1
|
Li Z, Zhang R, Huang J, Yu D, Cheng Z, Chen G, Sun P. Carbon residue from co-pyrolysis of cartons and plastics: Characteristics, environmental behaviors and applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124296. [PMID: 39854896 DOI: 10.1016/j.jenvman.2025.124296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The continuously growing of municipal solid waste (MSW) has posed a threat to human-being. Pyrolysis is a promising technique for MSW disposal, as it can reduce its volume and produce valuable products as well. This study evaluated the potential of carbon residue (CR) derived from waste carton as soil amendment. Additionally, considering the waste plastics, such as plastic bags, plastic tape, etc., can mix with carton in MSW, the effect of polyvinyl chloride (PVC) addition on the characteristics of CR and its environmental behavior was measured. Results showed that the CR derived from carton exhibited notable efficacy in adsorbing Cd2+ (56.111 mg/g), pesticides and PO43- (0.231 mmol/g), thereby mitigating pollutants and immobilizing nutrient in soil environment. The introduction of PVC was found to enhance the adsorption of CR for Cd2+ (65.623 mg/g) and PO43- (0.524 mmol/g), albeit exhibiting diminished performance in the removal of pesticides. Different from previous studies, this study revealed that the dissolved black carbon (DBC) released from CRs did not generate reactive oxygen species (ROS) effectively under solar irradiation, and the light screening of DBC can mitigate the photodegradation of pollutants. Furthermore, both CRs increased bacterial luminescence by approximately 70%, which indicated that no toxicity produced during the pyrolysis process. And gas chromatography-mass spectrometry (GC-MS) revealed the absence of polyaromatic hydrocarbon (PAH) in CRs. In summary, this study may provide some new insights on the disposal of MSW, and the CR made by MSW could be effective in soil amendment and reduce the leaching of pollutants and nutrient.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Shengli Oilfield Company, Sinopec, Dongying, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Dandan Yu
- Shengli Oilfield Company, Sinopec, Dongying, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
3
|
Li J, Sun W, Lichtfouse E, Maurer C, Liu H. Life cycle assessment of biochar for sustainable agricultural application: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175448. [PMID: 39137840 DOI: 10.1016/j.scitotenv.2024.175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Biochar application is an effective strategy to address Agro-climatic challenges. However, the agro-environmental impacts of different biochar technology models are lacking of systematic summaries and reviews. Therefore, this paper comprehensively reviews recent developments derived from published literature, delving into the economic implications and environmental benefits of three distinct process namely technologies-pyrolysis, gasification, and hydrothermal carbonization. This paper specifically focuses on the agricultural life cycle assessment (LCA) methodology, and the influence of biochar preparation technologies and products on energy consumption and agricultural carbon emissions. LCA analysis shows that process and feedstock pose a predominant role on the properties and production rate of biochar, while gasification technology exhibits excellent economic attributes compared to the other two technologies. Biochar applications in agricultural has the beneficial effect of sequestering carbon and reducing emissions, especially in the area of mitigating the carbon footprint of farmland. However, the complexity of the composition of the prepared feedstock and the mismatch between the biochar properties and the application scenarios are considered as potential sources of risks. Notably, mechanism of carbon sequestration and emission reduction by soil microorganisms and agro-environmental sequestration by biochar application remains unclear, calling for in-depth studies. We review novel aspects that have not been covered by previous reviews by comparing the technical, economic, and environmental benefits of pyrolysis, gasification, and hydrothermal carbonization systematically. Overall, this study will provide a valuable framework to environmental implications of biochar preparation, application, and life cycle assessments.
Collapse
Affiliation(s)
- Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Claudia Maurer
- University of Stuttgart-Institute of Sanitary Engineering, Water Quality and Waste Management, Bandtäle 2, 70569 Stuttgart, Germany.
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| |
Collapse
|
4
|
Xie J, Chen Z, Lali MN, Xiong H, Wang Y, Niu R, Zhao J, He X, Zhang Y, Shi X, Rennenberg H. Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees. PLANTS (BASEL, SWITZERLAND) 2024; 13:3159. [PMID: 39599367 PMCID: PMC11597673 DOI: 10.3390/plants13223159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Top grafting is an efficient and practical technique for the renewal and rejuvenation of citrus trees in old orchards. However, root death after top grafting restricts plant growth and canopy reconstruction. Thus, applications of rooting promotion substances before citrus top grafting may increase the amount and activity of roots, thereby enhancing top-grafted plant performance. To test this assumption, four rooting promotion substances, i.e., rooting promotion powder, biochar, organic fertilizer, and potassium fulvic acid, were applied before top grafting, and the effects on biometric and physiological parameters were analyzed after top grafting. The results showed that the application of all rooting promotion substances before top grafting has a positive effect on growth and mineral nutrient acquisition, as well as on foliar C and N assimilates and the activity of anti-oxidative enzymes of top-grafted plants. Rooting promotion powder and biochar had the best effect on top-grafted tree performance in the short term. In conclusion, pre-grafting root promotion reduced root damage, enhanced nutrient acquisition, and improved the physiological performance of top-grafted plants. Therefore, this approach can play a crucial role in accelerating canopy reconstruction in old citrus orchards and in improving citrus plant development.
Collapse
Affiliation(s)
- Jiawei Xie
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China; (J.X.); (H.X.); (H.R.)
| | - Zhihui Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Zhongxian Agricultural Science and Technology Extension Center, Chongqing 404300, China
| | - Mohammad Naeem Lali
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Department of Forestry and Natural Resources, Faculty of Agriculture, Bamyan University, Bamyan 1601, Afghanistan
| | - Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China; (J.X.); (H.X.); (H.R.)
| | - Yuheng Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Runzheng Niu
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jingkun Zhao
- Chongqing Agro-Tech Extension Station, Chongqing 401121, China;
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Beijing Changping Soil Quality National Observation and Research Station, Beijing 102200, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (Z.C.); (M.N.L.); (Y.W.); (R.N.); (X.H.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China; (J.X.); (H.X.); (H.R.)
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Zhao W, Zhao H, Sun X, Wang H, Sun Y, Liang Y, Wang D. Biochar and wood vinegar altered the composition of inorganic phosphorus bacteria community in saline-alkali soils and promoted the bioavailability of phosphorus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122501. [PMID: 39299129 DOI: 10.1016/j.jenvman.2024.122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
As an important part of the ecosystem, saline-alkali soils are in urgent need of efficient and environmentally friendly soil conditioners. Biochar and wood vinegar are regarded as organic soil improvement and plant growth regulators to improve soil physicochemical properties and promote crop growth. However, the mechanism of how inorganic phosphorus bacteria increase phosphorus when biochar and wood vinegar applied to saline-alkali soils is not clear. Herein, the present study was designed to investigate the effects of biochar and wood vinegar with different rates on physicochemical properties of saline-alkali soils and inorganic phosphorus bacteria diversities and to discuss the mechanism of biochar and wood vinegar on available phosphorus by pot experiments. The application of biochar and wood vinegar exhibited an effect on the decrease in pH and salt contents and the increase in soil porosity, soil nutrients, and hundred-grain weight of rice. The 600 kg ha-1 biochar and 1800 kg ha-1 wood vinegar group showed the most significant increment in available phosphorus, alkaline phosphatase, acid phosphatase, and neutral phosphatase activities, with the increases of 49.24%, 40.35%, 48%, and 149%, respectively. The 600 kg ha-1 biochar and 1200 kg ha-1 wood vinegar group significantly enhanced microbial biomass phosphorus concentrations by 41.29%. Moreover, biochar and wood vinegar shifted inorganic phosphorus bacteria composition structure and promoted its diversities, more so at a higher rate of wood vinegar application. The dominant species of inorganic phosphorus bacteria were Proteobacteria, Gammaproteobacteria, Alphaproteobacteria, Pseudomonas, and Rhizobium in saline-alkali soils. The Alphaproteobacteria and Hydrogenophaga were the key microorganisms reducing pH and salt contents and increasing available phosphorus contents in saline-alkali soils. In conclusion, the application of biochar and wood vinegar was a useful strategy to improve saline-alkali soils.
Collapse
Affiliation(s)
- Wei Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hongrui Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiping Sun
- Grainger College of Engineering Department of Computer Science Grainger, University of Illinois at Urbana Champaign, 61820, USA
| | - Hongyan Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Liang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Daqing Wang
- Haikou University of Economics, Haikou, 571127, China.
| |
Collapse
|
6
|
Luo X, Wang D, Liu Y, Qiu Y, Zheng J, Xia G, Elbeltagi A, Chi D. Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching. FRONTIERS IN PLANT SCIENCE 2024; 15:1459751. [PMID: 39502925 PMCID: PMC11535512 DOI: 10.3389/fpls.2024.1459751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Introduction Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (BIP) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and BIP could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation. Methods A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using BIP on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with BIP, including conventional phosphorus fertilizer rates (PCR) without BIP, P1C0; 3/4 PCR with 7.5 t ha-1 BIP, P2C1; 3/4 PCR with 15 t ha-1 BIP, P2C2; 2/3 PCR with 7.5 t ha-1 BIP, P3C1; 2/3 PCR with 15 t ha-1 BIP, P3C2. Results and discussion The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha-1 BIP (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.
Collapse
Affiliation(s)
- Xiulan Luo
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Dewei Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar, China
| | - Yuting Liu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Yuanze Qiu
- Shenyang No.2 High School, Shenyang, China
| | - Junlin Zheng
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Guimin Xia
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Ahmed Elbeltagi
- Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Bashir MH, Farhan M, Samreen T, Shehzad MT. Effectiveness of constructed wetland technology-treated industrial wastewater on the spinach (Spinacia oleracea) health risks and biochar efficiency. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:469. [PMID: 39382710 DOI: 10.1007/s10653-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
In peri-urban areas, use of industrial wastewater for irrigation is a common practice. Industrial wastewater contains cadmium, chromium, lead, nickel, and other elements that deteriorate food quality and affect human health. Biochar has been proven to remediate heavy metal contaminated soil by reducing their mobility and bioavailability. A pot experiment was conducted to evaluate the efficiency of different levels of biochar on spinach growth with low heavy metal concentration and to minimize associated health issues. The experiment lasted two months and the treatments: Control (tap water), untreated and treated industrial wastewater and both in combination with biochar (0.5% and 1%) were applied in completely randomized design. Findings suggested that treated industrial wastewater with 1% biochar resulted in maximum plant height, shoot weight, chlorophyll contents (SPAD value), photosynthetic and transpiration rate. Biochar significantly reduced heavy metal mobility in soil due to its porous structure, high pH, higher CEC, and variety of surface functional groups. The cumulative hazard index (HI), hazard quotient, cancer risk, and total cancer risk (TCR) were calculated using method provided by US-EPA for each metal. All treatments had HI values of < 1, however applying 1% biochar significantly reduced the HI values to 2.00E-01 and 2.88E-01 in adults and children, respectively. TCR for all treatments was < 1, while treated industrial wastewater and biochar (1%) has significantly reduced to 1.55E-02 and 1.91E-03 for adults and children, respectively. Thus, it was determined that irrigation with industrial effluents caused toxicity in vegetables, which had a negative impact on human health. Biochar effectively mitigated metal toxicity in both soil and spinach plants that resulted in reduced health/cancer risk.
Collapse
Affiliation(s)
- Muhammad Hassan Bashir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Farhan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tayyaba Samreen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Tahir Shehzad
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| |
Collapse
|
8
|
Shaaban M, Nunez-Delgado A. Soil adsorption potential: Harnessing Earth's living skin for mitigating climate change and greenhouse gas dynamics. ENVIRONMENTAL RESEARCH 2024; 251:118738. [PMID: 38518909 DOI: 10.1016/j.envres.2024.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Soil adsorption, which could be seen as a crucial ecosystem service, plays a pivotal role in regulating environmental quality and climate dynamics. However, despite its significance, it is often undervalued within the realms of research and policy frameworks. This article delves into the multifaceted aspects of soil adsorption, incorporating insights from chemistry and material science, ecological perspectives, and recent advancements in the field. In exploring soil components and their adsorption capacities, the review highlights how organic and inorganic constituents orchestrate soil's aptitude for pollutant mitigation and nutrient retention/release. Innovative materials and technologies such as biochar are evaluated for their efficacy in enhancing these natural processes, drawing a link with the sustainability of agricultural systems. The symbiosis between soil microbial diversity and adsorption mechanisms is examined, emphasizing the potential for leveraging this interaction to bolster soil health and resilience. The impact of soil adsorption on global nutrient cycles and water quality underscores the environmental implications, portraying it as a sentinel in the face of escalating anthropogenic activities. The complex interplay between soil adsorption mechanisms and climate change is elaborated, identifying research gaps and advocating for future investigations to elucidate the dynamics underpinning this relation. Policy and socioeconomic aspects form a crucial counterpart to the scientific discourse, with the review assessing how effective governance, incentivization, and community engagement are essential for translating soil adsorption's functionality into tangible climate change mitigation and sustainable land-use strategies. Integrating these diverse but interconnected strata, the article presents a comprehensive overview that not only charts the current state of soil adsorption research but also casts a vision for its future trajectory. It calls for an integrated approach combining scientific inquiry, technological innovation, and proactive policy to leverage soil adsorption's full potential to address environmental challenges and catalyze a transition towards a more sustainable and resilient future.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| | - Avelino Nunez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Spain
| |
Collapse
|
9
|
Liu S, Pan Y, Jin X, Zhao S, Xu X, Chen Y, Shen Z, Chen C. A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124254. [PMID: 38815893 DOI: 10.1016/j.envpol.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.
Collapse
Affiliation(s)
- Sijia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yiwen Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Cai Y, Yang J, Ran Z, Bu F, Chen X, Shaaban M, Peng QA. Optimizing Typha biochar with phosphoric acid modification and ferric chloride impregnation for hexavalent chromium remediation in water and soil. CHEMOSPHERE 2024; 354:141739. [PMID: 38503383 DOI: 10.1016/j.chemosphere.2024.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Considering the persistent and covert nature of heavy metal soil contamination, the sustainable development of ecological environments and food safety is at significant risk. Our study focuses on remediating soils contaminated with chromium (Cr); we introduce an advanced remediation material, iron oxide phosphoric acid-loaded activated biochar (HFBC), synthesized through pyrolysis. This HFBC displays greater microporosity, fewer impurities, and enhanced efficiency for the remediation process. Our research utilized a comprehensive set of analytical techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS), alongside adsorption studies to elucidate the Cr removal mechanism. The effectiveness of HFBC in remediation was influenced by several factors: the pH level, dosage of HFBC, the initial concentration of Cr, and the ambient temperature. Our results indicated an optimal chromium (VI) adsorption capacity of 55.5 mg/g by HFBC at a pH of 6.0 and a temperature of 25 °C, with the process adhering to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, thus suggesting spontaneity in the uptake method. Moreover, this mechanism encompasses both adsorption and reduction reactions. Using HFBC in pot experiments with cabbage indicated not only an increase in soil pH and cation exchange capacity (CEC), but also a surge in bacterial community abundance. Significant reductions in bioavailable chromium were also recorded. Interestingly, HFBC addition bolstered the growth of cabbage, while concurrently diminishing chromium accumulation within the plant, particularly notable as the HFBC application rate increased. In summation, the HFBC produced in our study has demonstrated convincing efficacy in removing chromium from aqueous solutions and soil. Moreover, the positive agronomic implications of its use, such as enhanced plant growth and reduced heavy metal uptake by plants, indicate its high potential for operational value in the domain of environmental remediation of heavy metals.
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China; Clean Production of Textile Printing and DyeingEngineering Research Center, Ministry of Education, Wuhan, 430200, China.
| | - Jianwei Yang
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Zhonglyu Ran
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Fantong Bu
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Xu Chen
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China; Clean Production of Textile Printing and DyeingEngineering Research Center, Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
11
|
Shaaban M. Microbial pathways of nitrous oxide emissions and mitigation approaches in drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120393. [PMID: 38364533 DOI: 10.1016/j.jenvman.2024.120393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Drylands refer to water scarcity and low nutrient levels, and their plant and biocrust distribution is highly diverse, making the microbial processes that shape dryland functionality particularly unique compared to other ecosystems. Drylands are constraint for sustainable agriculture and risk for food security, and expected to increase over time. Nitrous oxide (N2O), a potent greenhouse gas with ozone reduction potential, is significantly influenced by microbial communities in drylands. However, our understanding of the biological mechanisms and processes behind N2O emissions in these areas is limited, despite the fact that they highly account for total gaseous nitrogen (N) emissions on Earth. This review aims to illustrate the important biological pathways and microbial players that regulate N2O emissions in drylands, and explores how these pathways might be influenced by global changes for example N deposition, extreme weather events, and climate warming. Additionally, we propose a theoretical framework for manipulating the dryland microbial community to effectively reduce N2O emissions using evolving techniques that offer inordinate specificity and efficacy. By combining expertise from different disciplines, these exertions will facilitate the advancement of innovative and environmentally friendly microbiome-based solutions for future climate change vindication approaches.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
12
|
Viotti P, Marzeddu S, Antonucci A, Décima MA, Lovascio P, Tatti F, Boni MR. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:809. [PMID: 38399060 PMCID: PMC10890072 DOI: 10.3390/ma17040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
Collapse
Affiliation(s)
- Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Simone Marzeddu
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Angela Antonucci
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - María Alejandra Décima
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Pietro Lovascio
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Tatti
- National Centre of Waste and Circular Economy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
13
|
Yang L, Shen P, Liang H, Wu Q. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115935. [PMID: 38211514 DOI: 10.1016/j.ecoenv.2024.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The accumulation of microplastics in agricultural soil brings unexpected adverse effects on crop growth and soil quality, which is threatening the sustainability of agriculture. Biochar is an emerging soil amendment material of interest as it can remediate soil pollutants. However, the mechanisms underlying biochar alleviated the toxic effects of microplastics in crops and soil were largely unknown. Using a common economic crop, peanut as targeted species, the present study evaluated the plant physiologica and molecular response and rhizosphere microbiome when facing microplastic contamination and biochar amendment. Transcriptome and microbiome analyses were conducted on peanut root and rhizosphere soil treated with CK (no microplastic and no biochar addition), MP (1.5% polystyrene microplastic addition) and MB (1.5% polystyrene microplastic+2% peanut shell biochar addition). The results indicated that microplastics had inhibitory effects on plant root development and rhizosphere bacterial diversity and function. However, biochar application could significantly promote the expressions of key genes associated with antioxidant activities, lignin synthesis, nitrogen transport and energy metabolism to alleviate the reactive oxygen species stress, root structure damage, nutrient transport limitation, and energy metabolism inhibition induced by microplastic contamination on the root. In addition, the peanut rhizosphere microbiome results showed that biochar application could restore the diversity and richness of microbial communities inhibited by microplastic contamination and promote nutrient availability of rhizosphere soil by regulating the abundance of nitrogen cycling-related and organic matter decomposition-related microbial communities. Consequently, the application of biochar could enhance root development by promoting oxidative stress resistance, nitrogen transport and energy metabolism and benefit the rhizosphere microecological environment for root development, thereby improved the plant-soil system health of microplastic-contaminated agroecosystem.
Collapse
Affiliation(s)
- Liyu Yang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
14
|
Fregolente LG, Rodrigues MT, Oliveira NC, Araújo BS, Nascimento ÍV, Souza Filho AG, Paula AJ, Costa MCG, Mota JCA, Ferreira OP. Effects of chemical aging on carbonaceous materials: Stability of water-dispersible colloids and their influence on the aggregation of natural-soil colloid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166835. [PMID: 37678531 DOI: 10.1016/j.scitotenv.2023.166835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems). A chemical composition (C, H, N, and O content) change in CMs due to the chemically induced aging was observed along with minor structural modifications. Chemical aging could increase the amount of oxygen functional groups for both biochar and hydrochar, though in a different level depending on the methodology applied. In this sense, hydrochar was more susceptive to chemical oxidation than biochar. The effectiveness of chemical aging treatments for biochar increased in the order of water < acid < hydrogen peroxide, whereas for hydrochar the order was water < hydrogen peroxide < acid. While the increase in surface oxidation improved the biochar colloidal stability in water medium at different ionic strengths (single systems), the stability and critical coagulation concentration (CCC) slightly changed for hydrochar. Natural-soil clay (NSC) interactions with oxidized carbonaceous material colloids (binary systems) enhanced NSC stability, which is less likely to aggregate. Therefore, the aging of carbonaceous materials modifies the interaction and dynamics of soil small particles, requiring far more attention to the environmental risks due to their application over time.
Collapse
Affiliation(s)
- Laís G Fregolente
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil.
| | - Maria T Rodrigues
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Naiara C Oliveira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Bruno Sousa Araújo
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Ícaro V Nascimento
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Antonio G Souza Filho
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Amauri J Paula
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Ilum School of Science, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo State, Brazil
| | - Mirian C G Costa
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Jaedson C A Mota
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Odair P Ferreira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Laboratório de Materiais Funcionais Avançados (LaMFA), Chemistry Department, Universidade Estadual de Londrina, Londrina, Paraná State postcode 86057-970, Brazil
| |
Collapse
|
15
|
Wang Y, Li D, Liu H, Wu D, Ai Y, Li J, Xu L, Liu W, Qu J, Tao Y, Wang J, Wang J, Zhang Y. Screening the optimal modified biochar for nitrogen retention in black soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113088-113104. [PMID: 37848797 DOI: 10.1007/s11356-023-30295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Reducing the environmental problems caused by nitrogen loss and nitrogen pollution is of great significance. The addition of biochar to soil is a new method for increasing nitrogen interception due to the special structural and physicochemical properties of biochar. The optimal modified biochar was screened out after acid-base modification and batch adsorption test in this paper. And then the effects of different soil and biochar mixing methods on soil physicochemical properties and nitrogen adsorption and retention were explored through soil column leaching test. The results showed that the biochar with a pyrolysis temperature of 700 °C had the best adsorption effect on nitrogen after being modified by 0.1 mol/L HCI, and the adsorption capacity of nitrate nitrogen reached 121.46 mg/g. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and was mainly homogeneous monolayer. After mixing the selected modified biochar with black soil, the pH increased by 4.77%, the content of ammonia nitrogen increased by 4.89%, and the nitrate content increased by 16.62%. In this study, the adsorption effect of biochar on nitrogen in black soil was discussed, so as to explore the optimal use of biochar in soil, which provided some reference basis for the relevant research.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dannan Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hechun Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Di Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianzhi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
16
|
Qin T, Liu S, Li W, Xu S, Lu J, Lv Z, Abebe SA. Porous fiber materials can alleviate the risk of farmland drought and flooding disasters and prompt crop growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1201879. [PMID: 37900755 PMCID: PMC10602813 DOI: 10.3389/fpls.2023.1201879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/17/2023] [Indexed: 10/31/2023]
Abstract
Floods and droughts on farmland seriously damage agricultural production. Porous fiber materials (PFM) made from mineral rocks have high porosity, permeability, and water retention and are utilized widely in green roofs and agricultural production. Therefore, studying the impact of PFM on the improvement of farmland is of great importance for soil and water conservation. We set 64 extreme rainfalls to analyze the impact of PFM on soil water content (SWC), runoff, nutrient loss, microorganism, and plant growth. The results showed that PFM can effectively reduce runoff and improve soil water distribution, and enhance the soil water holding capacity. Furthermore, PFM reduced the loss of nitrogen and phosphorus by 18.3% to 97% in the runoff, and the soil erosion of summer corn was more strongly influenced by lower vegetation cover, compared with winter wheat. Finally, when PFM was buried in the soil, the wheat yield increased by -6.7%-20.4%, but the corn yield in some PFM groups decreased by 5.1% to 42.5% under short-duration irrigation conditions. Our study emphasizes that the effectiveness of PFM depends mainly on the following: First, PFM with high porosity can increase soil water holding capacity and timely replenish the water lost from the surrounding soil. Second, PFM with high permeability can increase infiltration during rainfall and decrease runoff and nutrient loss, reducing the risk of farmland flooding and pollution. Finally, PFM consists of gold ions and alkali metal oxides, which can stabilize agglomerates and improve soil enzyme activity, thereby increasing the relative abundance of some microbial strains and promoting crop growth. However, when the rainfall amount was low or PFM volume was large, PFM could not store water sufficiently during rainfall, which seriously reduced the maximum saturated moisture content and water absorption performance. Meanwhile, the PFM could not release water in time and replenish the soil water deficit, which increased drought risk. In conclusion, the appropriate volume of PFM and irrigation system may enhance soil water storage capacity, minimize agricultural pollution, and promote crop production.
Collapse
Affiliation(s)
- Tianling Qin
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Shanshan Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Wei Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Shu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Jie Lu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Zhenyu Lv
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Sintayehu A Abebe
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Hydraulic and Water Resources Engineering Department, Debre Markos University Institute of Technology, Debre Markos, Ethiopia
| |
Collapse
|
17
|
Nascimento ÍVD, Fregolente LG, Pereira APDA, Nascimento CDVD, Mota JCA, Ferreira OP, Sousa HHDF, Silva DGGD, Simões LR, Souza Filho AG, Costa MCG. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: A review. ENVIRONMENTAL RESEARCH 2023; 233:116489. [PMID: 37385417 DOI: 10.1016/j.envres.2023.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.
Collapse
Affiliation(s)
- Ícaro Vasconcelos do Nascimento
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Laís Gomes Fregolente
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil
| | - Arthur Prudêncio de Araújo Pereira
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil.
| | | | - Jaedson Cláudio Anunciato Mota
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Odair Pastor Ferreira
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil; State University of Londrina, Department of Chemistry, Highway Celso Garcia Cid (445) - km 380, Londrina, Paraná, ZIP code 86050-482, Mailbox 6001, Brazil
| | - Helon Hébano de Freitas Sousa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Débora Gonçala Gomes da Silva
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Lucas Rodrigues Simões
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - A G Souza Filho
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil.
| | - Mirian Cristina Gomes Costa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| |
Collapse
|
18
|
Jabborova D, Abdrakhmanov T, Jabbarov Z, Abdullaev S, Azimov A, Mohamed I, AlHarbi M, Abu-Elsaoud A, Elkelish A. Biochar improves the growth and physiological traits of alfalfa, amaranth and maize grown under salt stress. PeerJ 2023; 11:e15684. [PMID: 37609438 PMCID: PMC10441527 DOI: 10.7717/peerj.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/14/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Salinity is a main factor in decreasing seed germination, plant growth and yield. Salinity stress is a major problem for economic crops, as it can reduce crop yields and quality. Salinity stress occurs when the soil or water in which a crop is grown has a high salt content. Biochar improve plant growth and physiological traits under salt stress. The aim of the present study, the impact of biochar on growth, root morphological traits and physiological properties of alfalfa, amaranth and maize and soil enzyme activities under saline sands. Methods We studied the impact of biochar on plant growth and the physiological properties of alfalfa, amaranth and maize under salt stress conditions. After 40 days, plant growth parameters (plant height, shoot and root fresh weights), root morphological traits and physiological properties were measured. Soil nutrients such as the P, K and total N contents in soil and soil enzyme activities were analyzed. Results The results showed that the maize, alfalfa, and amaranth under biochar treatments significantly enhanced the plant height and root morphological traits over the control. The biochar on significantly increased the total root length, root diameter, and root volume. Compared to the control, the biochar significantly increased the chlorophyll a and b content, total chlorophyll and carotenoid content under salt stress. Furthermore, the biochar significantly increased enzyme activities of soil under salt stress in the three crops. Conclusions Biochar treatments promote plant growth and physiological traits of alfalfa, amaranth, and maize under the salt stress condition. Overall, biochar is an effective way to mitigate salinity stress in crops. It can help to reduce the amount of salt in the soil, improve the soil structure, and increase the availability of essential nutrients, which can all help to improve crop yields.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- National University of Uzbekistan, Tashkent, Uzbekistan
- Uzbekistan Academy of Sciences, Kibray, Uzbekistan
| | | | | | | | | | | | - Maha AlHarbi
- Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelghafar Abu-Elsaoud
- Suez Canal University, Ismailia, Egypt
- Imam Mohammad ibn Saud Islamic University, Riyadh, Saudia Arabia
| | - Amr Elkelish
- Suez Canal University, Ismailia, Egypt
- Imam Mohammad ibn Saud Islamic University, Riyadh, Saudia Arabia
| |
Collapse
|
19
|
Xue P, Hou R, Fu Q, Li T, Wang J, Zhou W, Shen W, Su Z, Wang Y. Potentially migrating and residual components of biochar: Effects on phosphorus adsorption performance and storage capacity of black soil. CHEMOSPHERE 2023; 336:139250. [PMID: 37343640 DOI: 10.1016/j.chemosphere.2023.139250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Biochar has great potential to increase the soil nutrient storage capacity. However, with aging, biochar gradually disintegrates and releases fractions with migration potential, resulting in unknown effects on soil nutrient regulation. Based on this problem, we used ultrasound to separate original biochar (TB) into potentially migrating biochar (DB) and residual biochar (RB). The elemental composition and pore characteristics of TB, DB and RB were analyzed. Different fractions of biochar were applied to black soil, and the kinetic model and isothermal adsorption models were used to explore the adsorption characteristics of different treatments. Then, the effects of initial pH and coexisting ions on adsorption were compared. The adsorption mechanism and potential leaching process of phosphorus in soil were investigated. The results showed that RB had higher O and H contents and was less stable than TB, while RB was more aromatic. The phosphorus adsorption capacity of different treatments was SRB (1.3318 mg g-1) > STB (1.2873 mg g-1) > SDB (1.3025 mg g-1) > SCK (1.1905 mg g-1). SRB had optimal phosphorus adsorption performance and storage capacity, with a maximum adsorption capacity of 1.6741 mg g-1 for the Langmuir isotherm, and it also showed excellent applicability in a pH gradient and with coexisting ions. The main adsorption mode of phosphorus by different treatments was monolayer chemisorption, related to electrostatic repulsion and oxygen-containing functional groups. DB was less effective in inhibiting soil phosphorus migration, with the cumulative leaching of SDB reaching 8.99 mg and the percentage of phosphorus in the 0-6 cm soil layer reaching only 15.42%. Overall, the results can help elucidate potential trends in the adsorption performance and migration process of soil phosphorus by biochar, and improve the comprehensive utilization efficiency of biochar.
Collapse
Affiliation(s)
- Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinwu Wang
- School of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wenqi Zhou
- School of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Weizheng Shen
- School of Electrical and Information, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhongbin Su
- School of Electrical and Information, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yijia Wang
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
20
|
Piash MI, Uemura K, Itoh T, Iwabuchi K. Meat and bone meal biochar can effectively reduce chemical fertilizer requirements for crop production and impart competitive advantages to soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117612. [PMID: 36967694 DOI: 10.1016/j.jenvman.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Safe and effective circulation of nutrient-rich meat and bone meal (MBM) could become a carbon-based alternative to limited chemical fertilizers (CFs). Therefore, MBM biochars (MBMCs) were produced at 500, 800, and 1000 °C to evaluate their effects on plant growth, nutrient uptake, and soil characteristics. The results revealed that MBMC produced at 500 °C (MBMC500) contained the maximum amount of C, N, and phytoavailable P. All additional MBMC doses with recommended CF increased sorghum shoot yield (6.7-16%) and significantly improved P uptake. Additional experiments were conducted with decreasing doses of CF (100-0%) with or without MBMC500 (7 t/ha) to quantify its actual fertilizing value. MBMC500 showed the capability to reduce CF requirement by 20% without compromising the optimum yield (by 100% CF) while increasing pH, CEC, total-N, available-P, Mg, and microbial population of post-harvest soil. Although a δ15N analysis confirmed MBMC500 as a source of plant N, a reduction in N uptake by MBMC500 + 80% CF treatment compared to 100% CF might have limited further sorghum growth. Thus, future studies should concentrate on producing MBMC with better N utilization capability and achieving maximum CF reduction without negative environmental impacts.
Collapse
Affiliation(s)
- Mahmudul Islam Piash
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Koki Uemura
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Takanori Itoh
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kazunori Iwabuchi
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
21
|
Brown RW, Chadwick DR, Bott T, West HM, Wilson P, Hodgins GR, Snape CE, Jones DL. Biochar application to temperate grasslands: challenges and opportunities for delivering multiple ecosystem services. BIOCHAR 2023; 5:33. [PMID: 37325199 PMCID: PMC10261193 DOI: 10.1007/s42773-023-00232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Grasslands (natural, semi-natural and improved) occupy approximately one-third of the terrestrial biosphere and are key for global ecosystem service provision, storing up to 30% of soil organic carbon (SOC). To date, most research on soil carbon (C) sequestration has focused on croplands where the levels of native soil organic matter (SOM) are typically low and significant potential exists to replenish SOM stocks. However, with the renewed push to achieve "net zero" C emissions by 2050, grasslands may offer an additional C store, utilising tools such as biochar. Here, we critically evaluate the potential for biochar as a technology for increasing grassland C stocks, identifying a number of practical, economic, social and legislative challenges that need to be addressed before the widescale adoption of biochar may be achieved. We critically assess the current knowledge within the field of grassland biochar research in the context of ecosystem service provision and provide opinions on the applicability of biochar as an amendment to different types of grassland (improved, semi-improved and unimproved) and the potential effect on ecosystem provision using a range of application techniques in the topsoil and subsoil. We concluded that the key question remains, is it possible for managed grasslands to store more C, without causing a loss in additional ecosystem services? To address this question future research must take a more multidisciplinary and holistic approach when evaluating the potential role of biochar at sequestering C in grasslands to mitigate climate change. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42773-023-00232-y.
Collapse
Affiliation(s)
- Robert W. Brown
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
| | - David R. Chadwick
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
| | - Tom Bott
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Helen M. West
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Paul Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Genevieve R. Hodgins
- Department of Chemical and Environmental Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Colin E. Snape
- Department of Chemical and Environmental Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
- Centre for Sustainable Farming Systems, Food Futures Institute, SoilsWest, Murdoch University, Murdoch, WA 6150 Australia
| |
Collapse
|
22
|
Cai Y, Ran Z, Cang Y, Chen X, Shaaban M, Peng QA. Efficient removal of Cr(VI) and As(V) from an aquatic system using iron oxide supported typha biochar. ENVIRONMENTAL RESEARCH 2023; 225:115588. [PMID: 36858301 DOI: 10.1016/j.envres.2023.115588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The removal of Cr(VI) and As(V) from aqueous solutions has been a worldwide concern. In this study, Typha biochar (FBC) with magnetic iron oxide was prepared by impregnating Typha with FeCl3 and performing pyrolysis, and the possible mechanism of Cr(VI) and As(V) removal was investigated by combining characterization means and adsorption experiments. The results showed that the modified Typha biochar is rich in pores and has the potential to eliminate Cr and As through processes such as exchange and reduction. The single molecule uptake capacities of FBC for Cr(VI) and As(V) were 32.82 and 21.56 mg g-1, respectively. The adsorption process is spontaneous heat absorption, and the adsorption results are also consistent with the proposed secondary kinetic model. FBC still had >60% removal efficiency in the second and third reuse of Cr(VI), indicating its good recyclability. Therefore, this study confirms that FBC can effectively remove both Cr(VI) and As(V).
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China; Clean Production of TextilePrinting and Dyeing Engineering Research Center of the Ministry of Education, Wuhan, 430200, China.
| | - Zhonglyu Ran
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Yan Cang
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Xu Chen
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Muhammad Shaaban
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China; Clean Production of TextilePrinting and Dyeing Engineering Research Center of the Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
23
|
Luo J, Yang R, Ma F, Jiang W, Han C. Recycling utilization of Chinese medicine herbal residues resources: systematic evaluation on industrializable treatment modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32153-32167. [PMID: 36719578 DOI: 10.1007/s11356-023-25614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Traditional Chinese medicine (TCM) is an indispensable part of the world health and medical system and plays an important role in treatment, prevention, and health care. These TCM produce a large amount of Chinese medicine herbal residues (CHMRs) during the application process, most of which are the residues after the decoction or extraction of botanical medicines. These CMHRs contain a large number of unused components, which can be used in medical, breeding, planting, materials, and other industries. Considering the practical application requirements, this paper mainly introduces the low-cost treatment methods of CHMRs, including the extraction of active ingredients, cultivation of edible fungi, and manufacture of feed. These methods not only have low upfront investment, but also have some income in the future. Furthermore, other methods are briefly introduced. In conclusion, this paper can provide a reference for people who need to deal with CMHRs and contribute to the sustainable development of TCM.
Collapse
Affiliation(s)
- Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.
| |
Collapse
|
24
|
Boughattas I, Zitouni N, Mkhinini M, Missawi O, Helaoui S, Hattab S, Mokni M, Bousserrhine N, Banni M. Combined toxicity of Cd and 2,4-dichlorophenoxyacetic acid on the earthworm Eisenia andrei under biochar amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34915-34931. [PMID: 36525191 DOI: 10.1007/s11356-022-24628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Due to anthropogenic activities, various pollutants can be found in agricultural soil, such as cadmium (Cd) and 2,4-dichlorophenoxyacetic acid (2,4-D). They are highly toxic and can have a negative impact on soil fertility. For remediation strategies, biochar has acquired considerable attention due to its benefits for agriculture. However, we should recognize the ecological risk posed by biochar use. In addition, little is known about its non-desirable effects on soil organisms such as earthworms, especially in the case of soil remediation. In this study, earthworms (Eisenia andrei) were exposed to soil contaminated with Cd (0.7 mg/kg), (2,4-D) (7 mg/kg), and a mixture of the two in the presence and absence of biochar (2%). A 7- and 14-day incubation experiment was carried out for this purpose. Cd and 2,4-D uptakes in earthworms' tissues, oxidative stress, cytotoxic response, DNA damage, histopathological changes, and gene expression level were assessed. Results suggested that biochar increased the bioavailability of Cd and 2,4-D and the frequency of micronuclei (MNi) and decreased the lysosomal membrane stability (LMS) in earthworms. Also, histopathological examination detected numerous alterations in animals exposed to the contaminants without any amelioration when biochar was added. The biochemical response of earthworms in terms of oxidative stress demonstrates that in the presence of biochar, animals tend to alleviate the toxicity of Cd and 2,4-D. This was also supported by transcriptomic analyses where expression gene levels related to oxidative stress were upregulated in earthworms exposed to Cd and 2,4-D + biochar. The present investigation brought new insights concerning the use of biochar in agriculture.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia.
- Regional Field Crops Research Center of Beja, Beja, Tunisia.
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sondes Helaoui
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott Mariem, 4042, Sousse, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, cedex 94010, Creteil, France
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
25
|
Vlajkov V, Pajčin I, Vučetić S, Anđelić S, Loc M, Grahovac M, Grahovac J. Bacillus-Loaded Biochar as Soil Amendment for Improved Germination of Maize Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:1024. [PMID: 36903885 PMCID: PMC10004800 DOI: 10.3390/plants12051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biochar is considered one of the most promising long-term solutions for soil quality improvement, representing an ideal environment for microorganisms' immobilization. Hence there is a possibility to design microbial products formulated using biochar as a solid carrier. The present study was aimed at development and characterization of Bacillus-loaded biochar to be applied as a soil amendment. The producing microorganism Bacillus sp. BioSol021 was evaluated in terms of plant growth promotion traits, indicating significant potential for production of hydrolytic enzymes, indole acetic acid (IAA) and surfactin and positive tests for ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production. Soybean biochar was characterised in terms of physicochemical properties to evaluate its suitability for agricultural applications. The experimental plan for Bacillus sp. BioSol021 immobilisation to biochar included variation of biochar concentration in cultivation broth and adhesion time, while the soil amendment effectiveness was evaluated during maize germination. The best results in terms of maize seed germination and seedling growth promotion were achieved by applying 5% of biochar during the 48 h immobilisation procedure. Germination percentage, root and shoot length and seed vigour index were significantly improved when using Bacillus-biochar soil amendment compared to separate treatments including biochar and Bacillus sp. BioSol021 cultivation broth. The results indicated the synergistic effect of producing microorganism and biochar on maize seed germination and seedling growth promotion, pointing out the promising potential of this proposed multi-beneficial solution for application in agricultural practices.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Vučetić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Stefan Anđelić
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
26
|
Sachdeva S, Kumar R, Sahoo PK, Nadda AK. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120937. [PMID: 36608723 DOI: 10.1016/j.envpol.2022.120937] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector 62, Noida, 201309, Uttar Pradesh, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda, 151401, Punjab, India; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| |
Collapse
|
27
|
Tong X, Song Q, Wang L, Hong Z, Dong Y, Jiang J. Effects of biochars derived from four crop straws on a Cd-polluted cinnamon soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24764-24770. [PMID: 36692727 DOI: 10.1007/s11356-023-25440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Crop straw biochar is an efficient and low-cost alternative amendment for heavy metal immobilization in acidic soil. However, reports on the effect of these biochars on the amendment of actual Cd-polluted calcareous soil are limited. Therefore, four biochars, derived from peanut, rice, maize, and wheat straws, were applied to determine the changes in the chemical properties of alkaline cinnamon soil and effects on Cd immobilization. The results showed that the cation exchange capacity and the contents of organic C, Mehlich-3 K, and Mehlich-3 P in the biochar-amended soil increased by 4.87-22.02%, 68.78-218.83%, 1.9-10.3 times, and 19.18-74.40%, respectively, indicating the potential high performance of biochar in improving soil fertility and productivity. The Community Bureau of Reference sequential extraction results showed that decrease in acid-extractable Cd resulted in a reduced availability of Cd. Thus, crop straw biochar could be a promising alternative for soil Cd decontamination and fertilization.
Collapse
Affiliation(s)
- Xuejiao Tong
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Qingyun Song
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Lei Wang
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Zhineng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
28
|
Chen H, Jiang H, Nazhafati M, Li L, Jiang J. Biochar: An effective measure to strengthen phosphorus solubilizing microorganisms for remediation of heavy metal pollution in soil. Front Bioeng Biotechnol 2023; 11:1127166. [PMID: 36937749 PMCID: PMC10019676 DOI: 10.3389/fbioe.2023.1127166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
|
29
|
Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158562. [PMID: 36089037 DOI: 10.1016/j.scitotenv.2022.158562] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | | | - Vineet Vimal
- Institute of Minerals and Materials Technology, Orissa, India
| | - Ajay Kumar Gupta
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
30
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
31
|
Pandey B, Suthar S, Chand N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. CHEMOSPHERE 2022; 307:135889. [PMID: 35944681 DOI: 10.1016/j.chemosphere.2022.135889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The use of low-cost substances such as biochar could be a sustainable approach to reduce the mobility, accumulation, and toxic impact of heavy metals in crop systems. This study investigates the effect of biochar amendment on heavy metal (Cr, Cd, Cu, Pb, Ni, Zn, Mg and Fe) mobility, bioaccumulation factor (BAF), plant (wheat) metal-uptake, plant oxidative stress, and soil enzymatic profile in contaminated industrial soil. Biochar was obtained from slow pyrolysis of Lantana (LBC), and Parthenium (PBC) biomass, and applied at 3% rates in contaminated soils for wheat crop study under a greenhouse experimental setup. Results show in comparison with control setups, low mobility of Cr (14.15-16.35%), Cd (7.17-15.24%), Cu (9.81-12.97%), Pb (7.99-15.23%), Ni (1.52-2.38%), Zn (10.47-14.42%), Mg (48.85-52.89%), and Fe (19.13-19.90%) contents in soils. The heavy metal uptake rates were 63.08% (Cr), 78.07% (Cd), 74.61% (Cu), 78.11% (Pb), 75.73% (Ni), 69.71% (Zn), 28.78% (Mg), and 49.26% (Fe) lower in biochar amendments, compared with the control treatments. Similarly, the biochar amended treatments exhibited low oxidative stress in wheat plants than control setups. In addition, soil enzymes (dehydrogenase, β-glucosidase, alkaline phosphatase, and urease) alleviated in biochar amended soils indicating reduced toxicity of metals in experimental soils. In summary, this study indicates that biochar amendment in contaminated soils not only improves plant growth but also lowers the rates of soil and plant toxicity and metal bioavailability as well.
Collapse
Affiliation(s)
- Bhawna Pandey
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi, 110040, India
| |
Collapse
|
32
|
Xing D, Cheng H, Ning Z, Liu Y, Lin S, Li Y, Wang X, Hill P, Chadwick D, Jones DL. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115832. [PMID: 35973291 DOI: 10.1016/j.jenvman.2022.115832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biochar application is not only being widely promoted as an ideal strategy to mitigate global climate warming, but it also has the advantage of reducing heavy metal bioavailability and migration in the soil. However, studies on the effects of field aging on biochar to reduce heavy metals from the soil are still limited. The present study aimed to explore the effects and mechanisms of aged biochar added to the soil planted with pepper plants on cadmium (Cd) uptake. To achieve this, un-amended soil (control), soil amended with fresh biochar, and aged biochar (biochar recovered from a long-term field trial after 9 years) were used to investigate the effects of field aging on biochar adsorption efficiency. The results revealed that the amount of Cd in the plant planted in control soil, amended with fresh and aged biochar, accounted for 40 ± 6.10, 17.18 ± 1.19, and 18.68 ± 0.79, respectively. There was a significant difference (P < 0.05) in the amount of Cd that was uptaken by plants among all treatments. However, soil amended with fresh biochar significantly (P < 0.05) decreased the amount of Cd in plants compared with soil amended with aged biochar. This indicates that field aging declines the potential of biochar to lower heavy metal bioavailability and retention in the soil. This study demonstrates that long-term burial lessens the ability of biochar to interact with Cd and suggests that biochar amendment can lower Cd in the soil, depending on the freshness and aging of biochar.
Collapse
Affiliation(s)
- Dan Xing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China; Guizhou Academy of Agricultural Science, Institute of Pepper Guiyang, Guiyang, 550000, China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China; School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China
| | - Shan Lin
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Paul Hill
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Dave Chadwick
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
33
|
Hou J, Pugazhendhi A, Sindhu R, Vinayak V, Thanh NC, Brindhadevi K, Lan Chi NT, Yuan D. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. ENVIRONMENTAL RESEARCH 2022; 214:113909. [PMID: 35850292 DOI: 10.1016/j.envres.2022.113909] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In a desperate attempt to find organic alternatives to synthetic fertilizers, agricultural scientists are increasingly using biochar as a soil amendment. Using chemical fertilizers results in enormous financial burdens and chronic health problems for plants and soils. Global concerns have also increased over the prolonged consumption of foods grown with artificial fertilizers and growth promotors. This adversely affects the environment and the welfare of humans, animals, and other living organisms. This way, organic biofertilizers have established a sustainable farming system. In such a context, biochar is gaining much attention among scientists as it may improve the overall performance of plants; in particular, crops have been optimistically cultivated with the addition of various sources. Field experiments have been conducted with multiple plant-based biochars and animal manure-based biochar. Plants receive different essential nutrients from biochar due to their physicochemical properties. Despite extensive research on biochar's effects on plant growth, yield, and development, it is still unknown how biochar promotes such benefits. Plant performance is affected by many factors in response to biochar amendment, but biochar's effect on nutrient uptake is not widely investigated. We attempted this review by examining how biochar affects nutrient uptake in various crop plants based on its amendment, nutrient composition, and physicochemical and biological properties. A greater understanding and optimization of biochar-plant nutrient interactions will be possible due to this study.
Collapse
Affiliation(s)
- Jinbo Hou
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691505, Kerala, India
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 70000, Viet Nam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Deyi Yuan
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
34
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
35
|
Pyrolysis Temperature and Application Rate of Sugarcane Straw Biochar Influence Sorption and Desorption of Metribuzin and Soil Chemical Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrolysis temperature and application rate of biochar to soil can influence herbicide behavior and soil fertility. The objective was to investigate the effect of soil amendments with application rates of sugarcane straw biochar, produced at different pyrolysis temperatures, on the sorption–desorption of metribuzin in soil. The analysis was performed using high-performance liquid chromatography (HPLC). The treatments were three pyrolysis temperatures (BC350, BC550 and BC750 °C) and seven application rates (0, 0.1, 0.5, 1, 1.5, 5 and 10% w w−1). Amended soil with different application rates decreased H + Al and increased pH, OC, P, K, Ca, Mg, Fe, Mn, CEC and BS contents. Kf values of sorption and desorption of metribuzin were 1.42 and 0.78 mg(1−1/n) L1/n Kg−1, respectively, in the unamended soil. Application rates < 1% of biochar sorbed ~23% and desorbed ~15% of metribuzin, similar to unamended soil, for all pyrolysis temperatures. Amended soil with 10% of BC350, BC550 and BC750 sorbed 63.8, 75.5 and 89.4% and desorbed 8.3, 5.8 and 3.7% of metribuzin, respectively. High pyrolysis temperature and application rates of sugarcane straw biochar show an ability to immobilize metribuzin and improve soil fertility, which may influence the effectiveness in weed control.
Collapse
|
36
|
Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129557. [PMID: 35999729 DOI: 10.1016/j.jhazmat.2022.129557] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The amendment of biochar for soil bioremediation can improve soil conditions, influence soil microbial community, and achieve co-application of biochar-microbe to promote the removal of pollutants. This paper summarizes the positive effects of biochar on microorganisms, including acting as a shelter, providing nutrients, and improving soil conditions (soil aggregation, pH, cation exchange capacity (CEC), and enzymatic activity). These effects will cause variations in microbial abundance, activity, and community structure. Biochar can act as an electron mediator to promote electron transfer in the process of microbial degradation. And the application of biochar in soil bioremediation is also introduced. Nevertheless, toxic substances carried by biochar that may threaten microbial community shouldn't be overlooked. With this review, we can better understand biochar's involvement in soil bioremediation, which will help us choose and modify biochar in a targeted manner for the desired purpose in practical applications.
Collapse
Affiliation(s)
- Xuemei Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ting Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zichen Shangguan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Qu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
37
|
Jiang S, Dai G, Liu Z, He T, Zhong J, Ma Y, Shu Y. Field-scale fluorescence fingerprints of biochar-derived dissolved organic matter (DOM) provide an effective way to trace biochar migration and the downward co-migration of Pb, Cu and As in soil. CHEMOSPHERE 2022; 301:134738. [PMID: 35489451 DOI: 10.1016/j.chemosphere.2022.134738] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Although the benefits of biochar amendment for heavy metal(loid) immobilization in soil have been widely recognized, its migration in soil and the resultant effects on the risk of downward migration of metal(loid)s are still poorly understood. In this study, based on biochar derived dissolved organic matter (DOM), excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) technique was employed to trace biochar migration within one year in 0-100 cm soil profiles in the field. The vertical co-migration of Pb, Cu and As was also analyzed. With biochar amended, DOM, humification index (HIX) and biological index (BIX) in 0-60 cm soil profiles increased significantly, while pH only increased in the topsoil. The identified water-extracted DOM components showed that biochar could enhance the content of fulvic acids and humic acids in soil DOM and biochar might migrate downward to 60 cm soil profiles. Furthermore, toluene/methanol-extracted DOM also confirmed the migration extent of biochar, which was more suitable to trace biochar migration because of its high resistance to the long-term ageing in the field. Moreover, we found that biochar reduced the content of Cu in 0-60 cm soil profiles, but increased the available Pb and As in the 20-40 cm soil layers. The Pearson's correlation study confirmed a strong correlation (0.568**≤R ≤ 0.803**) between the content of heavy metal(loid)s and humic-like components of soil DOM, which suggested that biochar co-migrated with Pb, Cu and As, and the potential environmental risks of biochar should be fully evaluated while it was applied for soil metal(loid) remediation.
Collapse
Affiliation(s)
- Shaojun Jiang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhenyuan Liu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tao He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 510655, China
| | - Jie Zhong
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yancheng Ma
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. MATERIALS 2022; 15:ma15155198. [PMID: 35955133 PMCID: PMC9369485 DOI: 10.3390/ma15155198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/02/2023]
Abstract
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg−1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite—for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
Collapse
|
39
|
Liu M, Zhu J, Yang X, Fu Q, Hu H, Huang Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154494. [PMID: 35283120 DOI: 10.1016/j.scitotenv.2022.154494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The simultaneous stabilization of heavy metals and organic matter in polluted soil has received little research attention. In this study, we studied the immobilization of Cu and Cd and the mineralization of organic matter in the acidic soil amended with biochar produced from rice, wheat, corn, and rape straws through incubation experiments. Compared with that in the control treatment, the availability of Cu and Cd in the biochar amended soils decreased by 17-31% and 3-17%, respectively. The cumulative amount of CO2 released from each treatment in 60 days of incubation followed the order: control treatment (399 mg CO2-C kg-1) > rape straw biochar treatment (388 mg CO2-C kg-1) > rice straw biochar treatment (374 mg CO2-C kg-1) > corn straw biochar treatment (355 mg CO2-C kg-1) > wheat straw biochar treatment (288 mg CO2-C kg-1). The information implied that biochar produced from the straw of common crops can simultaneously stabilize both heavy metals and organic matter in the acidic soil. The transformation of Cu and Cd from acid soluble fraction to residual fraction was the potential mechanism of biochar in facilitating soil heavy metal immobilization. The significant decrease in soil β-glucosidase activity, which controlled the degradation of soil organic matter, was an important potential pathway of biochar in decreasing soil organic matter mineralization. A significant decrease in the content and a substantial increase in the structural complexity of soil dissolved organic matter could further the decrease of wheat straw biochar in soil organic matter mineralization. Thus, biochar produced from the straw of common crops is a promising amendment for simultaneously stabilizing both heavy metals and organic matter in the acidic soil.
Collapse
Affiliation(s)
- Mengyuan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xin Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Koyro HW, Huchzermeyer B. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. PLANTS 2022; 11:plants11131654. [PMID: 35807605 PMCID: PMC9269222 DOI: 10.3390/plants11131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.
Collapse
Affiliation(s)
- Hans-Werner Koyro
- Institute of Plantecology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30416 Hannover, Germany; or
- AK Biotechnology, VDI-BV-Hannover, Hanomagstr. 12, 30449 Hannover, Germany
| |
Collapse
|
41
|
Wang Y, van Zwieten L, Wang H, Wang L, Li R, Qu J, Zhang Y. Sorption of Pb(II) onto biochar is enhanced through co-sorption of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153686. [PMID: 35131245 DOI: 10.1016/j.scitotenv.2022.153686] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Biochar plays an important role in controlling migration of pollutants in soils. However, little information is available on the interactions between soil-derived dissolved organic matter (DOM), biochar and soluble metal species. The aim of this work was to present the adsorption process of soil DOM by biochar (corn straw biochar produced at 700 °C) and to determine whether co-sorption of DOM would change the affinity for Pb(II). The adsorption rates of biochar and biochar + DOM for Pb(II) were best fitted with a pseudo-second order kinetic model, and the equilibrium adsorption isotherm data agreed well with both the Langmuir and Freundlich models. Adsorption of DOM to biochar reached equilibrium after 15 h with an uptake of 52% of the supplied DOM. We used fluorescence excitation-emission matrices (EEMs) with parallel factor (PARAFAC) analysis to demonstrate that protein-like, fulvic acid-like and humic acid-like substances were the primary constituents of the DOM, which were quenched over time in the presence of biochar. Synchronous fluorescence spectra indicated that the protein-like structures were the predominant fluorescence substances in DOM. Two-dimensional correlation spectroscopy (2D-COS) showed the binding of DOM to biochar resulted in the quenching of fluorescence in the order: protein-like substances > humic-like substances (280 > 355 nm). Data supports the notion that DOM can increase the adsorption capacity of biochar for metal-ions.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lukas van Zwieten
- Wollongbar Primary Industries Institute, NSW Department of Primary Industries, Wollongbar 2477, Australia
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
The Synergistic Effect of Biochar-Combined Activated Phosphate Rock Treatments in Typical Vegetables in Tropical Sandy Soil: Results from Nutrition Supply and the Immobilization of Toxic Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116431. [PMID: 35682013 PMCID: PMC9180871 DOI: 10.3390/ijerph19116431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022]
Abstract
Sandy soils in tropical areas are more vulnerable to potential toxic elements as a result of their low nutrition. The composite addition of biochar and phosphate material is considered a promising method of immobilizing toxic metals in sandy soils, but the synergistic effects of this process still need to be further explored, especially in typical tropical vegetables. In this study, a pot experiment was conducted to evaluate the agronomic and toxic metal-immobilization effects of single amendments (phosphate rock, activated phosphate rock, and biochar) and combined amendments, including biochar mixed with phosphate rock (BCPR) and biochar mixed with activated phosphate rock (BCAPR), on vegetables grown in tropical sandy soil. Among these amendments, the composite amendment BCAPR was the most effective for increasing Ca, Mg, and P uptake based on water spinach (Ipomoea aquatica L.) and pepper (Capsicum annuum L.), showing increased ratios of 22.5%, 146.0%, and 136.0%, respectively. The SEM-EDS and FTIR analysis verified that the activation process induced by humic acid resulted in the complexation and chelation of the elements P, Ca, and Mg into bioavailable forms. Furthermore, the retention of available nutrition elements was enhanced due to the strong adsorption capacity of the biochar. In terms of cadmium (Cd) and lead (Pb) passivation, the formation of insoluble mineral precipitates reduced the mobility of these metals within the BCAPR treatments, with the maximum level of extractable Cd (86.6%) and Pb (39.2%) reduction being observed in the tropical sandy soil. These results explore the use of sustainable novel cost-effective and highly efficient bi-functional mineral-based soil amendments for metal passivation and plant protection.
Collapse
|
43
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
Affiliation(s)
- Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Muhammad Uaman
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
44
|
Matuštík J, Pohořelý M, Kočí V. Is application of biochar to soil really carbon negative? The effect of methodological decisions in Life Cycle Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151058. [PMID: 34678366 DOI: 10.1016/j.scitotenv.2021.151058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
One of the proposed solutions for improving soil conditions and mitigating climate change, two of the urgent environmental issues of today, is application of biochar to soil. This carbonaceous material made from a large variety of biomass feedstocks, by several different processes, and at various conditions is envisaged to remain stable in soil for centuries and thus effectively keep carbon out of the atmosphere. Nevertheless, a careful analysis of the entire system of biochar production and application is necessary, before such solutions are applied at a large scale, to avoid creating an even bigger environmental problem. One well-established method to do so is Life Cycle Assessment (LCA). This method has already been applied by many authors to assess biochar-to-soil projects, and based on this literature it appears that biochar application indeed contributes to climate change mitigation. However, even with such a standardized and widely used method like LCA, there are vast methodological differences between the LCA studies. Furthermore, whether the climate impact of biogenic carbon should be considered is an unresolved issue common to all assessments of biomass-utilizing projects. The effects of those and other methodological issues are investigated in the case study of the gasifier in Zlatá Olešnice. The results show that whether a project of biochar application to soil is deemed environmentally beneficial largely depends both on the context of the project as well as the methodological decisions, especially regarding biogenic carbon. Nevertheless, it can be concluded that biochar production from waste feedstock in most cases leads to climate change mitigation.
Collapse
Affiliation(s)
- Jan Matuštík
- Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 160 00 Prague, Czech Republic.
| | - Michael Pohořelý
- Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 160 00 Prague, Czech Republic; Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Vladimír Kočí
- Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 160 00 Prague, Czech Republic; Faculty of Architecture, Czech Technical University, Prague, Czech Republic
| |
Collapse
|
45
|
Haider FU, Wang X, Farooq M, Hussain S, Cheema SA, Ain NU, Virk AL, Ejaz M, Janyshova U, Liqun C. Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113165. [PMID: 34998263 DOI: 10.1016/j.ecoenv.2022.113165] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/24/2021] [Accepted: 01/02/2022] [Indexed: 05/10/2023]
Abstract
In modern agriculture and globalization, the release of trace metals from manufacturing effluents hinders crop productivity by polluting the atmosphere and degrading food quality. Sustaining food safety in polluted soils is critical to ensure global food demands. This review describes the negative effects of trace metals stress on plant growth, physiology, and yield. Furthermore, also explains the potential of biochar in the remediation of trace metal's contaminations in plants by adoption of various mechanisms such as reduction, ion exchange, electrostatic forces of attraction, precipitation, and complexation. Biochar application enhances the overall productivity, accumulation of biomass, and photosynthetic activity of plants through the regulation of various biochemical and physiological mechanisms of plants cultivated under trace metals contaminated soil. Moreover, biochar scavenges the formation of reactive oxygen species, by activating antioxidant enzyme production i.e., ascorbate peroxidase, catalase, superoxide dismutase, peroxidase, etc. The application of biochar also improves the synthesis of stressed proteins and proline contents in plants thus maintaining the osmoprotectant and osmotic potential of the plant under contaminates stress. Integrated application of biochar with other amendments i.e., microorganisms and plant nutrients to improve trace metal remediation potential of biochar and improving crop production was also highlighted in this review. Moreover, future research needs regarding the application of biochar have also been addressed.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Noor Ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, China
| | - Ahmad Latif Virk
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Uulzhan Janyshova
- College of Pharmaceutical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
46
|
Lan T, Huang Y, Song X, Deng O, Zhou W, Luo L, Tang X, Zeng J, Chen G, Gao X. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH 3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118499. [PMID: 34793915 DOI: 10.1016/j.envpol.2021.118499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/21/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen management measures (NMMs) such as the application of urease inhibitors (UIs), synthetic nitrification inhibitors (SNIs), and biochar (BC) are commonly used in mitigating nitrogen (N) loss and increasing fertilizer recovery efficiency (FRE) in agriculture. Calcareous soil under rice cropping is characterized by high nitrification potential, N loss risk, and low FRE. Application of SNIs may stimulate NH3 volatilization in high pH soils and the effects of SNIs on FRE are not always positive. BNIs have many advantages over SNIs. Whether combined application of BNI, UI, and BC that can result in a synergistic effect of improving FRE and decreasing N loss in a calcareous soil under rice cropping worth investigating. In this study, we conducted pot experiments to investigate the effects of single and co-application of BNI (methyl 3-(4-hydroxyphenyl) propionate or MHPP, 500 mg kg-1 soil), UI (N-(n-butyl), thiophosphoric triamide or NBPT, 2% of urea-N), or BC (wheat straw, 0.5% (w/w)) with chemical fertilizer on NH3 volatilization, N2O emission, N leaching, crop N uptake, and FRE in a calcareous soil under rice cropping. Our results demonstrated that those NMMs could mitigate NH3 volatilization by 12.5%-26.5%, N2O emission by 62.7%-73.5%, and N leaching loss by 17.5%-49.0%. However, BNI might have a risk of increasing NH3 (5.98%) volatilization loss. Among those NMMs, double inhibitors (BNI plus UI) yielded a synergistic effect that could mitigate N loss to the maximum extent and effectively improve FRE by 25.4%. The mechanisms of the above effects could be partly ascribed to the niche differentiation between the abundance of AOA and AOB and the changed community structure of AOB, which could further influence nitrification and N fate. Our results demonstrated that co-application of BNI and UI with urea is an effective strategy in reducing N loss and improving FRE in a calcareous soil under rice cropping.
Collapse
Affiliation(s)
- Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yuxiao Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xi Song
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
47
|
Haider FU, Farooq M, Naveed M, Cheema SA, Ain NU, Salim MA, Liqun C, Mustafa A. Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. FRONTIERS IN PLANT SCIENCE 2022; 13:983830. [PMID: 36160996 PMCID: PMC9493347 DOI: 10.3389/fpls.2022.983830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Oman
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Cai Liqun
| | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
48
|
Wang P, Tyndall S, Rahman T, Roy P, Jahromi H, Adhikari S, Boersma M. Sorption and recovery of phenolic compounds from aqueous phase of sewage sludge hydrothermal liquefaction using bio-char. CHEMOSPHERE 2022; 287:131934. [PMID: 34478966 DOI: 10.1016/j.chemosphere.2021.131934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Bio-char, a by-product of thermochemical conversion processes, has a great potential in phenolic compounds sorption from the waste aqueous phase produced from the hydrothermal liquefaction (HTL) process while being a low-cost sorbent. This study investigated the effect of temperature, pH, bio-char concentration, and mixing speed on two types of bio-char sorption of phenolic compounds using Taguchi's design of experiment and response surface method. Isothermal kinetics and thermodynamic properties were also evaluated to explain the sorption mechanism. The experimental results were well described by the pseudo-second-order kinetic model for both types of bio-char. The Langmuir isotherm model was found to be more suitable at high sorption temperatures, while the Freundlich isotherm model was better at low temperatures. Finally, the alkaline desorption and regeneration experiments were examined, and the eluents with phenolic compounds were characterized using a liquid chromatography-mass spectrometer.
Collapse
Affiliation(s)
- Pixiang Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Sarah Tyndall
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tawsif Rahman
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Poulami Roy
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Hossein Jahromi
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, 36849, USA.
| | - Melissa Boersma
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
49
|
Latini A, Fiorani F, Galeffi P, Cantale C, Bevivino A, Jablonowski ND. Phenotyping of Different Italian Durum Wheat Varieties in Early Growth Stage With the Addition of Pure or Digestate-Activated Biochars. FRONTIERS IN PLANT SCIENCE 2021; 12:782072. [PMID: 34987533 PMCID: PMC8721205 DOI: 10.3389/fpls.2021.782072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15-30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.
Collapse
Affiliation(s)
- Arianna Latini
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrizia Galeffi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Annamaria Bevivino
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Nicolai David Jablonowski
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
50
|
Sui F, Kang Y, Wu H, Li H, Wang J, Joseph S, Munroe P, Li L, Pan G. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112764. [PMID: 34544024 DOI: 10.1016/j.ecoenv.2021.112764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/08/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Fe-modified biochar has been shown to have high sorption ability for cadmium (Cd), while Cd immobilization effects of Fe-modified biochars with Si-rich and S-rich feedstocks have been rarely addressed. To explore the effects of Fe-modified Si-rich and S-rich biochars on Cd translocation in the soil-rice system, a pot experiment was carried out with an acidic Cd-contaminated sandy loam paddy from central South China and a late season rice cultivate during July to November 2018. Rice straw and rice husk were chosen as Si-rich feedstocks, and rape straw was applied as S-rich feedstock, these feedstocks were further collected and pyrolyzed at 450 °C. Pristine and Fe-impregnated rice straw (BRS/BRS-Fe), rice husk (BRH/BRH-Fe) and rape straw (BRE/BRE-Fe) biochars were applied at 0 and 10 t/ha, respectively. The reductions in Cd concentrations in rice grains were 23.8%, 22.3% and 46.1% with treatments of BRE, BRS and BRH, respectively, compared to the control. Compared to other pristine biochars, BRH is more effective in Cd remediation in paddy soil. For Fe-modified biochars, BRE-Fe achieved the highest reductions in Cd concentrations in rice grains with 46.7% and 30.1%, compared with the control and BRE, respectively. BRE-Fe decreased Cd remobilization from leaves to grains. Only BRE-Fe enhanced the formation and Cd sorption capacity of iron plaque. BRS-Fe and BRH-Fe enhanced Fe content in rice plants, which might induce the reduction in iron plaque formation. Fe and S-contained complexes contents increased in the contaminated pristine biochar particles, but reduced in the contaminated BRE-Fe particles. Therefore, Fe modification could not enhance Cd immobilization effect of Si-rich biochar, while Fe modified S-rich biochar has promising potential for Cd remediation with enhancement in iron plaque formation and Cd fixation in rice leaves.
Collapse
Affiliation(s)
- Fengfeng Sui
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng 224051, China
| | - Yaxin Kang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Hao Wu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Hao Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Jingbo Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|