1
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
2
|
Jiang S, Sun J, Zhu X, Shen K, Zhang Z. Co-treatment of agri-food waste streams using black soldier fly larvae (Hermetia illucens L.): A sustainable solution for rural waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122373. [PMID: 39243637 DOI: 10.1016/j.jenvman.2024.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The management of rural waste, particularly agri-food waste, poses a major challenge to the ecosystem health. This study investigated the efficacy of black soldier fly larvae (Hermetia illucens L., BSFL) bioconversion for agri-food waste under independent treatment or co-treatment strategies using chicken manure and food waste as a model system. The results showed a synergistic effect of co-treating agri-food waste from different sources. The co-treatment strategy enhanced bioconversion efficiency, resulting in a 1.31-fold waste reduction rate and a 1.93-fold bioconversion rate. Additionally, larval growth performance and biomass quality of BSFL were improved, while lauric acid and oleic acid were enriched in the larval fat from the co-treatment strategy. 16S rRNA amplicon sequencing revealed that the co-treatment strategy reshaped both the residue and larval gut microbiota, with distinct enrichment of taxonomical biomarkers. Furthermore, under this strategy, metabolic functions of the residue microbiota were significantly activated, especially carbohydrate, amino acid, and lipid metabolism were enhanced by 16.3%, 23.5%, and 20.2%, respectively. The early colonization of lactic acid bacteria (Weisella and Aerococcus) in the residue, coupled with a symbiotic relationship between Enterococcus in the larval gut and the host, likely promoted organic matter degradation and larval growth performance. Scaling up the findings to a national level in China suggests that the co-treatment strategy can increase waste reduction quantity by 86,329 tonnes annually and produce more larval protein and fat with a market value of approximately US$237 million. Therefore, co-treatment of agri-food waste streams using BSFL presents a sustainable solution for rural waste management that potentially contributes to the achievement of SDG2 (Zero Hunger), SDG3 (Good Health and Well-Being), and SDG12 (Responsible Consumption and Production).
Collapse
Affiliation(s)
- ShuoYun Jiang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China
| | - JiaJie Sun
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China
| | - XiaoLiang Zhu
- Sancun Village Cooperative in Gaoqiao Town, Tongxiang County, Zhejiang Province, 310045, PR China
| | - KeWei Shen
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou, 310058, PR China.
| |
Collapse
|
3
|
Dong X, Dong A, Liu J, Qadir K, Xu T, Fan X, Liu H, Ji F, Xu W. Impact of Iron Oxide on Anaerobic Digestion of Frass in Biogas and Methanogenic Archaeal Communities' Analysis. BIOLOGY 2024; 13:536. [PMID: 39056727 PMCID: PMC11273746 DOI: 10.3390/biology13070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Collapse
Affiliation(s)
- Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Aoqi Dong
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Juhao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Kamran Qadir
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Tianping Xu
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiya Fan
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Weiping Xu
- School of Chemical Engineering, Ocean, and Life Sciences, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
4
|
Ruan M, Li Y, Ma C, Xie Y, Chen W, Luo L, Li X, Hu W, Hu B. Treatment of landfill leachate by black soldier fly (Hermetia illucens L.) larvae and the changes of intestinal microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121193. [PMID: 38772238 DOI: 10.1016/j.jenvman.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and β-glucosidase (β-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 μg/(g·h) to 441.91 μg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, β-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.
Collapse
Affiliation(s)
- Mingjun Ruan
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - You Li
- Everbright Environmental Technology (China) Co., Ltd., Nanjing, 211102, Jiangsu Province, China
| | - Chong Ma
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Yingying Xie
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenying Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Limei Luo
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, China.
| |
Collapse
|
5
|
Peguero DA, Gold M, Velasquez L, Niu M, Zurbrügg C, Mathys A. Physical pretreatment of three biowastes to improve black soldier fly larvae bioconversion efficiency. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:280-291. [PMID: 38422681 DOI: 10.1016/j.wasman.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Black soldier fly larvae (BSFL, Hermetia illucens (L.)) are recognized for efficient biowaste reduction while yielding valuable proteins and fats for animals. However, lignocellulosic fibers in biowastes are difficult to digest by biowaste and larval digestive tract microorganisms as well as the larvae themselves. This study investigated two biowaste physical pretreatments (thermal, mechanical) for improving BSFL processing of fibrous biowastes. Cow manure, spent grain, and grass clippings were thermally pretreated at 90 °C for three durations (0.5, 1 and 4 h). Contrary to expectations, thermal pretreatment resulted in either no improvement or decreased larval performance on all substrates, regardless of treatment duration. In contrast, mechanical pretreatment of spent grain and grass clippings, involving milling with three screen sizes (0.5, 1 and 2 mm) showed promising results. Specifically, bioconversion rates on 0.5 mm-milled spent grain and grass clippings increased by 0-53 % and 25-44 % dry mass, respectively compared to untreated. Additionally, larval protein conversion increased by 41 % and 23 % on spent grain and grass clippings, respectively. However, mechanical pretreatment did not affect fiber degradation by larval conversion, as hemicellulose decreased by 25 % and 75 % for spent grain and grass clippings, respectively, regardless of particle size. Particle size reduction influenced substrate microbial respiration (CO2 mg/min), with 0.5-mm milled grass clippings exhibiting higher respiration compared to untreated, although this effect was not observed for spent grain. This study highlights mechanical pretreatment's potential in enhancing BSFL bioconversion of fibrous biowastes and the importance of understanding substrate physical properties influencing substrate microorganisms and BSFL.
Collapse
Affiliation(s)
- Daniela A Peguero
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Moritz Gold
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Laura Velasquez
- Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, John-von-Neumann-Weg 9, 8049 Zürich, Switzerland
| | - Mutian Niu
- Animal Nutrition, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Christian Zurbrügg
- Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Soomro AA, Rehman KU, Cai M, Laghari ZA, Zheng L, Yu Z, Zhang J. Larval biomass production from the co-digestion of mushroom root waste and soybean curd residues by black soldier fly larvae (Hermetia illucens L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30112-30125. [PMID: 38602637 DOI: 10.1007/s11356-024-33173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.
Collapse
Affiliation(s)
- Abdul Aziz Soomro
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Pakistan Agricultural Research Council-Arid Zone Research Centre, Umerkot, Pakistan
| | - Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- German Institute of Food Technologies (DIL E.V.), Prof.-V.-Klitzing-Str. 7, 49610, Quakenbrück, Germany
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zubair Ahmed Laghari
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, 70060, Sindh, Pakistan
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
7
|
Shao M, Zhao X, Rehman KU, Cai M, Zheng L, Huang F, Zhang J. Synergistic bioconversion of organic waste by black soldier fly ( Hermetia illucens) larvae and thermophilic cellulose-degrading bacteria. Front Microbiol 2024; 14:1288227. [PMID: 38268703 PMCID: PMC10806183 DOI: 10.3389/fmicb.2023.1288227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction This study examines the optimum conversion of Wuzhishan pig manure by Black Soldier Fly Larvae (BSFL) at various phases of development, as well as the impact of gut microbiota on conversion efficiency. Method and results In terms of conversion efficiency, BSFL outperformed the growing pig stage (GP) group, with significantly higher survival rates (96.75%), fresh weight (0.23 g), and larval conversion rate (19.96%) compared to the other groups. Notably, the GP group showed significant dry matter reductions (43.27%) and improved feed conversion rates (2.17). Nutritional composition varied, with the GP group having a lower organic carbon content. High throughput 16S rRNA sequencing revealed unique profiles, with the GP group exhibiting an excess of Lactobacillus and Clostridium. Promising cellulose-degrading bacteria in pig manure and BSFL intestines, including Bacillus cereus and Bacillus subtilis, showed superior cellulose degradation capabilities. The synergy of these thermophilic bacteria with BSFL greatly increased conversion efficiency. The BSFL1-10 group demonstrated high growth and conversion efficiency under specific conditions, with remarkable larval moisture content (71.11%), residual moisture content (63.20%), and waste reduction rate (42.28%). Discussion This study sheds light on the optimal stages for BSFL conversion of pig manure, gut microbiota dynamics, promising thermophilic cellulose-degrading bacteria, and the significant enhancement of efficiency through synergistic interactions. These findings hold great potential for sustainable waste management and efficient biomass conversion, contributing to environmental preservation and resource recovery.
Collapse
Affiliation(s)
- Mingying Shao
- Institute of Tropical Agricultural Technology, Hainan Vocational University, Haikou, Hainan, China
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Zhao
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- German Institute of Food Technologies, Quakenbrück, Germany
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
Rossi G, Ojha S, Müller-Belecke A, Schlüter OK. Fresh aquaculture sludge management with black soldier fly (Hermetia illucens L.) larvae: investigation on bioconversion performances. Sci Rep 2023; 13:20982. [PMID: 38017013 PMCID: PMC10684894 DOI: 10.1038/s41598-023-48061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Aquaculture solid waste (ASW) is a nutrient rich material that can pose a significant environment challenge if not properly managed. This study investigated the potential of black soldier fly (BSF) larvae in converting this waste into biomass. Five substrates comprising chicken feed supplemented with varying proportions of fresh ASW (0%, 25%, 50%, 75%, 100%) were formulated and evaluated for larval growth and waste bioconversion efficiency. High nutrients retention (N: 23.25 ± 1.40%; C: 21.94 ± 0.99%; S: 12.20 ± 1.33%) and feed conversion ratio (1.78 ± 0.08) were detected on substrate 100ASW, although the limited feeding rate (114.54 ± 5.38 mg dry substrate/larvae) and the high amount of indigestible fibres (ADF = 15.87 ± 0.24%; ADL = 6.36 ± 0.17%) were translated to low larval growth (final larval average weight: 66.17 ± 1.81 mg). Decreasing ASW content resulted in reduced fibres and ash, increase in non-fibrous carbohydrates and C/N ratio, and improved larval growth and substrate utilization. However, high larval metabolic activity suggested higher nutrients loss to the environment. Substrate 75ASW demonstrated the best performances in terms of larval production (final larval average weight: 176.30 ± 12.12 mg), waste reduction (substrate reduction corrected by percentage of ASW: 26.76 ± 0.86%) and nutrients assimilation (N: 22.14 ± 1.14%; C: 15.29 ± 0.82%; S: 15.40 ± 0.99%). This substrate closely aligned with optimal BSF rearing substrates reported in literature. Overall, this study highlights the potential of BSF larvae in managing fresh ASW, offering a dual benefit of waste reduction and insect biomass production.
Collapse
Affiliation(s)
- Giacomo Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Shikha Ojha
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
| | | | - Oliver K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy.
| |
Collapse
|
10
|
Li L, Chen L, Shang R, Wang G, Zhang J. Improvement in bioconversion efficiency and reduction of ammonia emission by introduction of fruit fermentation broth in a black soldier fly larvae and kitchen waste conversion system. INSECT SCIENCE 2023; 30:975-990. [PMID: 36773298 DOI: 10.1111/1744-7917.13185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is an insect commonly used for the bioconversion of various organic wastes. Not only can the BSF convert organic waste into macromolecular organic substances, such as insect proteins, but it can also lessen the pollution associated with these waste products by reducing ammonia emissions, for example. In this study, we measured the effects of adding fruit fermentation broth (Fer) and commercial lactic acid bacteria fermentation broth (Em) to kitchen waste (KW), as deodorizing auxiliary substances, on the growth performance of black soldier fly larvae (BSFL), the intestinal flora structure of BSFL, the ammonia emission from the KW substrate, and the microbial community structure of the KW substrate. We found that the addition of Fer or Em increased the body weight of BSFL after 6 d of culture, increasing the growth rate by 9.96% and 7.96%, respectively. The addition of Fer not only reduced the pH of the KW substrate but also increased the relative abundance of probiotics, such as Lactobacillus, Lysinibacillus, and Vagococcus, which inhibited the growth of ammonifiers such as Bacillus, Oligella, Paenalcaligenes, Paenibacillus, Pseudogracilibacillus, and Pseudomonas, resulting in the reduction of ammonia emission in the KW substrate. Moreover, the addition of Fer or Em significantly increased the relative abundances of Bacteroides, Campylobacter, Dysgonomonas, Enterococcus, and Ignatzschineria in the gut of BSFL and increased the species diversity and richness in the KW substrate. Our findings provide a novel way to improve the conversion rate of organic waste and reduce the environmental pollution caused by BSF.
Collapse
Affiliation(s)
- Lusheng Li
- School of Agricultural Science and Engineering, Engineering Research Center of Shandong Province for Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng, Shandong Province, China
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lifei Chen
- School of Agricultural Science and Engineering, Engineering Research Center of Shandong Province for Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng, Shandong Province, China
| | - Rongsheng Shang
- School of Agricultural Science and Engineering, Engineering Research Center of Shandong Province for Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng, Shandong Province, China
| | - Guiying Wang
- School of Agricultural Science and Engineering, Engineering Research Center of Shandong Province for Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng, Shandong Province, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Zhao Z, Yu C, Yang C, Gao B, Jiménez N, Wang C, Li F, Ao Y, Zheng L, Huang F, Tomberlin JK, Ren Z, Yu Z, Zhang J, Cai M. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163065. [PMID: 36966826 DOI: 10.1016/j.scitotenv.2023.163065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chongrui Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Bingqi Gao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya · BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Fang Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | | | - Zhuqing Ren
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China.
| |
Collapse
|
12
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
13
|
Cui G, Lü F, Lu T, Zhang H, He P. Feasibility of housefly larvae-mediated vermicomposting for recycling food waste added digestate as additive. J Environ Sci (China) 2023; 128:150-160. [PMID: 36801031 DOI: 10.1016/j.jes.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
The development of methods for the efficient treatment and application of food waste digestate is an important research goal. Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization, however, studies on the application and performance of digestate in vermicomposting are rarely. The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae. Restaurant food waste (RFW) and household food waste (HFW) were selected to assess the effects of waste type on vermicomposting performance and larval quality. Waste reduction rates of 50.9%-57.8% were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%, which were slightly lower than those for treatments without the addition of digestate (62.8%-65.9%). The addition of digestate increased the germination index, with a maximum value of 82% in the RFW treatments with 25% digestate, and decreased the respiration activity, with a minimum value of 30 mg-O2/g-TS. The larval productivity of 13.9% in the RFW treatment system with a digestate rate of 25% was lower that without digestate (19.5%). Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate. These results suggest that mixing digestate at a low ratio (25%) during vermicomposting of food waste especially RFW could lead to considerable larval biomass and generate relatively stable residues.
Collapse
Affiliation(s)
- Guangyu Cui
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Tao Lu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
14
|
Bajra BD, Lubis MES, Yudanto BG, Panjaitan FR, Rizki IF, Mulyono ME, Kusumah MS. Determination of black soldier fly larvae performance for oil palm based waste reduction and biomass conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118269. [PMID: 37245310 DOI: 10.1016/j.jenvman.2023.118269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Oil palm biomass, such as empty fruit bunches and palm kernel meal, has low digestibility. Thus, a suitable bioreactor is urgently needed to efficiently convert oil palm biomass into high-value products. The polyphagous black soldier fly (BSF, Hermetia illucens) has gained global attention for its role in biomass conversion. However, there is scarce information on the ability of the BSF to sustainably manage highly lignocellulosic matter, such as oil palm empty fruit bunches (OPEFB). Therefore, this study aimed to investigate the performance of the black soldier fly larvae (BSFL) in oil palm biomass management. Several formulations were fed to the BSFL five days after hatching (DAH), and the effects on oil palm biomass-based substrate waste reduction and biomass conversion were analyzed. Furthermore, the resulting growth parameters correlating to the treatments were evaluated, including feed conversion rate (FCR), survival rates, and developmental rates. The most optimal results were obtained by mixing 50% of palm kernel meal (PKM) with 50% of coarse oil palm empty fruit bunches (OPEFB), resulting in an FCR of 3.98 ± 0.08 and a survival rate of 87% ± 4.16. Moreover, this treatment is a promising method for waste reduction (11.7% ± 6.76), with a bioconversion efficiency (corrected for residue) of 71.5% ± 1.12. In conclusion, the study findings indicate that incorporating PKM into OPEFB substrate can substantially alter BSFL growth, reduce oil palm waste, and optimize biomass conversion.
Collapse
Affiliation(s)
- Brahmani Dewa Bajra
- Product Processing and Quality Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - M Edwin Syahputra Lubis
- Soil Science and Agronomy Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - Bagus Giri Yudanto
- Engineering and Environmental Management Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - Frisda Rimbun Panjaitan
- Product Processing and Quality Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - Ilmi Fadhilah Rizki
- Product Processing and Quality Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - Manda Edy Mulyono
- Product Processing and Quality Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| | - Mulki Salendra Kusumah
- Product Processing and Quality Research Group, Indonesian Oil Palm Research Institute, Medan, 20158, Indonesia.
| |
Collapse
|
15
|
She W, Xiao Q, Meng Y, Zhao P, Wu C, Huang F, Cai M, Zhang J, Yu Z, Ur Rehman K, Peng D, Zheng L. Isolated and identified pathogenic bacteria from black soldier fly larvae with "soft rot" reared in mass production facilities and its incidence characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:85-95. [PMID: 37003117 DOI: 10.1016/j.wasman.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The black soldier fly larvae (BSFL) can transform organic waste into high-end proteins, lipids, chitin, biodiesel, and melanin at an industrial scale. But scaling up of its production capacity has also posed health risks to the insect itself. In this investigation, larval "soft rot" which is occurring in mass production facilities that cause larval developmental inhibition and a certain degree of death was reported. Responsible pathogen GX6 was isolated from BSFL with "soft rot" and identified to be Paenibacillus thiaminolyticus. No obvious impact on larval growth was observed when treated with GX6 spores, whereas mortality of 6-day-old BSFL increased up to 29.33% ± 2.05% when GX6 vegetative cells (1 × 106 cfu/g) were inoculated into the medium. Moreover, higher temperature further enhanced the BSFL mortality and suppressed larval development, but increasing substrate moisture showed the opposite effect. The middle intestine of infected larvae became swollen and transparent after dissection and examination. Transmission electron microscopy (TEM) observation indicated that GX6 had destroyed the peritrophic matrix and intestinal microvilli and damaged epithelial cells of larval gut. Furthermore, 16S rRNA gene sequencing analysis of intestinal samples revealed that gut microflora composition was significantly altered by GX6 infection as well. It can be noticed that Dysgonomonas, Morganella, Myroides, and Providencia bacteria became more numerous in the intestines of GX6-infected BSFL as compared to controls. This study will lay foundations for efficient control of "soft rot" and promote healthy development of the BSFL industry to contribute to organic waste management and circular economy.
Collapse
Affiliation(s)
- Wangjun She
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Qi Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ying Meng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Peng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Chuanliang Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; DIL Deutsches Institut für Lebensmitteltechnik e. V. - German Institute of Food Technologies, Quakenbrück, Germany; Poultry Research Institute, Rawalpindi, Livestock and Dairy Development Department, Punjab, Pakistan
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China.
| |
Collapse
|
16
|
Kariuki EG, Kibet C, Paredes JC, Mboowa G, Mwaura O, Njogu J, Masiga D, Bugg TDH, Tanga CM. Metatranscriptomic analysis of the gut microbiome of black soldier fly larvae reared on lignocellulose-rich fiber diets unveils key lignocellulolytic enzymes. Front Microbiol 2023; 14:1120224. [PMID: 37180276 PMCID: PMC10171111 DOI: 10.3389/fmicb.2023.1120224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Recently, interest in the black soldier fly larvae (BSFL) gut microbiome has received increased attention primarily due to their role in waste bioconversion. However, there is a lack of information on the positive effect on the activities of the gut microbiomes and enzymes (CAZyme families) acting on lignocellulose. In this study, BSFL were subjected to lignocellulose-rich diets: chicken feed (CF), chicken manure (CM), brewers' spent grain (BSG), and water hyacinth (WH). The mRNA libraries were prepared, and RNA-Sequencing was conducted using the PCR-cDNA approach through the MinION sequencing platform. Our results demonstrated that BSFL reared on BSG and WH had the highest abundance of Bacteroides and Dysgonomonas. The presence of GH51 and GH43_16 enzyme families in the gut of BSFL with both α-L-arabinofuranosidases and exo-alpha-L-arabinofuranosidase 2 were common in the BSFL reared on the highly lignocellulosic WH and BSG diets. Gene clusters that encode hemicellulolytic arabinofuranosidases in the CAZy family GH51 were also identified. These findings provide novel insight into the shift of gut microbiomes and the potential role of BSFL in the bioconversion of various highly lignocellulosic diets to fermentable sugars for subsequent value-added products (bioethanol). Further research on the role of these enzymes to improve existing technologies and their biotechnological applications is crucial.
Collapse
Affiliation(s)
- Eric G. Kariuki
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Caleb Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Juan C. Paredes
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Oscar Mwaura
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Njogu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Timothy D. H. Bugg
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
17
|
Wu N, Yu X, Liang J, Mao Z, Ma Y, Wang Z, Wang X, Liu X, Xu X. A full recycling chain of food waste with straw addition mediated by black soldier fly larvae: Focus on fresh frass quality, secondary composting, and its fertilizing effect on maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163386. [PMID: 37031930 DOI: 10.1016/j.scitotenv.2023.163386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Bioconversion of food waste (FW) by black soldier fly larvae (BSFL) has great potential in generating high-quality organic fertilizers (insect frass). However, the stabilization of BSFL frass and its fertilizing effect on crops remain largely unexplored. Here, a full recycling chain mediated by BSFL from FW source to end application was systematically evaluated. BSFL were reared on FW containing 0 %-6 % of rice straw. Straw addition alleviated the high salinity of BSFL frass (Na decreased from 5.9 % to 3.3 %). Specifically, 4 % straw addition significantly enhanced larval biomass and conversion rates, producing fresh frass with a higher humification degree. Lactobacillus (57.0 %-79.9 %) strongly prevailed in almost all fresh frass. A 32-day secondary composting process continued to increase the humification degree of 4 % straw-added frass. Major indicators e.g., pH, organic matter (OM), NPK of final compost basically met the organic fertilizer standard. Application of composted frass fertilizers (0 %-6 %) substantially improved soil OM, nutrients availability and enzyme activities. Moreover, 2 % frass application had optimal enhancing impacts on the height and weight, root activity, total phosphorus and net photosynthetic rate of maize seedling. These findings gave an insight into the BSFL-mediated FW conversion process and proposed the rational application of BSFL frass fertilizer in maize.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
18
|
Ahmed S, Moni MIZ, Begum M, Sultana MR, Kabir A, Eqbal MJ, Das SK, Ullah W, Haque TS. Poultry farmers' knowledge, attitude, and practices toward poultry waste management in Bangladesh. Vet World 2023; 16:554-563. [PMID: 37041846 PMCID: PMC10082732 DOI: 10.14202/vetworld.2023.554-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The improper handling of poultry litter and waste poses risks to humans and environment by introducing certain compounds, elements, and pathogenic microorganisms into the surrounding environment and food chain. However, understanding the farmers' knowledge, attitude, and practices (KAP) could provide insights into the constraints that hinder the appropriate adoption of waste management. Therefore, this study aimed to assess poultry farmers' KAP regarding waste management issues. Materials and Methods A cross-sectional KAP study was conducted with native poultry keepers and small-scale commercial poultry farmers in seven districts of Bangladesh. In the survey, 385 poultry producers were interviewed using validated structured questionnaires through face-to-face interviews to collect the quantitative data in their domiciles. Results The overall KAP of farmers regarding poultry waste management issues demonstrated a low level of KAP (p = 0.001). The analysis shows that roughly 5% of farmers have a high level of knowledge of poultry waste management issues, followed by around one-third of respondents having a moderate level of knowledge. Considering the attitude domain, more than one-fifth of native poultry keepers and nearly two-thirds of commercial producers demonstrated a low level of attitude toward poultry waste management. Considering the overall analysis, roughly half of the respondents found a high level of attitude, and over half of the farmers showed a moderate level of attitude toward poultry waste management issues. The analysis showed that the level of good practices for native and commercial poultry production systems is estimated at 77.3% versus 45.9%, respectively, despite the farmers' lesser knowledge and attitudes toward poultry waste management systems. Overall, analysis showed that nearly 60% and 40% of poultry producers had high and moderate levels, respectively, of good practices in poultry waste management issues. Conclusion Analysis of the KAP data shows that farmers had a low level of KAP toward poultry waste management. The result of this study will assist in formulating appropriate strategies and to adopt poultry waste management solutions by poultry farmers to reduce environmental degradation.
Collapse
Affiliation(s)
- Soshe Ahmed
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Corresponding author: Soshe Ahmed, e-mail: Co-authors: MIZM: , MB: , MRS: , AK: , MJE: , SKD: , WU: , TSH:
| | - Mst. I. Z. Moni
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mst. R. Sultana
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aurangazeb Kabir
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. J. Eqbal
- Palli Karma Sahayak Foundation, Dhaka, Bangladesh
| | - Sunny K. Das
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Woli Ullah
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasmin S. Haque
- Department of Anthropology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
19
|
Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, Sun P, Gan L. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
20
|
Isibika A, Simha P, Vinnerås B, Zurbrügg C, Kibazohi O, Lalander C. Food industry waste - An opportunity for black soldier fly larvae protein production in Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159985. [PMID: 36368404 DOI: 10.1016/j.scitotenv.2022.159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Black soldier fly larvae composting is an emerging treatment option with potential to improve biowaste valorization in cities of low-income countries. This study surveyed the current generation and management status of food industry biowaste and their availability and suitability as potential feedstock for black soldier fly larvae (BSFL) composting treatment in three Tanzania cities, Dar es Salaam, Mwanza, and Dodoma. Biowaste-generating food industry companies (n = 29) in the three cities were found to produce banana peels, mango seeds, sunflower press cake, brewery waste, and coffee husks in large quantities (~100,000-1,000,000 kg y-1). Around 50 % of these companies (16/29), primarily vegetable oil companies (10/11), either sold or gave away their waste as animal feed, while most companies (9/11) with unutilized food industry waste landfilled the generated biowaste. Multi-criteria analysis based on substrate availability criteria identified banana peels, mango seeds, and coffee husks with total score points of ≥10/12 as the most suitable feedstock for BSFL composting. However, multi-criteria analysis based on physical-chemical criteria identified brewery waste and sunflower press cake with total score points of ≥11/15 as the most suitable feedstock. Combined availability and physical-chemical properties of individual biowastes showed that all identified types of food industry biowaste can be suitable feedstock for producing BSFL biomass for protein production, but certain waste streams needed to be mixed with other waste streams prior to BSFL-composting to ensure sufficient availability and provide a balanced nutritional profile compared with the single-source biowastes. This study concluded that large volumes of food industry waste are being generated from food industry companies in Tanzania and there is need to establish new biowaste management interventions for resource recovery. Furthermore, for interested stakeholders in the waste management business, multi-stream BSFL-composting can be a suitable solution for managing and closing nutrient loops of the unutilized food industry biowaste in Tanzania and in other similar settings globally.
Collapse
Affiliation(s)
- A Isibika
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; Department of Chemical and Mining Engineering, College of Engineering and Technology, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania.
| | - P Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - B Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - C Zurbrügg
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Sanitation, Water and Solid Waste for Development (Sandec), Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - O Kibazohi
- Department of Food Science and Technology, College of Agricultural Sciences and Food Technology, University of Dar es Salaam, P.O. Box 35134, Dar es Salaam, Tanzania
| | - C Lalander
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| |
Collapse
|
21
|
Rehman KU, Hollah C, Wiesotzki K, Rehman RU, Rehman AU, Zhang J, Zheng L, Nienaber T, Heinz V, Aganovic K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:81-97. [PMID: 35730793 PMCID: PMC9925914 DOI: 10.1177/0734242x221105441] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 05/24/2023]
Abstract
The application of black soldier fly (BSF), Hermetia illucens based technology to process organic wastes presents a practical option for organic waste management by producing feed materials (protein, fat), biodiesel, chitin and biofertilizer. Therefore, BSF organic wastes recycling is a sustainable and cost-effective process that promotes resource recovery, and generates valuable products, thereby creating new economic opportunities for the industrial sector and entrepreneurs. Specifically, we discussed the significance of BSF larvae (BSFL) in the recycling of biowaste. Despite the fact that BSFL may consume a variety of wastes materials, whereas, certain lignocellulosic wastes, such as dairy manure, are deficient in nutrients, which might slow BSFL development. The nutritional value of larval feeding substrates may be improved by mixing in nutrient-rich substrates like chicken manure or soybean curd residue, for instance. Similarly, microbial fermentation may be used to digest lignocellulosic waste, releasing nutrients that are needed for the BSFL. In this mini-review, a thorough discussion has been conducted on the various waste biodegraded by the BSFL, their co-digestion and microbial fermentation of BSFL substrate, as well as the prospective applications and safety of the possible by-products that may be generated at the completion of the treatment process. Furthermore, this study examines the present gaps and challenges on the direction to the efficient application of BSF for waste management and the commercialization of its by-products.
Collapse
Affiliation(s)
- Kashif ur Rehman
- Department of Microbiology,
Faculty of Veterinary and Animal Sciences, Th Islamia University of
Bahawalpur, Pakistan
- Poultry Research Institute
Rawalpindi, Livestock and Dairy Development Department, Punjab,
Pakistan
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Clemens Hollah
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Karin Wiesotzki
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Rashid ur Rehman
- Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Jibin Zhang
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Theresa Nienaber
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Volker Heinz
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Kemal Aganovic
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| |
Collapse
|
22
|
Wang X, Wu N, Ma Y, Wang Z, Cai R, Xu X. Migration and Transformation of Cd in Pig Manure-Insect Frass ( Hermetia illucens)-Soil-Maize System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:60. [PMID: 36612380 PMCID: PMC9819396 DOI: 10.3390/ijerph20010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Little is known about the fate of heavy metals in the recycling system of animal manure-black soldier fly larvae (BSFL) transformation-larval frass application. In this work, BSFL-transformed pig manure with different concentrations of exogenous cadmium (Cd) (0, 3, 15, 30 mg kg-1), and the obtained BSFL frass fertilizer were further used in pot experiments of maize planting to explore Cd migration during the whole recycling system. Results showed that Cd addition to pig manure had no significant effects on BSFL growth or BSFL transformation performance. The Cd concentrations in BSFL frass were 10.9-19.8% lower than those in pig manure, while those in BSFL bodies were 2.3-4.0-times those of pig manure. For maize planting, only 30 mg kg-1 of Cd treatment significantly inhibited maize growth. The BSFL frass application (under exogenous Cd treatment) enhanced Cd contents in the aboveground and underground parts of maize (3.3-57.6-times) and those in soil (0.5-1.7-times) compared with CK (no Cd addition). Additionally, 61.2-73.5% of pig manure-sourced Cd was transformed into BSFL frass and the rest entered BSFL bodies. Only a small part (0.31-1.34%) of manure-sourced Cd entered maize plants. BSFL transformation decreased the proportions of weak acid-dissolved Cd from 44.2-53.0% (manure) to 37.3-46.0% (frass). After frass application, the proportions of weak acid-dissolved Cd in soil were further decreased to 17.8-42.5%, while the residual fractions of Cd increased to 27.2-67.7%. The findings provided a theoretical basis for the rational application of BSFL frass fertilizers sourced from heavy-metal-contaminated manure.
Collapse
Affiliation(s)
- Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ruijie Cai
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
23
|
Li H, Xu X, Zhang M, Zhang Y, Zhao Y, Jiang X, Xin X, Zhang Z, Zhang R, Gui Z. Accelerated degradation of cellulose in silkworm excrement by the interaction of housefly larvae and cellulose-degrading bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116295. [PMID: 36150354 DOI: 10.1016/j.jenvman.2022.116295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The environmental pollution caused by silkworm (Bombyx mori) excrement is prominent, and rich in refractory cellulose is the bottleneck restricting the efficient recycling of silkworm excrement. This study was performed to investigate the effects of housefly larvae vermicomposting on the biodegradation of cellulose in silkworm excrement. After six days, a 58.90% reduction of cellulose content in treatment groups was observed, which was significantly higher than 11.5% of the control groups without housefly larvae. Three cellulose-degrading bacterial strains were isolated from silkworm excrement, which were identified as Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis based on 16S rRNA gene sequence analysis. These three bacterial stains had a high cellulose degradation index (HC value ranged to between 1.86 and 5.97 and FPase ranged from 5.07 U/mL to 7.31 U/mL). It was found that housefly larvae increased the abundance of cellulose-degrading bacterial genus (Bacillus and Pseudomonas) by regulating the external environmental conditions (temperature and pH). Carbohydrate metabolism was the bacterial communities' primary function during vermicomposting based on the PICRUSt. The results of Tax4Fun indicated that the abundance of endo-β-1,4-glucanase and exo-β-1,4-glucanase increased rapidly and maintained at a higher level in silkworm excrement due to the addition of housefly larvae, which contributed to the accelerated degradation of cellulose in silkworm excrement. The finding of this investigation showed that housefly larvae can significantly accelerate the degradation of cellulose in silkworm excrement by increasing the abundance of cellulose-degrading bacterial genera and cellulase.
Collapse
Affiliation(s)
- Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xueming Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Minqi Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Yuanhao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Ying Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
24
|
Lin TH, Wang DH, Zou H, Zheng Y, Fu SF. Effects of salvaged cyanobacteria content on larval development and feedstock humification during black soldier fly larvae (Hermetia illucens) composting. ENVIRONMENTAL RESEARCH 2022; 215:114401. [PMID: 36167112 DOI: 10.1016/j.envres.2022.114401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria salvage is widely used to deal with massive cyanobacterial blooms. Improper disposal of salvaged cyanobacteria would cause secondary pollution. Black soldier fly (Hermetia illucens) larvae (BSFL) can bio-convert organic wastes into larval biomass, which is rich in protein and lipid. This study evaluated the possibility of using BSFL composting for salvaged cyanobacteria treatment. Results showed that increasing salvaged cyanobacteria waste (CW) content (from 0 to 50%, dry weight basis) extended BSFL development time, e.g., BSFL fed with 50% CW needed 14 days more to finish development than Control (0% CW). The CW content (0-20%) in feeding substrates had no significant effect on BSFL body length and weight. Whereas further increase of CW content (from 20 to 50%) led to significant reductions in substrate-to-BSFL biomass conversion ratio, body size, body weight, and crude protein content of BSFL. Meanwhile, the presence of salvaged cyanobacteria in the feeding substrate reduced the degradation efficiency of feeding substrate. The dissolved organic matter (DOM) results demonstrated that the increased salvaged cyanobacteria content made it more difficult for BSFL to degrade the feeding substrate into simple organic matter and further into humic-like substances. Furthermore, salvaged cyanobacteria in feeding substrates affected the intestinal microbial community significantly. With 20% CW content in the feeding substrate, the relative abundance of Firmicutes decreased from 92.43 to 81.24%, while the relative abundance of Proteobacteria and Bacteroidetes increased from 4.10 to 2.93-8.75% and 7.51%, respectively. BSFL composting is feasible to convert salvaged cyanobacteria into insect biomass. However, the salvaged cyanobacteria content in the feeding substrate should be carefully controlled (e.g., less than 30%).
Collapse
Affiliation(s)
- Tian-Hui Lin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Dong-Hui Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS, 66506, USA
| | - Shan-Fei Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China.
| |
Collapse
|
25
|
Pas C, Brodeur D, Deschamps MH, Lebeuf Y, Adjalle K, Barnabé S, Eeckhout M, Vandenberg G, Vaneeckhaute C. Valorization of pretreated biogas digestate with black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115529. [PMID: 35816966 DOI: 10.1016/j.jenvman.2022.115529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Increasing concerns related to the negative environmental impacts of food waste havemotivated the development of new solutions to complete the waste cycle of organic residues. One particular "waste" product, the solid digestate from anaerobic digestion, has been identified for further bioprocessing. Black soldier fly (BSF, Hermetia illucens) larvae are known for their great potential in the processing of organic waste. In this study, this potential was investigated to further process the digestate waste stream. Digestate is considered a low potential source of nutrients for larvae due to the presence of different fiber fractions. However, the lignocellulosic matter in this residue could be enzymatically hydrolyzed to release residual carbohydrates. For this study, digestate from a full-scale anaerobic digestion plant in Quebec (Canada) which processes a range of feedstocks (fruits, vegetables, garden wastes, sludge derived from dairy processing and wastewater treatment) was sourced. Digestate was treated with Accelerase® DUET enzyme complex to hydrolyze lignocellulosic matter and compared to a standard diet. For each treatment, 600 four-day old larvae were fed daily with 160 g (70% relative humidity) of diets for 6 days and harvested 3 days later. Although their growth and total biomass were significantly lower than the standard diet, larvae fed on hydrolyzed digestate were almost two times larger than the larvae fed on crude digestate. Furthermore, the content of organic matter, lipids and minerals in the diets and frass were analyzed. Finally, the feasibility of applying BSF treatment for digestate valorization is discussed. According to this study, enzyme-treated digestate does not allow efficient larval growth compared to the standard diet. The development of a more effective method of pretreatment is required for BSF larvae to become an eco-friendly solution for digestate valorization.
Collapse
Affiliation(s)
- C Pas
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 avenue de la Médecine, Québec, G1V 0A6, Canada; Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada; Ghent University, Valentin Vaerwyckweg 1, Schoonmeersen, Ghent, 9000, Belgium.
| | - D Brodeur
- Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - M-H Deschamps
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Y Lebeuf
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - K Adjalle
- Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - S Barnabé
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, Canada
| | - M Eeckhout
- Ghent University, Valentin Vaerwyckweg 1, Schoonmeersen, Ghent, 9000, Belgium
| | - G Vandenberg
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - C Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 avenue de la Médecine, Québec, G1V 0A6, Canada.
| |
Collapse
|
26
|
Arnone S, De Mei M, Petrazzuolo F, Musmeci S, Tonelli L, Salvicchi A, Defilippo F, Curatolo M, Bonilauri P. Black soldier fly (Hermetia illucens L.) as a high-potential agent for bioconversion of municipal primary sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64886-64901. [PMID: 35474429 PMCID: PMC9481477 DOI: 10.1007/s11356-022-20250-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The treatment of municipal wastewater produces clean water and sewage sludge (MSS), the management of which has become a serious problem in Europe. The typical destination of MSS is to spread it on land, but the presence of heavy metals and pollutants raises environmental and health concerns. Bioconversion mediated by larvae of black soldier fly (BSFL) Hermetia illucens (Diptera, Stratiomyidae: Hermetiinae) may be a strategy for managing MSS. The process adds value by generating larvae which contain proteins and lipids that are suitable for feed and/or for industrial or energy applications, and a residue as soil conditioner. MSS from the treatment plant of Ladispoli (Rome province) was mixed with an artificial fly diet at 50% and 75% (fresh weight basis) to feed BSFL. Larval performance, substrate reduction, and the concentrations of 12 metals in the initial and residual substrates and in larval bodies at the end of the experiments were assessed. Larval survival (> 96%) was not affected. Larval weight, larval development, larval protein and lipid content, and waste reduction increased in proportion the increase of the co-substrate (fly diet). The concentration of most of the 12 elements in the residue was reduced and, in the cases of Cu and Zn, the quantities dropped under the Italian national maximum permissible content for fertilizers. The content of metals in mature larvae did not exceed the maximum allowed concentration in raw material for feed for the European Directive. This study contributes to highlight the potential of BSF for MSS recovery and its valorization. The proportion of fly diet in the mixture influenced the process, and the one with the highest co-substrate percentage performed best. Future research using other wastes or by-products as co-substrate of MSS should be explored to determine their suitability.
Collapse
Affiliation(s)
- Silvia Arnone
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy.
| | - Massimiliano De Mei
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | - Francesco Petrazzuolo
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | - Sergio Musmeci
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - SSPT-BIOAG - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | | | | | - Francesco Defilippo
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| | - Michele Curatolo
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| | - Paolo Bonilauri
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| |
Collapse
|
27
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
28
|
Romano N. Cardboard supplementation on the growth and nutritional content of black solider fly ( Hermetia illucens) larvae and resulting frass. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2022; 42:3357-3362. [PMID: 35755798 PMCID: PMC9210340 DOI: 10.1007/s42690-022-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
A 10-day trial was conducted to compare the production and fatty acid composition of black soldier fly (Hermetia illucens) larvae (BSFL) when grown without or with cardboard supplementation at 2.2% on a dry weight basis. The final biomass of BSFL or waste reduction was not significantly impacted by cardboard. The fatty acids of C10 and C22:6n-3 were significantly higher in BSFL in the cardboard treatment, but crude lipid significantly reduced. The leftover BSFL frass had significantly higher sulfur, zinc, manganese and boron at the expense of lower nitrogen (91.2% versus 8.73% in control versus cardboard, respectively). These preliminary results appear to indicate that the growth and nutritional value of BSFL were not adversely compromised while the frass can be enhanced by adding relatively small amounts (2.2%) of cardboard. Further studies could be conducted to investigate the implications of higher inclusion levels.
Collapse
Affiliation(s)
- Nicholas Romano
- Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601 USA
| |
Collapse
|
29
|
Zhang ZC, Gu P, Yang KL, Zhao MX, Huang ZX, Miao HF. Bioconversion of cyanobacteria by black soldier fly larvae (Hermetia illucens L.): Enhancement by antioxidants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153524. [PMID: 35101506 DOI: 10.1016/j.scitotenv.2022.153524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms have been a global environmental problem for decades. Bioconversion by black soldier fly larvae (BSFL) has been widely reported to be a clean and efficient method to remove organic pollutants. In this study, BSFL bioconversion was used to treat cyanobacterial blooms. Antioxidants (a mixture of l-ascorbic acid [180 mg/kg fresh feed] and α-tocopherol [360 mg/kg fresh feed]) were added to compare bioconversion performance against a non-supplemented group. With increasing proportions of cyanobacteria (0%-25% dry mass), the bioconversion efficiency of the antioxidant group improved significantly compared to the control group, and the survival rate of larvae rose from 96.50-45.50% to 98.00-55.83% with antioxidant addition. The toxic effects of exogenous anti-nutrients could be reduced by the antioxidants through inactivation of trypsin inhibitor and enhancement of the microcystin-LR degradation rate. Overall, the BSFL bioremediation capacity was improved with addition of exogenous antioxidants, verifying both the effects and mechanism of antioxidant addition in promoting the bioconversion of cyanobacteria by BSFL and providing a basis for future application and study.
Collapse
Affiliation(s)
- Zhao-Chang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kun-Lun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Min-Xing Zhao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Xing Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Heng-Feng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Seyedalmoosavi MM, Mielenz M, Veldkamp T, Daş G, Metges CC. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. J Anim Sci Biotechnol 2022; 13:31. [PMID: 35509031 PMCID: PMC9069764 DOI: 10.1186/s40104-022-00682-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in the larvae of black soldier fly (BSF) (Hermetia illucens) as a sustainable protein resource for livestock feed has increased considerably. However, knowledge on the nutritional and physiological aspects of this insect, especially compared to other conventional farmed animals is scarce. This review presents a critical comparison of data on the growth potential and efficiency of the BSF larvae (BSFL) compared to conventional monogastric livestock species. Advantages of BSFL over other monogastric livestock species includes their high growth rate and their ability to convert low-grade organic waste into high-quality protein and fat-rich biomass suitable for use in animal feed. Calculations using literature data suggest that BSFL are more efficient than broilers, pigs and fish in terms of conversion of substrate protein into body mass, but less efficient than broilers and fish in utilization of substrate gross energy to gain body mass. BSFL growth efficiency varies greatly depending on the nutrient quality of their dietary substrates. This might be associated with the function of their gastrointestinal tract, including the activity of digestive enzymes, the substrate particle characteristics, and their intestinal microbial community. The conceived advantage of BSFL having an environmental footprint better than conventional livestock is only true if BSFL is produced on low-grade organic waste and its protein would directly be used for human consumption. Therefore, their potential role as a new species to better close nutrient cycles in agro-ecological systems needs to be reconsidered, and we conclude that BSFL is a complementary livestock species efficiently utilizing organic waste that cannot be utilized by other livestock. In addition, we provide comparative insight into morpho-functional aspects of the gut, characterization of digestive enzymes, gut microbiota and fiber digestion. Finally, current knowledge on the nutritional utilization and requirements of BSFL in terms of macro- and micro-nutrients is reviewed and found to be rather limited. In addition, the research methods to determine nutritional requirements of conventional livestock are not applicable for BSFL. Thus, there is a great need for research on the nutrient requirements of BSFL.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Teun Veldkamp
- Wageningen UR, Livestock Research, P.O. Box 338, 6700AH, Wageningen, Netherlands
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany.
| |
Collapse
|
31
|
Jin N, Liu Y, Zhang S, Sun S, Wu M, Dong X, Tong H, Xu J, Zhou H, Guan S, Xu W. C/N-Dependent Element Bioconversion Efficiency and Antimicrobial Protein Expression in Food Waste Treatment by Black Soldier Fly Larvae. Int J Mol Sci 2022; 23:ijms23095036. [PMID: 35563424 PMCID: PMC9104233 DOI: 10.3390/ijms23095036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has emerged as a promising species for waste bioconversion and source of antimicrobial proteins (AMPs). However, there is a scarcity of research on the element transformation efficiency and molecular characterization of AMPs derived from waste management. Here, food waste treatment was performed using BSF larvae (BSFL) in a C/N ratio of 21:1−10:1, with a focus on the C/N-dependent element bioconversion, AMP antimicrobial activity, and transcriptome profiling. The C-larvae transformation rates were found to be similar among C/Ns (27.0−35.5%, p = 0.109), while the N-larvae rates were different (p = 0.001), with C/N 21:1−16:1 (63.5−75.0%) being higher than C/N 14:1−10:1 (35.0−45.7%). The C/N ratio did not alter the antimicrobial spectrum of AMPs, but did affect the activities, with C/N 21:1 being significantly lower than C/N 18:1−10:1. The lysozyme genes were found to be significantly more highly expressed than the cecropin, defensin, and attacin genes in the AMP gene family. Out of 51 lysozyme genes, C/N 18:1 and C/N 16:1 up-regulated (p < 0.05) 14 and 12 genes compared with C/N 21:1, respectively, corresponding to the higher activity of AMPs. Overall, the element bioconversion efficiency and AMP expression can be enhanced through C/N ratio manipulation, and the C/N-dependent transcriptome regulation is the driving force of the AMP difference.
Collapse
Affiliation(s)
- Ning Jin
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Yanxia Liu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Shouyu Zhang
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Shibo Sun
- School of Life Science and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (S.S.); (J.X.)
| | - Minghuo Wu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
| | - Xiaoying Dong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Huiyan Tong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Jianqiang Xu
- School of Life Science and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (S.S.); (J.X.)
| | - Hao Zhou
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
| | - Shui Guan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Weiping Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
32
|
Wu N, Wang X, Mao Z, Liang J, Liu X, Xu X. Bioconversion of chicken meat and bone meal by black soldier fly larvae: Effects of straw addition on the quality and microbial profile of larval frass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114579. [PMID: 35078063 DOI: 10.1016/j.jenvman.2022.114579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Meat and bone meal (MBM) is a kind of animal waste with high nutritive values. Bioconversion of MBM by black soldier fly larvae (BSFL) has great potential to obtain high-quality organic fertilizers. However, limited information is available on MBM waste manipulation to enhance BSFL frass quality. In the present study, BSFL were fed with chicken MBM containing increasing levels of rice straw (CK (0%), T1 (1%), T2 (1%), and T3 (3%)). The effects of straw addition into MBM on the quality and microbial profile of BSFL frass were evaluated. Results showed that MBM amended with straw did not significantly affect the body weight of BSFL and most of the nutrients (e.g. pH, EC, TN, TP and Na) in larval frass. Compared to other treatments, T1 sample had the highest organic matter (OM) value, implying proper straw addition could increase OM contents in frass. Fourier transform infrared (FTIR) analysis showed that straw addition might enhance the decomposition of aliphatic carbons and polysaccharides during MBM digestion process. Moreover, T1 sample had the highest microbial richness and Shannon diversity indices. It was supposed that proper straw addition in MBM helped build a more balanced diet and contributed to the BSFL gut health, consequently stimulating the gut microbe-mediated substances transformation or decomposition and promoting the microbial diversity in frass. Compared to CK, straw addition had significant influence on the abundances of Firmicutes, Bacteroidetes and Fusobacteria in frass. Elements including OM, TK and Na played important roles in shaping the microbial profile of BSFL frass.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
33
|
Veldkamp T, Meijer N, Alleweldt F, Deruytter D, Van Campenhout L, Gasco L, Roos N, Smetana S, Fernandes A, van der Fels-Klerx HJ. Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective. INSECTS 2022; 13:281. [PMID: 35323579 PMCID: PMC8948993 DOI: 10.3390/insects13030281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023]
Abstract
The expected global population growth to 9.7 billion people in 2050 and the significant change in global dietary patterns require an increase in global food production by about 60%. The protein supply for feed and food is most critical and requires an extension in protein sources. Edible insects can upgrade low-grade side streams of food production into high-quality protein, amino acids and vitamins in a very efficient way. Insects are considered to be the "missing link" in the food chain of a circular and sustainable economy. Insects and insect-derived products have entered the European market since first being acknowledged as a valuable protein source for feed and food production in around 2010. However, today, scaling up the insect value chain in Europe is progressing at a relatively slow pace. The mission of SUSINCHAIN (SUStainable INsect CHAIN)-a four-year project which has received funding from the European Commission-is to contribute to novel protein provision for feed and food in Europe by overcoming the remaining barriers for increasing the economic viability of the insect value chain and opening markets by combining forces in a comprehensive multi-actor consortium. The overall project objective is to test, pilot and demonstrate recently developed technologies, products and processes, to realize a shift up to Technology Readiness Level 6 or higher. In addition to these crucial activities, the project engages with stakeholders in the insect protein supply chain for feed and food by living labs and workshops. These actions provide the necessary knowledge and data for actors in the insect value chain to decrease the cost price of insect products, process insects more efficiently and market insect protein applications in animal feed and regular human diets that are safe and sustainable. This paves the way for further upscaling and commercialization of the European insect sector.
Collapse
Affiliation(s)
- Teun Veldkamp
- Wageningen Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Nathan Meijer
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (N.M.); (H.J.v.d.F.-K.)
| | - Frank Alleweldt
- CIVIC Consulting GMBH, Potsdamer Strasse 150, 10783 Berlin, Germany;
| | | | - Leen Van Campenhout
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium;
| | - Laura Gasco
- Department of Agricultural, Forest, and Food Sciences, Università degli Studi di Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy;
| | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark;
| | - Sergiy Smetana
- German Institute of Food technologies (DIL e.V.), Prof. Von Klitzing Strasse 7, 49610 Quakenbrueck, Germany;
| | - Ana Fernandes
- Sociedade Portuguesa de Inovacao Consultadoria Empresarial e Fomento da Inovacao SA, Av Marechal Gomes da Costa, 1376 Porto, Portugal;
| | - H. J. van der Fels-Klerx
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (N.M.); (H.J.v.d.F.-K.)
| |
Collapse
|
34
|
Optimization of Screw Mixer to Improve Drying Performance of Livestock Manure Dryer Using CFD Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Scarcity of fossil fuels and their emissions of fossil fuel pollutants, such as carbon dioxide, into the atmosphere, and the resulting consequences, have led energy policymakers to look for alternative renewable and clean energy sources. The use of animal wastes is one of the very promising renewable energy alternatives paving the way for a more sustainable energy network. Animal manure produced by livestock farms has a moisture content of about 80%, and such livestock manure is dehydrated to a moisture content of 20–25% and solidified to be used as biomass and fuel for thermal power plants. Previous studies on manure dryers have been concentrated on convection-type dryers, but this type of dryer has the disadvantage of inadequate processing capacity per hour because it cannot agitate manure. In this study, to deal with the drawbacks of conventional livestock manure drying methods, a screw-type dryer was proposed. CFD analysis of the dryer was performed by selecting the viscosity of livestock manure and design parameters of the screw using Ansys Workbench. Through the response surface method, optimal design of the screw shape for the improvement of drying efficiency and smooth discharge of residual manure was carried out.
Collapse
|
35
|
Yuan MC, Hasan HA. Effect of Feeding Rate on Growth Performance and Waste Reduction Efficiency of Black Soldier Fly Larvae (Diptera: Stratiomyidae). Trop Life Sci Res 2022; 33:179-199. [PMID: 35651642 PMCID: PMC9128650 DOI: 10.21315/tlsr2022.33.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaysia like many other developing countries is facing the challenge of poor waste management. This research was conducted to determine the effect of black soldier fly (BSF) larvae in decomposing food waste, palm oil waste, fish waste and yard waste. The development time and waste reduction efficiency of four different organic materials were evaluated. In this study, BSF larvae were fed with all four types of waste at five feeding rates of 0.25, 0.50, 1.00, 1.50 and 2.00 g larva-1 day-1 with three replicates per feeding rate until the larvae reached the pre-pupae stage. During the study, larval development time, larval mortality, pre-pupae weight and waste reduction indexes (WRI) were determined. Food waste and yard waste achieved the highest WRI of 4.43 ± 0.06 and 0.71 ± 0.01, respectively at the feeding rate of 0.50 g larva-1 day-1 while palm oil waste and fish waste attained the highest WRI values at feeding rates of 1.00 g larva-1 day-1 (1.89 ± 0.02) and 0.25 g larva-1 day-1 (3.75 ± 0.24), respectively. The results showed that both variables significantly influenced the bioconversion process, but waste reduction efficiency was the most influential element.
Collapse
Affiliation(s)
- Moo Chee Yuan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Hadura Abu Hasan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
36
|
Singh A, Marathe D, Raghunathan K, Kumari K. Effect of Different Organic Substrates on Selected Life History Traits and Nutritional Composition of Black Soldier fly (Hermetia illucens). ENVIRONMENTAL ENTOMOLOGY 2022; 51:182-189. [PMID: 34864905 DOI: 10.1093/ee/nvab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Black soldier fly (Hermetia illucens L. [Diptera: Stratiomyidae]) has gained huge popularity in different industrial and commercial sectors because of its excellent potential to treat organic waste and high biomass production. As the industrial application of BSF is expanding at accelerated rates, there is a need to optimize its mass scale production where the organic substrates play a very crucial role in optimal growth and development. The present study deals with the investigation of different life history attributes of BSF such as larval and adult weights, survival, pupation rate, and the development time as the function of different organic substrates [fruits and vegetable mix (T1); wheat bran, soy, and corn meal mix (T2); and the dairy manure (T3)]. The larval, pupal, and adult weights differed across all three treatments (P < 0.05). There was no significant difference in the survival rate of larvae among T1 and T2 however, T3 differed significantly from T1 and T2. Likewise, the pupation rate and the development time differed significantly between the three treatments. Results indicated that the BSF development was least in dairy manure treatment and therefore, higher percent mortality and higher development time were observed. However, to deal with the problems of waste management and treatment, BSF larvae can be successfully employed for the treatment of any type of waste since it showed significant treatment efficiencies.
Collapse
Affiliation(s)
- Anshika Singh
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Deepak Marathe
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata 700 107, India
| |
Collapse
|
37
|
Peguero DA, Gold M, Vandeweyer D, Zurbrügg C, Mathys A. A Review of Pretreatment Methods to Improve Agri-Food Waste Bioconversion by Black Soldier Fly Larvae. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.745894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As the world population increases, food demand and agricultural activity will also increase. However, ~30–40% of the food produced today is lost or wasted along the production chain. Increasing food demands would only intensify the existing challenges associated with agri-food waste management. An innovative approach to recover the resources lost along the production chain and convert them into value-added product(s) would be beneficial. An alternative solution is the use of the larvae of the black soldier fly (BSFL), Hermetia illucens L., which can grow and convert a wide range of organic waste materials into insect biomass with use as animal feed, fertilizer and/or bioenergy. However, the main concern when creating an economically viable business is the variability in BSFL bioconversion and processing due to the variability of the substrate. Many factors, such as the nutritional composition of the substrate heavily impact BSFL development. Another concern is that substrates with high lignin and cellulose contents have demonstrated poor digestibility by BSFL. Studies suggest that pretreatment methods may improve the digestibility and biodegradability of the substrate by BSFL. However, a systematic review of existing pretreatment methods that could be used for enhancing the bioconversion of these wastes by BSFL is lacking. This paper provides a state-of-the-art review on the potential pretreatment methods that may improve the digestibility of substrates by BSFL and consequently the production of BSFL. These processes include but are not limited to, physical (e.g., mechanical and thermal), chemical (alkaline treatments), and biological (bacterial and fungal) treatments.
Collapse
|
38
|
Wang X, Lyu T, Dong R, Wu S. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113914. [PMID: 34628280 DOI: 10.1016/j.jenvman.2021.113914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671-1479 μmol gHA-1) and thermophilic (774-1506 μmol gHA-1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.
Collapse
Affiliation(s)
- Xiqing Wang
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Tao Lyu
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
39
|
Li X, Zhou Z, Zhang J, Zhou S, Xiong Q. Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae ( Hermetia illucens L.). INSECTS 2021; 13:23. [PMID: 35055866 PMCID: PMC8779397 DOI: 10.3390/insects13010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
The production of insect biomass from organic waste is a major challenge in terms of reducing the environmental impacts of waste and maintaining feed and food security. The feasibility of the co-conversion of soybean curd residue (SCR) and kitchen waste (KW) to breed black soldier fly (BSF, Hermetia illucens) larvae was evaluated so as to enhance biomass conversion efficiency and supply animal feed and allow it to be used in biodiesel production. Co-digestion was found to significantly increase larval yield, bioconversion rate, and bioaccumulation of lipid. Partial least squares regression showed that the conversion of 30% SCR with 70% KW is an appropriate proportion. The appropriate performance parameters of BSF were: survival rate (98.75%), prepupal rate (88.61%), larval biomass (30.32 g fresh and 11.38 g dry mass), bioconversion rate (18.45%), efficiency conversion of ingested food (ECI) (28.30%), and FCR (2.51). Our results show that conversion of mixtures (e.g., SCR with KW) by BSF larvae (BSFL) could play an important role in various organic materials management.
Collapse
Affiliation(s)
- Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Zhihao Zhou
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Jing Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China;
| | - Shen Zhou
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| |
Collapse
|
40
|
Gorrens E, Van Looveren N, Van Moll L, Vandeweyer D, Lachi D, De Smet J, Van Campenhout L. Staphylococcus aureus in Substrates for Black Soldier Fly Larvae (Hermetia illucens) and Its Dynamics during Rearing. Microbiol Spectr 2021; 9:e0218321. [PMID: 34937197 PMCID: PMC8694120 DOI: 10.1128/spectrum.02183-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Black soldier fly larvae (BSFL; Hermetia illucens) are promising insects for the conversion of organic waste streams into valuable biomolecules. Such waste streams can contain foodborne pathogens. To assess this risk factor, this study evaluated the presence of Staphylococcus aureus in waste streams as a substrate ingredient for BSFL production as well as in the rearing process. First, the general microbiological quality and the occurrence of S. aureus were investigated for different waste streams. Staphylococcus aureus was abundantly present. Control of pH and water activity should avoid pathogens, which cannot grow in single-substrate ingredients, redeveloping when mixing streams for optimal substrate conditions for BSFL production. Next, it was investigated whether S. aureus present in the substrate was ingested and/or eradicated by BSFL. In inoculation trials, with S. aureus added to chicken feed as the substrate at 3 or 7 log CFU/g, the larvae showed a reducing effect on S. aureus. After 6 days, S. aureus counts were below the detection limit (2.0 log CFU/g) in all larvae samples and decreased in the substrate to <2.0 and <3.1 log CFU/g for inoculation levels of 3 and 7 log CFU/g, respectively. While this is promising, it is still recommended to monitor and control this pathogen in BSFL rearing. Intriguingly, screening of antimicrobial activity of dominant microorganisms associated with BSFL showed a clear activity of Trichosporon isolates against S. aureus. Future research should explore whether Trichosporon, which is frequently observed in BSFL, plays a role in controlling specific microorganisms, such as S. aureus. IMPORTANCE Given the increasing need for (more sustainable) methods to upcycle organic waste streams, the interest to rear insects, like black soldier fly larvae (BSFL), on such streams is increasing. This study reveals that S. aureus is abundantly present in such waste streams, which might be a point of attention for insect producers. At the same time, it reveals that when S. aureus was inoculated in chicken feed as the substrate, it was not detected in the larvae and was reduced in the substrate after 6 days. Future inoculation trials should investigate whether this reduction is substrate dependent or not. Toward the future, the role of the BSFL microbiota in controlling intestinal bacterial community homeostasis should be explored, because one of the dominant microorganisms associated with BSFL, Trichosporon spp., showed clear activity against S. aureus.
Collapse
Affiliation(s)
- E. Gorrens
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - N. Van Looveren
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - L. Van Moll
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - D. Vandeweyer
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - D. Lachi
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - J. De Smet
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - L. Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, KU Leuven, Geel Campus, Geel, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Matos JS, de Aráujo LP, Allaman IB, Lôbo IP, de Oliva ST, Tavares TM, de Almeida Neto JA. Evaluation of the reduction of methane emission in swine and bovine manure treated with black soldier fly larvae (Hermetia illucens L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:480. [PMID: 34240260 DOI: 10.1007/s10661-021-09252-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.
Collapse
Affiliation(s)
- Joan Sanchez Matos
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil.
| | - Lara Pinto de Aráujo
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Ivan Bezerra Allaman
- Department of Exact and Technology Sciences, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Ivon Pinheiro Lôbo
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| | - Sergio Telles de Oliva
- Laboratory of Environmental Analytical Chemistry, Chemistry Institute (LAQUAM), Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, R. Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Tania Mascarenhas Tavares
- Laboratory of Environmental Analytical Chemistry, Chemistry Institute (LAQUAM), Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, R. Barão de Jeremoabo 147, Salvador, BA, 40170-115, Brazil
| | - Jose Adolfo de Almeida Neto
- Bioenergy and Environment Group, Universidade Estadual de Santa Cruz, Jorge Amado Highway, Km 16, Ilheus, BA, 45662-900, Brazil
| |
Collapse
|
42
|
Singh A, Srikanth BH, Kumari K. Determining the Black Soldier fly larvae performance for plant-based food waste reduction and the effect on Biomass yield. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 130:147-154. [PMID: 34090238 DOI: 10.1016/j.wasman.2021.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Management of Municipal solid waste in low-income countries with high population densities such as India has always been a strenuous task. With perpetual advancements, there are many available technologies dealing with waste management such as incineration, pyrolysis and landfill operations. But such technologies are often accompanied with some limitations (operational and maintenance problems) and have negative environmental impacts. In this regard, continuous efforts are currently spent to develop the sustainable technologies for coping with the problems of waste management. Confronted with such problems, BSF larval composting has emerged as a green approach for waste management which outshines the various current technologies. However, it is not widely explored and therefore in the present study, BSF larval treatment efficiency has been tested against different types of food waste treatments viz., mix food waste (T1), restaurant waste (T2), fruit waste (T3), and vegetable waste (T4). We have also evaluated the Biomass Conversion Ratio (BCR) of BSF larvae. The waste reduction efficiency was found to be 72% for T1 followed by T3 and T2 whereas the efficiency was least for T4 corresponding to lower BCR comparatively. BCR obtained for T1 treatment was almost 25% which was exceptionally high in comparison to other published studies. The highest waste reduction efficiency and the BCR values for T1 may be attributed to appropriately balanced food nutrition and C/N ratio Therefore, it may be concluded that substrate type and its nutritional value strongly determines the growth and development of larva influencing the waste ingestion rate.
Collapse
Affiliation(s)
- Anshika Singh
- CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B H Srikanth
- Art of Waste Management, Kalpavraksha, Jannapura, Bhadravati 577307, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Moruzzo R, Mancini S, Guidi A. Edible Insects and Sustainable Development Goals. INSECTS 2021; 12:insects12060557. [PMID: 34203968 PMCID: PMC8232599 DOI: 10.3390/insects12060557] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The United Nations Sustainable Development Goals (SDGs), seventeen urgent topics of action by all country, aim to reach ambitious and hopefully targets, such as peace and prosperity for people and the planet, now and into the future. Edible insects were individuated as a potential response to one of the major challenges of our times: increasing food production while decreasing environmental impact. In this review, the “insect idea” was linked to the single SDGs in order to express its potentiality. Likewise, indirect linking between insect farming and several SDGs was reported. Abstract The insect sector can become an important component of sustainable circular agriculture by closing nutrient and energy cycles, fostering food security, and minimising climate change and biodiversity loss, thereby contributing to SDGs. The high levels of the interaction of the insect sector with the SDGs is clearly illustrated inside the review, analysing all of the SDGs that can have direct and indirect effects on insects. Mapping the interactions between the SDGs goals and insect sector offers a starting point, from which it could be possible to define practical next steps for better insect policy.
Collapse
Affiliation(s)
- Roberta Moruzzo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (A.G.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (A.G.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216-803
| | - Alessandra Guidi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (A.G.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
44
|
Effects of Different Nitrogen Sources and Ratios to Carbon on Larval Development and Bioconversion Efficiency in Food Waste Treatment by Black Soldier Fly Larvae ( Hermetia illucens). INSECTS 2021; 12:insects12060507. [PMID: 34072891 PMCID: PMC8226641 DOI: 10.3390/insects12060507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Black soldier fly larvae (BSFL) have received global research interest and industrial application due to their high performance on the organic waste treatment. However, the substrate C/N property, which may affect larvae development and the waste bioconversion process greatly, is significantly less studied. The current study focused on the food waste treatment by BSFL, compared the nitrogen supplying effects of 9 nitrogen species (i.e., NH4Cl, NaNO3, urea, uric acid, Gly, L-Glu, L-Glu:L-Asp (1:1, w/w), soybean flour, and fish meal), and further examined the C/N effects on the larval development and bioconversion process. We found that NH4Cl and NaNO3 led to poor larval growth and survival, while 7 organic nitrogen species exerted no harm to the larvae. Urea was further chosen to adjust the C/Ns. Results showed that lowering the C/N from the initial 21:1 to 18:1–14:1 improved the waste reduction and larvae production performance, and C/N of 18:1–16:1 was further beneficial for the larval protein and lipid bioconversion, whereas C/N of 12:1–10:1 resulted in a significant performance decline. Therefore, the C/N range of 18:1–16:1 is likely the optimal condition for food waste treatment by BSFL and adjusting food waste C/N with urea could be a practical method for the performance improvement. Abstract Biowaste treatment by black soldier fly larvae (BSFL, Hermetia illucens) has received global research interest and growing industrial application. Larvae farming conditions, such as temperature, pH, and moisture, have been critically examined. However, the substrate carbon to nitrogen ratio (C/N), one of the key parameters that may affect larval survival and bioconversion efficiency, is significantly less studied. The current study aimed to compare the nitrogen supplying effects of 9 nitrogen species (i.e., NH4Cl, NaNO3, urea, uric acid, Gly, L-Glu, L-Glu:L-Asp (1:1, w/w), soybean flour, and fish meal) during food waste larval treatment, and further examine the C/N effects on the larval development and bioconversion process, using the C/N adjustment with urea from the initial 21:1 to 18:1, 16:1, 14:1, 12:1, and 10:1, respectively. The food wastes were supplied with the same amount of nitrogen element (1 g N/100 g dry wt) in the nitrogen source trial and different amount of urea in the C/N adjustment trial following larvae treatment. The results showed that NH4Cl and NaNO3 caused significant harmful impacts on the larval survival and bioconversion process, while the 7 organic nitrogen species resulted in no significant negative effect. Further adjustment of C/N with urea showed that the C/N range between 18:1 and 14:1 was optimal for a high waste reduction performance (73.5–84.8%, p < 0.001) and a high larvae yield (25.3–26.6%, p = 0.015), while the C/N range of 18:1 to 16:1 was further optimal for an efficient larval protein yield (10.1–11.1%, p = 0.003) and lipid yield (7.6–8.1%, p = 0.002). The adjustment of C/N influenced the activity of antioxidant enzymes, such as superoxide dismutase (SOD, p = 0.015), whereas exerted no obvious impact on the larval amino acid composition. Altogether, organic nitrogen is more suitable than NH4Cl and NaNO3 as the nitrogen amendment during larval food waste treatment, addition of small amounts of urea, targeting C/N of 18:1–14:1, would improve the waste reduction performance, and application of C/N at 18:1–16:1 would facilitate the larval protein and lipid bioconversion process.
Collapse
|
45
|
Gorrens E, Van Moll L, Frooninckx L, De Smet J, Van Campenhout L. Isolation and Identification of Dominant Bacteria From Black Soldier Fly Larvae ( Hermetia illucens) Envisaging Practical Applications. Front Microbiol 2021; 12:665546. [PMID: 34054771 PMCID: PMC8155639 DOI: 10.3389/fmicb.2021.665546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to establish a representative strain collection of dominant aerobic bacteria from black soldier fly larvae (Hermetia illucens, BSFL). The larvae were fed either chicken feed or fiber-rich substrates to obtain a collection of BSFL-associated microorganisms. Via an approach based on only considering the highest serial dilutions of BSFL extract (to select for the most abundant strains), a total of 172 bacteria were isolated. Identification of these isolates revealed that all bacteria belonged to either the Proteobacteria (66.3%), the Firmicutes (30.2%), the Bacteroidetes (2.9%) or the Actinobacteria (0.6%). Twelve genera were collected, with the most abundantly present ones (i.e., minimally present in at least three rearing cycles) being Enterococcus (29.1%), Escherichia (22.1%), Klebsiella (19.8%), Providencia (11.6%), Enterobacter (7.6%), and Morganella (4.1%). Our collection of dominant bacteria reflects largely the bacterial profiles of BSFL already described in literature with respect to the most important phyla and genera in the gut, but some differences can be noticed depending on substrate, biotic and abiotic factors. Furthermore, this bacterial collection will be the starting point to improve in vitro digestion models for BSFL, to develop mock communities and to find symbionts that can be added during rearing cycles to enhance the larval performances, after functional characterization of the isolates, for instance with respect to enzymatic potential.
Collapse
Affiliation(s)
- Ellen Gorrens
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Laurence Van Moll
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lotte Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Geel, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Kaya C, Generalovic TN, Ståhls G, Hauser M, Samayoa AC, Nunes-Silva CG, Roxburgh H, Wohlfahrt J, Ewusie EA, Kenis M, Hanboonsong Y, Orozco J, Carrejo N, Nakamura S, Gasco L, Rojo S, Tanga CM, Meier R, Rhode C, Picard CJ, Jiggins CD, Leiber F, Tomberlin JK, Hasselmann M, Blanckenhorn WU, Kapun M, Sandrock C. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol 2021; 19:94. [PMID: 33952283 PMCID: PMC8101212 DOI: 10.1186/s12915-021-01029-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Background The black soldier fly (Hermetia illucens) is the most promising insect candidate for nutrient-recycling through bioconversion of organic waste into biomass, thereby improving sustainability of protein supplies for animal feed and facilitating transition to a circular economy. Contrary to conventional livestock, genetic resources of farmed insects remain poorly characterised. We present the first comprehensive population genetic characterisation of H. illucens. Based on 15 novel microsatellite markers, we genotyped and analysed 2862 individuals from 150 wild and captive populations originating from 57 countries on seven subcontinents. Results We identified 16 well-distinguished genetic clusters indicating substantial global population structure. The data revealed genetic hotspots in central South America and successive northwards range expansions within the indigenous ranges of the Americas. Colonisations and naturalisations of largely unique genetic profiles occurred on all non-native continents, either preceded by demographically independent founder events from various single sources or involving admixture scenarios. A decisive primarily admixed Polynesian bridgehead population serially colonised the entire Australasian region and its secondarily admixed descendants successively mediated invasions into Africa and Europe. Conversely, captive populations from several continents traced back to a single North American origin and exhibit considerably reduced genetic diversity, although some farmed strains carry distinct genetic signatures. We highlight genetic footprints characteristic of progressing domestication due to increasing socio-economic importance of H. illucens, and ongoing introgression between domesticated strains globally traded for large-scale farming and wild populations in some regions. Conclusions We document the dynamic population genetic history of a cosmopolitan dipteran of South American origin shaped by striking geographic patterns. These reflect both ancient dispersal routes, and stochastic and heterogeneous anthropogenic introductions during the last century leading to pronounced diversification of worldwide structure of H. illucens. Upon the recent advent of its agronomic commercialisation, however, current human-mediated translocations of the black soldier fly largely involve genetically highly uniform domesticated strains, which meanwhile threaten the genetic integrity of differentiated unique local resources through introgression. Our in-depth reconstruction of the contemporary and historical demographic trajectories of H. illucens emphasises benchmarking potential for applied future research on this emerging model of the prospering insect-livestock sector. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01029-w.
Collapse
Affiliation(s)
- Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.,Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | | | - Gunilla Ståhls
- Zoology unit, Finnish Museum of Natural History, Helsinki, Finland
| | - Martin Hauser
- California Department of Food and Agriculture, Plant Pest Diagnostics Branch, Sacramento, USA
| | - Ana C Samayoa
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Carlos G Nunes-Silva
- Department of Genetics and Biotechnology Graduate Program, Federal University of Amazonas, Manaus, Brazil
| | - Heather Roxburgh
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Ebenezer A Ewusie
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Yupa Hanboonsong
- Department of Entomology, Khon Kaen University, Khon Kaen, Thailand
| | - Jesus Orozco
- Department of Agricultural Sciences and Production, Zamorano University, Zamorano, Honduras
| | - Nancy Carrejo
- Department of Biology, Universidad del Valle, Santiago de Cali, Colombia
| | - Satoshi Nakamura
- Crop, Livestock and Environmental Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, University of Alicante, Alicante, Spain
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, Republic of South Africa
| | - Christine J Picard
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | - Martin Hasselmann
- Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.,Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| |
Collapse
|
47
|
Abbas Y, Yun S, Wang K, Ali Shah F, Xing T, Li B. Static-magnetic-field coupled with fly-ash accelerant: A powerful strategy to significantly enhance the mesophilic anaerobic-co-digestion. BIORESOURCE TECHNOLOGY 2021; 327:124793. [PMID: 33581377 DOI: 10.1016/j.biortech.2021.124793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic-co-digestion (AcoD) of dairy-manure (DM) and aloe-peel-residue (ALR) waste is enhanced by combining static-magnetic-field (SMF) and fly-ash (FA). Varying SMF intensities (5-30 mT) were applied to the co-digestion digesters containing the optimum FA concentration (1.5 wt.%), which were selected from co-digestion systems with a varying FA (0-2 wt.%). All experimental groups exhibit the greater COD removal rates (51.56-64.19%) and cumulative biogas yields (604.14-671.64 mL/g VS) than reference group (37.77% and 433.19 mL/g VS). The digester with optimum FA concentration (1.5 wt.%) under 5 mT shows the highest biogas yield (671.64 mL/g VS), and exhibits superior digestate stability (45.4%) and fertility (7.01%) for fertilizer utilization. A powerful strategy for understanding the underlying mechanism of the SMF and FA accelerant in an enhanced AcoD system is proposed. This work documents an innovative technique for an enhanced AcoD system using the SMF coupled with FA accelerant.
Collapse
Affiliation(s)
- Yasir Abbas
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Fayyaz Ali Shah
- Department of Environmental Sciences. Hazara University Mansehra, KPK, Pakistan
| | - Tian Xing
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bingjie Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
48
|
Li G, Zhu Q, Niu Q, Meng Q, Yan H, Wang S, Li Q. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants. BIORESOURCE TECHNOLOGY 2021; 321:124446. [PMID: 33264744 DOI: 10.1016/j.biortech.2020.124446] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the effects of anionic and cationic surfactants on the physico-chemical properties, organic matter (OM) degradation, bacterial community structure and metabolic function during composting of dairy manure and sugarcane bagasse. The results showed that the surfactant could optimize the composting conditions to promote the degradation of OM. The most OM degradation and humic substances (HS) synthesis were observed in SAS. Firmicutes and Proteobacteria were more abundant in SAS and CTAC, and Actinobacteria in CK. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that SAS and CTAC are more abundant than CK in genes related to metabolism, environmental and genetic information processing. The correlation analysis showed that the dominant bacteria had more significant correlation with environmental factors. In general, the anionic surfactant could better promote the degradation of OM, change the structure of microbial community, and improve the quality of compost.
Collapse
Affiliation(s)
- Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
49
|
Pang W, Hou D, Nowar EE, Chen H, Zhang J, Zhang G, Li Q, Wang S. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42767-42777. [PMID: 32720023 DOI: 10.1007/s11356-020-09909-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH3 emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH3 during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios. The results indicated that initial C/N ratios of feedstock are a crucial parameter affecting the biomass generation of larvae. The BSFL recycled approximately 4.17-6.61% of C and 17.45-23.73% of N from raw materials under different C/N ratios. Cumulative CO2, CH4, NH3, and N2O emissions at the different C/N ratios ranging from 15 to 35 were 107.92-151.68, 0.08-0.76, 0.14-1.17, and 0.91-1.18 mg kg-1, respectively. Compared with conventional composting, BSFL treatment could reduce the total greenhouse gas emissions by over 90%. The study showed that bio-treatment of mixtures of pig manure and corncob with a proper C/N ratio by BSFL could become an avenue to achieve higher nutrient recycling, which is an eco-friendly process.
Collapse
Affiliation(s)
- Wancheng Pang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dejia Hou
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elhosseny E Nowar
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Kaluybia, 13736, Egypt
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoping Zhang
- College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Qing Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shucai Wang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
50
|
Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, Khanal SK. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 117:58-80. [PMID: 32805602 DOI: 10.1016/j.wasman.2020.07.050] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Population growth and unprecedented economic growth and urbanization, especially in low- and middle-income countries, coupled with extreme weather patterns, the high-environmental footprint of agricultural practices, and disposal-oriented waste management practices, require significant changes in the ways we produce food, feed and fuel, and manage enormous amounts of organic wastes. Farming insects such as the black soldier fly (BSF) (Hermetia illucens) on diverse organic wastes provides an opportunity for producing nutrient-rich animal feed, fuel, organic fertilizer, and biobased products with concurrent valorization of wastes. Inclusion of BSF larvae/pupae in the diets of poultry, fish, and swine has shown promise as a potential substitute of conventional feed ingredients such as soybean meal and fish meal. Moreover, the bioactive compounds such as antimicrobial peptides, medium chain fatty acids, and chitin and its derivatives present in BSF larvae/pupae, could also add values to the animal diets. However, to realize the full potential of BSF-based biorefining, more research and development efforts are necessary for scaling up the production and processing of BSF biomass using more mechanized and automated systems. More studies are also needed to ensure the safety of the BSF biomass grown on various organic wastes for animal feed (also food) and legalizing the feed application of BSF biomass to wider categories of animals. This critical review presents the current status of the BSF technology, identifies the research gaps, highlights the challenges towards industrial scale production, and provides future perspectives.
Collapse
Affiliation(s)
- K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|