1
|
Halder S, Wang Z, Roy PK, Sedighi M. Improving the adsorption properties of low surface area hardwood biochar for the removal of Fe + and PO₄ 3- from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60936-60958. [PMID: 39397234 DOI: 10.1007/s11356-024-35249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Biochar produced from wood residues may provide a new method and material for managing the environment, particularly in terms of carbon sequestration and contaminant remediation. Additionally, biochar produced from wood residues is free of chemical fertilizers, likewise in rice straw, wheat straw, corn straw, etc. This study investigated the removal of iron from aqueous solutions by a novel low-cost and eco-friendly biochar made from hardwood trees and modified by adding MgCl2 for effective phosphate removal. Optimal adsorption conditions were determined through studies of adsorption time, pH, and adsorbent dosage. Batch equilibrium isotherm and kinetic experiments and pre/post-adsorption characterizations using FESEM-EDS, XRD, and FTIR suggested that the presence of carboxyl group elements and colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous iron and phosphate respectively. In this study, the HW and MgO-HW biochar showed excellent Dubinin-Radushkevich isotherm (D-R) maximum adsorption capacities of 289.45 and 828.82 mg/g for iron and phosphate. The kinetic study for iron and phosphate adsorption was described well by pseudo second-order model and pseudo second-order model respectively. The HW biochar and the prepared MgO-HW biochar exhibited commendable iron adsorption (98.25%) performance at 10 pH units and phosphate (96.22%) at pH 6 respectively. Thus, this research reveals a waste-to-wealth strategy by converting hardwood waste into mineral-biomass biochar with excellent Fe and P adsorption capabilities and environmental adaptability.
Collapse
Affiliation(s)
- Sudipa Halder
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom.
- School of Water Resources Engineering, Jadavpur University, Kolkata, India.
| | - Ziheng Wang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Pankaj Kumar Roy
- School of Water Resources Engineering, Jadavpur University, Kolkata, India
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Mostefaoui N, Oturan N, Bouafia SC, Hien SA, Gibert-Vilas M, Lesage G, Pechaud Y, Tassin B, Oturan M, Trellu C. Integration of electrochemical processes in a treatment system for landfill leachates based on a membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168841. [PMID: 38036133 DOI: 10.1016/j.scitotenv.2023.168841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.
Collapse
Affiliation(s)
- Nabil Mostefaoui
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Souad Chergui Bouafia
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313, Yamoussoukro, Côte d'Ivoire
| | - Màxim Gibert-Vilas
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yoan Pechaud
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Bruno Tassin
- Laboratoire Eau Environnement et Systèmes Urbains, LEESU, Ecole des Ponts, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Mehmet Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
3
|
Quansah JO, Obiri-Nyarko F, Karikari AY. Adsorptive removal of dissolved Iron from groundwater by brown coal - A low-cost adsorbent. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104283. [PMID: 38101230 DOI: 10.1016/j.jconhyd.2023.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/05/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Iron (Fe) contamination in groundwater is a widespread issue, necessitating the implementation of efficient removal methods to ensure the provision of safe drinking water. To contribute to the development of effective and sustainable solutions for addressing Fe contamination problems, this study investigated the potential of natural brown coal (BC) as a cost-effective adsorbent for removing dissolved Fe from groundwater. The study also explored the regeneration and reusability potential, as well as the effects of operational parameters, including pH, temperature, adsorbate concentration, and competitive ions, on the adsorption process. The equilibrium data fitted very well with the Langmuir model (R2 = 0.983), yielding a maximum adsorption capacity of 1.41 mg g-1. The adsorption kinetics were well described by the pseudo-second-order kinetic model. Notably, higher solution pH, Fe concentration, and temperature values led to higher Fe removal. The adsorption process exhibited endothermic behaviour, accompanied by an increase in randomness at the interface between the BC and the Fe. The BC was easily regenerated and maintained good adsorption capacity after four cycles of adsorption and regeneration. However, the presence of high-valent cations could affect its performance. Fourier-transform infrared spectrometry, coupled with structural and aqueous solution elemental analyses, revealed a synergetic adsorption mechanism, comprising ion-exchange with mono and divalent basic cations and complexation with functional groups. Overall, these findings highlight the potential of brown coal as a cost-effective adsorbent for Fe removal from groundwater.
Collapse
Affiliation(s)
- Jude Ofei Quansah
- Environmental Chemistry and Sanitation Engineering Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Franklin Obiri-Nyarko
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana.
| | - Anthony Yaw Karikari
- Environmental Chemistry and Sanitation Engineering Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| |
Collapse
|
4
|
López-Campos B, Paniagua SA, Vega-Baudrit JR, Muñoz-Arrieta R, Guerrero-Gutiérrez EMA. Accelerated Cr (VI) removal by a three-dimensional electro-Fenton system using green iron nanoparticles. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10981. [PMID: 38264917 DOI: 10.1002/wer.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Green-synthesized iron nanoparticles (GAP-FeNP) were used as particle electrodes in a three-dimensional electro-Fenton (3DEF) process to accelerate the removal of hexavalent chromium [Cr (VI)]. Removal was evaluated by varying the pH (3.0, 6.0, and 9.0) and initial Cr (VI) concentrations (10, 30, and 50 mg/L) at 5 and 25 min. These results demonstrated that GAP-FeNP/3DEF treatment achieved more than 94% Cr (VI) removal under all tested conditions. Furthermore, it was observed that Cr (VI) removal exceeded 98% under pH 9.0 in all experimental parameters tested. The results of the response surface methodology (RSM) determined two optimal conditions: the first, characterized by a pH of 3.0, Cr (VI) concentration at 50 mg/L, and 25 min, yielded a Cr (VI) removal of 99.7%. The second optimal condition emerged at pH 9.0, with Cr (VI) concentrations of 10 mg/L and 5 min, achieving a Cr (VI) removal of 99.5%. This study highlights the potential of the GAP-FeNP to synergistically accelerate Cr (VI) removal by the 3DEF process, allowing faster elimination and expansion of the alkaline (pH 9.0) applicability. PRACTITIONER POINTS: The required time for >99% of Cr (VI) removal by the GAP-FeNP/3DEF process was shortened from 25 to 5 min. EF process with GAP-FeNP reduces the time necessary for Cr (VI) removal, which is 67% faster than conventional methods. EF process using GAP-FeNP removed >94% of Cr (VI) after 25 min for all initial Cr (VI) concentrations and pH treatments. Cr (VI) removal by the GAP-FeNP/3DEF process was >98% at a pH of 9.0, widening the solution pH applicability.
Collapse
Affiliation(s)
- Brian López-Campos
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - Sergio A Paniagua
- Laboratorio Nacional de Nanotecnología (LANOTEC CeNAT), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores, San José, Costa Rica
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología (LANOTEC CeNAT), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores, San José, Costa Rica
- Laboratorio de Polímeros POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Rodrigo Muñoz-Arrieta
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Alta Tecnología, Consejo Nacional de Rectores (CeNAT-CONARE), San José, Costa Rica
| | - Edward M A Guerrero-Gutiérrez
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| |
Collapse
|
5
|
Ali I, Tan X, Xie Y, Peng C, Li J, Naz I, Duan Z, Wan P, Huang J, Liang J, Rui Z, Ruan Y. Recent innovations in microplastics and nanoplastics removal by coagulation technique: Implementations, knowledge gaps and prospects. WATER RESEARCH 2023; 245:120617. [PMID: 37738942 DOI: 10.1016/j.watres.2023.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.
Collapse
Affiliation(s)
- Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; School of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen 518001, China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhu Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Senathirajah K, Kandaiah R, Panneerselvan L, Sathish CI, Palanisami T. Fate and transformation of microplastics due to electrocoagulation treatment: Impacts of polymer type and shape. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122159. [PMID: 37442330 DOI: 10.1016/j.envpol.2023.122159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The prevalence and adverse impacts of microplastics requires the identification of science-based abatement measures. Electrocoagulation treatment is a cost-effective oxidation process that removes numerous pollutants, including to some extent, microplastics. The performance of a custom-built electrocoagulation reactor was determined by calculating the removal efficiency. The effects of the oxidation process on polymer types (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP)) and shapes (fibres and fragments) were investigated in synthetic wastewater and laundry wastewater. The calculated removal efficiency suggested that electrocoagulation treatment was an effective technology for microplastics abatement. More fibres tended to be removed than fragments, viz. 92% fibres removed versus 88% fragments. The findings also demonstrated that specific polymers were preferentially removed, viz. PET > LDPE > PP > PA. Further analysis indicated that the electrocoagulation treatment affected microplastic polymers physically, viz. flaking and changed surface conditions, as well as chemically, viz. changes in vibrational energies of C-O-C stretching bonds, C=O stretching bonds, C-H stretching bonds and formation of reactive oxygen species (ROS). Our findings indicate that whilst seemingly effective, electrocoagulation treatment induces changes to microplastic polymers that could beneficially lead to degradation, and/or further fragmentation or breakdown and thereby potentially generating more bioavailable toxic nanoplastic byproducts.
Collapse
Affiliation(s)
- Kala Senathirajah
- Environmental and Plastic Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Raji Kandaiah
- Environmental and Plastic Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental and Plastic Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Environmental and Plastic Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thavamani Palanisami
- Environmental and Plastic Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
7
|
Ramadan MM, Moneer AA, El-Mallah NM, Ramadan MSH, Shaker AM. A comparative study for the removal of reactive red 49 (RR49) and reactive yellow 15 (RY15) using a novel electrode by electrocoagulation technique. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractThe present work deals with the investigation of the efficiency of the electrocoagulation (EC) technique in the removal of two different reactive dyes as a simple, durable, and cost-effective technique for wastewater treatment. The difference in structure between Reactive Red 49 (RR49) and Reactive Yellow 15 (RY15) is explored during the treatment process through the use of a novel design of electrodes. The optimum conditions obtained were 80 and 60 mg/L of initial dye concentrations, pH of 5.9 and 4 for RR49 and RY15, respectively, 0.5 g of NaCl electrolyte, and 900 and 500 rpm of stirring rate for RR49 and RY17 dyes respectively, which led to the highest percent removal (98.5%) for both dyes. The suitable temperatures were 20 and 30 °C for RR49 and RY15, respectively. The thermodynamic parameters were designated, and it was a spontaneous process for both dyes. The removal process was designated to pseudo- second-order for the RR49 dye and pseudo- first-order for the RY15 dye and fitted to the Langmuir model. Analysis of Variance (ANOVA) was presented to assess the variation of the outcomes attained from each factor.
Collapse
|
8
|
Mussa ZH, Al-Qaim FF. A non-steroidal drug "diclofenac" is a substrate for electrochemical degradation process using graphite anode. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:461. [PMID: 36905447 DOI: 10.1007/s10661-023-11085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the electrochemical degradation process, the elimination of organic pollutants could be enhanced using supporting electrolyte and applied voltage. After degradation of the target organic compound, some by-products are formed. Chlorinated by-products are the main products formed in the presence of sodium chloride. In the present study, an electrochemical oxidation process has been applied to diclofenac (DCF) using graphite as an anode and sodium chloride (NaCl) as a supporting electrolyte. Monitoring the removal of the by-products and elucidating them were provided using HPLC and LC-TOF/MS, respectively. A high removal% of 94% DCF was observed under the conditions: 0.5 g NaCl, 5 V, and 80 min of electrolysis, while the removal% of chemical oxygen demand (COD) was 88% under the same conditions, but 360 min of electrolysis was required. The pseudo-first-order rate constant values were quite varied based on the selected experimental conditions; the rate constants were between 0.0062 and 0.054 min-1, between 0.0024 and 0.0326 min-1 under the influence of applied voltage and sodium chloride, respectively. The maximum values of energy consumption were 0.93 and 0.55 Wh/mg using 0.1 g NaCl and 7 V, respectively. Some chlorinated by-products, C13H18Cl2NO5, C11H10Cl3NO4, and C13H13Cl5NO5, were selected and elucidated using LC-TOF/MS.
Collapse
Affiliation(s)
| | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Science for Women, University of Babylon, PO Box 4, Hilla, Iraq.
| |
Collapse
|
9
|
Goren A, Recepoğlu YK, Edebali̇ Ö, Sahin C, Genisoglu M, Okten HE. Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation. ACS OMEGA 2022; 7:32640-32652. [PMID: 36119975 PMCID: PMC9476165 DOI: 10.1021/acsomega.2c04304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, electrochemical removal of methylene blue (MB) from water using commercially available and low-cost flexible graphite was investigated. The operating conditions such as initial dye concentration, initial solution pH, electrolyte dose, electrical potential, and operating time were investigated. The Box-Behnken experimental design (BBD) was used to optimize the system's performance with the minimum number of tests possible, as well as to examine the independent variables' impact on the removal efficiency, energy consumption, operating cost, and effluent MB concentration. The electrical potential and electrolyte dosage both improved the MB removal efficiency, since increased electrical potential facilitated production of oxidizing agents and increase in electrolyte dosage translated into an increase in electrical current transfer. As expected, MB removal efficiency increased with longer operational periods. The combined effects of operating time-electrical potential and electrical potential-electrolyte concentration improved the MB removal efficiency. The maximum removal efficiency (99.9%) and lowest operating cost (0.012 $/m3) were obtained for initial pH 4, initial MB concentration 26.5 mg/L, electrolyte concentration 0.6 g/L, electrical potential 3 V, and operating time 30 min. The reaction kinetics was maximum for pH 5, and as the pH increased the reaction rates decreased. Consequent techno-economic assessment showed that electrochemical removal of MB using low-cost and versatile flexible graphite had a competitive advantage.
Collapse
Affiliation(s)
- Aysegul
Yagmur Goren
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Yaşar Kemal Recepoğlu
- Department
of Chemical Engineering, Izmir Institute
of Technology, İ zmir 35430, Turkey
| | - Özge Edebali̇
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Cagri Sahin
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Mesut Genisoglu
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Hatice Eser Okten
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
- Environmental
Development Application and Research Centre, İzmir Institute of Technology, İzmir 35430, Turkey
| |
Collapse
|
10
|
Gong C, Zhang J, Ren X, He C, Han J, Zhang Z. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater. CHEMOSPHERE 2022; 303:135249. [PMID: 35691397 DOI: 10.1016/j.chemosphere.2022.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Electrocoagulation (EC) using iron (Fe), zinc (Zn) and aluminum (Al) electrodes was comparatively applied in the treatment of selenium (Se) in flour production (FP) wastewater. It was indicated that EC treatment with Fe anode obtained highest removal efficiency (79.1%) for Se in the 90 min treatment in the comparative study, which could be attributed to the superior adsorption capacity of in-situ generated iron flocs. Removal of Se resulted from electrodeposition and adsorption to in-situ generated flocs in EC treatment, and the operational conditions significantly influenced the Se removal performance in this work. The results showed the acidic condition and higher current density favored EC treatment on Se removal, EC removed up to 97.8% of Se at pH 4 under 15 mA cm-2, whereas it obtained 83.5% and 50.4% of removal efficiency at pH 7 and 10, respectively. There was competitive adsorption in the process of selenium removal, as the in-situ generated flocs effectively removed 35.6% of humic acid-like (HA-like) substance in FP wastewater after 90 min treatment. The FTIR results showed that HA-like substance mainly contained the protein water hydrogen bond, carboxylate COO antisymmetric stretching and other functional groups. Through the analysis of existence of Se in flocs and wastewater, it can be found that approximately 2.8%-3.92% of Se was removed by electrodeposition process. This study illustrated the Se removal mechanism and provided constructive suggestion for food manufacturing to the metal removal and utilization of advanced treatment.
Collapse
Affiliation(s)
- Chenhao Gong
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
| | - Jian Zhang
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Xiaojing Ren
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Can He
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Junxing Han
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Zhongguo Zhang
- Institute of Resource and Environment, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
| |
Collapse
|
11
|
Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer. Polymers (Basel) 2022; 14:polym14122486. [PMID: 35746063 PMCID: PMC9227031 DOI: 10.3390/polym14122486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
A novel cross-linked Copolymer (MXM) was synthesized by the polycondensation reaction of 3,6-Diaminocarbazole and piperazine with p-formaldehyde as a cross-linker. The Copolymer was fully characterized by solid 13C-NMR and FT-IR. The thermal stability of MXM was investigated by TGA and showed that the Copolymer was stable up to 300 °C. The synthesized polyamine was tested for the removal of iron (Fe2+), lead (Pb2+), and copper (Cu2+) ions from aqueous and industrial wastewater solutions. The effect of pH, concentration and time on the adsorption of iron (Fe2+), lead (Pb2+), and copper (Cu2+) ions was investigated. The adsorption of the studied ions from aqueous solutions onto the MXM polymer occurs following the Freundlich isotherm and pseudo-second-order kinetic models. The intraparticle diffusion model showed that the adsorption mechanism is controlled by film diffusion. The regeneration of MXM showed practical reusability with a loss in capacity of 2–5% in the case of Fe2+ and Cu2+ ions. The molecular simulation investigations revealed similarities between experimental and theoretical calculations. Industrial wastewater treatment revealed the excellent capabilities and design of MXM to be a potential adsorbent for the removal of heavy metal ions.
Collapse
|
12
|
Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Benguit A, Tiwari B, Drogui P, Landry D. Tertiary treatment of a mixture of composting and landfill leachates using electrochemical processes. CHEMOSPHERE 2022; 292:133379. [PMID: 34958788 DOI: 10.1016/j.chemosphere.2021.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The study investigated the treatment efficiency of coupled electrocoagulation (EC) and electrooxidation (EO) processes for landfill leachate treatment in batch and continuous mode. The EC process (iron anode and graphite cathode) at 18.2 mA/cm2 for 2.5 min resulted in COD, turbidity, total phosphorus, total coliforms and fecal coliforms removal of 58.1, 72.9, 98.5, 97.9, and 97.2% respectively. Under the same operating conditions, the coupled EC/EO (Ti-Pt anode, bipolar iron electrode, and graphite cathode) processes showed that the COD, turbidity, total phosphorus, total coliforms, and fecal coliforms removal of 56.5%, 78.3%, 96.3%, 97.2% and fecal coliforms 72.7%, respectively. The energy costs associated with the EC and EC/EO were 0.11 and 0.25 $/m3, respectively. Compared to the batch configuration, the continuous configuration of EC resulted in similar processing performance. However, the EC/EO process resulted in the production of chlorates, perchlorates, and trihalomethanes as by-products. Moreover, the continuous process slightly increases the pH and ammonia concentration of the leachate and also resulted in the metallic sludge production with an average dryness of 4.2%. The toxicity tests determined that the treated effluent was not toxic to Rainbow trout and Daphnia.
Collapse
Affiliation(s)
- Alae Benguit
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Bhagyashree Tiwari
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Dany Landry
- Englobe Company, Englobe Corp., 505 Boul. de Parc Technologique, Québec, QC, G1P 4S7, Canada
| |
Collapse
|
14
|
Minimizing the Fluoride Load in Water Using the Electrocoagulation Method: An Experimental Approach. ENVIRONMENTS 2022. [DOI: 10.3390/environments9030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The abundant presence of fluoride (F-) in surface water bodies is an environmental concern because of its effects on human health; medical reports confirmed that fluoride intake above 1.5 mg/L leads to many health complications, including but not limited to weak bones and enamel fluorosis. Thus, the World Health Organisation (WHO) defines 1.20 mg/L as the maximum permissible F- concentration in drinking water. The electrocoagulation method (EC) is globally practised to remove many pollutants from water due to its cost-effectiveness, safety, and ease of use. However, EC has some drawbacks, such as the lack of reactors’ design. In this study, a new EC reactor, which uses four drilled aluminium electrodes and a variant cross-section section container, was designed and used to remove F- from water. The design of the new EC eliminated the need for water mixers. The ability of the new EC unit to remove F- from synthetic water was evaluated at different current densities (CD) (1–3 mA/cm2), electrode distances (ELD) (5–15 mm), pH of the solution (pHoS) (4–10), and initial F- concentrations (IFC) (5–20 mg/L). The outcomes of this study prove that the new reactor could remove as much as 98.3% of 20 mg/l of F- at CD, ELD, pHoS, and IFC of 2 mA/cm2, 5 mm, and 4 and 10 mg/L, respectively.
Collapse
|
15
|
Choudhury MR, Rajagopal R, Meertens W, Rahaman MS. Nitrogen and organic load removal from anaerobically digested leachate using a hybrid electro-oxidation and electro-coagulation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114761. [PMID: 35276557 DOI: 10.1016/j.jenvman.2022.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the performance of an integrated electrochemical process, which simultaneously utilizes electro-oxidation (EO) and electro-coagulation (EC) methods while removing organic and nitrogen loads from high-strength leachate obtained from anaerobic digesters. A bipolar arrangement of the aluminum electrode, sandwiched between a monopolar boron-doped diamond anode and stainless-steel cathode, integrates EC and EO into a single reactor. This arrangement demonstrated an enhancement of 33%, 27%, and 24% in removal capacity for ammonia nitrogen (AN), total Kjeldahl nitrogen (TKN), and total nitrogen, respectively, when compared to just EO at 0.8 A current intensity after 24 h. Increasing the current intensity from 0.4 A to 1.0 A enhanced the organic nitrogen and AN removal. Chemical oxygen demand (COD) exhibited initial faster removal kinetics with higher current intensities and eventually reached 95%-98% removal for intensities of 0.6 A or higher. Additional removal for AN, TKN were also observed with increasing current intensity. Lowering the pH further expedited the COD removal kinetics. Reducing and maintaining the pH at 4, 6, and 8 by dosing of hydrochloric acid (HCl) resulted in the 100% removal of AN and TKN from the integrated system in 6, 8, and 20 h, respectively. Accelerated removal of COD and the enhanced removal of AN and TKN through pH control could be linked to the formation of active chlorine species in bulk solution. The integrated system offered lower energy consumption than EO due to oxidation on the additional anodic surface of the bipolar electrode, as well as the adsorption-precipitation of contaminants in aluminum flocs.
Collapse
Affiliation(s)
- Mahbuboor Rahman Choudhury
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 Boul de Maisonneuve Ouest, Montreal, PQ H3G 1M8, Canada; Department of Civil and Environmental Engineering, School of Engineering, Manhattan College, 3825 Corlear Ave, The Bronx, NY, 10463, United States
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Wesley Meertens
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 Boul de Maisonneuve Ouest, Montreal, PQ H3G 1M8, Canada
| | - Md Saifur Rahaman
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7, QC, Canada.
| |
Collapse
|
16
|
Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15252-15281. [PMID: 34978675 DOI: 10.1007/s11356-021-18348-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Mukul Bajpai
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| | - Surjit Singh Katoch
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Adarsh Singh
- Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
17
|
Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. WATER 2022. [DOI: 10.3390/w14010123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation (PREC) treatment of two typical azo dyes with different functional groups, involving methyl orange (MO) and alizarin yellow (AY), using Fe-Fe electrodes. Based upon the comparative analysis of three main parameters, including current intensity, pH, and electrolyte, the optimal color removal rates for MO and AY could be achieved at a rate of up to 98.7% and 98.6%, respectively, when the current intensity is set to 0.6 A, the pH is set at 6.0, and the electrolyte is selected as NaCl. An accurate predicted method of response surface methodology (RSM) was established to optimize the PREC process involving the three parameters above. The reaction time was the main influence for both azo dyes, while the condition of PREC treatment for AY simulated wastewater was time-saving and energy conserving. According to the further UV–Vis spectrophotometry analysis throughout the procedure of the PREC process, the removal efficiency for AY was better than that of MO, potentially because hydroxyl groups might donate electrons to iron flocs or electrolyze out hydroxyl free radicals. The present study revealed that the functional groups might pose a vital influence on the removal efficiencies of the PREC treatment for those two azo dyes.
Collapse
|
18
|
Kang J, Li J, Ma C, Yi L, Gu T, Wang J, Liu S. Goethite/montmorillonite adsorption coupled with electrocoagulation for improving fluoride removal from aqueous solutions. RSC Adv 2022; 12:7475-7484. [PMID: 35424705 PMCID: PMC8982263 DOI: 10.1039/d1ra08503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
A new material GMS is produced as electrodes in the electrocoagulation (EC) process for F− removing from aqueous environments. The removal rate reaches 99.47% through the EC/GMS. Adsorption and co-precipitation are the main F− removal pathways.
Collapse
Affiliation(s)
- Jiali Kang
- School of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, PR China
| | - Junfeng Li
- School of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, PR China
| | - Chengxiao Ma
- School of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, PR China
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832003, PR China
| | - Tiantian Gu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832003, PR China
| | - Jiankang Wang
- School of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, PR China
| | - Shenglin Liu
- Xinjiang Western Eclogue Agricultural Science and Technology Co. Ltd, Shihezi 832000, PR China
| |
Collapse
|
19
|
Ganzoury MA, Ghasemian S, Zhang N, Yagar M, de Lannoy CF. Mixed metal oxide anodes used for the electrochemical degradation of a real mixed industrial wastewater. CHEMOSPHERE 2022; 286:131600. [PMID: 34346334 DOI: 10.1016/j.chemosphere.2021.131600] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Mixed industrial wastewaters are often highly contaminated with heavy metals and organic pollutants. Treating these mixed wastewaters requires many stagewise unit operations. Our work investigates using an electrochemical oxidation-in-situ coagulation (ECO-IC) process as a pre-treatment step toward the efficient treatment of real mixed industrial wastewater rich with heavy metals and organic contaminants. The process degraded organic contaminants in the wastewater via anodic electrochemical oxidation. Simultaneously, heavy metals were precipitated in the solution by coagulants (iron hydroxides) formed in-situ by cathode-generated hydroxyl ions reacting with the significant amounts of dissolved iron in the wastewater. IrO2-RuO2 mixed metal oxide anodes were identified as the best electrodes for organic compound degradation demonstrating 97% degradation of methyl orange (MO) as a model compound within 15 min. These anodes were used to treat real industrial wastewater produced from the industrial cleaning of train tanker cars transporting industrial solvents. The electrochemical treatment experiments resulted in a treated solution with a lower heavy metal content, achieving 96% reduction in Fe and 30% reduction in As content. Only moderate decreases in organic content were observed up to a maximum of 13% reduction in total organic carbon after 1 h of treatment. Electrochemical treatment of the mixed industrial wastewater produced greater effective diameter of the suspended particles and distinct sediment, liquid, and suspended foam phases that could be easily separated for further treatment. ECO-IC shows promise as an efficient and chemical-free method to coagulate heavy metals in real industrial wastewaters and could be an effective pre-treatment in their separation.
Collapse
Affiliation(s)
- Mohamed A Ganzoury
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | - Saloumeh Ghasemian
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | - Nan Zhang
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | | | | |
Collapse
|
20
|
Mohamad Z, Razak AA, Krishnan S, Singh L, Zularisam A, Nasrullah M. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Al-Raad AA, Hanafiah MM. Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113696. [PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
Collapse
Affiliation(s)
- Abbas A Al-Raad
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia; Ababil School, Al-Muthanna Education Directorate, Samawa, 66001, Iraq
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
22
|
Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118877] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Xu T, Zheng X, Zhou Y, Zhu C, Hu B, Lei X, Zhang X, Yu G. Study on the treatment of Cu 2+-organic compound wastewater by electro-Fenton coupled pulsed AC coagulation. CHEMOSPHERE 2021; 280:130679. [PMID: 34162078 DOI: 10.1016/j.chemosphere.2021.130679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Electro-Fenton (EF) coupled with Pulsed alternating current coagulation (PACC) is an effective technology for the treatment of Cu2+-organic wastewater. In this study, the removal efficiency (Re), electrical energy consumption (EEC) and removal mechanism of Cu2+-organic were analyzed and the optimal operation parameters were determined. SEM, EDS, XRD and FTIR were used to characterize the morphology, elemental composition, crystal structure, function groups of sludge produced in the EF-PACC. UV, ESR and GC-MS were employed to determine concentration of organic matter, existence of OH, middle products of decomposed organic matter in EF-PACC, respectively. The results show that under the optimal conditions of initial pH = 2.5, current density (j) = 2 A/m2, initial c(Cu2+) = 50 mg/L, c(chemical oxygen demand, COD) = 500 mg/L, c[H2O2] = 10 mL/L, frequency (f) = 1 Hz, t = 20 min, the Re(Cu2+) can reach 99.59%. Re(COD) is 90.21%, EEC 1.695 × 10-1 kWh/m3, and the amount of produced sludge (Ws) is 0.9283 kg/m3. Compared with single EF and PACC processes, the order of treatment efficiency is EF-PACC > EF > PACC. EF-PACC technique was a highly effective method in the treatment of Cu2+-organic compound wastewater. The EF-PACC coupled process includes that electrolyzed Fe3+ produces electrocoagulation and OH produces degradation of organic compounds. The combined action of the two effects can effectively remove Cu2+-organic from wastewater.
Collapse
Affiliation(s)
- Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaotong Zheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyou Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421008, China.
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd, Changsha, 410000, China
| | - Xueyuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
24
|
Que NH, Kawamura Y, Watari T, Takimoto Y, Yamaguchi T, Suematsu H, Niihara K, Wiff JP, Nakayama T. Nanosecond pulse used to enhance the electrocoagulation of municipal wastewater treatment with low specific energy consumption. ENVIRONMENTAL TECHNOLOGY 2021; 42:2154-2162. [PMID: 31752629 DOI: 10.1080/09593330.2019.1694082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
This study compares the performance of nanosecond pulse (NSP) and direct current (DC) power supplies for use in a municipal wastewater treatment by electrocoagulation (EC). Four Al plates connected in monopolar-parallel configuration (MP-P) were used as electrodes during the EC process. The maximum chemical oxygen demand (COD) removal efficiency reached 68% and 80% using DC and NSP, respectively. Moreover, NSP treatment reduced approximately 15% of the specific energy consumption (SEC) compared with that by DC at a similar COD removal efficiency of ≈ 68%, which was used as a benchmark value. In addition, when using NSP, the SEC required to increase the COD removal efficiency from 60% to 68% was two to three times less than that when DC was applied. The results suggest that an NSP operating at 10 kHz frequency (f) and 1 µs pulse width (pw) are preferred for obtaining higher COD removal efficiencies at a low SEC. The use of an NSP for EC can enhance the COD removal efficiency and reduce the wastewater treatment SEC. The results presented herein promote the use of EC systems combined with renewable energy sources for reducing the net carbon footprint of wastewater processing.
Collapse
Affiliation(s)
- Nguyen Ho Que
- Extreme Energy-Density Research Institute, Nagaoka University of Technology, Niigata, Japan
| | - Yuta Kawamura
- Extreme Energy-Density Research Institute, Nagaoka University of Technology, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuya Takimoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Hisayuki Suematsu
- Extreme Energy-Density Research Institute, Nagaoka University of Technology, Niigata, Japan
| | - Koichi Niihara
- Extreme Energy-Density Research Institute, Nagaoka University of Technology, Niigata, Japan
| | - Juan Paulo Wiff
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Tadachika Nakayama
- Extreme Energy-Density Research Institute, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
25
|
Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M, Al-Khaddar R. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143417. [PMID: 33168242 DOI: 10.1016/j.scitotenv.2020.143417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The process of Electrocoagulation (EC), the in-situ production of coagulants by passing an electric current through sacrificial electrodes, is free of chemical additives and cost-effective. This makes it the most widely used water and wastewater treatment method. However, the literature highlights some significant drawbacks of this method including EC unit design limitations. This research therefore aimed to develop a new EC unit design using drilled plates (electrodes) to mix the solution being treated without using external mixers, this minimising power consumption. The performance of the new EC unit was validated by applying it to remove iron from water taking into account the effects of applied current density (ACD), the pH of the water (PoW), iron concentration (IC) and treatment time (TT). The effects of these parameters were optimised using the Box-Behnken model. Synthetic water samples containing different concentrations of iron (10-30 mg/l), were treated in a continuous flow, using the new EC reactor at different ACD (1.5-4.5 mA/cm2), PoW (4-10) and TT (10-50 min). The results revealed that the removal of 99.9% of iron was achieved by keeping PoW, ACD, IC and TT at 7, 3 mA/cm2, 10 mg/l and 50 min, respectively. The effects of ACD, POW, IC and TT on iron removal could be successfully simulated with R2 = 0.9788. The cost of removing iron using the proposed EC unit was 0.623 £/m3.
Collapse
Affiliation(s)
- B Abdulhadi
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom; Department of Environmental Engineering, University of Babylon, Iraq
| | - P Kot
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom.
| | - K Hashim
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom; Department of Environmental Engineering, University of Babylon, Iraq
| | - A Shaw
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom
| | - M Muradov
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom
| | - R Al-Khaddar
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, United Kingdom
| |
Collapse
|
26
|
Al-Qodah Z, Tawalbeh M, Al-Shannag M, Al-Anber Z, Bani-Melhem K. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140806. [PMID: 32717462 DOI: 10.1016/j.scitotenv.2020.140806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
A novel approach using the integration of electrocoagulation, with one or more treatment processes has been recently practiced to improve the removal of colloidal and non-biodegradable pollutants. Several treatment processes including adsorption, chemical coagulation, magnetic field, reverse osmosis, and membrane filtration have been combined with electrocoagulation treatment step to improve pollutants removal efficiency. These combined systems showed the potential to improve the performance of the treatment process. This paper presents a state-of-the-art review for the recent processes available in the literature that combine treatment electrocoagulation with one of the previously mentioned treatment processes. It is found that the removal efficiency of any combined processes is higher than that of any single treatment process and the combined process has up to 20% higher removal efficiency compared to electrocoagulation alone. However, most reported studies were conducted at bench-scale level with synthetic wastewater instead of real wastewater. The main aspects of these combined systems including process mechanism, kinetic models, cost and the scale up of combined processes were discussed and summarized. Finally, several concluding remarks were drawn in view of the literature investigations and the gaps that suggest more studies and insights for future development were addressed.
Collapse
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Al-Balqa Applied University, 11134 Amman, Jordan
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mohammad Al-Shannag
- Department of Chemical Engineering, School of Engineering, The University of Jordan, 11942 Amman, Jordan; Jordan Uranium Mining Company, 11953 Amman, Jordan.
| | - Zaid Al-Anber
- Chemical Engineering Department, Al-Balqa Applied University, 11134 Amman, Jordan
| | - Khalid Bani-Melhem
- Department of Water Management and Environment, Faculty of Natural Resources and Environment, The Hashemite University, Al-Zarqa, Jordan
| |
Collapse
|
27
|
Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrodes: Process Optimization Using CCD and Kinetic Modeling. WATER 2020. [DOI: 10.3390/w12102876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Threats due to insufficient, inadequate and costlier methods of treating contaminants such as arsenic have emphasized the significance of optimizing and managing the processes adopted. This study was aimed at the complete elimination of arsenic from an aqueous medium with minimum energy consumption using the electrocoagulation process. Arsenic removal around 95% was rapidly attained for optimized conditions having a pH of 7, 0.46 A current intensity, 10 mg/L initial concentration and only 2 min of applied time duration using the energy of 3.1 watt-hour per gram of arsenic removed. Low values of applied current for longer durations resulted in the complete removal of arsenic with low energy consumption. Various hydroxide complexes including ferrous hydroxide and ferric hydroxide assisted in the removal of arsenic by adsorption along with co-precipitation. Surface models obtained were checked and found with a reasonably good fit having high values of coefficient of determination of 0.933 and 0.980 for removal efficiency and energy consumption, respectively. Adsorption was found to follow pseudo-first-order kinetics. Multivariate optimization proved it as a low-cost effective technology having an operational cost of 0.0974 Indian rupees (equivalent to USD 0.0013) per gram removal of arsenic. Overall, the process was well optimized using CCD based on response surface methodology.
Collapse
|
28
|
The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent-A Case Study Company Gutra, Czech Republic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197225. [PMID: 33023188 PMCID: PMC7578924 DOI: 10.3390/ijerph17197225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022]
Abstract
This article deals with the possibility of using a biosorbent in the form of a mixture of cones from coniferous trees to remove the residual concentration of hazardous metals contained in hazardous waste, which is disposed of in a neutralization station. The efficiency of the tested biosorbent in removing Ni, Zn, Cu, and Fe was monitored here. Laboratory research was carried out before the actual testing of the biosorbent directly in the operation of the neutralization station. With regard to the planned use of the biosorbent in the operational test, the laboratory experiments were performed in a batch mode and for the most problematic metals (Ni and Zn). The laboratory tests with real wastewater have shown that the biosorbent can be used to remove hazardous metals. Under the given conditions, 96% of Ni and 19% of Zn were removed after 20 min when using NaOH activated biosorbent with the concentration of 0.1 mol L−1. The inactivated biosorbent removed 93% of Ni and 31% of Zn. The tested biosorbent was also successful during the operational tests. The inactivated biosorbent was applied due to the financial costs. It was used for the pre-treatment of hazardous waste in a preparation tank, where a significant reduction in the concentration of hazardous metals occurred, but the values of Ni, Cu, and Zn still failed to meet the emission limits. After 72 h, we measured 10 mg L−1 from the original 4,056 mg L−1 of Ni, 1 mg L−1 from the original 2,252 mg L−1 of Cu, 1 mg L−1 from the original 4,020 mg L–1 of Zn, and 7 mg L−1 from the original 1,853 mg L−1 of Fe. However, even after neutralization, the treated water did not meet the emission limits for discharging into the sewer system. The biosorbent was, therefore, used in the filtration unit as well, which was placed in front of the Parshall flume. After passing through the filtration unit, the concentrations of all the monitored parameters were reduced to a minimum, and the values met the prescribed emission limits. The biosorbent was further used to thicken the residual sludge in the waste pre-treatment tank, which contributed to a significant reduction in the overall cost of disposing of residual hazardous waste. This waste was converted from liquid to solid-state.
Collapse
|
29
|
Patel SR, Parikh SP. Statistical optimizing of electrocoagulation process for the removal of Cr(VI) using response surface methodology and kinetic study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
30
|
Mateen QS, Khan SU, Islam DT, Khan NA, Farooqi IH. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1350-1362. [PMID: 32198904 DOI: 10.1002/wer.1332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
In the present work, electrocoagulation was applied for copper removal from aqueous solution employing iron electrodes in a cylindrical reactor. A four-factorial central composite design (CCD) based on response surface methodology (RSM) was applied to study the effect of various process parameters on removal efficiency and energy consumption as the responses. On optimization, maximum removal efficiency up to 95% was attained with energy consumption as 0.903 W-hour per gram removal of Cu (II) at applied current 0.26 A, initial copper concentration of 27.8 ppm, application time of 5.4 min and pH 7. The interaction between the process variables was evaluated by using the obtained 3-D plots. The models generated were validated by analysis of variance (ANOVA). Studies carried on Cu (II) removal rate showed adsorption suited pseudo-Ist order kinetics best. Overall, the electrocoagulation process proved efficient, low cost and a promising alternative to conventional treatment procedures in removing Cu (II). PRACTITIONER POINTS: Adsorption over hydroxide/polyhydroxide complexes of Fe assisted in enhanced removal of Cu (II) by EC. Higher concentrations treated at lower current but longer duration reduces energy. pH was found to be the deterministic factor for coagulation. CCD-based optimization reduced energy consumption substantially.
Collapse
Affiliation(s)
- Qazi Shabihul Mateen
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, India
| | - Saif Ullah Khan
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, India
| | - Dar Tafazul Islam
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Nadeem Ahmad Khan
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| | - Izharul Haq Farooqi
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
31
|
Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH). WATER 2020. [DOI: 10.3390/w12082303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Occurrence of heavy metals in freshwater sources is a grave concern due to their severe impacts on public health and aquatic life. Cadmium (Cd2+) is one of the most dangerous heavy metals, and can cause serious diseases even at low concentrations. Hence, a wide range of treatment technologies exist, such as nanofiltration and biological reactors. In this context, the present investigation aims at the development of a new adsorption medium, made from chicken bones coated with iron (Fe) and magnesium (Mg) hydroxides, to remove cadmium from water. This novel chicken bone functional substance was manufactured by applying layered double hydroxides (LDH) into the chicken bones. Initially, the new adsorption medium was characterized using Fourier-transform infrared spectroscopy (FTIR technology), then it was applied to remove cadmium from water under different conditions, including pH of water (3–7.5), agitation speed (50–200 rpm), adsorbent dose (1–20 g per 100 mL), and contact time (30–120 min). Additionally, the reaction kinetics were studied using a pseudo-first order kinetic model. The results obtained from the present study proved that the new adsorption medium removed 97% of cadmium after 120 min at an agitation speed of 150 rpm, pH of 5, and adsorption dose of 10 g per 100 mL. The results also showed that the new adsorption medium contains a significant number of functional groups, including hydroxyl groups. According to the outcomes of the kinetic study, the mechanism of removing metal is attributed to surface precipitation, ion exchange, complexation, hydrogen binding between pollutants, and the LDH-chicken bone substance.
Collapse
|
32
|
Aqeel K, Mubarak HA, Amoako-Attah J, Abdul-Rahaim LA, Al Khaddar R, Abdellatif M, Al-Janabi A, Hashim KS. Electrochemical removal of brilliant green dye from wastewater. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/888/1/012036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Huang L, Yang Z, He Y, Chai L, Yang W, Deng H, Wang H, Chen Y, Crittenden J. Adsorption mechanism for removing different species of fluoride by designing of core-shell boehmite. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122555. [PMID: 32248029 DOI: 10.1016/j.jhazmat.2020.122555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Many kinds of adsorbents have been developed for removing fluoride from water. However, the unclear actual mechanism of fluoride adsorption greatly restricts the structural design and application of novel adsorbents. Based on the understanding of the interaction between hydroxyl and fluoride, a novel core-shell nanostructure of boehmite was synthesized via an in-situ-induced assembly for removing fluoride. The formed polycrystalline boehmite (γ-AlOOH) nanostructure significantly enhances adsorption performance. The transformation of fluoride forms (including F-, HF, HF2-) is closely related to the solution property. The acidic solution is more favorable, mainly because of the conversion of HF (pyrazine) and HF2- (the bifluoride ion) with a strong hydrogen bond effect from fluoride (F-) with pH < 3.18. The lattice plane of (0 0 2) belongs to the dominant face for removing fluoride in this structure. According to the experimental and theoretical calculation, strong bonding of Al, O and H sites with fluoride species (F-, HF, HF2-) in acidic solution are demonstrated, but not in alkaline solution due to OH- interference. The possible mechanism of fluoride adsorption on boehmite (AlOOH) structures is proposed. Our findings show a new potential prospect of structural designing for novel fluoride adsorbent.
Collapse
Affiliation(s)
- Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0355, United States
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0355, United States.
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0355, United States
| |
Collapse
|
34
|
Kong X, Zhou Y, Xu T, Hu B, Lei X, Chen H, Yu G. A novel technique of COD removal from electroplating wastewater by Fenton-alternating current electrocoagulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15198-15210. [PMID: 32067174 DOI: 10.1007/s11356-020-07804-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The present study employs a novel technique combining Fenton reaction with sinusoidal alternating current electrocoagulation (FSACEC), which is used to remove chemical oxygen demand (COD) in the simulated electroplating wastewater with the advantages of low energy consumption and small sludge. Fe2+, produced from the dissolution of Fe anodes in the FSACEC process, reacts with H2O2 to generate more ·OH and forms the iron hydroxide precipitates. The higher efficiency of COD removal is achieved through both effects of the oxidation reaction and the physical adsorption. The scanning electron microscopy (SEM) analysis shows that the particle size of FSACEC products is between 30 and 40 nm, which is less than the Fenton-direct current electrocoagulation products. The effect of the current concentration (IV), initial pH (pH0), and the addition of hydrogen peroxide (30% H2O2) was discussed on the optimal process parameters. In pH0 2.0 wastewater, applying current concentration of 1 A dm-3, the addition 20 cm3 dm-3 30% H2O2, the removal efficiency of COD reached 94.21% and the residual COD in wastewater was only 60 mg dm-3 after 90 min of operation. In order to investigate the maximum removal efficiency in a certain period of operation, the larger current concentration is applied to remove COD. The FSACEC process exhibits the higher removal COD efficiency and wider operation range of pH0 than the single Fenton technique. The FSACEC process is in accordance with the kinetic law of the pseudo-second-order kinetic adsorption model.
Collapse
Affiliation(s)
- Xiangyu Kong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bonian Hu
- Departments of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421008, China.
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd, Changsha, 410100, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China.
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
35
|
Koyuncu S, Arıman S. Domestic wastewater treatment by real-scale electrocoagulation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:656-667. [PMID: 32460270 DOI: 10.2166/wst.2020.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, domestic wastewaters originating from a settlement with a population of 17,500 were treated by electrocoagulation process in a real-scale EC plant and the economic applicability of the process was investigated. The removal efficiencies of control parameters in the influent and effluent of the real-scale treatment plant such as suspended solids (SS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and changes of pH and conductivity parameters were monitored for 12 months. The obtained data were evaluated according to European Urban Wastewater Treatment Directive, Turkish Water Pollution Control Regulation and Turkish Urban Wastewater Treatment Regulation. According to the results obtained, the removal efficiencies of the pollutant parameters were achieved in the range of 72-83% for SS, 67-80% for COD, 69-81% for BOD, 21-47% for TN and 27-46% for TP. Considering the Turkish wastewater discharge regulations, it can be concluded that the discharge standards for SS, COD and BOD parameters were achieved while they were not achieved in certain periods for TN and TP. In addition, the energy consumption and the operating cost of this real-scale plant were determined to be 0.49-0.54 kWh/m3 and 0.24-0.28 EUR/m3, respectively.
Collapse
Affiliation(s)
| | - Sema Arıman
- Department of Meteorological Engineering, Samsun University, Samsun, Turkey E-mail:
| |
Collapse
|
36
|
Hashim KS, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R, Aljefery MH. Electrocoagulation as an Eco-Friendly River Water Treatment Method. LECTURE NOTES IN CIVIL ENGINEERING 2020. [DOI: 10.1007/978-981-13-8181-2_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Nazlabadi E, Alavi Moghaddam MR, Karamati-Niaragh E. Simultaneous removal of nitrate and nitrite using electrocoagulation/floatation (ECF): A new multi-response optimization approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109489. [PMID: 31505385 DOI: 10.1016/j.jenvman.2019.109489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
This study aims to remove both nitrate and nitrite from wastewater as well as modeling and simultaneous optimizing the electrocoagulation/floatation (ECF) process with 3 responses, namely, the residual nitrate, the residual nitrite and the operating costs; so that all responses meet the standard limitations. For this purpose, 57 experiments designed by the response surface method (RSM) were carried out. The effect of selected variables, including initial pH, current intensity, initial nitrate concentration, number of electrodes, reaction time and their interactions were evaluated. The analysis of variance (ANOVA) confirmed that the predicted equations were in reasonable agreement with the experimental data for three responses. To reach a new multi-response optimization approach, a code was developed in MATLAB software, which was applied to optimize the responses all together. Eight optimized conditions were obtained in accordance with the residual nitrate and the residual nitrite of less than 50 mg/L and 10 mg/L, respectively, and the limited operating costs to 10 ± 0.05 US$/(kg NO3-removed).
Collapse
Affiliation(s)
- Ebrahim Nazlabadi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Elnaz Karamati-Niaragh
- Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
38
|
Syam Babu D, Anantha Singh TS, Nidheesh PV, Suresh Kumar M. Industrial wastewater treatment by electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1671866] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - T. S. Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deenadayal Petroleum University, Gujarat, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M. Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|
39
|
Singh S, Mahesh S, Sahana M. Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater-clean water reclamation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12813-12827. [PMID: 30888620 DOI: 10.1007/s11356-019-04789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) batch ECC of raw health care facility wastewater (HCFWW) was adopted using stainless steel (SS) and aluminum (Al) scrap metal particle electrodes. ECC treatment was focused on priority quality parameters viz., chemical oxygen demand (COD), color, and other important water quality parameters. Sludge settling and filterability for post-ECC slurry were investigated after ECC. COD removals of 87.56 and 87.2% were achieved for current densities (CD) 83.33 and 125 A/m2 using SS-3D electrodes, and similarly, 86.99 and 86.23% COD removal for Al-3D electrodes. Simultaneously, color removals were 88.50 and 87.60% for CD 166.66 A/m2 (4A) using SS and Al-3D electrodes. Water quality parameters viz., nitrate, phosphates, and sulfate were also removed by 93.18%, 96.83%, and 41.07% for SS-3D electrodes, while Al-3D electrodes showed 93.15%, 96.72%, and 25.94% removal. Post-ECC slurry settling was good for all the applied CD using SS-3D electrodes generating dense and sturdy flocs. Al-3D electrodes showed excellent floc settling properties. SS-3D electrode flocs displayed good filterability at 1A with α: 2.497 × 1011 m kg-1 and Rm 1.946 × 1010 m-1. Post-ECC slurry using Al-3D electrodes were viscous causing delayed filterability giving α: 1.1760 × 1011 m kg-1 and Rm 1.504 × 109 m-1 for 3A. E. coli was destroyed by 97 and 98% for 2A and 3A respectively. Clear water reclamation of 85-90% and pollutants/contaminants removed within a short HRT of 75 min proved the effectiveness of adopting 3D-ECC for treating raw HCFWW.
Collapse
Affiliation(s)
- Sujit Singh
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka State, 570006, India.
| | - Shivaswamy Mahesh
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka State, 570006, India
| | - Mahesh Sahana
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka State, 570006, India
| |
Collapse
|
40
|
A simple method to determine tramadol using a coated-wire electrode as a detector in the flow injection analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Mahasti NN, Shih YJ, Huang YH. Removal of iron as oxyhydroxide (FeOOH) from aqueous solution by fluidized-bed homogeneous crystallization. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Hashim KS, Al Khaddar R, Jasim N, Shaw A, Phipps D, Kot P, Pedrola MO, Alattabi AW, Abdulredha M, Alawsh R. Electrocoagulation as a green technology for phosphate removal from river water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.056] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Karamati-Niaragh E, Alavi Moghaddam MR, Emamjomeh MM, Nazlabadi E. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:245-254. [PMID: 30292013 DOI: 10.1016/j.jenvman.2018.09.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the effects of alternating current (AC) and direct current (DC) for nitrate removal and its operating costs by using a continuous electrocoagulation (CEC) process. For this purpose, two series of 31 experiments, which were designed by response surface method (RSM), were carried out in both cases of the AC and the DC modes. In each series, the effect of selected parameters, namely, initial nitrate concentration, inlet flow rate, current density and initial pH along with their interactions on the nitrate removal efficiency as well as its operating costs, as responses, were investigated separately. According to the analysis of variance (ANOVA), there is a reasonable agreement between achieving results and the experimental data for both responses. The nitrate removal in the AC mode was slightly more efficient than that of the DC mode. In addition, the average operating costs of the DC mode, including the energy and the electrode consumption for the CEC process were achieved 54 US$/(kg nitrate removed); whereas this amount was calculated 29 US$/(kg nitrate removed) for the AC mode. Therefore, the average of the operating costs was improved more than 40% using the AC mode, which was mainly related to reduction of aluminum electrode consumption.
Collapse
Affiliation(s)
- Elnaz Karamati-Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Mohammad Reza Alavi Moghaddam
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Mohammad Mahdi Emamjomeh
- Social Determinant of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Ebrahim Nazlabadi
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| |
Collapse
|
44
|
Kabir A, Dunlop MJ, Acharya B, Bissessur R, Ahmed M. Polymeric Composites with Embedded Nanocrystalline Cellulose for the Removal of Iron(II) from Contaminated Water. Polymers (Basel) 2018; 10:E1377. [PMID: 30961302 PMCID: PMC6401701 DOI: 10.3390/polym10121377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 11/16/2022] Open
Abstract
The exponential increase in heavy metal usage for industrial applications has led to the limited supply of clean water for human needs. Iron is one of the examples of heavy metals, which is responsible for an unpleasant taste of water and its discoloration, and is also associated with elevated health risks if it persists in drinking water for a prolonged period of time. The adsorption of a soluble form of iron (Fe2+) from water resources is generally accomplished in the presence of natural or synthetic polymers or nanoparticles, followed by their filtration from treated water. The self-assembly of these colloidal carriers into macroarchitectures can help in achieving the facile removal of metal-chelated materials from treated water and hence can reduce the cost and improve the efficiency of the water purification process. In this study, we aim to develop a facile one-pot strategy for the synthesis of polymeric composites with embedded nanocrystalline cellulose (NCC) for the chelation of iron(II) from contaminated water. The synthesis of the polymeric composites with embedded nanoparticles was achieved by the facile coating of ionic monomers on the surface of NCC, followed by their polymerization, crosslinking, and self-assembly in the form of three-dimensional architectures at room temperature. The composites prepared were analyzed for their physiochemical properties, antifouling properties, and for their iron(II)-chelation efficacies in vitro. The results indicate that the embedded-NCC polymeric composites have antifouling properties and exhibit superior iron(II)-chelation properties at both acidic and basic conditions.
Collapse
Affiliation(s)
- Anayet Kabir
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Matthew J Dunlop
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Bishnu Acharya
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
45
|
Hashim KS, Adeola Idowu I, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Ortoneda Pedrola M, Alattabi AW, Abdulredha M, Alwash R, Teng KH, Joshi KH, Hashim Aljefery M. Removal of phosphate from River water using a new baffle plates electrochemical reactor. MethodsX 2018; 5:1413-1418. [PMID: 30456175 PMCID: PMC6232640 DOI: 10.1016/j.mex.2018.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
During the last 50 years, the human activities have significantly altered the natural cycle of phosphate in this planet, causing phosphate to accumulate in the freshwater ecosystems of some countries to at least 75% greater than preindustrial levels, which indicates an urgent need to develop efficient phosphate treatment methods. Therefore, the current study investigates the removal of phosphate from river water using a new electrochemical cell (PBPR). This new cell utilises perforated baffle plates as a water mixer rather than magnetic stirrers that require power to work. This study investigates the influence of key operational parameters such as initial pH (ipH), current density (Ј), inter-electrode distance (ID), detention time (t) and initial phosphate concentration (IC) on the removal efficiency, and influence of the electrocoagulation process on the morphology of the surface of electrodes. Overall, the results showed that the new reactor was efficient enough to reduce the concentration of phosphate to the permissible limits. Additionally, SEM images showed that the Al anode became rough and nonuniform due to the production of aluminium hydroxides. The main advantages of the electrocoagulation technique are: The EC method does not produce secondary pollutants as it does not required chemical additives, while other traditional treatment methods required either chemical or biological additives [[1], [2], [3], [4]]. It has a large treatment capacity and a relatively short treatment time in comparison with other treatment methods, such as the biological methods [1,[5], [6], [7]]. The EC method produces less sludge than traditional treatment traditional chemical and biological treatment methods [8,9].
EC technology, like any other treatment method, has some drawbacks that could limit its performance. For instance, it still has a clear deficiency in the variety of reactor design, and the electrodes should be periodically replaced as they dissolve into the solution due to the oxidation process [2,10].
Collapse
Affiliation(s)
- Khalid S Hashim
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.,Department of Environment Engineering, University of Babylon, Babylon, Iraq
| | - Ibijoke Adeola Idowu
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - Nisreen Jasim
- Department of Environment Engineering, University of Babylon, Babylon, Iraq
| | - Rafid Al Khaddar
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - Andy Shaw
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - David Phipps
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - P Kot
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | | | - Ali W Alattabi
- Department of Environment Engineering, University of Wasit, Wasit, Iraq
| | | | - Reham Alwash
- Department of Environment Engineering, University of Babylon, Babylon, Iraq
| | - K H Teng
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - Keyur H Joshi
- Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | | |
Collapse
|
46
|
Hashim KK, Yahyaa SY, Mohmmed Al-Rashidy AA. Fluorescence Quantum Yield Determination of Propylparaben Using Flow Injection Spectroscopy. J Fluoresc 2018; 28:1275-1280. [PMID: 30276610 DOI: 10.1007/s10895-018-2302-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The determination of the fluorescence quantum yield of Propylparaben is introduced and applied to L-tyrosine as a standard by a new approach that can be applied to the pharmaceutical compound utilised in this study. The quantum yield is a critical figure of quality for the optical nature of a fluorophore. Numerous investigations have considered the glitter in both pharmaceutical and nature compounds for its medical and industrial significance. A straightforward method is detailed here to decide the quantum yield of Propylparaben in solution as an element of the fluorescence concentration. For this reason, L-Tyrosine is chosen as a fluorescence standard perspective to gauge the Propylparaben fluorescence quantum yield. The impacts of pH, solvents and flow rate on the assessment of quantum yield and quantum efficiency, for the reference and the solutions of Propylparaben, have been investigated. The results indicated that these parameters significantly influence the accuracy of the method. Diverse methods are concentrated on to represent distinctive quantum yield advancements with the quantum efficiency. The impact of these parameters was likewise considered. In this study, the application of the single method may be taken into consideration to compute quantum yield of Propylparaben, which was 0.36, and this is an exceptionally basic and general technique to solve the imperative issue of luminescence quantum yield assurance of other fluorescence compounds.
Collapse
Affiliation(s)
- Kadhim Kh Hashim
- College of Environment, Al-Qasim Babylon Green University, Al-Qasim, Babylon, Iraq.
| | | | | |
Collapse
|
47
|
Doggaz A, Attour A, Le Page Mostefa M, Tlili M, Lapicque F. Iron removal from waters by electrocoagulation: Investigations of the various physicochemical phenomena involved. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A, Hashim K. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:388-400. [PMID: 29706481 DOI: 10.1016/j.wasman.2018.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 05/29/2023]
Abstract
Major-religious festivals hosted in the city of Kerbala, Iraq, annually generate large quantities of Municipal Solid Waste (MSW) which negatively impacts the environment and human health when poorly managed. The hospitality sector, specifically hotels, is one of the major sources of MSW generated during these festivals. Because it is essential to establish a proper waste management system for such festivals, accurate information regarding MSW generation is required. This study therefore investigated the rate of production of MSW from hotels in Kerbala during major festivals. A field questionnaire survey was conducted with 150 hotels during the Arba'een festival, one of the largest festivals in the world, attended by about 18 million participants, to identify how much MSW is produced and what features of hotels impact on this. Hotel managers responded to questions regarding features of the hotel such as size (Hs), expenditure (Hex), area (Ha) and number of staff (Hst). An on-site audit was also carried out with all participating hotels to estimate the mass of MSW generated from these hotels. The results indicate that MSW produced by hotels varies widely. In general, it was found that each hotel guest produces an estimated 0.89 kg of MSW per day. However, this figure varies according to the hotels' rating. Average rates of MSW production from one and four star hotels were 0.83 and 1.22 kg per guest per day, respectively. Statistically, it was found that the relationship between MSW production and hotel features can be modelled with an R2 of 0.799, where the influence of hotel feature on MSW production followed the order Hs > Hex > Hst.
Collapse
Affiliation(s)
- Muhammad Abdulredha
- Department of Civil Engineering, Liverpool John Moores University, UK; Department of Civil Engineering, Kerbala University, Iraq.
| | - Rafid Al Khaddar
- Department of Civil Engineering, Liverpool John Moores University, UK
| | - David Jordan
- Department of Civil Engineering, Liverpool John Moores University, UK
| | - Patryk Kot
- Department of Civil Engineering, Liverpool John Moores University, UK
| | - Ali Abdulridha
- Department of Civil Engineering, University of Warith AL-Anbiya'aw, Iraq
| | - Khalid Hashim
- Department of Civil Engineering, Liverpool John Moores University, UK
| |
Collapse
|
49
|
Silva JF, Graça NS, Ribeiro AM, Rodrigues AE. Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
50
|
Al-Qodah Z, Al-Shannag M. On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1459700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Al-Balqa Applied University, Amman, Jordan
| | - Mohammad Al-Shannag
- Chemical Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| |
Collapse
|