a pore volume of 0.57 cm3/g, and a well-ordered mesoporous nanostructure with an average pore size of 3.6 nm. The produced SBA-15@BDA NPs were used to adsorb selectively to lead (Pd2+) ions from an aqueous solution. The adsorption study was performed under various conditions, including the influence of solution pH, adsorbent dose, adsorption kinetics, adsorption selectivity in the presence of competing metal ions, and reusability. The results of the kinetic study demonstrated that SBA-15@BDA NPs absorb selectively Pb2+ ions via chemisorption. The SBA-15@BDA NPs show Pb2+ ions with a maximum adsorption capacity of ~ 88% and an adsorbed quantity of approximately ~ 112 mg/g from the studied aqueous solution. The adsorption mechanism relies on coordination bonding between Pb2+ ions and surface-functionalized amine groups on SBA-15@BDA NPs. Furthermore, the proposed SBA-15@BDA NPs adsorbent demonstrated excellent reusability over five cycles without significantly reducing adsorption performance. As a consequence, SBA-15@BDA NPs might serve as an effective adsorbent for the selective removal of Pb2+ ions from aqueous effluent.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri, Tamil Nadu, 635111, India
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Ranganathan Suresh
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C
| | - Seong-Cheol Kim
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C..
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
| |
Collapse
|
33
|
Feng Y, Wang R. Research Progress on Metal Ion Recovery Based on Membrane Technology and Adsorption Synergy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3562. [PMID: 39063854 PMCID: PMC11278649 DOI: 10.3390/ma17143562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The development of modern industry will generate more and more waste containing metal ions. It is necessary to take appropriate measures to recover these ions, whether from the perspective of environmental protection or improving economic benefits. So far, scientists have studied many methods for recovering metal ions. Among these methods, adsorption and membrane separation have received widespread attention due to their own characteristics. Combining adsorption and membrane separation methods can better leverage their respective advantages to improve the ability of recovering metal ions. This review, therefore, focuses on the synergistic recovery of metal ions by adsorption and membrane separation methods. This article first briefly explains the theoretical principles of membrane separation and adsorption synergy, and then focuses on several technologies that have received attention in different chapters. In these chapters, membrane technology is briefly introduced, followed by the situation and progress of synergistic application with adsorption technology. Then, the article compares and elaborates on the advantages and disadvantages of the above technologies, and finally summarizes and looks forward to these technologies being used to solve the difficulties and challenges in industrial application.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
34
|
Qiu S, Chen Z, Yu L, Liu C, Ji C, Shen P, Cheng S, Qiu H, Fang Z, Zhang X. Effective oxidation and adsorption of As(III) in water by nanoconfined Ce-Mn binary oxides with excellent reusability. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134652. [PMID: 38781854 DOI: 10.1016/j.jhazmat.2024.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Herein, a highly efficient As(III) purifier Ce-Mn@N201 with excellent reusability was developed by stepwise precipitating hydrated cerium(IV) oxides (HCO) and hydrated manganese(IV) oxides (HMO) inside N201, a widely-used gel-type anion exchange resin. Owing to confinement of unique nanopores in N201, the in-situ generated nanoparticles (NPs) inside Ce-Mn@N201 were highly dispersed with ultra-small sizes of around 2.6 nm. Results demonstrated that HMO NPs effectively oxidized As(III) to As(V) with the conversion of Mn(IV) to Mn(II), while the generated Mn2+ was mostly re-adsorbed onto the negatively-charged surface of HMO NPs. During the regeneration process by simple alkaline treatment, the re-adsorbed Mn2+ was firstly precipitated as (hydr)oxides of Mn(II) and then oxidized to HMO NPs by dissolved oxygen to fully refresh its oxidation capacity. Though HCO NPs mainly served as adsorbent for arsenic, they could partially oxidize As(III) to As(V) at the beginning, while the oxidation capacities continuously diminished with the irreversible conversion of Ce(IV) to Ce(III). In 10 consecutive adsorption-regeneration cycle, Ce-Mn@N201 efficiently decontaminated As(III) from 500 μg/L to below 5 μg/L with Mn2+ leaching less than 0.3% per batch. During 3 cyclic fixed-bed adsorptions, Ce-Mn@N201 steadily produced 8500-9150 bed volume (BV) and 3150-3350 BV drinkable water from the synthesized and real groundwater, respectively, with Mn leaching in effluent constantly < 100 μg/L.
Collapse
Affiliation(s)
- Shun Qiu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhanxun Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ling Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuying Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sikai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Qiu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhuoyao Fang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Li J, Gong H, Wei Y, Ma J, Li XG, Pan M, Zhou M. High energy-efficiency decomplexation of metal-complexes by H*-mediated electro-reduction on hydroxyphenyl Co-porphyrin catalysts. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135227. [PMID: 39029195 DOI: 10.1016/j.jhazmat.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Electrochemical reduction of metal-organic complex pollutants has been recognized as an environmental benign method that operates at mild condition. However, the selective reduction of metal complexes and energy consumption in cathodic process are still a big challenge. Herein, we found that hydroxyphenyl Co-porphyrin catalyst (CoTH@NG) realizes the highly selective decomplexation of metal-organic complexes by H* -mediated reduction, and simultaneously the impressive recovery efficiency of metal ions. Density functional theory (DFT) confirms the generation and capturing ability of H* on CoTH@NG, verifying the dominant role of H* -mediated reduction in the selective decomplexation of Cu-EDTA. CoTH@NG realizes the superior energy efficiency for Cu-EDTA removal (279.3 g kWh-1 of EEOCu-EDTA) and Cu recovery (48.6 g kWh-1 of EEOCu), which are remarkably 3.3 × 102 and 9.7 × 102 times higher than traditional carbon cloth electrode. Moreover, the recovered Cu0(s) nanowires on the electrode surface can be efficiently regenerated in HCOOH by a galvanic reaction through the electron channel of CoTH@NG, regenerating catalytic electrode. This is one of the pioneer studies on H* -mediated electro-reduction decomplexation of metal-complexes, metal recovery, and electrode regeneration on CoTH@NG, which providing a technical strategy for developing efficient electrocatalytic system for pollution control. Environmental Implication Metal complexes is a dramatic increase in the electroplating and mining industries, and seriously affect both public health and environmental sustainability. Our work reported a new hydroxyphenyl Co-porphyrin catalyst (CoTH@NG) which achieves the selective decomplexation of metal-organic complexes, and simultaneously the recovery of metal ions. CoTH@NG realizes the superior energy efficiency for Cu-EDTA removal (279.3 g kWh-1) and Cu0(s) recovery (48.6 g kWh-1), which are remarkably 3.3 × 102 and 9.7 × 102 times higher than traditional carbon cloth electrode. Moreover, the recovered Cu0(s) can be efficiently regenerated in HCOOH by a galvanic reaction through the electron channel of CoTH@NG, regenerating catalytic electrode.
Collapse
Affiliation(s)
- Junjian Li
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hanwen Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuxuan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jie Ma
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin-Gui Li
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
36
|
Ayach J, El Malti W, Duma L, Lalevée J, Al Ajami M, Hamad H, Hijazi A. Comparing Conventional and Advanced Approaches for Heavy Metal Removal in Wastewater Treatment: An In-Depth Review Emphasizing Filter-Based Strategies. Polymers (Basel) 2024; 16:1959. [PMID: 39065274 PMCID: PMC11280771 DOI: 10.3390/polym16141959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Various industrial activities release heavy metal ions into the environment, which represent one of the major toxic pollutants owing to their severe effects on the environment, humans, and all living species. Despite several technological advances and breakthroughs, wastewater treatment remains a critical global issue. Traditional techniques are dedicated to extracting heavy metal ions from diverse wastewater origins, encompassing coagulation/flocculation, precipitation, flotation, and ion exchange. Their cost, side toxicity, or ineffectiveness often limit their large-scale use. Due to their adaptable design, simple operation, and reasonable cost, membrane filtration and adsorption have proven their efficiency in removing metals from wastewater. Recently, adsorption-based filters have appeared promising in treating water. Within this range, filters incorporating natural, synthetic, or hybrid adsorbents present an appealing alternative to conventional approaches. This review aims to list and describe the conventional and advanced wastewater treatment methods by comparing their efficiency, cost, and environmental impact. Adsorption-based filters were highlighted due to the significant advantages they can provide.
Collapse
Affiliation(s)
- Jana Ayach
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
- CNRS, ICMR UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France;
| | - Wassim El Malti
- College of Health Sciences, American University of the Middle East, Egaila 54200, Kuwait
| | - Luminita Duma
- CNRS, ICMR UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France;
| | - Jacques Lalevée
- CNRS, IS2M, UMR 7361, Université de Haute-Alsace, 68100 Mulhouse, France
| | - Mohamad Al Ajami
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| | - Hussein Hamad
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| | - Akram Hijazi
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| |
Collapse
|
37
|
Tan X, Tian Z, Liu Y, Xiao F, Zhang H. Facile fabrication of chitosan/bone/bamboo biochar beads for simultaneous removal of co-existing Cr(VI) and bisphenol a from water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:507-520. [PMID: 38978285 DOI: 10.1080/03601234.2024.2374164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Heavy metal Cr(VI) and organic BPA have posed harmful risks to human health, aquatic organisms and the ecosystem. In this work, Chitosan/bone/bamboo biochar beads (CS-AMCM) were synthesized by co-pyrolysis and in situ precipitation method. These microbeads featured a particle size of approximately 1 ± 0.2 mm and were rich in oxygen/nitrogen functional groups. CS-AMCM was characterized using XRD, Zeta potential, FTIR, etc. Experiments showed that adsorption processes of CS-AMCM on Cr(VI) and BPA fitted well to Langmuir model, with theoretical maximum capacities of 343.61 mg/g and 140.30 mg/g, respectively. Pore filling, electrostatic attraction, redox, complexation and ion exchange were the main mechanisms for Cr(VI), whereas for BPA, the intermolecular force (hydrogen bond) and pore filling were involved. CS-AMCM with adsorbed Cr(VI) demonstrated effective activation in producing ·OH and ·O2 from H2O2, which degraded BPA and Cr(VI) with the removal rates of 99.2% and 98.2%, respectively. CS-AMCM offers the advantages of low-cost, large adsorption capacity, high catalytic degradation efficiency, and favorable recycling in treating Cr(VI) and BPA mixed wastewater, which shows great potential in treating heavy metal and organic matter mixed pollution wastewater.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhitao Tian
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Yanyan Liu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Fei Xiao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Hailing Zhang
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| |
Collapse
|
38
|
Shen X, Wang S, Zhao L, Song H, Li W, Li C, Lv S, Wang G. Simultaneous Cu(II)-EDTA decomplexation and Cu(II) recovery using integrated contact-electro-catalysis and capacitive deionization from electroplating wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134548. [PMID: 38728866 DOI: 10.1016/j.jhazmat.2024.134548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The complex of heavy metals and organic acids leads to high difficulty in heavy metals separation by traditional technologies. Meanwhile, alkaline precipitation commonly used in industry causes the great consumption of resources and extra pollution. Herein, the effective decomplexation of Cu(Ⅱ)-EDTA and synchronous recycling of Cu2+ were realized by contact-electro-catalysis (CEC) coupled with capacitive deionization (CDI) innovatively. In particular, fluorinated ethylene propylene (FEP) as dielectric powders could generate reactive oxygen species under ultrasonic stimulation, realizing continuous deaminization and decarboxylation of Cu(Ⅱ)-EDTA and accelerating the totally breakage of Cu-O and Cu-N bonds. Additionally, the degradation pathway and intermediates evolution of Cu(Ⅱ)-EDTA were investigated using various characterization methods. It was confirmed that decarboxylation predominantly governed the degradation process of Cu(Ⅱ)-EDTA in CEC. During the course of treatment, the degradation ratio of Cu(Ⅱ)-EDTA reached 86.4 % within 150 min. Impressively, this strategy had satisfactory applicability to other metal combinations and excellent cycle stability. Subsequently, the released Cu ions were captured by CuSe cathode electrode through CDI. This research elucidated the degradation mechanism of persistent organic pollutant during CEC, and provided a novel approach for efficiently treating industrial wastewater containing metal complexes and advancing the exploitation and utilization of new technologies for metal recovery.
Collapse
Affiliation(s)
- Xiaoyan Shen
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Lin Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Wei Li
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Changping Li
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Sihao Lv
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China; Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523106, Guangdong, China.
| |
Collapse
|
39
|
Hammad EN, Eltaweil AS, Abouelenein SA, El-Subruiti G. Enhanced Cr(VI) removal via CPBr-modified MIL-88A@amine-functionalized GO: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47851-47865. [PMID: 39009817 DOI: 10.1007/s11356-024-33859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024]
Abstract
Water contamination by heavy metals, especially chromium (VI), poses a critical environmental issue due to its carcinogenic nature and persistence in the environment. Addressing this, the current study develops an efficient adsorbent, CPBr-MIL-88A@AmGO, which utilizes the synergistic capabilities of Cetylpyridinium bromide-modified MIL-88A and amine-functionalized graphene oxide to enhance Cr(VI) removal from aqueous solutions. The obtained results indicate that CPBr-MIL-88A@AmGO achieves its highest removal efficacy at pH 2, where the interaction of CPBr and AmGO's positively charged centers significantly contributes to the adsorption processes. According to the Langmuir isotherm model, the composite's adsorption capacity reached a maximum of 306.75 mg/g. The adsorption kinetics adhered to a pseudo-second-order model along with the endothermic nature of the process. Although the presence of SO42- ions significantly reduces adsorption capacity, other interfering ions including Na+, K+, Ca2+, Cl-, and NO3- only slightly affect it. Remarkably, the composite maintains high removal efficiency, over 82%, even after 7 recycling tests, underscoring its potential for practical applications in water treatment systems. The proposed mechanism involves the contribution of electrostatic attractions, ion exchange, complexation, and the reduction of Cr(VI) to Cr(III) in the removal process. This study not only offers a potent solution for Cr(VI) remediation but also contributes to sustainable water resource management.
Collapse
Affiliation(s)
- Eman N Hammad
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, Ibra, Oman.
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Saeyda A Abouelenein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gehan El-Subruiti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Bian Y, Chen Y, Zhan L, Guo H, Ke H, Wang Y, Wang Q, Gao Y, Gao Y. Effects of enzyme-induced carbonate precipitation technique on multiple heavy metals immobilization and unconfined compressive strength improvement of contaminated sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174409. [PMID: 38960158 DOI: 10.1016/j.scitotenv.2024.174409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Enzyme-induced carbonate precipitation (EICP) has been studied in remediation of heavy metal contaminated water or soil in recent years. This paper aims to investigate the immobilization mechanism of Zn2+, Ni2+, and Cr(VI) in contaminated sand, as well as strength enhancement of sand specimens by using EICP method with crude sword bean urease extracts. A series of liquid batch tests and artificially contaminated sand remediation experiments were conducted to explore the heavy metal immobilization efficacy and mechanisms. Results showed that the urea hydrolysis completion efficiency decreased as the Ca2+ concentration increased and the heavy metal immobilization percentage increased with the concentration of Ca2+ and treatment cycles in contaminated sand. After four treatment cycles with 0.5 mol/L Ca2+ added, the immobilization percentage of Zn2+, Ni2+, and Cr(VI) were 99.99 %, 86.38 %, and 75.18 %, respectively. The microscale analysis results presented that carbonate precipitates and metallic oxide such as CaCO3, ZnCO3, NiCO3, Zn(OH)2, and CrO(OH) were generated in liquid batch tests and sand remediation experiments. The SEM-EDS and FTIR results also showed that organic molecules and CaCO3 may adsorb or complex heavy metal ions. Thus, the immobilization mechanism of EICP method with crude sword bean urease can be considered as biomineralization, as well as adsorption and complexation by organic matter and calcium carbonate. The unconfined compressive strength of EICP-treated contaminated sand specimens demonstrated a positive correlation with the increased generation of carbonate precipitates, being up to 306 kPa after four treatment cycles with shear failure mode. Crude sword bean urease with 0.5 mol/L Ca2+ added is recommended to immobilize multiple heavy metal ions and enhance soil strength.
Collapse
Affiliation(s)
- Yi Bian
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yanbo Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China; Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou, China.
| | - Liangtong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Haowen Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
| | - Han Ke
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuze Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyang Wang
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yufeng Gao
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, China
| | - Yunqi Gao
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| |
Collapse
|
41
|
Chen H, Gao B, Guo Y, Yu Q, Hu M, Zhang X. Adding carbon sources to the substrates enhances Cr and Ni removal and mitigates greenhouse gas emissions in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 252:118940. [PMID: 38626871 DOI: 10.1016/j.envres.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.
Collapse
Affiliation(s)
- Hongxu Chen
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuehong Guo
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Qiankui Yu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Maosheng Hu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
42
|
Zhang N, Xu Y, He T, Zhou M, Yu Y, Wang P, Wang Q. Rapid aggregation of amyloid-like protein enhanced by mTGase to prepare functional wool fabrics for efficient and sustainable remove heavy metals from wastewater. Int J Biol Macromol 2024; 273:133066. [PMID: 38866294 DOI: 10.1016/j.ijbiomac.2024.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yujie Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Tong He
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
43
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Natural solution for the remediation of multi-metal contamination: application of natural amino acids, Pseudomonas fluorescens and Micrococcus yunnanensis to increase the phytoremediation efficiency. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2021-2033. [PMID: 38949066 DOI: 10.1080/15226514.2024.2372688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 μg g-1, and 31.52, 60.78, 51.89, and 25.33 μg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
45
|
Li J, Cao Y, Ding K, Ye J, Li F, Ma C, Lv P, Xu Y, Shi L. Research progress of industrial wastewater treatment technology based on solar interfacial adsorption coupled evaporation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172887. [PMID: 38692317 DOI: 10.1016/j.scitotenv.2024.172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Solar interface evaporation is an effective method for the treatment of water that has low energy consumption. Adsorption is recognized to be one of the most stable wastewater treatment methods and is widely used. Combining solar interface evaporation with adsorption provides a novel and low-cost approach for the efficient removal of heavy metals and organic pollutants from industrial wastewater. This paper reviews the characteristics and application of some common wastewater treatment methods. The photothermal conversion and the conceptual design of interface evaporation combined with adsorption are introduced and the photo-thermal conversion and adsorption methods are discussed. The study provides a summary of recent studies and advancements in interfacial evaporation-coupled adsorption materials, which include hydrogels, aerogels, and biomass materials for adsorption, and carbon materials for photothermal conversion. Finally, the current challenges encountered in industrial wastewater treatment are outlined and its prospects are discussed. The aim of this review is to explore a wide range of possibilities with the interfacial evaporation-coupled adsorption method and propose a new low-cost and high-efficiency method for industrial wastewater treatment.
Collapse
Affiliation(s)
- Juan Li
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaowen Cao
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kuan Ding
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianling Ye
- Hunan Engineering Geology and Mine Geology Survey and Monitoring Institute, Hunan Geological Bureau, Changsha 410114, China
| | - Fenqiang Li
- Hunan Engineering Geology and Mine Geology Survey and Monitoring Institute, Hunan Geological Bureau, Changsha 410114, China
| | - Chenbo Ma
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peihong Lv
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.
| | - Lei Shi
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
46
|
Chávez-García D, Guzman M, Sanchez V, Cadena-Nava RD. Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:755-766. [PMID: 38952416 PMCID: PMC11216081 DOI: 10.3762/bjnano.15.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Water pollution, significantly influenced by the discharge of synthetic dyes from industries, such as textiles, poses a persistent global threat to human health. Among these dyes, methylene blue, particularly prevalent in the textile sector, exacerbates this issue. This study introduces an innovative approach to mitigate water pollution through the synthesis of nanomaterials using biomass-derived carbon quantum dots (CQDs) from grape pomace and watermelon peel. Utilizing the hydrothermal method at temperatures between 80 and 160 °C over periods ranging from 1 to 24 h, CQDs were successfully synthesized. A comprehensive characterization of the CQDs was performed using UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, Raman spectroscopy, and luminescence spectroscopy, confirming their high quality. The photocatalytic activity of the CQDs in degrading methylene blue was evaluated under both sunlight and incandescent light irradiation, with measurements taken at 20 min intervals over a 2 h period. The CQDs, with sizes ranging from 1-10 nm, demonstrated notable optical properties, including upconversion and down-conversion luminescence. The results revealed effective photocatalytic degradation of methylene blue under sunlight, highlighting the potential for scalable production of these cost-effective catalytic nanomaterials for synthetic dye degradation.
Collapse
Affiliation(s)
- Dalia Chávez-García
- Centro de Enseñanza Técnica y Superior (CETYS), Camino Microondas Trinidad KM 1, Las Palmas 3era. Sección., 22860, Ensenada, Baja California, Mexico
| | - Mario Guzman
- Centro de Enseñanza Técnica y Superior (CETYS), Camino Microondas Trinidad KM 1, Las Palmas 3era. Sección., 22860, Ensenada, Baja California, Mexico
| | - Viridiana Sanchez
- Centro de Enseñanza Técnica y Superior (CETYS), Camino Microondas Trinidad KM 1, Las Palmas 3era. Sección., 22860, Ensenada, Baja California, Mexico
| | - Rubén D Cadena-Nava
- Centro de Nanociencias y Nanotecnología (CNYN), Ensenada, Baja California, Mexico
| |
Collapse
|
47
|
Cai Z, Zhan F, Wang Y, Wu M, Kong L, Wang A, Huang Z. Study on Adsorption Characteristics and Water Retention Properties of Attapulgite-Sodium Polyacrylate and Polyacrylamide to Trace Metal Cadmium Ion. Polymers (Basel) 2024; 16:1756. [PMID: 38932105 PMCID: PMC11207512 DOI: 10.3390/polym16121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The adsorption mechanism of superabsorbent polymer (SAP) can provide theoretical guidance for their practical applications in different environments. However, there has been limited research on the mechanism of attapulgite-sodium polyacrylate. This research aimed to compare the Cd(II) adsorption characteristics and water retention properties of organic-inorganic composite SAP (attapulgite-sodium polyacrylate, OSAP) and organic SAP (polyacrylamide, JSAP). Batch experiments were used to investigate the kinetics of Cd(II) adsorption, as well as the thermodynamic properties and factors influencing these properties. The results show that the Cd(II) adsorption capacity was directly proportional to the pH value. The maximum adsorption capacities of OSAP and JSAP were of 770 and 345 mg·g-1. The Cd(II) adsorption for OSAP and JSAP conformed to the Langmuir and the quasi-second-order kinetic model. This indicates that chemical adsorption is the primary mechanism. The adsorption process was endothermic (ΔH0 > 0) and spontaneous (ΔG0 < 0). The water adsorption ratios of OSAP and SAP were 474.8 and 152.6 in pure water. The ratio decreases with the increase in Cd(II) concentration. OSAP and JSAP retained 67.23% and 38.37% of the initial water adsorption after six iterations of water adsorption. Hence, OSAP is more suitable than JSAP for agricultural and environmental ecological restoration in arid and semi-arid regions.
Collapse
Affiliation(s)
- Ziming Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
| | - Feng Zhan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
| | - Yingnan Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (Y.W.); (M.W.); (L.K.); (A.W.)
| | - Meiling Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (Y.W.); (M.W.); (L.K.); (A.W.)
| | - Lingjian Kong
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (Y.W.); (M.W.); (L.K.); (A.W.)
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (Y.W.); (M.W.); (L.K.); (A.W.)
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (Y.W.); (M.W.); (L.K.); (A.W.)
| |
Collapse
|
48
|
Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, Baskar G, Pugazhendhi A. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. ENVIRONMENTAL RESEARCH 2024; 258:119440. [PMID: 38906448 DOI: 10.1016/j.envres.2024.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - G Arnica
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
49
|
Zhou Y, Wang X, Yang Y, Jiang L, Wang X, Tang Y, Xiao L. Enhanced copper removal by magnesium modified biochar derived from Alternanthera philoxeroides. ENVIRONMENTAL RESEARCH 2024; 251:118652. [PMID: 38508361 DOI: 10.1016/j.envres.2024.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Adsorption processes are being widely used by various researchers for the removal of heavy metals from waste streams and biochar has been frequently used as an adsorbent. In this study, a MgO-loaded biochar derived from Alternanthera philoxeroides (MAPB) was synthesized for the removal of Cu(II). Compared with other biochar absorbents, MAPB showed a relatively slow adsorption kinetics, but an effective removal of Cu(II) with a maximum sorption capacity of 1, 238 mg/g. The adsorption mechanism of Cu(II) by MAPB was mainly controlled by chemical precipitation as Cu2(OH)3NO3, complexation and ion replacement. Fixed bed column with MAPB packed in same dosage (1, 000 mg) and different bed depth (1.3, 2.6 and 3.9 cm) showed that the increased of bed depth by mixing MAPB with quartz sand could increase the removal of Cu(II). The fitted breakthrough (BT) models showed that mixing MAPB with support media could reduce the mass transfer rate, increase the dynamic adsorption capacity and BT time. Therefore, MAPB adsorbent act as a highly efficient long-term adsorbent for Cu(II) contaminated water treatment may have great ecological and environmental significance.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaoyu Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yu Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China.
| |
Collapse
|
50
|
Sharma A, Devi I. Animal waste as a valuable biosorbent in the removal of heavy metals from aquatic ecosystem-an eco-friendly approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:606. [PMID: 38856948 DOI: 10.1007/s10661-024-12740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.
Collapse
Affiliation(s)
- Arti Sharma
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Isha Devi
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India.
| |
Collapse
|