1
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Pramanik D, Vaskimo L, Batenburg KJ, Kostenko A, Droppert K, Smets E, Gravendeel B. Orchid fruit and root movement analyzed using 2D photographs and a bioinformatics pipeline for processing sequential 3D scans. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11567. [PMID: 38369982 PMCID: PMC10873816 DOI: 10.1002/aps3.11567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/20/2024]
Abstract
Premise Most studies of the movement of orchid fruits and roots during plant development have focused on morphological observations; however, further genetic analysis is required to understand the molecular mechanisms underlying this phenomenon. A precise tool is required to observe these movements and harvest tissue at the correct position and time for transcriptomics research. Methods We utilized three-dimensional (3D) micro-computed tomography (CT) scans to capture the movement of fast-growing Erycina pusilla roots, and built an integrated bioinformatics pipeline to process 3D images into 3D time-lapse videos. To record the movement of slowly developing E. pusilla and Phalaenopsis equestris fruits, two-dimensional (2D) photographs were used. Results The E. pusilla roots twisted and resupinated multiple times from early development. The first period occurred in the early developmental stage (77-84 days after germination [DAG]) and the subsequent period occurred later in development (140-154 DAG). While E. pusilla fruits twisted 45° from 56-63 days after pollination (DAP), the fruits of P. equestris only began to resupinate a week before dehiscence (133 DAP) and ended a week after dehiscence (161 DAP). Discussion Our methods revealed that each orchid root and fruit had an independent direction and degree of torsion from the initial to the final position. Our innovative approaches produced detailed spatial and temporal information on the resupination of roots and fruits during orchid development.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Research Center for Horticulture, Research Organization for Agriculture and FoodNational Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN)Cibinong Science Center, Jl. Raya Jakarta‐Bogor, Pakansari, CibinongWest Java16915Indonesia
| | - Lotta Vaskimo
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - K. Joost Batenburg
- Leiden Institute of Advanced Computer Science, Faculty of ScienceLeiden University, SnelliusNiels Bohrweg 12333 CALeidenThe Netherlands
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Alexander Kostenko
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Kevin Droppert
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - Erik Smets
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU LeuvenKasteelpark Arenberg 31, BOX 24353001LeuvenBelgium
| | - Barbara Gravendeel
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Radboud Institute for Biological and Environmental SciencesRadboud UniversityHeyendaalseweg 1356500 GLNijmegenThe Netherlands
| |
Collapse
|
3
|
Qaed E, Al-Hamyari B, Al-Maamari A, Qaid A, Alademy H, Almoiliqy M, Munyemana JC, Al-Nusaif M, Alafifi J, Alyafeai E, Safi M, Geng Z, Tang Z, Ma X. Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies. Glob Med Genet 2023; 10:205-220. [PMID: 37565061 PMCID: PMC10412067 DOI: 10.1055/s-0043-1772219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Background Cancer remains a critical global health challenge and a leading cause of mortality. Flavonoids found in fruits and vegetables have gained attention for their potential anti-cancer properties. Fisetin, abundantly present in strawberries, apples, onions, and other plant sources, has emerged as a promising candidate for cancer prevention. Epidemiological studies linking a diet rich in these foods to lower cancer risk have sparked extensive research on fisetin's efficacy. Objective This review aims to comprehensively explore the molecular mechanisms of fisetin's anticancer properties and investigate its potential synergistic effects with other anticancer drugs. Furthermore, the review examines the therapeutic and preventive effects of fisetin against various cancers. Methods A systematic analysis of the available scientific literature was conducted, including research articles, clinical trials, and review papers related to fisetin's anticancer properties. Reputable databases were searched, and selected studies were critically evaluated to extract essential information on fisetin's mechanisms of action and its interactions with other anticancer drugs. Results Preclinical trials have demonstrated that fisetin inhibits cancer cell growth through mechanisms such as cell cycle alteration, induction of apoptosis, and activation of the autophagy signaling pathway. Additionally, fisetin reduces reactive oxygen species levels, contributing to its overall anticancer potential. Investigation of its synergistic effects with other anticancer drugs suggests potential for combination therapies. Conclusion Fisetin, a bioactive flavonoid abundant in fruits and vegetables, exhibits promising anticancer properties through multiple mechanisms of action. Preclinical trials provide a foundation for further exploration in human clinical trials. Understanding fisetin's molecular mechanisms is vital for developing novel, safe, and effective cancer prevention and treatment strategies. The potential synergy with other anticancer drugs opens new avenues for combination therapies, enhancing cancer management approaches and global health outcomes.
Collapse
Affiliation(s)
- Eskandar Qaed
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Bandar Al-Hamyari
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Yemen
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Murad Al-Nusaif
- Department of Neurology and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Jameel Alafifi
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mohammed Safi
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Zeyao Tang
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaodong Ma
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
4
|
Smith DJ, Bi H, Hamman J, Ma X, Mitchell C, Nyirenda K, Monera-Penduka T, Oketch-Rabah H, Paine MF, Pettit S, Pheiffer W, Van Breemen RB, Embry M. Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries. Front Pharmacol 2023; 14:1210579. [PMID: 37502215 PMCID: PMC10368978 DOI: 10.3389/fphar.2023.1210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.
Collapse
Affiliation(s)
- Dallas J. Smith
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States
- COVID-19 Response International Task Force, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Kumbukani Nyirenda
- Department of Pharmacy, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tsitsi Monera-Penduka
- Research Unit for Safety of Herbs and Drugs, University of Zimbabwe, Harare, Zimbabwe
| | | | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard B. Van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
5
|
Omolaoye TS, Skosana BT, du Plessis SS. The effect of Aspalathin linearis, Cyclopia intermedia and Sutherlandia frutescene on sperm functional parameters of healthy male wistar rats. Front Physiol 2023; 14:1211227. [PMID: 37351256 PMCID: PMC10282539 DOI: 10.3389/fphys.2023.1211227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Rooibos (Aspalathin linearis), honeybush (Cyclopia intermedia), and sutherlandia (Sutherlandia frutescene) are three Southern Africa indigenous plants, of which the extracts have become house-hold items and are consumed on a large scale. Although, they are known for their antioxidant properties, studies have highlighted danger in the excessive intake. Therefore, the current study investigated whether treatment with rooibos, honeybush, and sutherlandia will impact sperm functional parameters positively or otherwise, in healthy rats. Methods: Fourteen-week-old pathogen-free adult male Wistar rats (250-300 g) were randomly divided into four groups of ten, including a control, rooibos (RF), honeybush (HB) and a sutherlandia (SL) group. After 7 weeks of treatment, animals were sacrificed. Spermatozoa were retrieved from the cauda epididymis for motility, morphology and concentration analysis and the testis was used for all biochemical assays. Results: The infusion treated animals (RF, HB, and SL) presented with a non-significant decrease of -14.3%, -18.2%, -17.2% and -24.8%, -20.7%, -27.3% in total motility and progressive motility when compared to the control group, respectively. There was a significant increase in number of spermatozoa with slow speed (p = 0.03), especially in SL treated group compared to the control (p = 0.03). Additionally, there was an increase of 28.8%, 31.7%, 23% in superoxide dismutase (SOD) activity of RF, HB and SL compared to control, respectively. This was accompanied with a percentage decrease of -21.1%, -23.7%, 45.9% in malondialdehyde (MDA) levels compared to the control group. Conclusion: In summary, animals treated with the respective infusions presented with a percentage increase in SOD activity but have reduced sperm motility and decreased normal morphology. Paradoxically, they presented with increased sperm concentration. Hence, it is presumed that rooibos, honeybush and sutherlandia may enhance sperm quantity (concentration) but may impair sperm quality (motility morphology) when consumed by healthy animals.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
6
|
Khan M, Diop A, Gbodossou E, Xiao P, Coleman M, De Barros K, Duong H, Bond VC, Floyd V, Kondwani K, Rice VM, Harris-Hooker S, Villinger F, Powell MD. Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina. Virol J 2023; 20:50. [PMID: 36949470 PMCID: PMC10035133 DOI: 10.1186/s12985-023-02010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity. METHODS We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina. RESULTS Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels. CONCLUSIONS CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.
Collapse
Affiliation(s)
- Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Amad Diop
- Malango Traditional Healers Association, Fatick, Senegal
| | | | - Peng Xiao
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Morgan Coleman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kenya De Barros
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Hao Duong
- Department of Pharmacology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Virginia Floyd
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kofi Kondwani
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Valerie Montgomery Rice
- Office of the President, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Sandra Harris-Hooker
- Department of Pathology Senior Vice President for External Affairs and Innovation, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Francois Villinger
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Michael D Powell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
7
|
Maroyi A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1255. [PMID: 36986943 PMCID: PMC10051751 DOI: 10.3390/plants12061255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe's Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe's Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
8
|
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:196. [PMID: 36616325 PMCID: PMC9824651 DOI: 10.3390/plants12010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, in L. frutescens shows a steady decrease in concentration over the years. The reduction of the phytochemical compounds and diminishing biological activities may be attributed to drought and salt stress, which South Africa has been grappling with over the years. Canavanine, a phytochemical which is associated with the anticancer activity of L. frutescens, reduced slightly when the plant was subjected to salt stress. Like other legumes, L. frutescens forms a symbiotic relationship with plant-growth-promoting rhizobacteria, which facilitate plant growth and development. Studies employing commercial plant-growth-promoting rhizobacteria to enhance growth and biological activities in L. frutescens have been successfully carried out. Furthermore, alleviation of drought and salt stress in medicinal plants through inoculation with plant growth-promoting-rhizobacteria is well documented and effective. Therefore, this review seeks to highlight the potential of plant-growth-promoting rhizobacteria to alleviate the effect of salt and drought in Lessertia frutescens.
Collapse
Affiliation(s)
- Mokgadi M. Hlongwane
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Mustapha Mohammed
- Department of Crop Science, University for Development Studies, Tamale P.O. Box TL1882, Ghana
| | - Ntebogeng S. Mokgalaka
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- Mamelodi Campus, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Docrat TF, Abdul NS, Marnewick JL. The phytotherapeutic potential of commercial South African medicinal plants: current knowledge and future prospects. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
South Africa, a country considered affluent in nature, ranks third in global biodiversity and encompasses approximately 9% of higher plants on planet Earth. Many indigenous plants have been utilised as herbal medicine, proving successful in treating numerous ailments. From the common cold to pandemic maladies such as COVID-19 in the 21st century and the treatment of incurable diseases, South African inhabitants have found great promise in the healing properties of these plants. Phytomedicine is a rapidly evolving topic, with in-depth bioactive composition analysis, identifying therapeutic action mechanisms, and disease prevention. While we are now poised to take advantage of nature’s medicine cabinet with greater scientific vigour, it remains critical that these practises are done with caution. Overharvesting significantly impacts biodiversity and cultivation practices amidst the beautiful nature of these nutraceuticals. This book chapter focuses on the therapeutic potential of commonly used South African medicinal plants, their ethnopharmacological properties, and how we can conserve this treasure cove we call home for future generations.
Collapse
Affiliation(s)
- Taskeen F. Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology , Bellville , South Africa
| | - Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology , Bellville , South Africa
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology , Bellville , South Africa
| |
Collapse
|
10
|
Mutukwa D, Taziwa R, Khotseng LE. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3456. [PMID: 36234584 PMCID: PMC9565575 DOI: 10.3390/nano12193456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Metal oxide nanoparticles (NPs), such as zinc oxide (ZnO), have been researched extensively for applications in biotechnology, photovoltaics, photocatalysis, sensors, cosmetics, and pharmaceuticals due to their unique properties at the nanoscale. ZnO NPs have been fabricated using conventional physical and chemical processes, but these techniques are limited due to the use of hazardous chemicals that are bad for the environment and high energy consumption. Plant-mediated synthesis of ZnO NPs has piqued the interest of researchers owing to secondary metabolites found in plants that can reduce Zn precursors and stabilise ZnO NPs. Thus, plant-mediated synthesis of ZnO NPs has become one of the alternative green synthesis routes for the fabrication of ZnO NPs. This is attributable to its environmental friendliness, simplicity, and the potential for industrial-scale expansion. Southern Africa is home to a large and diverse indigenous medicinal plant population. However, the use of these indigenous medicinal plants for the preparation of ZnO NPs is understudied. This review looks at the indigenous medicinal plants of southern Africa that have been used to synthesise ZnO NPs for a variety of applications. In conclusion, there is a need for more exploration of southern African indigenous plants for green synthesis of ZnO NPs.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Eudora Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
11
|
Abstract
Africa is counted amongst the cosmetic market contributors; however, South Africa’s remarkable plant diversity is still largely untapped in terms of its potential for medicinal and cosmetic purposes. Thus, we aim to provide a critical assessment of the advancements made in South African cosmeceuticals with emphasis towards online local companies/brands that are manufactured by small, medium and micro enterprises (SMMEs). For the current study, we limited our search of herbal cosmeceutical products to SMMEs with online websites, or products traded in other online cosmetic directories such as ‘Faithful to Nature’ and ‘African Botanicals’ using a simple Google search. We recorded more than 50 South African SMME companies/brands involved in the trade of cosmeceuticals. Skin and hair care were the major product categories widely traded in these online platforms. Furthermore, few patents were recorded from South African researchers and institutions thereof, which is quite alarming considering the extensive research that has been undertaken to study these commercially valuable plants. Based on the increasing number of new products and the wide pool of economically important plants coupled to their associated rich indigenous knowledge systems, the cosmeceutical sector can contribute to the economy, job creation, entrepreneurship skills, socio-economic development and intellectual property generation.
Collapse
|
12
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
13
|
Guo Y, Wariss HM, Zhang R. The complete chloroplast genome of Lessertia frutescens (L.) Goldblatt & J. C. Manning (Leguminosae), an important medicinal plant species from Southern Africa. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2767-2769. [PMID: 34471699 PMCID: PMC8405112 DOI: 10.1080/23802359.2021.1967811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lessertia frutescens (L.) Goldblatt & J. C. Manning 2000 is an endemic species of Southern Africa with high medicinal and economic values. To facilitate exploration of its genetic resource, a complete chloroplast genome was determined using Illumina pair-end sequencing technology. The complete circular genome is 122,700 bp in length with overall 34.2% GC contents. It encodes a total of 110 genes, including 76 protein-coding genes, 30 tRNA, and four rRNA genes. The maximum-likelihood (ML) phylogenetic tree indicated that L. frutescens nested within the Papilionoideae and had a close relationship with Astragalus nakaianus and A. mongholicus. The newly sequenced complete chloroplast genome will help understanding the plastome evolution, genetic diversity and contribute to the genetic conservation of the natural population of L. frutescens.
Collapse
Affiliation(s)
- Ying Guo
- Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Hafiz Muhammad Wariss
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Botany, University of Sargodha, Pakistan
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Omo-Aghoja L, Moke EG, Anachuna KK, Omogbiya AI, Umukoro EK, Toloyai PEY, Daubry TME, Eduviere AT. COVID-19 pandemic: the implications of the natural history, challenges of diagnosis and management for care in sub-Saharan Africa. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:16. [PMID: 33754124 PMCID: PMC7968562 DOI: 10.1186/s43088-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease (COVID-19) is a severe acute respiratory infection which has afflicted virtually almost all nations of the earth. It is highly transmissible and represents one of the most serious pandemics in recent times, with the capacity to overwhelm any healthcare system and cause morbidity and fatality. MAIN CONTENT The diagnosis of this disease is daunting and challenging as it is dependent on emerging clinical symptomatology that continues to increase and change very rapidly. The definitive test is the very expensive and scarce polymerase chain reaction (PCR) viral identification technique. The management has remained largely supportive and empirical, as there are no officially approved therapeutic agents, vaccines or antiviral medications for the management of the disease. Severe cases often require intensive care facilities and personnel. Yet there is paucity of facilities including the personnel required for diagnosis and treatment of COVID-19 in sub-Saharan Africa (SSA). It is against this backdrop that a review of key published reports on the pandemic in SSA and globally is made, as understanding the natural history of a disease and the documented responses to diagnosis and management is usually a key public health strategy for designing and improving as appropriate, relevant interventions. Lead findings were that responses by most nations of SSA were adhoc, paucity of public health awareness strategies and absence of legislations that would help enforce preventive measures, as well as limited facilities (including personal protective equipment) and institutional capacities to deliver needed interventions. CONCLUSION COVID-19 is real and has overwhelmed global health care system especially low-income countries of the sub-Sahara such as Nigeria. Suggestions for improvement of healthcare policies and programs to contain the current pandemic and to respond more optimally in case of future pandemics are made herein.
Collapse
Affiliation(s)
- Lawrence Omo-Aghoja
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Emuesiri Goodies Moke
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Kenneth Kelechi Anachuna
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Adrian Itivere Omogbiya
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Emuesiri Kohworho Umukoro
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Pere-Ebi Yabrade Toloyai
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Tarela Melish Elias Daubry
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Anthony Taghogho Eduviere
- DELSU Biomedical Research Alliance Working Group, College of Health Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
15
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
16
|
Omolaoye TS, Windvogel SL, Du Plessis SS. The Effect of Rooibos ( Aspalathus linearis), Honeybush ( Cyclopia intermedia) and Sutherlandia ( Lessertia frutescens) on Testicular Insulin Signalling in Streptozotocin-Induced Diabetes in Wistar Rats. Diabetes Metab Syndr Obes 2021; 14:1267-1280. [PMID: 33776463 PMCID: PMC7989961 DOI: 10.2147/dmso.s285025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Testicular insulin signalling is altered in diabetic (DM) males. While unravelling the mechanism through which DM exert these detrimental effects, studies have shown the importance of insulin regulation in glucose homeostasis, and how a lack in insulin secretion indirectly led to reduced male fertility. The current study aimed to investigate the role of rooibos, honeybush and Sutherlandia on insulin signalling in the testicular tissue of type I diabetic rats. METHODS Animals (n=60) were randomly divided into six groups. The groups include a control group, a vehicle group, and diabetes was induced in the remainder of animals via a single intraperitoneal injection of STZ at 45mg/kg. The remaining four groups included a diabetic control (DC), diabetic + rooibos (DRF), diabetic + honeybush (DHB) and diabetic + Sutherlandia group (DSL). Animals were sacrificed after seven weeks of treatment, and blood and testes were collected. RESULTS All diabetic groups (DC, DRF, DHB, DSL) presented with a significant increase in blood glucose levels after diabetes induction compared to the control and vehicle (p<0.001). The DC animals presented with decreased testicular protein expression of IRS-1, PkB/Akt and GLUT4 compared to controls. DRF and DHB animals displayed an acute upregulation in IRS-1, while the DSL group showed improvement in IRS-2 compared to DC. Although, DRF animals presented with a decrease in PkB/Akt, DHB and DSL animals displayed upregulation (22.3%, 48%) compared to controls, respectively. CONCLUSION The results taken together, it can be suggested that these infusions may enhance insulin signalling through diverse pathways.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shantal Lynn Windvogel
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Stellenbosch University, Cape Town, South Africa
| | - Stefan S Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Correspondence: Stefan S Du Plessis Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai, 505055, United Arab Emirates Email
| |
Collapse
|
17
|
Dube P, Meyer S, Madiehe A, Meyer M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. NANOTECHNOLOGY 2020; 31:505607. [PMID: 33021215 DOI: 10.1088/1361-6528/abb6a8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanoparticles (NPs) synthesized using various chemical and physical methods are often cytotoxic which restricts their use in biomedical applications. In contrast, metallic biogenic NPs synthesized using biological systems such as plant extracts are said to be safer and their production more cost effective. NPs synthesized from plants with known medicinal properties can potentially have similar bioactivities as these plants. It has been shown that Salvia africana-lutea (SAL) and Sutherlandia frutescens (SF) have antibacterial activities. This study used water extracts of SAL and SF to produce biogenic silver NPs (AgNPs) and gold NPs (AuNPs). The antibacterial activity of AgNPs and AuNPs was tested against two pathogens (Staphylococcus epidermidis and P. aeruginosa). NP synthesis was optimized by varying the synthesis conditions which include synthesis time and temperature, plant extract concentration, silver nitrate (AgNO3) concentration and sodium tetrachloroaurate (III) dihydrate (NaAuCl4 · 2H2O) concentration. The NPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. SAL was able to synthesize both Ag (SAL AgNP) and Au (SAL AuNP) nanoparticles, whilst SF synthesized Ag (SF AgNP) nanoparticles only. The absorbance spectra revealed the characteristic surface plasmon resonance peak between 400-500 nm and 500-600 nm for AgNP and AuNP, respectively. HR-TEM displayed the presence of spherical and polygon shaped nanoparticles with varying sizes whilst the Energy Dispersive x-ray spectra and selected area diffraction pattern confirmed the successful synthesis of the AgNPs and AuNPs by displaying the characteristic crystalline nature, optical adsorption peaks and lattice fringes. FT-IR spectroscopy was employed to identify the functional groups involved in the NP synthesis. The microtitre plate method was employed to determine the minimum inhibitory concentration (MIC) of the NPs and the extracts. The water extracts and SAL AuNP did not have significant antibacterial activity, while SAL AgNP and SF AgNP displayed high antibacterial activity. In conclusion, the data generated suggests that SAL and SF could be used for the efficient synthesis of antibacterial biogenic nanoparticles.
Collapse
Affiliation(s)
- Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Abram Madiehe
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
18
|
Twilley D, Rademan S, Lall N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113101. [PMID: 32562876 DOI: 10.1016/j.jep.2020.113101] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 70% of anticancer drugs were developed or derived from natural products or plants. Southern Africa boasts an enormous floral diversity with approximately 22,755 plant species with an estimated 3000 used as traditional medicines. In South Africa more than 27 million individuals rely on traditional medicine for healthcare. The use of South African plants for the treatment of cancer is poorly documented, however there is potential to develop anticancer agents from these plants. Limited ethnobotanical studies report the use of plants for cancer treatment in traditional medicine. Plants growing in tropical or subtropical regions, such as in South Africa, produce important secondary metabolites as a protective mechanism, which could be used to target various factors that play a key role in carcinogenesis. AIMS The aim was to collate information from primary ethnobotanical studies on South African plants traditionally used for the treatment of cancer. Evaluation of literature focused on traditionally used plants that have been tested for their in vitro activity against cancer cells. Secondary metabolites, previously identified within these plant species, were also included for discussion regarding their activity against cancer. The toxicity was evaluated to ascertain the therapeutic potential in further studies. Additionally, the aim was to highlight where a lack of reports were found regarding plant species with potential activity and to substantiate the need for further testing. MATERIALS AND METHODS A review of ethnobotanical surveys conducted in South Africa for plants used in the treatment of cancer was performed. Databases such as Science Direct, PubMed and Google Scholar, university repositories of master's dissertations and PhD theses, patents and books were used. Plant species showing significant to moderate activity were discussed regarding their toxicity. Compounds identified within these species were discussed for their activity against cancer cells and toxicity. Traditionally used plants which have not been scientifically validated for their activity against cancer were excluded. RESULTS Twenty plants were documented in ethnobotanical surveys as cancer treatments. Numerous scientific reports on the potential in vitro activity against cancer of these plants and the identification of secondary metabolites were found. Many of the secondary metabolites have not been tested for their activity against cancer cells or mode of action and should be considered for future studies. Lead candidates, such as the sutherlandiosides, sutherlandins, hypoxoside and pittoviridoside, were identified and should be further assessed. Toxicity studies should be included when testing plant extracts and/or secondary metabolites for their potential against cancer cells to give an indication of whether further analysis should be conducted. CONCLUSION There is a need to document plants used traditionally in South Africa for the treatment of cancer and to assess their safety and efficacy. Traditionally used plants have shown promising activity highlighting the importance of ethnobotanical studies and traditional knowledge. There are many opportunities to further assess these plants and secondary metabolites for their activity against cancer and their toxic effects. Pharmacokinetic studies are also not well documented within these plant extracts and should be included in studies when a lead candidate is identified.
Collapse
Affiliation(s)
- Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa.
| | - Sunelle Rademan
- Department of Pharmacology, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa; School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States; College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
19
|
Raimi IO, Kopaopa BG, Mugivhisa LL, Lewu FB, Amoo SO, Olowoyo JO. An appraisal of documented medicinal plants used for the treatment of cancer in Africa over a twenty-year period (1998–2018). J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Matowa PR, Gundidza M, Gwanzura L, Nhachi CFB. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe. BMC Complement Med Ther 2020; 20:278. [PMID: 32928194 PMCID: PMC7488988 DOI: 10.1186/s12906-020-03046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Traditional medicine plays an important role in health care provision in the developing world. A number of cancer patients have been found to be using traditional medicine as primary therapy and/or as complementary medicine. Cancer is one of the leading causes of morbidity and mortality globally among the non-communicable diseases. The aim of this study was to identify the plants used by traditional medicine practitioners (TMPs) in Zimbabwe to treat cancer. Methods A structured questionnaire was used to interview consenting registered TMPs on ethnomedicinal plants they use to treat cancer. A review of published literature on the cited plants was also carried out. The practitioners were asked about the plants that they use to treat cancer, the plant parts used, type of cancer treated, other medicinal uses of the plants and preparation and administration of the plant parts. Results Twenty (20) TMPs took part in the study. A total of 18 medicinal plant species were cited. The commonly treated types of cancer were breast, prostate, colon, skin and blood cancers with most plants being used to treat skin, blood and breast cancers, respectively. Of the medicinal plants cited, 44.4% were used to treat all cancer types. The most used plant parts were the roots (72.2%) and leaves (72.2%) followed by the bark (38.9%). The medicinal plants were used for multiple ailments. The most common plant preparation methods were infusion (72.2%) and decoction (66.7%) and the oral route of administration, as extracts and powder put in tea and porridge, was the most used. Conclusion The frequently used plant parts were leaves and roots. The traditional uses of the medicinal plants cited in this study resonate well with their reported uses from other ethnopharmacological studies done in other parts of the world. The plants used by TMPs to treat cancer in Zimbabwe, if adequately explored, can be instrumental in the discovery and development of cancer drugs.
Collapse
Affiliation(s)
- Patrick Rutendo Matowa
- Clinical Pharmacology Department, University of Zimbabwe, Mt Pleasant, Harare, Zimbabwe.
| | - Mazuru Gundidza
- Pharmaceutical Technology Department, Harare Institute of Technology, Belvedere, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Medical Laboratory Sciences, University of Zimbabwe, Mt pleasant, Harare, Zimbabwe
| | - Charles F B Nhachi
- Clinical Pharmacology Department, University of Zimbabwe, Mt Pleasant, Harare, Zimbabwe
| |
Collapse
|
21
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
22
|
Zonyane S, Fawole OA, la Grange C, Stander MA, Opara UL, Makunga NP. The Implication of Chemotypic Variation on the Anti-Oxidant and Anti-Cancer Activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from Different Geographic Locations. Antioxidants (Basel) 2020; 9:E152. [PMID: 32069826 PMCID: PMC7070296 DOI: 10.3390/antiox9020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/07/2023] Open
Abstract
Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of the species are complex and are predominantly composed of a species-specific set of triterpene saponins (cycloartanol glycosides), the sutherlandiosides, and flavonoids (quercetin and kaempferol glycosides), the sutherlandins. For the Folin-Ciocalteu phenolics test values of 93.311 to 125.330 mg GAE/g DE were obtained. The flavonoids ranged from 54.831 to 66.073 mg CE/g DE using the aluminum chloride assay. Extracts from different sites were also assayed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging method and ferric reducing anti-oxidant power (FRAP) methods. This was followed by an in vitro Cell Titer-Glo viability assay of various ecotypes using the DLD-1 colon cancer cell line. All test extracts displayed anti-oxidant activity through the DPPH• radical scavenging mechanism, with IC50 values ranging from 3.171 to 7.707 µg·mL-1. However, the degree of anti-oxidant effects differed on a chemotypic basis with coastal plants from Gansbaai and Pearly Beach (Western Cape) exhibiting superior activity whereas the Victoria West inland group from the Northern Cape, consistently showed the weakest anti-oxidant activity for both the DPPH• and FRAP methods. All extracts showed cytotoxicity on DLD-1 colon cancer cells at the test concentration of 200 µg·mL-1 but Sutherlandia plants from Colesburg (Northern Cape) exhibited the highest anti-cancer activity. These findings confirm that S. frutescens specimens display variability in their bioactive capacities based on their natural location, illustrating the importance of choosing relevant ecotypes for medicinal purposes.
Collapse
Affiliation(s)
- Samkele Zonyane
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| | - Olaniyi A. Fawole
- South African Research Chair in Postharvest Technology, Department of Horticultural Science, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (O.A.F.); (U.L.O.)
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Chris la Grange
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| | - Maria A. Stander
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa;
| | - Umezuruike L. Opara
- South African Research Chair in Postharvest Technology, Department of Horticultural Science, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (O.A.F.); (U.L.O.)
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| |
Collapse
|
23
|
Gonyela O, Peter X, Dewar JB, van der Westhuyzen C, Steenkamp P, Fouche G. Cycloartanol and Sutherlandioside C peracetate from Sutherlandia frutescens and their immune potentiating effects. Nat Prod Res 2019; 35:1968-1976. [PMID: 31393174 DOI: 10.1080/14786419.2019.1648457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel cycloartanol (1) and an acylated Sutherlandioside D (2) together with two known cycloartane derivatives, Sutherlandioside B (3) and Sutherlandioside A (4), were isolated from the aerial parts of Sutherlandia frutescens. The structures of these compounds were established by a combination of 1- and 2-D NMR techniques and further confirmed by high resolution ToF mass spectrometry (HRToFMS). Preliminary biological studies were also conducted to assess the activity of different plant extracts, fractions and compounds on cytokine expression. Compounds 1 and 2 prompted an increase in IL-6 expression while compound 4 showed a reduced IL-6 expression compared to the controls. Compound 1 is an effective suppressor of IL-10 expression. The plant compounds inhibited the expression of the two cytokines, IL-10 and TNFα. The results of the assays suggested that some components in the plant extract influence the immune system by suppressing the expression of IL-6, IL-10 and TNFα.
Collapse
Affiliation(s)
- Odwa Gonyela
- Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Xolani Peter
- Defence, Peace, Safety and Security, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - John B Dewar
- Department of Life and Consumer Science, University of South Africa, Unisa, South Africa
| | | | - Paul Steenkamp
- Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa.,Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Gerda Fouche
- Department of Chemistry, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
24
|
Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Abibu MA, Takuwa DT, Sichilongo K. Quantification of eight water soluble vitamins in
Sutherlandia frutescens
species from Botswana using a validated reversed phase HPLC method. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moshood A. Abibu
- Department of ChemistryFaculty of ScienceUniversity of Botswana Private Bag UB 00704 Gaborone Botswana
- Department of Science Laboratory TechnologyFederal Polytechnic Ede Osun‐State Nigeria
| | - David T. Takuwa
- Department of ChemistryFaculty of ScienceUniversity of Botswana Private Bag UB 00704 Gaborone Botswana
| | - Kwenga Sichilongo
- Department of ChemistryFaculty of ScienceUniversity of Botswana Private Bag UB 00704 Gaborone Botswana
| |
Collapse
|
26
|
Gulumian M, Yahaya ES, Steenkamp V. African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4089541. [PMID: 30595712 PMCID: PMC6282146 DOI: 10.1155/2018/4089541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
Abstract
The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.
Collapse
Affiliation(s)
- Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewura Seidu Yahaya
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Chen L, Xu M, Gong Z, Zonyane S, Xu S, Makunga NP. Comparative cardio and developmental toxicity induced by the popular medicinal extract of Sutherlandia frutescens (L.) R.Br. detected using a zebrafish Tuebingen embryo model. Altern Ther Health Med 2018; 18:273. [PMID: 30290800 PMCID: PMC6173916 DOI: 10.1186/s12906-018-2303-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023]
Abstract
Background Sutherlandia frutescens is one of the most promising commercialized, indigenous and medicinal plants of South Africa that is used as an immune-booster, and a traditional treatment for cancer. However, few studies report on its toxicology and dosage in vivo. There is still room to better understand its cytotoxicity effects in animal systems. Methods We prepared two extracts, one with 80% (v/v) ethanol, and the other, with water. Both were studied to determine the maximum tolerable concentration when extracts were applied at 0 to 200 μg/ml to a Tuebingen zebrafish embryo line. The development of zebrafish embryos after 24 h post fertilization (hpf) was studied. A concentration range of 5 μg/ml to 50 μg/ml was then chosen to monitor the ontological development of cultured embryos. A liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method was used to study the differences of the two experimental extracts. Chemical variation between the extracts was illustrated using chemometrics. Results Both extracts led to bleeding and pericardial cyst formation when applied at high concentrations to the zebrafish embryo culture. Chronic teratogenic toxicities, leading to pericardial edema, yolk sac swelling, and other abnormal developmental characteristics, were detected. The aqueous extracts of S. frutescens were less toxic to the larvae than the ethanol extracts, validating preference for aqueous preparations when used in traditional medicine. Chemical differences between the water extracts and alcoholic extracts were analysed using LC-MS/MS. A supervised metabolomics approach, targeting the sutherlandiosides and sutherlandins using orthogonal partial least squares-discriminant analysis (OPLS-DA), illustrated that sutherlandiosides were the main chemical features that can be used to distinguish between the two extracts, despite the extracts being highly similar in their chemical constituents. Conclusion The water extract caused less cytotoxic and abnormal developmental effects compared to the ethanolic extract, and, this is likely due to differences in concentrations of extracted chemicals rather than the chemical profile per se. This study provides more evidence of cytotoxicity effects linked to S. frutescens using the zebrafish embryo bioassay as a study tool. Electronic supplementary material The online version of this article (10.1186/s12906-018-2303-9) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
|
29
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
30
|
The mutagenic and antimutagenic activity of Sutherlandia frutescens extracts and marker compounds. Altern Ther Health Med 2018; 18:93. [PMID: 29544492 PMCID: PMC5856389 DOI: 10.1186/s12906-018-2159-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sutherlandia frutescens (L.) R. Br is endemic to Southern Africa where it has been traditionally used for cancer and diabetes. In recent times it has been marketed for its reputed (but not proven) anticancer, antidiabetic and anti-HIV properties. Little is known about the mutagenic and antimutagenic potential of extracts and common marker compounds of Sutherlandia frutescens. Therefore this study aimed to investigate the putative efficacy and possible long-term adverse effects of using this herb. METHODS Ethylacetate (EA) and 50% Methanol (MeOH) extracts were screened for mutagenic and antimutagenic activity using the Ames assay utilising TA97a, TA98, TA100 and TA102 in the presence and absence of metabolic activation. Four compounds, L-arginine, L-canavanine, GABA and D-pinitol known to occur in sutherlandia were also included. The total polyphenolic content of the both extracts was determined using the Folin-Ciocalteau method and FRAP and ABTS were used to determine the anti-oxidant potential of the extracts. RESULTS The extracts and the standards did not show any cytotoxicity except in TA97a. The EA extract exhibited antimutagenicity against all the bacterial strains at all concentrations tested. The MeOH extract showed both pro-mutagenic and antimutagenic activities with 2-acetamidofluorene and aflatoxin B1 in the presence of metabolic activation of TA98 and TA100, respectively. All compounds, except L-canavanine exhibited antimutagenic activity against all strains. L-canavanine, on the other hand showed co-mutagenicity with 9-aminoacridine on TA97a, at all test concentrations. The extracts and pure compounds exhibited their antimutagenic activity in a dose response manner. L-arginine and GABA showed an some antimutagenic response. EA extract had three times the total phenolic content (12.56 μg GE / mg) observed in the MeOH extract. There was correlation between total phenolic content, antioxidant potential and antimutagenicity. CONCLUSION Both extracts exhibited a protective effect, with the EA extract exhibiting greater potency. L-canavanine acted as a co-mutagen in a dose response manner without metabolic activation. It is suggested that the EA extract be priotized for future development work as it showed a better risk profile and activity.
Collapse
|
31
|
Prinsloo G, Marokane CK, Street RA. Anti-HIV activity of southern African plants: Current developments, phytochemistry and future research. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:133-155. [PMID: 28807850 PMCID: PMC7125770 DOI: 10.1016/j.jep.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The African continent is home to a large number of higher plant species used over centuries for many applications, which include treating and managing diseases such as HIV. Due to the overwhelming prevalence and incidence rates of HIV, especially in sub-Saharan Africa, it is necessary to develop new and affordable treatments. AIM OF THE STUDY The article provides an extensive overview of the status on investigation of plants from the southern African region with ethnobotanical use for treating HIV or HIV-related symptoms, or the management of HIV. The review also provide an account of the in vitro assays, anti-viral activity and phytochemistry of these plants. MATERIALS AND METHODS Peer-reviewed articles investigating plants with ethnobotanical information for the treatment or management of HIV or HIV-related symptoms from the southern African region were acquired from Science Direct, PubMed central and Google Scholar. The selection criteria was that (1) plants should have a record of traditional/popular use for infectious or viral diseases, HIV treatment or symptoms similar to HIV infection, (2) if not traditionally/popularly used, plants should be closely related to plants with popular use and HIV activity identified by means of in vitro assays, (3) plants should have been identified scientifically, (4) should be native to southern African region and (5) anti-HIV activity should be within acceptable ranges. RESULTS Many plants in Africa and specifically the southern African region have been used for the treatment of HIV or HIV related symptoms and have been investigated suing various in vitro techniques. In vitro assays using HIV enzymes such as reverse transcriptase (RT), integrase (IN) and protease (PR), proteins or cell-based assays have been employed to validate the use of these plants with occasional indication of the selectivity index (SI) or therapeutic index (TI), with only one study, that progressed to in vivo testing. The compounds identified from plants from southern Africa is similar to compounds identified from other regions of the world, and the compounds have been divided into three groups namely (1) flavonoids and flavonoid glycosides, (2) terpenoids and terpenoid glycosides and (3) phenolic acids and their conjugated forms. CONCLUSIONS An investigation of the plants from southern Africa with ethnobotanical use for the treatment of HIV, management of HIV or HIV-related symptoms, therefore provide a very good analysis of the major assays employed and the anti-viral compounds and compound groups identified. The similarity in identified anti-viral compounds worldwide should support the progression from in vitro studies to in vivo testing in development of affordable and effective anti-HIV agents for countries with high infection and mortality rates due to HIV/AIDS.
Collapse
Affiliation(s)
- Gerhard Prinsloo
- Department of Agriculture and Animal health, University of South Africa (UNISA), Florida Campus, Florida 1710, South Africa.
| | - Cynthia K Marokane
- Department of Agriculture and Animal health, University of South Africa (UNISA), Florida Campus, Florida 1710, South Africa.
| | - Renée A Street
- Environment and Health Research Unit, South African Medical Research Council, Durban 4041, South Africa; Department of Occupational and Environmental Health, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
32
|
Raks V, Al-Suod H, Buszewski B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 2017; 81:189-202. [PMID: 29449742 PMCID: PMC5807477 DOI: 10.1007/s10337-017-3405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.
Collapse
Affiliation(s)
- Victoria Raks
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,3Department of Analytical Chemistry, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv, 01601 Ukraine
| | - Hossam Al-Suod
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| | - Bogusław Buszewski
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| |
Collapse
|
33
|
Baunthiyal M, Singh V, Dwivedi S. Insights of Antioxidants as Molecules for Drug Discovery. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.874.889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
|
35
|
Morris C. Biopolitics and Boundary Work in South Africa's Sutherlandia Clinical Trial. Med Anthropol 2017; 36:685-698. [PMID: 28586268 DOI: 10.1080/01459740.2017.1337117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Between 2008 and 2011, South African and American investigators carried out a randomized controlled trial to assess the safety and efficacy of an African traditional medicine in South Africans who were HIV-seropositive but asymptomatic. The medicine was derived from Sutherlandia frutescens, a plant endemic to and widely used to stimulate immune function by people across southern Africa. In this article, I report on the cross-cultural challenges generated by trial investigators' transformation of Sutherlandia into a clinical trial substance and a potential "treatment gap" therapy for persons with HIV. While Sutherlandia is in many respects an unusual addition to evidence-based medicine, it is also familiar in this context-especially in the manner the therapy was biopolitically imagined by trial investigators, and in terms of the indeterminacy the therapy produced.
Collapse
Affiliation(s)
- Christopher Morris
- a Department of Sociology and Anthropology , George Mason University , Fairfax , Virginia , USA
| |
Collapse
|
36
|
Chen C, Folk WR, Lazo-Portugal R, Finn TM, Knight M. Isolation of sutherlandins A, B, C and D from Sutherlandia frutescens (L.) R. Br. by counter-current chromatography using spiral tubing support rotors. J Chromatogr A 2017; 1508:7-15. [PMID: 28619589 DOI: 10.1016/j.chroma.2017.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
Spiral countercurrent-chromatography has great potential for improving the capacity and efficiency of purification of secondary metabolites, and here we describe applications useful for the isolation of flavonoids from the widely used South African medicinal plant, Sutherlandia frutescens (L.) R. Br. In the spiral tubing support rotor, STS-4 for high-speed counter-current chromatography, several polar butanol aqueous solvent systems were selected using a logK plot, and the novel flavonol glycosides (sutherlandins A-D) were well separated by the optimized solvent system (ethyl acetate:n-butanol:acetic acid:water; 5:1:0.3:6 by vol.). The yield of purified flavonoids from 0.9g extract varied from 8.6mg to 54mg of the sutherlandins for a total of 85.3mg. The same extract was fractionated in the new STS-12 rotor of the same outside dimensions but with more radial channels forming 12 loops of the tubing instead of 4. The rotor holds more layers and increased length of tubing. From 0.9g extract the STS-12 rotor yielded more recovery of 110.4mg total with amounts varying from 11.2mg to 64mg of the sutherlandins and apparent increased separation efficiency as noted by less volume of each fraction peak. Thus from 1-g amounts of extract, good recovery of the flavonoids was achieved in the butanol aqueous solvent system.
Collapse
Affiliation(s)
- Cuiping Chen
- CC Biotech LLC, 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Thomas M Finn
- CC Biotech LLC, 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - Martha Knight
- CC Biotech LLC, 12111 Parklawn Drive, Rockville, MD 20852, USA.
| |
Collapse
|
37
|
Kamal M, Arif M, Jawaid T. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy–a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13596-016-0254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2582463. [PMID: 28250793 PMCID: PMC5307007 DOI: 10.1155/2017/2582463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022]
Abstract
Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs) modulated via cytochrome P450 enzyme family (CYP) and P-glycoprotein (P-gp) and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.
Collapse
|
39
|
Davids D, Gibson D, Johnson Q. Ethnobotanical survey of medicinal plants used to manage High Blood Pressure and Type 2 Diabetes Mellitus in Bitterfontein, Western Cape Province, South Africa. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:755-766. [PMID: 27780752 DOI: 10.1016/j.jep.2016.10.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aim of this study was to identify and document medicinal plants used to manage High Blood Pressure and Type 2 Diabetes Mellitus in Bitterfontein, Western Cape Province, South Africa. METHODS One hundred and twelve (112) respondents were interviewed between August 2014 and September 2015 through semi-structured surveys to gather data on the percentage of people who had been diagnosed with High Blood Pressure and/or Type 2 Diabetes Mellitus and to determine the frequency of medicinal plant and allopathic medicine use. Twelve (12) key respondents were subsequently selected, using a non-probability snowball sampling method. They were interviewed in-depth concerning their plant practices and assisted with plant collection. RESULTS Twenty-four plant (24) species belonging to 15 families were identified for the management of High Blood Pressure and Type 2 Diabetes Mellitus. The most frequently reported families were Asteraceae (20.8%), Lamiaceae (16.67%), Crassulaceae (8.33%) and Aizoaceae (8.33%). The remaining (45.54%) were evenly split over eleven families- Fabaceae, Amaryllidaceae, Anacardiaceae, Capparaceae, Geraniaceae, Apiaceae, Convolvulaceae, Apocynaceae, Rutaceae, Asphodelaceae and Thymelaeaceae. The most commonly used plant species overall was Lessertia frutescens (96.55%). The most frequently used plant parts included leaves (57.63%) roots/bulbs (15.25%) and stems (11.86%), mostly prepared as infusions or decoctions for oral administration. CONCLUSIONS Medicinal plants are widely used by High Blood Pressure and Type 2 Diabetes Mellitus sufferers. They employ diverse plant species to manage both conditions. In addition, some sufferers often use prescribed allopathic medication, as well as medicinal plants, but at different intervals. Despite high usage the plants identified are not currently threatened (Red Data list status: least concern).
Collapse
Affiliation(s)
- Denver Davids
- Department of Anthropology and Sociology, University of the Western Cape (UWC), Bellville, South Africa.
| | - Diana Gibson
- Department of Anthropology and Sociology, University of the Western Cape (UWC), Bellville, South Africa.
| | - Quinton Johnson
- Nelson Mandela Metro University (NMMU), George, Southern Cape, South Africa.
| |
Collapse
|
40
|
Mongalo NI, McGaw LJ, Segapelo TV, Finnie JF, Van Staden J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. ex DC. (Combretaceae) - A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:789-802. [PMID: 27989875 DOI: 10.1016/j.jep.2016.10.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/19/2016] [Accepted: 10/24/2016] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL REFERENCE The use of medicinal plants in the treatment of infections is ancient. A wide variety of ethnotherapeutic properties and pharmacological actions has been attributed to Terminalia sericea. Studies by various groups of investigators reveal that it is a multipurpose medicinal plant used mostly in the treatment of diarrhoea, sexually transmitted infections, skin rashes, tuberculosis and other infections. The current paper is aimed at providing an overview of the ethnomedicinal uses, toxicology, pharmacology and the phytochemistry of Terminalia sericea. MATERIALS AND METHODS Information was retrieved using various search engines, including Pubmed, Science Direct, Google Scholar, Scielo, SciFinder and Scopus. The key words used included Terminalia sericea, secondary metabolites, phytochemistry, biological activity, pharmacology, ethnobotanical survey, medicinal uses, safety, toxicology and other related words. RESULTS Terminalia sericea is an important medicinal plant which possesses anti-HIV, anti-fungal, anti-bacterial, anticancer, lipolytic, wound healing, antiparasitic, anti-inflammatory and anti-oxidant activity, as the most valuable biological activities, thus lending pharmacological support to the plant's folkloric uses in indigenous medicine. Toxicologically, the extracts and isolated compounds from the plant species may have mild toxic effects. Phytochemically, the plant species possesses valuable compounds including triterpenes, alkaloids and flavonoids which may well contribute to its biological activity. CONCLUSIONS Terminalia sericea contains secondary metabolites which are valuable in the treatment of a variety of human infections, including community acquired infections which may be prevalent in developing countries. The degree of toxicity reported in various extracts warrants further exploration of the cytotoxicity of the plant species, both against normal human cell lines and in vivo. Moreover, the acetylcholinesterase inhibitory and anti-inflammatory effects also need to be further investigated as there are only a few reports from the literature on these aspects. There is also a need to further understand the mode of action of the extracts against various enzymes relating to inflammation. Antioxidant activity of the plant extracts against various forms of free radicals needs to be investigated. Although T. sericea is reported to be used for ethnoveterinary infections, there are no scientific reports on the anti-parasitic activity of the plant species against common animal parasites.
Collapse
Affiliation(s)
- N I Mongalo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa; University of South Africa, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa
| | - L J McGaw
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa; University of Pretoria, Department of Paraclinical Sciences, Private Bag X04, Onderstepoort 0110, South Africa
| | - T V Segapelo
- University of Zululand, Department of Chemistry, Private Bag x1001, KwaDlangezwa 3886, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
41
|
The Induction of Apoptosis in A375 Malignant Melanoma Cells by Sutherlandia frutescens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4921067. [PMID: 27656236 PMCID: PMC5021500 DOI: 10.1155/2016/4921067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Sutherlandia frutescens is a medicinal plant indigenous to Southern Africa and is commonly known as the “cancer bush.” This plant has traditionally been used for the treatment of various ailments, although it is best known for its claims of activity against “internal” cancers. Here we report on its effect on melanoma cells. The aim of this study was to investigate whether an extract of S. frutescens could induce apoptosis in the A375 melanoma cell line and to outline the basic mechanism of action. S. frutescens extract induced apoptosis in A375 cells as evidenced by morphological features of apoptosis, phosphatidylserine exposure, nuclear condensation, caspase activation, and the release of cytochrome c from the mitochondria. Studies in the presence of a pan-caspase inhibitor allude to caspase-independent cell death, which appeared to be mediated by the apoptosis inducing factor. Taken together, the results of this study show that S. frutescens extract is effective in inducing apoptosis in malignant melanoma cells and indicates that further in vivo mechanistic studies may be warranted.
Collapse
|
42
|
Sabiu S, O’Neill FH, Ashafa AOT. THE PURVIEW OF PHYTOTHERAPY IN THE MANAGEMENT OF KIDNEY DISORDERS: A SYSTEMATIC REVIEW ON NIGERIA AND SOUTH AFRICA. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 13:38-47. [PMID: 28487892 PMCID: PMC5416643 DOI: 10.21010/ajtcam.v13i5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The kidney is tasked with a number of metabolic functions in the body. In its role as a detoxifier and primary eliminator of xenobiotics, it becomes vulnerable to developing injuries. Currently, over 1 million people in the world are living on renal replacement therapies (RRTs). The case in sub-Sahara African countries like Nigeria and South Africa is not any better than the global trend. MATERIALS AND METHODS A systematic review of medicinal plants used in the treatment of kidney disorders was conducted. Information were gathered from published scientific journals, books, reports from national, regional and international institutions, conference proceedings and other high profile intellectual resources. MeSH words like 'prevalence of kidney disorders in Africa', 'renal replacement therapy', 'nephrotoxins or nephrotoxicants', 'nephroprotective plants', 'nephroprotective plants in Nigeria or South Africa' and 'nephroprotective phytocompounds' were used to retrieve information from online databases (Google, Pubmed, MEDLINE, Science Direct, Scopus and SID). RESULTS Interestingly, our findings revealed that phytotherapy has emerged and is being employed to protect renal functions and delay progression of renal pathological conditions into end episodes where the last resort is RRT. In fact, in recent times, Phytotherapists are not only interested in developing relatively safe, more affordable, easily accessible and potent nephroprotective formulations but also increasing awareness on the prevalence of the disease and educating the populace on the probable preventive measures. More importantly, efforts at scientifically elucidating the pharmacological efficacy of the identified nephroprotective plants yet to be validated must be intensified through informed expert opinions. Till date, there is paucity of information on the concept of nephroprotection in most developing countries where kidney disorder is a major threat. Although, the concept is just emerging in South Africa, evidences have given credence to its application in complementary and alternative system of medicine in Nigeria. CONCLUSION This review, therefore, reawaken researchers' consciousness in the continuous search for auspicious nephroprotective plants that could potentially be excellent candidates in developing new lead drugs to manage and treat renal disorders.
Collapse
Affiliation(s)
- Saheed Sabiu
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, QwaQwa Campus, Phuthaditjhaba 9866, South Africa
| | - Frans Hendrik O’Neill
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Anofi Omotayo Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, QwaQwa Campus, Phuthaditjhaba 9866, South Africa
| |
Collapse
|
43
|
Folk WR, Smith A, Song H, Chuang D, Cheng J, Gu Z, Sun G. Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis? Neuromolecular Med 2016; 18:483-6. [PMID: 27155670 DOI: 10.1007/s12017-016-8402-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/02/2016] [Indexed: 01/20/2023]
Abstract
Millions of individuals with active TB do not receive recommended treatments, and instead may use botanicals, or use botanicals concurrently with established treatments. Many botanicals protect against oxidative stress, but this can interfere with redox-dependent activation of isoniazid and other prodrugs used for prophylaxis and treatment of TB, as suggested by results of a recent clinical trial of the South African botanical Sutherlandia frutescens (L.) R. Br. (Sutherlandia). Here we provide a brief summary of Sutherlandia's effects upon rodent microglia and neurons relevant to tuberculosis of the central nervous system (CNS-TB). We have observed that ethanolic extracts of Sutherlandia suppress production of reactive oxygen species (ROS) in rat primary cortical neurons stimulated by NMDA and also suppress LPS- and interferon γ (IFNγ)-induced ROS and nitric oxide (NO) production by microglial cells. Sutherlandia consumption mitigates microglial activation in the hippocampus and striatum of ischemic brains of mice. RNAseq analysis indicates that Sutherlandia suppresses gene expression of oxidative stress, inflammatory signaling and toll-like receptor pathways that can reduce the host's immune response to infection and reactivation of latent Mycobacterium tuberculosis. As a precautionary measure, we recommend that individuals receiving isoniazid for pulmonary or cerebral TB, be advised not to concurrently use botanicals or dietary supplements having antioxidant activity.
Collapse
Affiliation(s)
- William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Aaron Smith
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211, USA
- Center for Translational Neurosciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis Chuang
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211, USA
- Center for Translational Neurosciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211, USA
- Center for Translational Neurosciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211, USA
- Center for Translational Neurosciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
44
|
Ajit D, Simonyi A, Li R, Chen Z, Hannink M, Fritsche KL, Mossine VV, Smith RE, Dobbs TK, Luo R, Folk WR, Gu Z, Lubahn DB, Weisman GA, Sun GY. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem Int 2016; 97:49-56. [PMID: 27166148 DOI: 10.1016/j.neuint.2016.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022]
Abstract
The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemicals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promoter activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells.
Collapse
Affiliation(s)
- Deepa Ajit
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Runting Li
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Zihong Chen
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Kevin L Fritsche
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Valeri V Mossine
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | | | | | - Rensheng Luo
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Dennis B Lubahn
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, USA; Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
45
|
Megías C, Cortés-Giraldo I, Girón-Calle J, Alaiz M, Vioque J. Purification of canavanine from the legume Vicia disperma. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Inhibition of Hedgehog-Signaling Driven Genes in Prostate Cancer Cells by Sutherlandia frutescens Extract. PLoS One 2015; 10:e0145507. [PMID: 26710108 PMCID: PMC4694108 DOI: 10.1371/journal.pone.0145507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk.
Collapse
|
47
|
Grunz-Borgmann E, Mossine V, Fritsche K, Parrish AR. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. Altern Ther Health Med 2015; 15:434. [PMID: 26667305 PMCID: PMC4678649 DOI: 10.1186/s12906-015-0958-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023]
Abstract
Background The aging kidney is marked by a chronic inflammation, which may exacerbate the progression of renal dysfunction, as well as increase the susceptibility to acute injury. The identification of strategies to alleviate inflammation may have translational impact to attenuate kidney disease. Methods We tested the potential of ashwaganda, sutherlandia and elderberry on tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induced chemokine (CCL2 and CCL5) expression in vitro. Results Elderberry water-soluble extract (WSE) was pro-inflammatory, while sutherlandia WSE only partially attenuated the TNF-α-induced changes in CCL5. However, ashwaganda WSE completely prevented TNF-α-induced increases in CCL5, while attenuating the increase in CCL2 expression and NF-κB activation. The same pattern of ashwagandha protection was seen using LPS as the pro-inflammatory stimuli. Conclusions Taken together, these results demonstrate the ashwaganda WSE as a valid candidate for evaluation of therapeutic potential for the treatment of chronic renal dysfunction.
Collapse
|
48
|
Lei W, Browning JD, Eichen PA, Brownstein KJ, Folk WR, Sun GY, Lubahn DB, Rottinghaus GE, Fritsche KL. Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. Int Immunopharmacol 2015; 29:254-262. [PMID: 26585972 DOI: 10.1016/j.intimp.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/20/2015] [Accepted: 11/08/2015] [Indexed: 12/23/2022]
Abstract
Sutherlandia frutescens is a botanical widely used in southern Africa for treatment of inflammatory and other conditions. Previously, an ethanolic extract of S. frutescens (SFE) has been shown to inhibit the production of reactive oxygen species (ROS) and nitric oxide (NO) by murine neurons and a microglia cell line (BV-2 cells). In this study we sought to confirm the anti-inflammatory activities of SFE on a widely used murine macrophage cell line (i.e., RAW 264.7 cells) and primary mouse macrophages. Furthermore, experiments were conducted to investigate the anti-inflammatory activity of the flavonol and cycloartanol glycosides found in high quantities in S. frutescens. While the SFE exhibited anti-inflammatory activities upon murine macrophages similar to that reported with the microglia cell line, this effect does not appear to be mediated by sutherlandiosides or sutherlandins. In contrast, chlorophyll in our extracts appeared to be partly responsible for some of the activity observed in our macrophage-dependent screening assay.
Collapse
Affiliation(s)
- Wei Lei
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jimmy D Browning
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Peggy A Eichen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Korey J Brownstein
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - George E Rottinghaus
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - Kevin L Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
49
|
Lin H, Jackson GA, Lu Y, Drenkhahn SK, Brownstein KJ, Starkey NJ, Lamberson WR, Fritsche KL, Mossine VV, Besch-Williford CL, Folk WR, Zhang Y, Lubahn DB. Inhibition of Gli/hedgehog signaling in prostate cancer cells by "cancer bush" Sutherlandia frutescens extract. Cell Biol Int 2015; 40:131-42. [PMID: 26377232 DOI: 10.1002/cbin.10544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Sutherlandia frutescens is a medicinal plant, traditionally used to treat various types of human diseases, including cancer. Previous studies of several botanicals link suppression of prostate cancer growth with inhibition of the Gli/hedgehog (Gli/Hh) signaling pathway. Here we hypothesized the anti-cancer effect of S. frutescens was linked to its inhibition of the Gli/Hh signaling in prostate cancer. We found a dose- and time-dependent growth inhibition in human prostate cancer cells, PC3 and LNCaP, and mouse prostate cancer cell, TRAMP-C2, treated with S. frutescens methanol extract (SLE). We also observed a dose-dependent inhibition of the Gli-reporter activity in Shh Light II and TRAMP-C2QGli cells treated with SLE. In addition, SLE can inhibit Gli/Hh signaling by blocking Gli1 and Ptched1 gene expression in the presence of a Gli/Hh signaling agonist (SAG). A diet supplemented with S. frutescens suppressed the formation of poorly differentiated carcinoma in prostates of TRAMP mice. Finally, we found Sutherlandioside D was the most potent compound in the crude extract that could suppress Gli-reporter in Shh Light II cells. Together, this suggests that the S. frutescens extract may exert anti-cancer effect by targeting Gli/Hh signaling, and Sutherlandioside D is one of the active compounds.
Collapse
Affiliation(s)
- Hui Lin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Glenn A Jackson
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Technology, Nebraska College of Technical Agriculture, Curtis, Nebraska, 69025, USA
| | - Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara K Drenkhahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Korey J Brownstein
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164, USA
| | - Nicholas J Starkey
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - William R Lamberson
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kevin L Fritsche
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Cynthia L Besch-Williford
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
50
|
Lei W, Browning JD, Eichen PA, Lu CH, Mossine VV, Rottinghaus GE, Folk WR, Sun GY, Lubahn DB, Fritsche KL. Immuno-stimulatory activity of a polysaccharide-enriched fraction of Sutherlandia frutescens occurs by the toll-like receptor-4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:247-253. [PMID: 26096188 PMCID: PMC4523454 DOI: 10.1016/j.jep.2015.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/21/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sutherlandia frutescens (L.) R. Br. is an indigenous plant of southern Africa that has been traditionally used for various cancers, infections, and inflammatory conditions. AIM OF THE STUDY Our aim was to investigate the potential immuno-stimulatory activity of a polysaccharide-enriched fraction (SFPS) from a decoction of S. frutescens. MATERIALS AND METHODS RAW 264.7 cells (a murine macrophage cell line) were used to determine the activities of SFPS on macrophage function. The production of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines were evaluated in the cells treated with or without SFPS. CLI-095, a toll-like receptor (TLR) 4-specific inhibitor, was used to identify whether or not SFPS exerts its effects through TLR4. An antagonist of endotoxin, polymyxin B, was used to evaluate whether endotoxin present in SFPS contributed to its immune-stimulatory activity. RESULTS SFPS exhibited potent immune-stimulatory activity by macrophages. The production of ROS, NO, and tumor necrosis factor (TNF-α) were increased upon exposure to SFPS in a dose-dependent manner. All of these activities were completely blocked by co-treatment with CLI-095, but only partially diminished by polymyxin B. CONCLUSION We demonstrate for the first time potent immune-stimulatory activity in a decoction prepared from S. frutescens. We believe that this immune stimulatory activity is due, in part, to the action of polysaccharides present in the decoction that acts by way of TLR4 receptors and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. These findings provide a plausible mechanism through which we can understand some of the medicinal properties of S. frutescens.
Collapse
Affiliation(s)
- Wei Lei
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jimmy D Browning
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Peggy A Eichen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Chi-Hua Lu
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - George E Rottinghaus
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kevin L Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|