1
|
Hsi HY, Hsiao G, Wang SW, Huang SJ, Lee TH. Chemical constituents from marine medicinal brown alga-derived Scytalidium lignicola SC228. PHYTOCHEMISTRY 2024; 229:114289. [PMID: 39353504 DOI: 10.1016/j.phytochem.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, a marine medicinal brown alga Sargassum cristaefolium-derived fungal strain Scytalidium lignicola SC228 has been isolated and identified. Column chromatography of the extracts from liquid-fermented products of the fungal strain was carried out, and led to the purification of eight compounds. Their structures were characterized by spectroscopic analysis, and the absolute configurations were further established by single X-ray diffraction analysis and modified Mosher's method as four previously undescribed compounds, namely scytabenzofurans A-C (1-3), and (3S,4S)-5-chloro-3,4-dihydro-4,6,8-trihydroxy-3-methyl-1H-2-benzopyran-1-one (4), along with four known compounds 5-8. All the isolates were subjected to anti-inflammatory and anti-angiogenic assays. Compounds 1-4, 7, and 8 showed moderate nitric oxide production inhibitory activities in lipopolysaccharide-activated BV-2 microglial cells with IC50 in the range of 19.6 ± 0.1 to 49.0 ± 1.2 μM in comparison with that of curcumin (IC50 = 2.7 ± 0.3 μM). Compounds 5-7 exhibited moderate to potent inhibitory effects on EPCs growth with IC50 in the range of 0.5 ± 0.1 to 42.7 ± 0.9 μM as compared to sorafenib (IC50 = 5.50 ± 1.50 μM).
Collapse
Affiliation(s)
- Hsiao-Yang Hsi
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 252, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Shu-Jung Huang
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 106, Taiwan; Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Panwong S, Phinyo K, Duangjan K, Sattayawat P, Pekkoh J, Tragoolpua Y, Yenchitsomanus PT, Panya A. Inhibition of dengue virus infection in vitro by fucoidan and polysaccharide extract from marine alga Sargassum spp. Int J Biol Macromol 2024; 276:133496. [PMID: 38986999 DOI: 10.1016/j.ijbiomac.2024.133496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Dengue virus (DENV) infection poses a global health threat, leading to severe conditions with the potential for critical outcomes. Currently, there are no specific drugs available whereas the vaccine does not offer comprehensive protection across all DENV serotypes. Therefore, the development of potential antiviral agents is necessary to reduce the severity risk and interrupt the transmission circuit. The search for effective antiviral agents against DENV has predominantly focused on natural resources, particularly those demonstrating diverse biological activities and high safety profiles. Cyanobacteria and algae including Leptolyngbya sp., Spirulina sp., Chlorella sp., and Sargassum spp., which are prevalent species in Thailand, have been reported for their diverse biological activities and high safety profiles. However, their anti-DENV activity has not been documented. In this study, the screening assay was performed to compare the antiviral activity against DENV of crude polysaccharide and ethanolic extracts derived from 4 species of cyanobacteria and algae in Vero cells. Polysaccharide extracts from Sargassum spp. were the most effective in inhibiting DENV-2 infection under co-infection conditions, where the virus was exposed to the extract at the time of infection. Treatment of the extract significantly reduced the ability of DENV to bind to the host cells to 47.87 ± 3.88 % while treatment upon virus binding step had no antiviral effect suggesting the underlaying mechanism of the extract on interfering virus binding step. Fucoidan, a key bioactive substance in Sargassum polysaccharide, showed to reduce DENV-2 infection to 26.59 ± 5.01 %, 20.46 ± 6.58 % under the co-infection condition in Vero and A549 cells, respectively. In accompanied with Sargassum polysaccharide, fucoidan disturbed the virus binding to the host cells. These findings warrant further development and exploration of the Sargassum-derived polysaccharide, fucoidan, as a promising candidate for combating DENV infections.
Collapse
Affiliation(s)
- Suthida Panwong
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Jia X, Chen W, Liu T, Chen Z. Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae. Int J Mol Sci 2024; 25:8584. [PMID: 39201271 PMCID: PMC11354929 DOI: 10.3390/ijms25168584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of S. hemiphyllum var. chinense (34,686-bp mitogenome with 65 genes and 124,323 bp plastome with 173 genes) and the investigation of comparative genomics and systematics of 37 mitogenomes and 22 plastomes of Fucales (including S. hemiphyllum var. chinense), Ectocarpales, and Laminariales in Phaeophyceae. Whole genome collinearity analysis showed gene number, type, and arrangement were consistent in organellar genomes of Sargassum with 360 SNP loci identified as S. hemiphyllum var. chinense and two genes (rps7 and cox2) identified as intrageneric classifications of Sargassum. Comparative genomics of the three orders of Phaeophyceae exhibited the same content and different types (petL was only found in plastomes of the order Fucales and Ectocarpales) and arrangements (most plastomes were rearranged, but trnA and trnD in the mitogenome represented different orders) in genes. We quantified the frequency of RNA-editing (canonical C-to-U) in both organellar genomes; the proportion of edited sites corresponded to 0.02% of the plastome and 0.23% of the mitogenome (in reference to the total genome) of S. hemiphyllum var. chinense. The repetition ratio of Fucales was relatively low, with scattered and tandem repeats (nine tandem repeats of 14-24 bp) dominating, while most protein-coding genes underwent negative selection (Ka/Ks < 1). Collectively, these findings provide valuable insights to guide future species identification and evolutionary status of three important Phaeophyceae order species.
Collapse
Affiliation(s)
- Xuli Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Weizhou Chen
- Marine Biology Institute, Shantou University, Shantou 515063, China; (W.C.); (Z.C.)
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Zepan Chen
- Marine Biology Institute, Shantou University, Shantou 515063, China; (W.C.); (Z.C.)
| |
Collapse
|
4
|
Shu H, Zhang X, Pu Y, Zhang Y, Huang S, Ma J, Cao L, Zhou X. Fucoidan improving spinal cord injury recovery: Modulating microenvironment and promoting remyelination. CNS Neurosci Ther 2024; 30:e14903. [PMID: 39139089 PMCID: PMC11322593 DOI: 10.1111/cns.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION Excessive neuroinflammation, apoptosis, glial scar, and demyelination triggered by spinal cord injury (SCI) are major obstacles to SCI repair. Fucoidan, a natural marine plant extract, possesses broad-spectrum anti-inflammatory and immunomodulatory effects and is regarded as a potential therapeutic for various diseases, including neurological disorders. However, its role in SCI has not been investigated. METHODS In this study, we established an SCI model in mice and intervened in injury repair by daily intraperitoneal injections of different doses of fucoidan (10 and 20 mg/kg). Concurrently, primary oligodendrocyte precursor cells (OPCs) were treated in vitro to validate the differentiation-promoting effect of fucoidan on OPCs. Basso Mouse Scale (BMS), Louisville Swim Scale (LSS), and Rotarod test were carried out to measure the functional recovery. Immunofluorescence staining, and transmission electron microscopy (TEM) were performed to assess the neuroinflammation, apoptosis, glial scar, and remyelination. Western blot analysis was conducted to clarify the underlying mechanism of remyelination. RESULTS Our results indicate that in the SCI model, fucoidan exhibits significant anti-inflammatory effects and promotes the transformation of pro-inflammatory M1-type microglia/macrophages into anti-inflammatory M2-type ones. Fucoidan enhances the survival of neurons and axons in the injury area and improves remyelination. Additionally, fucoidan promotes OPCs differentiation into mature oligodendrocytes by activating the PI3K/AKT/mTOR pathway. CONCLUSION Fucoidan improves SCI repair by modulating the microenvironment and promoting remyelination.
Collapse
Affiliation(s)
- Haoming Shu
- Department of Orthopedics, Second Affiliated HospitalNaval Medical UniversityShanghaiChina
| | - Xin Zhang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of EducationNaval Medical UniversityShanghaiChina
| | - Yingyan Pu
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of EducationNaval Medical UniversityShanghaiChina
| | - Yinuo Zhang
- Department of Orthopedics, Second Affiliated HospitalNaval Medical UniversityShanghaiChina
| | - Shixue Huang
- Department of Orthopedics, Second Affiliated HospitalNaval Medical UniversityShanghaiChina
| | - Jun Ma
- Department of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Cao
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of EducationNaval Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Kim MJ, Ryu H, Jeong HH, Van JY, Hwang JY, Kim AR, Seo J, Moon KM, Jung WK, Lee B. The beneficial effects of ethanolic extract of Sargassum serratifolium in DNCB-induced mouse model of atopic dermatitis. Sci Rep 2024; 14:12874. [PMID: 38834629 DOI: 10.1038/s41598-024-62828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.
Collapse
Affiliation(s)
- Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ah-Reum Kim
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Jaeseong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan, 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea.
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
6
|
Zhang LJ, Zhang HZ, Liu YW, Tang M, Jiang YJ, Li FN, Guan LP, Jin QH. Sulphated Fucooligosaccharide from Sargassum Horneri: Structural Analysis and Anti-Alzheimer Activity. Neurochem Res 2024; 49:1592-1602. [PMID: 38305960 DOI: 10.1007/s11064-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
In the present study, sulfated polysaccharides were obtained by digestion of Sargassum horneri and preparation with enzyme-assisted extraction using three food-grade enzymes, and their anti- Alzheimer's activities were investigated. The results demonstrated that the crude sulfated polysaccharides extracted using AMGSP, CSP and VSP dose-dependently (25-100 µg·mL- 1) raised the spontaneous alternating manner (%) in the Y maze experiment of mice and reduced the escape latency time in Morris maze test. AMGSP, CSP and VSP also exhibited good anti-AChE and moderate anti-BuChE activities. CSP displayed the best inhibitory efficacy against AChE. with IC50 values of 9.77 µM. And, CSP also exhibited good inhibitory selectivity of AChE over BuChE. Next, CSP of the best active crude extract was separated by the preparation type high performance liquid phase to obtain the sulphated fucooligosaccharide section: SFcup (→3-α-L-fucp(2-SO3-)-1→4-α-L-fucp(2,3-SO3-)-1→section), SFcup showed a best inhibitory efficacy against AChE with IC50 values of 4.03 µM. The kinetic research showed that SFcup inhibited AChE through dual binding sites. Moreover, the molecular docking of SFcup at the AChE active site was in accordance with the acquired pharmacological results.
Collapse
Affiliation(s)
- Ling-Jian Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Hao-Zheng Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Ya-Wen Liu
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Min Tang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Yong-Jun Jiang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Li-Ping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China.
| | - Qing-Hao Jin
- College of Nursing, Zhejiang Pharmaceutical University, Zhejiang, Ningbo, 315153, China.
| |
Collapse
|
7
|
Wu CC, Ding DS, Lo YH, Pan CY, Wen ZH. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. BIOLOGY 2024; 13:384. [PMID: 38927264 PMCID: PMC11201049 DOI: 10.3390/biology13060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.
Collapse
Affiliation(s)
- Chang-Cheng Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
- Department of Nursing, Shu-Zen Junior of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
8
|
Ma XQ, Wang B, Wei W, Tan FC, Su H, Zhang JZ, Zhao CY, Zheng HJ, Feng YQ, Shen W, Yang JB, Li FL. Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol 2024; 90:e0004624. [PMID: 38563787 PMCID: PMC11107165 DOI: 10.1128/aem.00046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.
Collapse
Affiliation(s)
- Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bing Wang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wei
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang-Cheng Tan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hang Su
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chen-Yang Zhao
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yan-Qin Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jin-Bo Yang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
9
|
Figueroa Ramírez SJ, Escobar Morales B, Pantoja Velueta DA, Sierra Grajeda JMT, Alonso Lemus IL, Aguilar Ucán CA. Green Synthesis of Copper Nanoparticles Using Sargassum spp. for Electrochemical Reduction of CO 2. ChemistryOpen 2024; 13:e202300190. [PMID: 38195820 PMCID: PMC11095163 DOI: 10.1002/open.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
This study presents a green method of producing copper nanoparticles (CuNPs) using aqueous extracts from Sargassum spp. as reducing, stabilizing, and capping agents. The CuNPs created using this algae-based method are not hazardous, they are eco-friendly, and less toxic than their chemically synthesized counterparts. The XRD characterization of the CuNPs revealed the presence of Cu and CuO, with a crystallite size ranging from 13 to 17 nm. Following this, the CuNPs were supported onto a carbon substrate, also derived from Sargassum spp. (biochar CSKPH). The CuNPs in biochar (CuNPs-CSKPH) did not appear in the XRD diffractograms, but the SEM-EDS results showed that they accounted for 36 % of the copper weight. The voltamperometric study of CuNps-CSKPH in acid media validated the presence of Cu and the amount was determined to be 2.58 μg. The catalytic activity of CuNPs-CSKPH was analyzed for the electrochemical reduction of CO2. The use of Sargassum spp. has great potential to tackle two environmental problems simultaneously, by using it as raw material for the synthesis of activated biochar as support, as well as the synthesis of CuNPs, and secondly, by using it as a sustainable material for the electrochemical conversion of CO2.
Collapse
Affiliation(s)
- Sandra Jazmín Figueroa Ramírez
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Beatriz Escobar Morales
- CONAHCYT – Centro de Investigación Científica de Yucatán5.5 Carretera Sierra Papacal-Chuburná PuertoSierra PapacalYucatán97302, México
| | - Diego Alonso Pantoja Velueta
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Juan Manuel T. Sierra Grajeda
- Facultad de IngenieríaUniversidad Autónoma del CarmenAv. Central S/N, Esq. con Fracc. Mundo MayaCiudad del Carmen24115Campeche, México
| | - Ivonne Liliana Alonso Lemus
- CONAHCYT – Cinvestav Unidad SaltilloSustentabilidad de los Recursos Naturales y EnergíaAv. Industria Metalúrgica, Parque Industrial Saltillo-Ramos Arizpe CoahRamos Arizpe25900México
| | | |
Collapse
|
10
|
Jiang L, Song C, Ai C, Wen C, Song S. Modulation effect of sulfated polysaccharide from Sargassum fusiforme on gut microbiota and their metabolites in vitro fermentation. Front Nutr 2024; 11:1400063. [PMID: 38751743 PMCID: PMC11094809 DOI: 10.3389/fnut.2024.1400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The present study demonstrated the digestion behavior and fermentation characteristics of a sulfated polysaccharide from Sargassum fusiforme (SFSP) in the simulated digestion tract environment. The results showed that the molecular weight of two components in SFSP could not be changed by simulated digestion, and no free monosaccharide was produced. This indicates that most of SFSP can reach the colon as prototypes. During the fermentation with human intestinal flora in vitro, the higher-molecular-weight component of SFSP was utilized, the total sugar content decreased by 16%, the reducing sugar content increased, and the galactose content in monosaccharide composition decreased relatively. This indicates that SFSP can be selectively utilized by human intestinal flora. At the same time, SFSP also changed the structure of intestinal flora. Compared with the blank group, SFSP significantly increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes. At the genus level, the abundances of Bacteroides and Megamonas increased, while the abundances of Shigella, Klebsiella, and Collinsella decreased. Moreover, the concentrations of total short-chain fatty acids (SCFAs), acetic, propionic and n-butyric acids significantly increased compared to the blank group. SFSP could down-regulate the contents of trimethylamine, piperidone and secondary bile acid in fermentation broth. The contents of nicotinic acid, pantothenic acid and other organic acids were increased. Therefore, SFSP shows significant potential to regulate gut microbiota and promote human health.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Song
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Maheshika Kumari Jayasinghe A, Yang HW, Gedara Isuru Sandanuwan Kirindage K, Jung K, Je JG, Wang L, Kim KN, Ahn G. Fucosterol isolated from Sargassum horneri attenuates allergic responses in immunoglobulin E/bovine serum albumin-stimulated mast cells and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2024; 131:111851. [PMID: 38492337 DOI: 10.1016/j.intimp.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Allergic diseases have become a serious problem worldwide and occur when the immune system overreacts to stimuli. Sargassum horneri is an edible marine brown alga with pharmacological relevance in treating various allergy-related conditions. Therefore, this study aimed to investigate the effect of fucosterol (FST) isolated from S. horneri on immunoglobulin E(IgE)/bovine serum albumin (BSA)-stimulated allergic reactions in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. The in silico analysis results revealed the binding site modulatory potential of FST on the IgE and IgE-FcεRI complex. The findings of the study revealed that FST significantly suppressed the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of β-hexosaminidase and histamine in a dose-dependent manner. In addition, FST effectively decreased the expression of FcεRI on the surface of BMCMCs and its IgE binding. FST dose-dependently downregulated the expression of allergy-related cytokines (interleukin (IL)-4, -5, -6, -13, tumor necrosis factor (TNF)-α, and a chemokine (thymus and activation-regulated chemokine (TARC)) by suppressing the activation of nuclear factor-κB (NF-κB) and Syk-LAT-ERK-Gab2 signaling in IgE/BSA-stimulated BMCMCs. As per the histological analysis results of the in vivo studies with IgE-mediated PCA in BALB/c mice, FST treatment effectively attenuated the PCA reactions. These findings suggest that FST has an immunopharmacological potential as a naturally available bioactive compound for treating allergic reactions.
Collapse
Affiliation(s)
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| | | | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea.
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
12
|
Lee MK, Jeong HH, Kim MJ, Seo JS, Hwang JY, Jung WK, Moon KM, Lee I, Lee B. The Beneficial Roles of Sargassum spp. in Skin Disorders. J Med Food 2024; 27:359-368. [PMID: 38526569 DOI: 10.1089/jmf.2023.k.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Seong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Incheol Lee
- Department of Ocean Engineering, Pukyong National University, Busan, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
13
|
Akhyani DD, Agarwal P, Mesara S, Agarwal PK. Deciphering the potential of Sargassum tenerrimum extract: metabolic profiling and pathway analysis of groundnut ( Arachis hypogaea) in response to Sargassum extract and Sclerotium rolfsii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:317-336. [PMID: 38623170 PMCID: PMC11016048 DOI: 10.1007/s12298-024-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management. In the present study, the Sargassum tenerrimum extract treatment was applied, alone and in combination with Sclerotium rolfsii, to Arachis hypogea, to study the differential metabolite expression. The majority of metabolites showed maximum accumulation with Sargassum extract-treated plants compared to fungus-treated plants. The different classes of metabolite compounds like sugars, carboxylic acids, polyols, showed integrated peaks in different treatments of plants. The sugars were higher in Sargassum extract and Sargassum extract + fungus treatments compared to control and fungus treatment, respectively. Interestingly, Sargassum extract + fungus treatment showed maximum accumulation of carboxylic acids. Pathway enrichment analysis showed regulation of different metabolites, highest impact with galactose metabolism pathway, identifying sucrose, myo-inositol, glycerol and fructose. The differential metabolite profiling and pathway analysis of groundnut in response to Sargassum extract and S. rolfsii help in understanding the groundnut- S. rolfsii interactions and the potential role of the Sargassum extract towards these interactions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01418-9.
Collapse
Affiliation(s)
- Dhanvi D. Akhyani
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Sureshkumar Mesara
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Pradeep K. Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
14
|
Peng Y, Yang X, Huang R, Ren B, Chen B, Liu Y, Zhang H. Diversified Chemical Structures and Bioactivities of the Chemical Constituents Found in the Brown Algae Family Sargassaceae. Mar Drugs 2024; 22:59. [PMID: 38393030 PMCID: PMC10890103 DOI: 10.3390/md22020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Sargassaceae, the most abundant family in Fucales, was recently formed through the merging of the two former families Sargassaceae and Cystoseiraceae. It is widely distributed in the world's oceans, notably in tropical coastal regions, with the exception of the coasts of Antarctica and South America. Numerous bioactivities have been discovered through investigations of the chemical diversity of the Sargassaceae family. The secondary metabolites with unique structures found in this family have been classified as terpenoids, phlorotannins, and steroids, among others. These compounds have exhibited potent pharmacological activities. This review describes the new discovered compounds from Sargassaceae species and their associated bioactivities, citing 136 references covering from March 1975 to August 2023.
Collapse
Affiliation(s)
- Yan Peng
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Xianwen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Bin Ren
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Bin Chen
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
16
|
Joung EJ, Lee MK, Lee M, Gwon M, Shin T, Ryu H, Jeong HH, Kim MJ, Van JY, Kim JI, Choi J, Jung WK, Kim HR, Lee B. Sargachromenol Attenuates Inflammatory Responses by Regulating NF-κB and Nrf2 Pathways in RAW 264.7 Cells and LPS-treated Mice. PLANTA MEDICA 2024; 90:25-37. [PMID: 37848042 DOI: 10.1055/a-2180-1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
This study aims to explore the anti-inflammatory mechanisms of sargachromenol in both RAW 264.7 cells and lipopolysaccharide (LPS)-treated mice, as previous reports have suggested that sargachromenol possesses anti-aging, anti-inflammatory, antioxidant, and neuroprotective properties. Although the precise mechanism behind its anti-inflammatory activity remains unclear, pretreatment with sargachromenol effectively reduced the production of nitric oxide, prostaglandin E2, and interleukin (IL)-1β in LPS-stimulated RAW 264.7 cells by inhibiting cyclooxygenase-2. Moreover, sargachromenol inhibited the activation of nuclear factor-κB (NF-κB) by preventing the degradation of the inhibitor of κB-α (IκB-α) and inhibiting protein kinase B (Akt) phosphorylation in LPS-stimulated cells. We also found that sargachromenol induced the production of heme oxygenase-1 (HO-1) by activating the nuclear transcription factor erythroid-2-related factor 2 (Nrf2). In LPS-treated mice, oral administration of sargachromenol effectively reduced the levels of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in the serum, suggesting its ability to suppress the production of inflammatory mediators by inhibiting the Akt/NF-κB pathway and upregulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Louisiana, United States
| | - Misung Gwon
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Taisun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Jinkyung Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
17
|
Rosic N, Thornber C. Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds. Mar Drugs 2023; 21:633. [PMID: 38132954 PMCID: PMC10744652 DOI: 10.3390/md21120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Carol Thornber
- Department of Natural Resources Science, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA;
| |
Collapse
|
18
|
Puhari SSM, Yuvaraj S, Vasudevan V, Ramprasath T, Arunkumar K, Amutha C, Selvam GS. Fucoidan from Sargassum wightii reduces oxidative stress through upregulating Nrf2/HO-1 signaling pathway in alloxan-induced diabetic cardiomyopathy rats. Mol Biol Rep 2023; 50:8855-8866. [PMID: 37665545 DOI: 10.1007/s11033-023-08780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a form of cardiac dysfunction caused by diabetes, increasing heart failure and death. Studies shown that hyperglycemia-induced oxidative stress significantly affects heart structure and functional changes during diabetic cardiomyopathy. Fucoidans are sulfated polysaccharide derived from naturally available seaweeds and reported for various biological functions such as antioxidant, anti-diabetic, and anti-inflammatory. However, the therapeutic potential of Indian seaweeds against DCM remains largely unexplored. Therefore, the current study aimed to work on the cardioprotective effect of extracted fucoidan from Sargassum wightii (SwF) in alloxan-induced DCM. METHODS AND RESULTS Diabetes (DM) was induced with alloxan monohydrate (150 mg/kg-1) dissolved in Nacl (0.9%) overnight-fasted rats. Group III, IV rats were DM induced, followed by treated with SwF (150 mg/kg-1) and (300 mg/kg-1). Group V and VI were non-diabetic rats and received SwF (150 mg/kg-1) and (300 mg/kg-1). SwF reduced classical progressive DM complications such as hyperglycemia, polydipsia, polyphagia, and polyurea in alloxan-induced diabetic rats. Biochemical analysis showed that SwF decreased blood glucose, cardiac markers enzymes, and lipid peroxidation levels compared to diabetic rats. SwF administration significantly increased Nrf2, HO-1, SOD, Catalase, and NQO1 gene expression. In addition, SwF-treated rats showed reduced heart tissue damage with increased Nrf2 and HO-1 protein expression. CONCLUSION The current research concludes that targeting oxidative stress with SwF provided an effective role in the prevention of DCM. Thus, fucoidan could be used to develop functional food ingredients for DCM.
Collapse
Affiliation(s)
- Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Kulanthaiyesu Arunkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala, 671320, India
| | - Chinnaiah Amutha
- Department of Animal behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
19
|
Zhu Z, Gong H, Wang X, Wang X, Guo W, Yan M, Yan M. Microplastics in marine-derived traditional Chinese medicine, potential threat to patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165075. [PMID: 37356768 DOI: 10.1016/j.scitotenv.2023.165075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Microplastics (MPs) contamination is widely found in marine organisms. Marine traditional Chinese medicines (MTCM) are derived from marine organisms, but there are no relevant reports on detecting MPs in MTCM. This study selected samples of MTCM from two representative pharmaceutical companies, Brand F and Brand Z, including mother-of-pearl, stone cassia, seaweed, pumice, oyster, kombu, calcined Concha Arcae, cuttlebone, and clam shell to detect and analyze the presence of MPs. The abundance, type, color, size, and composition of MPs were investigated. Varying degrees of MPs contamination was present in all MTCM. The abundance of MPs in different MTCM ranged from 0.07 to 9.53 items/g. Their type, color, and size are similar, mainly fiber, transparent and size <2 mm. The composition of MPs is primarily made of cotton, cellulose and rayon. This study contributes to the first record of MPs in MTCM. Our results show that microplastic pollution is common in MTCM, which may cause potential risk to patients consuming MTCM.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xukun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Wenqian Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muxian Yan
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
20
|
Yang M, Lai Y, Gan D, Liu Q, Wang Y, He X, An Y, Gao T. Possible molecular exploration of herbal pair Haizao-Kunbu in the treatment of Graves' disease by network pharmacology, molecular docking, and molecular dynamic analysis. Front Endocrinol (Lausanne) 2023; 14:1236549. [PMID: 37859983 PMCID: PMC10583570 DOI: 10.3389/fendo.2023.1236549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Objective To promote the development and therapeutic application of new medications, it is crucial to conduct a thorough investigation into the mechanism by which the traditional Chinese herb pair of Haizao-Kunbu (HK) treats Graves' disease (GD). Materials and methods Chemical ingredients of HK, putative target genes, and GD-associated genes were retrieved from online public databases. Using Cytoscape 3.9.1, a compound-gene target network was established to explore the association between prosperous ingredients and targets. STRING, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analyses visualized core targets and disease pathways. Additionally, we conducted a refined analysis of the binding interactions between active ingredients and their respective targets. To visualize these findings, we employed precise molecular docking techniques. Furthermore, we carried out molecular dynamics simulations to gain insights into the formation of more tightly bound complexes. Results We found that there were nine key active ingredients in HK, which mainly acted on 21 targets. These targets primarily regulated several biological processes such as cell population proliferation, protein phosphorylation, and regulation of kinase activity, and acted on PI3K-AKT and MAPK pathways to treat GD. Analysis of the molecular interaction simulation under computer technology revealed that the key targets exhibited strong binding activity to active ingredients, and Fucosterol-AKT1 and Isofucosterol-AKT1 complexes were highly stable in humans. Conclusion This study demonstrates that HK exerts therapeutic effects on GD in a multi-component, multi-target, and multi-pathway manner by regulating cell proliferation, differentiation, inflammation, and immunomodulatory-related targets. This study provides a theoretical foundation for further investigation into GD.
Collapse
Affiliation(s)
- Mengfei Yang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yiwen Lai
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Di Gan
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Qingyang Liu
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yingna Wang
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Xinyong He
- Insititute of Laboratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yi An
- Department of Obstetrics, The People’s Hospital of Liaoning, Shenyang, Liaoning, China
| | - Tianshu Gao
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Veeragoni D, Deshpande SS, Singh V, Misra S, Mutheneni SR. In vitro and in vivo antimalarial activity of green synthesized silver nanoparticles using Sargassum tenerrimum - a marine seaweed. Acta Trop 2023; 245:106982. [PMID: 37406792 DOI: 10.1016/j.actatropica.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Green nanotechnology has recently attracted a lot of attention as a potential technique for drug development. In the present study, silver nanoparticles were synthesised by using Sargassum tenerrimum, a marine seaweed crude extract (Ag-ST), and evaluated for antimalarial activity in both in vitro and in vivo models. The results showed that Ag-ST nanoparticles exhibited good antiplasmodial activity with IC50 values 7.71±0.39 µg/ml and 23.93±2.27 µg/ml against P. falciparum and P. berghei respectively. These nanoparticles also showed less haemolysis activity suggesting their possible use in therapeutics. Further, P. berghei infected C57BL/6 mice were used for the four-day suppressive, curative and prophylactic assays where it was noticed that the Ag-ST nanoparticles significantly reduced the parasitaemia and there were no toxic effects observed in the biochemical and haematological parameters. Further to understand its possible toxic effects, both in vitro and in vivo genotoxicological studies were performed which revealed that these nanoparticles are non-genotoxic in nature. The possible antimalarial activity of Ag-ST may be due to the presence of bioactive phytochemicals and silver ions. Moreover, the phytochemicals prevent the nonspecific release of ions responsible for low genotoxicity. Together, the bio-efficacy and toxicology outcomes demonstrated that the green synthesized silver nanoparticles (Ag-ST) could be a cutting-edge alternative for therapeutic applications.
Collapse
Affiliation(s)
- Dileepkumar Veeragoni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shruti S Deshpande
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sunil Misra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Srinivasa Rao Mutheneni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Krstić G, Saidu MB, Barta A, Vágvölgyi M, Ali H, Zupkó I, Berkecz R, Gallah US, Rédei D, Hohmann J. Anticancer Meroterpenoids from Centrapalus pauciflorus leaves: Chromone- and 2,4-Chromadione-Monoterpene Derivatives. ACS OMEGA 2023; 8:31389-31398. [PMID: 37663471 PMCID: PMC10468835 DOI: 10.1021/acsomega.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Eight previously undescribed chromones, named pauciflorins F-M and two 5-methyl-2,4-chromadione derivatives named as pauciflorins N and O, were isolated from the methanol extract of the leaves of Centrapalus pauciflorus (Willd.) H.Rob. together with the known (+)-spiro-ethuliacoumarin. The structures were determined via extensive spectroscopic analyses, including HRESIMS, 1D NMR (1H, 13C JMOD), and 2D NMR (HSQC, HMBC, 1H-1H COSY, and NOESY) experiments. Through an MTT assay, seven isolated compounds were tested for their antiproliferative properties against human adherent breast (MCF-7, MDA-MB-231), cervical (HeLa, SiHa), and ovarian (A2780) cancer cell lines. Pauciflorin F was effective against MCF-7 breast cancer cells, its activity (IC50 5.78 μM) was comparable to that of the reference agent cisplatin (IC50 5.78 μM).
Collapse
Affiliation(s)
- Gordana Krstić
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- University
of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Muhammad Bello Saidu
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Anita Barta
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Máté Vágvölgyi
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Hazhmat Ali
- Institute
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, 6720 Szeged, Hungary
| | - István Zupkó
- Institute
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, 6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute
of Pharmaceutical Analysis, University of
Szeged, Somogyi u. 4, 6720 Szeged, Hungary
| | - Umar Shehu Gallah
- Bioresource
Department, National Research Institute
for Chemical Technology (NARICT), Zaria 1052, Nigeria
| | - Dóra Rédei
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Department
of Pharmacognosy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- ELKH-USZ
Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| |
Collapse
|
23
|
Qi Y, Wang Z, Zhang J, Tang S, Zhu H, Jiang B, Li X, Wang J, Sun Z, Zhao M, Zhu H, Yan P. Anti-Neuroinflammatory Meroterpenoids from a Chinese Collection of the Brown Alga Sargassum siliquastrum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1284-1293. [PMID: 37137291 DOI: 10.1021/acs.jnatprod.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nine new chromane-type meroterpenoids, including the rare nor-meroterpenoid sargasilol A (1) and the eight meroditerpenoids sargasilols B-I (2-9), were isolated from a China Sea collection of the brown alga Sargassum siliquastrum, together with six known analogues (10-15). The structures of the new chromanes were identified by extensive spectroscopic analysis and by comparison with previously reported data. Compounds 1-3 and 6-15 exhibited inhibition against LPS-induced NO production in BV-2 microglial cells, and 1, with a shorter carbon chain, was the most active one. Compound 1 was established as an anti-neuroinflammatory agent through targeting the IKK/IκB/NF-κB signaling pathway. As such, the chromanes from brown algae could provide promising anti-neuroinflammatory lead compounds for further structural modification.
Collapse
Affiliation(s)
- Yu Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongle Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jingwen Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Shuhua Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haoyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Bing Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xinhua Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiabao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongmin Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haoru Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
24
|
Blanco S, Sapatinha M, Mackey M, Maguire J, Paolacci S, Gonçalves S, Lourenço HM, Mendes R, Bandarra NM, Pires C. Effect of Deployment and Harvest Date on Growth and High-Value Compounds of Farmed Alaria esculenta. Mar Drugs 2023; 21:305. [PMID: 37233499 PMCID: PMC10220681 DOI: 10.3390/md21050305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alaria esculenta is a brown seaweed farmed in many European countries for its biomass rich in useful bio compounds. This study aimed to identify the optimal growing season to maximise biomass production and quality. The seeded longlines of the brown seaweed were deployed in the southwest of Ireland in October and November 2019 and samples of the biomass were harvested in different dates, between March and June 2020. Biomass gain and composition, phenolic and flavonoid content (TPC and TFC) and biological activities (antioxidant and anti-hypertensive activities) of seaweed extracts prepared with Alcalase were evaluated. The biomass production was significantly higher for the line deployed in October (>20 kg·m-1). In May and June, an increasing amount of epiphytes was observed on the surface of A. esculenta. The protein content of A. esculenta varied between 11.2 and 11.76% and fat content was relatively low (1.8-2.3%). Regarding the fatty acids profile, A. esculenta was rich in polyunsaturated fatty acids (PUFA), especially in eicosapentaenoic acid (EPA). The samples analysed were very rich in Na, K, Mg, Fe, Mn, Cr and Ni. The content of Cd, Pb Hg was relatively low and below the maximum levels allowed. The highest TPC and TFC were obtained in extracts prepared with A. esculenta collected in March and levels of these compounds decreased with time. In general, the highest radical scavenging activities (ABTS and DPPH), as well as chelating activities (Fe2+ and Cu2+) were observed in early spring. Extracts from A. esculenta collected in March and April presented higher ACE inhibitory activity. The extracts from seaweeds harvested in March exhibited higher biological activity. It was concluded that an earlier deployment allows for maximising growth and harvest of biomass earlier when its quality is at the highest levels. The study also confirms the high content of useful bio compounds that can be extracted from A. esculenta and used in the nutraceutical and pharmaceutical industry.
Collapse
Affiliation(s)
- Silvia Blanco
- Bantry Marine Research Station, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland
| | - Maria Sapatinha
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
| | - Mick Mackey
- Indigo Rock Marine Research Centre, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland; (M.M.); (J.M.); (S.P.)
| | - Julie Maguire
- Indigo Rock Marine Research Centre, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland; (M.M.); (J.M.); (S.P.)
| | - Simona Paolacci
- Indigo Rock Marine Research Centre, Gearhies, Bantry, P75 AX07 Co. Cork, Ireland; (M.M.); (J.M.); (S.P.)
| | - Susana Gonçalves
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
| | - Helena Maria Lourenço
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rogério Mendes
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Narcisa Maria Bandarra
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Carla Pires
- IPMA, IP, Instituto Português do Mar e da Atmosfera, DMRM, DivAV, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; (M.S.); (S.G.); (H.M.L.); (R.M.); (N.M.B.); (C.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
25
|
Samir R, Hassan EA, Saber AA, Haneen DSA, Saleh EM. Seaweed Sargassum aquifolium extract ameliorates cardiotoxicity induced by doxorubicin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58226-58242. [PMID: 36977879 PMCID: PMC10163098 DOI: 10.1007/s11356-023-26259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/28/2023] [Indexed: 05/08/2023]
Abstract
Doxorubicin (DOX) is a potent anticancer drug with adverse cardiotoxic effects. Alginates are multifunctional biopolymers and polyelectrolytes derived from the cell walls of brown seaweeds. They are nontoxic, biocompatible, and biodegradable, and hence, utilized in several biomedical and pharmaceutical applications. Here, we investigated the potential cardioprotective effect of thermally treated sodium alginate (TTSA), which was extracted and purified from the seaweed Sargassum aquifolium, in treating acute DOX cardiotoxicity and apoptotic pathways in rats. UV-visible spectroscopy, Fourier-transform infrared, and nuclear magnetic resonance (1H-NMR) spectroscopy techniques were used to characterize TTSA. CK-MB and AST levels in sera samples were determined. The expression levels of Erk-2 (MAPK-1) and iNOS genes were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of Erk-2, anti-apoptotic p53, and caspase-3 were analyzed using western blotting and ELISA. For the in vivo studies, sixty rats were randomly divided equally into six groups and treated with DOX, followed by TTSA. We revealed that treatment with TTSA, which has low molecular weight and enhanced antioxidant properties, improved DOX-mediated cardiac dysfunction and alleviated DOX-induced myocardial apoptosis. Furthermore, TTSA exhibited a cardioprotective effect against DOX-induced cardiac toxicity, indicated by the increased expression of MAPK-1 (Erk2) and iNOS genes, which are implicated in the adaptive responses regulating DOX-induced myocardial damage. Moreover, TTSA significantly (p < 0.05) suppressed caspase-3 and upregulated anti-apoptotic protein p53 expression. TTSA also rebalanced the cardiomyocyte redox potential by significantly (p < 0.05) increasing the levels of endogenous antioxidant enzymes, including catalase and superoxide dismutase. Our findings suggest that TTSA, particularly at a dose of 400 mg/kg b.w., is a potential prophylactic supplement for treating acute DOX-linked cardiotoxicity.
Collapse
Affiliation(s)
- Rania Samir
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Ekrami A. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Abdullah A. Saber
- Botany Department, Faculty of Science, Ain Shams University, Abbassia Square, Cairo, 11566 Egypt
| | - David S. A. Haneen
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Eman M. Saleh
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
26
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
28
|
Fragoso-Vázquez MJ, Duclosel D, Rosales-Hernández MC, Estrada-Pérez A, Mendoza-Figueroa HL, Olivares-Corichi I, Mendieta-Wejebe JE, Reyes-López CA, Velasco-Quijano JS, Gil-Ruiz LA, Correa-Basurto J. UHPLC-MS/MS Studies and Antiproliferative Effects in Breast Cancer Cells of Mexican Sargassum. Anticancer Agents Med Chem 2023; 23:76-86. [PMID: 35418289 DOI: 10.2174/1871520622666220412125740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sargassum is a marine organism that, under specific conditions, drastically increases its population damaging the environment and risking other organisms. However, sargassum could represent a source of bioactive compounds to treat different diseases such as cancer. Thus, aqueous, ethanolic, and ethyl acetate extracts of sargassum from Playa del Carmen, Mexico, were subjected to metabolomic and antiproliferative assays in breast cancer cells. OBJECTIVE To evaluate the biological effect of different extracts of sargassum, its toxicity over Artemia salina and its antiproliferative effect tested in MCF-7, MDA-MB-231, and NIH3T3 cell lines. Finally, using UHPLC-MS/MS to identify the metabolites in each extract to correlate them with its antiproliferative effect. METHODS The sargassum sample collection was carried out in September at three different points in Playa del Carmen, Quintana Roo, Mexico. The aqueous, ethanolic, and ethyl acetate extracts of Mexican sargassum were obtained by evaporation of solvent and lyophilization. Then, these extracts were evaluated in the cytotoxicity bioassay of Artemia salina. Next, its antiproliferative effect was assessed in MCF-7, MDA-MB-231, and NIH3T3 cell lines. Using UHPLC-MS/MS, the metabolites present in each extract were identified. Finally, docking studies on sphingosine kinase 1 (PDB ID: 3VZB) of sphingosine were carried out. RESULTS The extracts from sargassum showed a greater effect in the antiproliferative assays in cells than in cytotoxic assays in Artemia salina. The ethanolic extract obtained from sargassum showed the best antiproliferative activity in MCF7 and MDA-MB-231 cells. Despite its antiproliferative effect on NIH3T3 cells, an additional extract is required indicating that this extract has compounds that could have a better effect on cancer cells in fibroblast (NIH3T3). The UHPLC-MS/MS of ethanolic and the ethyl acetate extract showed that these extracts have compounds such as sphinganine C16, N, N-Dimethylsphingosine compound, and that it could be possible that the effect observed is due to their metabolites which could be ligands for the sphingosine kinase 1 as demonstrated by docking studies. CONCLUSION The ethanolic extract obtained from sargassum has better antiproliferative activity, despite not having a cytotoxic effect in Artemia salina. The antiproliferative effect could be related to the sphinganine C16, N,NDimethylphingosine identified with more abundance by UHPLC-MS/MS. In addition, these metabolites could be targets of sphingosine kinase 1.
Collapse
Affiliation(s)
- Manuel Jonathan Fragoso-Vázquez
- Departamento de Quimica Organica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomas, Mexico City, CP 11340, Mexico
| | - Darling Duclosel
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Alan Estrada-Pérez
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnológica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico. Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomás, México City, CP 11340, Mexico
| | - Humberto Lubriel Mendoza-Figueroa
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnológica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico. Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomás, México City, CP 11340, Mexico
| | - Ivonne Olivares-Corichi
- Laboratory of Oxidative Stress in Research and Graduate Studies Section, Instituto Politécnico Nacional, Escuela Superior de Medicina, Mexico City, México
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - Cesar Augusto Reyes-López
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Bioquímica Estructural. Ciudad de México, México
| | - Jessica Sayuri Velasco-Quijano
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnológica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico. Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomás, México City, CP 11340, Mexico
| | - Luis Angel Gil-Ruiz
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnológica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico. Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomás, México City, CP 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseno y Desarrollo de Nuevos Farmacos e Innovacion Biotecnologica de la Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico. Plan de San Luis Y Diaz Miron S/N, Col. Casco de Santo Tomas, Mexico City, CP 11340, Mexico
| |
Collapse
|
29
|
Chemical Constituents and Anti-Angiogenic Principles from a Marine Algicolous Penicillium sumatraense SC29. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248940. [PMID: 36558070 PMCID: PMC9781389 DOI: 10.3390/molecules27248940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this study, a marine brown alga Sargassum cristaefolium-derived fungal strain, Penicillium sumatraense SC29, was isolated and identified. Column chromatography of the extracts from liquid fermented products of the fungal strain was carried out and led to the isolation of six compounds. Their structures were elucidated by spectroscopic analysis and supported by single-crystal X-ray diffraction as four previously undescribed (R)-3-hydroxybutyric acid and glycolic acid derivatives, namely penisterines A (1) and C-E (3-5) and penisterine A methyl ether (2), isolated for the first time from natural resources, along with (R)-3-hydroxybutyric acid (6). Of these compounds identified, penisterine E (5) was a unique 6/6/6-tricyclic ether with an acetal and two hemiketal functionalities. All the isolates were subjected to in vitro anti-angiogenic assays using a human endothelial progenitor cell (EPCs) platform. Among these, penisterine D (4) inhibited EPC growth, migration, and tube formation without any cytotoxic effect. Further, in in vivo bioassays, the percentages of angiogenesis of compound 3 on Tg (fli1:EGFP) transgenic zebrafish were 54% and 37% as the treated concentration increased from 10.2 to 20.4 µg/mL, respectively, and the percentages of angiogenesis of compound 4 were 52% and 41% as the treated concentration increased from 8.6 to 17.2 µg/mL, respectively. The anti-angiogenic activity of penisterine D (4) makes it an attractive candidate for further preclinical investigation.
Collapse
|
30
|
Lee YJ, Kim YD, Uh YR, Kim YM, Seo TH, Choi SJ, Jang CS. Complete organellar genomes of six Sargassum species and development of species-specific markers. Sci Rep 2022; 12:20981. [PMID: 36470932 PMCID: PMC9722929 DOI: 10.1038/s41598-022-25443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sargassum is one of the most important brown algal genera that can be used as food and raw material for medicinal purpose, and has various beneficial effects. As the classification of Sargassum species is currently based on their morphological characteristics, organellar genome sequences of Sargassum would provide important information for accurate identification of species and developing species-specific markers. We sequenced the complete organellar genomes of six Sargassum species, including the first complete chloroplast genome sequences of S. fulvellum, S. serratifolium, S. macrocarpum, and S. siliquastrum, and the first complete mitochondrial genome sequences of S. fulvellum, S. serratifolium, and S. macrocarpum. The chloroplast genomes of the 6 Sargassum species contained 139 protein-coding genes (PCGs), and the mitochondrial genomes possessed 37 PCGs. A comparative study was performed between the newly sequenced organellar genomes and 44 other species belonging to class Phaeophyceae. Phylogenetic relationships using PCGs shared by Phaeophyceae species were constructed with IQ-TREE 2 using the maximum likelihood method. In addition, we developed real-time PCR markers based on SNPs to distinguish the 6 Sargassum species. Our results provide useful information for establishing phylogenetic relationships between brown algae.
Collapse
Affiliation(s)
- Yong Jin Lee
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Dam Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Ho Seo
- Coastal Production Institute, Yeosu, Republic of Korea
| | - Sung-Je Choi
- Korea National College of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea.
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
31
|
Provision and assessment properties of nanoliposomes containing macroalgae extracts of Sargassum boveanume and Padina pavonica. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Molina GA, González-Reyna MA, Loske AM, Fernández F, Torres-Ortiz DA, Estevez M. Weak shock wave-mediated fucoxanthin extraction from Sargassum spp. and its electrochemical quantification. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Kim YJ, Kim KH, Kim HY, Kang SM, Hong GL, Lee HJ, Lim SS, Jung JY. Sargassum horneri Extract Alleviates Testosterone-Induced Benign Prostatic Hyperplasia In Vitro and In Vivo. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yae-Ji Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Sung-Mo Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Geum-Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Wu S, Liu J, Zhang Y, Song J, Zhang Z, Yang Y, Wu M, Tong H. Structural characterization and antagonistic effect against P-selectin-mediated function of SFF-32, a fucoidan fraction from Sargassum fusiforme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115408. [PMID: 35659565 DOI: 10.1016/j.jep.2022.115408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum fusiforme (Harvey) Setchell, or Haizao, has been used in traditional Chinese medicine (TCM) since at least the eighth century a.d. S. fusiforme is an essential component of several Chinese formulas, including Haizao Yuhu Decoction, used to treat goiter, and Neixiao Lei Li Wan used to treat scrofuloderma. The pharmacological efficacy of S. fusiforme may be related to its anti-inflammatory effect. AIM OF THE STUDY To determine the structural characteristics of SFF-32, a fucoidan fraction from S. fusiforme, and its antagonistic effect against P-selectin mediated function. MATERIALS AND METHODS The primary structure of SFF-32 was determined using methylation/GC-MS and NMR analysis. Surface morphology and solution conformation of SFF-32 were determined by scanning electron microscopy (SEM), Congo red test, and circular dichroic (CD) chromatography, respectively. The inhibitory effects of SFF-32 against the binding of P-selectin to HL-60 cells were evaluated using flow cytometry, static adhesion assay, and parallel-plate flow chamber assay. Furthermore, the blocking effect of SFF-32 on the interaction between P-selectin and PSGL-1 was evaluated using an in vitro protein binding assay. RESULTS The main linkage types of SFF-32 were proven to →[3)-α-l-Fucp-(1→3,4)-α-l-Fucp-(1]2→[4)-β-d-Manp-(1→3)-d-GlcAp-(1]2→4)-β-d-Manp-(1→3)-β-d-Glcp-(1→4)-β-d-Manp-(1→2,3)-β-d-Galp-(1→4)-β-d-Manp-(1→[4)-α-l-Rhap-(1]3→. The sulfated unit or terminal xylose residues were attached to the backbone through the C-3 of some fucose residues and terminal xylose residues were attached to C-3 of galactose residues. Moreover, SFF-32 disrupted P-selectin-mediated cell adhesion and rolling as well as blocked the interaction between P-selectin and its physiological ligand PSGL-1 in a dose-dependent manner. CONCLUSIONS Blocking the binding between P-selectin and PSGL-1 is the possible underlying mechanism by which SFF-32 inhibits P-selectin-mediated function, which demonstrated that SFF-32 may be a potential anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin, 132013, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou, 313000, PR China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
35
|
Lins Alves LK, Cechinel Filho V, de Souza RLR, Furtado-Alle L. BChE inhibitors from marine organisms - A review. Chem Biol Interact 2022; 367:110136. [PMID: 36096160 DOI: 10.1016/j.cbi.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Acetylcholine is a key neurotransmitter for brain and muscle function, that has its levels decreased in the brain of people with Alzheimer's Disease (AD). Cholinesterase inhibitors are medicines that decrease the breakdown of acetylcholine, through the inhibition of acetyl- and butyrylcholinesterase enzymes. Despite the fact that butyrylcholinesterase activity rises with the disease, while acetylcholinesterase activity declines, the cholinesterase inhibitors that are currently commercialized inhibit either acetylcholinesterase or both enzymes. The development of selective butyrylcholinesterase inhibitors is a promising strategy in the search for new drugs acting against AD. The marine environment is a rich source of molecules with therapeutic potential, which can provide compounds more easily than traditional methods, with reduced toxicity risks compared to synthetic molecules. This review comprises articles from 2003 to 2020, that assessed the butyrylcholinesterase inhibitory activities from marine organisms, considering their crude extracts and isolated compounds. Part of the articles reported a multi-target activity, inhibiting also other AD-related enzymes. Some of the marine compounds reported here have shown an excellent potential for butyrylcholinesterase inhibition compared to standard inhibitors. Further studies of some compounds reported here may lead to the development of a new treatment for AD.
Collapse
Affiliation(s)
- Luana Kamarowski Lins Alves
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil.
| | - Valdir Cechinel Filho
- Post-graduation Program of Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Center (NIQFAR), University of Itajaí Valley (UNIVALI), R. Uruguai, 458 - Centro, 88302-901, Itajaí, SC, Brazil
| | - Ricardo Lehtonen Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| |
Collapse
|
36
|
Bioactive phlorotannin as autophagy modulator in cervical cancer cells and advanced glycation end products inhibitor in glucotoxic C. elegans. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
37
|
Lomartire S, Gonçalves AMM. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022; 11:foods11172654. [PMID: 36076839 PMCID: PMC9455623 DOI: 10.3390/foods11172654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
The use of seaweed for therapeutic purposes is ancient, but only in the last decade, with advanced technologies, has it been possible to extract seaweed’s bioactive compounds and test their potential properties. Algal metabolites possess nutritional properties, but they also exhibit antioxidant, antimicrobial, and antiviral activities, which allow them to be involved in several pharmaceutical applications. Seaweeds have been incorporated since ancient times into diets as a whole food. With the isolation of particular seaweed compounds, it would be possible to develop new types of food with therapeutically properties. Polysaccharides make up the majority of seaweed biomass, which has triggered an increase in interest in using seaweed for commercial purposes, particularly in the production of agar, carrageenan, and alginate. The bio-properties of polysaccharides are strictly dependent to their chemical characteristics and structure, which varies depending on the species, their life cycles, and other biotic and abiotic factors. Through this review, techniques for seaweed polysaccharides extraction are reported, with studies addressing the advantages for human health from the incorporation of algal compounds as dietary supplements and food additives.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-239-240-700 (ext. 262-286)
| |
Collapse
|
38
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Anti-Alzheimer's disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomed Pharmacother 2022; 154:113576. [PMID: 36007279 DOI: 10.1016/j.biopha.2022.113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.
Collapse
|
40
|
Lee MK, Ryu H, Lee JY, Jeong HH, Baek J, Van JY, Kim MJ, Jung WK, Lee B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar Drugs 2022; 20:540. [PMID: 36005543 PMCID: PMC9410049 DOI: 10.3390/md20080540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Seaweeds are receiving much attention as a rich source of bioactive compounds with cosmeceutical potential. Recent studies have revealed that Sargassum spp., a genus of brown algae in the family Sargassaceae, has multiple functions in preventing and improving skin aging. Sargassum spp. contains many bioactive compounds, such as fucoidan, fucoxanthin, terpenoids, flavonoids, and meroterpenoids. These Sargassum spp. extracts and derivative compounds have excellent potential for skincare, as they exhibit skin health-promoting properties, including antioxidants, anti-inflammation, whitening, skin barrier repair, and moisturizing. Therefore, searching for bioactive compounds in marine resources such as Sargassum spp. could be an attractive approach to preventing and improving skin aging. The current review focused on the various biological abilities of Sargassum extracts or derived compounds for anti-skin aging.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Hyeon Hak Jeong
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Jiwon Baek
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Ji Yun Van
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan 48513, Korea
| |
Collapse
|
41
|
Méndez-Del Villar M, Pérez-Rubio KG, Hernández-Corona DM, Cortez-Navarrete M. Therapeutic Effect of Fucoidan on Metabolic Diseases: Experimental Data and Clinical Evidence. J Med Food 2022; 25:1011-1020. [PMID: 35984868 DOI: 10.1089/jmf.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rising prevalence of metabolic diseases represents a major challenge to public health worldwide. Therefore, there is a strong need to conduct research on the effectiveness of complementary and alternative therapies for metabolic disorders. Fucoidan is a fucose-enriched and sulfated polysaccharide extracted from ubiquitous brown seaweed. The antihypertensive, antidiabetic, antiobesity, and hypolipidemic effects of fucoidan have been reported in preclinical research and clinical trials. This study aims to review the mechanisms of action and the experimental and clinical use of different types of fucoidan for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Miriam Méndez-Del Villar
- Multidisciplinary Health Research Center, Biomedical Sciences Department, University Center of Tonala, University of Guadalajara, Tonala, Jalisco, Mexico
| | - Karina G Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Diana M Hernández-Corona
- Multidisciplinary Health Research Center, Biomedical Sciences Department, University Center of Tonala, University of Guadalajara, Tonala, Jalisco, Mexico
| | - Marisol Cortez-Navarrete
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
42
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Seo C, Jeong SJ, Yun HJ, Lee HJ, Lee JW, An HW, Han N, Jung WK, Lee SG. Nutraceutical potential of polyphenol-rich Sargassum species grown off the Korean coast: a review. Food Sci Biotechnol 2022; 31:971-984. [PMID: 35873381 PMCID: PMC9300800 DOI: 10.1007/s10068-022-01050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022] Open
Abstract
Sargassum, a brown seaweed, has been used traditionally as food and medicine in Korea, China, and Japan. Sargassum spp. contain bioactive substances associated with health benefits, including anti-inflammatory and antioxidant effects. Thirty Sargassum spp. inhabit the Korean coast. However, their health benefits have yet to be systematically summarized. Therefore, the purpose of this article was to review the health benefits of these 30 Sargassum spp. grown off the Korean coast based on their health benefits, underlying mechanisms, and identified bioactive compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01050-x.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Jung Yun
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Hye Ju Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Woo An
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Nara Han
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea.,Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
44
|
Ethanol Extract of Sargassum siliquastrum Inhibits Lipopolysaccharide-Induced Nitric Oxide Generation by Downregulating the Nuclear Factor-Kappa B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6160010. [PMID: 35722164 PMCID: PMC9205721 DOI: 10.1155/2022/6160010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Sargassum siliquastrum (SS) is an edible brown seaweed widely consumed in Korea and considered a functional food source. Previous studies have reported various biological activities of SS extracts, including antioxidant and hepatoprotective properties. In the present study, we examined the anti-inflammatory effects of the SS extract and assessed the underlying mechanism of action. The SS extract significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in a dose-dependent manner (% of NO production at 500 μg/mL: 60.1 ± 0.9%), with no obvious toxicity. Furthermore, the SS extract inhibited mRNA and protein expression levels of inducible NO synthase, as well as LPS-induced expression and production of proinflammatory cytokines such as IL-1β, IL-6, or TNF-α (IL-6 production (ng/mL) : LPS−: 0.7 ± 0.3; LPS+: 68.1 ± 2.8; LPS + SS extract: 51.9 ± 1.2; TNF-α production (ng/mL) : LPS−: 0.3 ± 0.1; LPS+: 23.0 ± 0.1; LPS + SS extract: 18.2 ± 10.8). Mechanistically, the SS extract attenuated LPS-induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (nuclear factor-kappa B, NF-κB) signaling pathway such as phosphorylation of NF-κB p65 and degradation of IκB-α, thereby blocking LPS-induced activation of NF-κB transcriptional activity. The SS extract also enhanced LPS-induced heme oxygenase-1 expression and attenuated LPS-induced cellular reactive oxygen species production (% of ROS production at 500 μg/mL: 52.2 ± 1.3%). Collectively, these findings suggest that the SS extract elicits anti-inflammatory effects in mouse macrophage cells.
Collapse
|
45
|
Matsui T, Ito C, Itoigawa M, Shibata T. Three phlorotannins from Sargassum carpophyllum are effective against the secretion of allergic mediators from antigen-stimulated rat basophilic leukemia cells. Food Chem 2022; 377:131992. [PMID: 34998157 DOI: 10.1016/j.foodchem.2021.131992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Sargassum carpophyllum (Sargassaceae) is a brown seaweed that contains phlorotannins, which are phloroglucinol polymers with reported anti-inflammatory activities. The phlorotannins 2-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (1), 2,2'-[[2-(3,5-dihydroxyphenoxy)-5-hydroxy-1,3-phenylene]bis(oxy)]bis(1,3,5-benzenetriol) (2), and 2-[2-[4-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (3) were isolated from S. carpophyllum. Here, we evaluated the anti-allergic activities of these compounds and comprehensively explored their effects on intracellular protein levels. Immunoglobulin E-sensitized rat basophilic leukemia cells pretreated with any of these three compounds exhibited reduced β-hexosaminidase, prostaglandin D2, and tumor necrosis factor-α secretion compared with dinitrophenyl-human serum albumin (DNP-HSA)-stimulated cells. Reduction of β-hexosaminidase release was dose-dependent but the half-maximal inhibitory concentrations of the compounds were similar (36-51 μM). Proteomics analysis revealed that the three compounds up-regulated 25 proteins and down-regulated 33 proteins compared with DNP-HSA stimulation alone, and slightly suppressed proteasome 5 expression linked to the regulation of IκB. These results demonstrate that these phlorotannins are potentially useful for preventing immediate hypersensitivity. S. carpophyllum may be a functional food.
Collapse
Affiliation(s)
- Takuya Matsui
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Masataka Itoigawa
- School of Sport and Health Science, Tokai Gakuen University, 21-233 Nishinohora, Ukigai, Miyoshi, Aichi 470-0207, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Laboratory of Marine Food Chemistry, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan; Seaweed Biorefinery Research Center, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
46
|
Un S, Quan NV, Anh LH, Lam VQ, Takami A, Khanh TD, Xuan TD. Effects of In Vitro Digestion on Anti-α-Amylase and Cytotoxic Potentials of Sargassum spp. Molecules 2022; 27:2307. [PMID: 35408706 PMCID: PMC9000548 DOI: 10.3390/molecules27072307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
This is the first study to examine the effects of in vitro digestion on biological activities of Sargassum spp., a broadly known brown seaweed for therapeutic potential. Three fractions (F1-F3) were obtained from hexane extract by column chromatography. Under in vitro simulated digestion, the anti-α-amylase capacity of F1 in oral and intestinal phases increases, while it significantly decreases in the gastric phase. The α-amylase inhibition of F2 promotes throughout all digestive stages while the activity of F3 significantly reduces. The cytotoxic activity of F1 against U266 cell-line accelerates over the oral, gastric, and intestinal stages. The fractions F2 and F3 exhibited the declined cytotoxic potentialities in oral and gastric phases, but they were strengthened under intestinal condition. Palmitic acid and fucosterol may play an active role in antidiabetic and cytotoxic activity against multiple myeloma U266 cell line of Sargassum spp. However, the involvement of other phytochemicals in the seaweed should be further investigated.
Collapse
Affiliation(s)
- Sovannary Un
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (S.U.); (L.H.A.)
| | - Nguyen Van Quan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (S.U.); (L.H.A.)
| | - La Hoang Anh
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (S.U.); (L.H.A.)
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (V.Q.L.); (A.T.)
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (V.Q.L.); (A.T.)
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam;
- Center for Agricultural Innovation, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (S.U.); (L.H.A.)
| |
Collapse
|
47
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
48
|
Ibrahim RYM, Hammad HBI, Gaafar AA, Saber AA. The possible role of the seaweed Sargassum vulgare as a promising functional food ingredient minimizing aspartame-associated toxicity in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:752-771. [PMID: 32705899 DOI: 10.1080/09603123.2020.1797642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Thirty-two male Wistar albino rats were chosen to test the possible protective role of antioxidants of the edible seaweed Sargassum vulgare as a functional food additive to alleviate oxidative stress and toxicity associated with consumption of the artificial sweetener 'aspartame (ASP)'. Biochemical and spleen histopathological analyses of the orally ASP-administrated rats, at a dose of 500 mg/kg for one week daily, showed different apoptotic and inflammatory patterns. Rats treated with ASP and then supplemented orally with the S. vulgare-MeOH extract, at a dose of 150 mg/kg for three consecutive weeks daily, showed significant positive reactions in all investigated assays related to ASP consumption. The protective and immune-stimulant efficacy of S. vulgare-MeOH extract, inferred from combating oxidative stress-induced lipid peroxidation, modulating the low levels of the endogenous antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and of the thyroid hormones T3 and T4, attenuating the elevated levels of apoptotic CASP-3 and inflammatory biomarkers TNF-α and IL-6, as well as heat shock proteins (Hsp70), can be most likely ascribed to the synergistic effect of its potent antioxidant phenolics (mainly gallic, ferulic, salicylic, and chlorogenic, and p-coumaric acids) and flavonoids (rutin, kaempferol, and hesperidin). Mechanism of action of these natural antioxidants was discussed.
Collapse
Affiliation(s)
- Rasha Y M Ibrahim
- Radioisotopes Department, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Huda B I Hammad
- Radioisotopes Department, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Alaa A Gaafar
- Plant Biochemistry Department, National Research Centre, Giza, Egypt
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Thambi A, Chakraborty K. Brown and Red Marine Macroalgae as Novel Bioresources of Promising Medicinal Properties. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2035877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anjaly Thambi
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
- Department of Applied Chemistry, Cochin University of Science and Technology, South Kalamassery, Cochin, India
| | - Kajal Chakraborty
- Department of Applied Chemistry, Cochin University of Science and Technology, South Kalamassery, Cochin, India
| |
Collapse
|
50
|
Hussein HA, Kassim MNI, Maulidiani M, Abas F, Abdullah MA. Cytotoxicity and 1H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells. Heliyon 2022; 8:e09192. [PMID: 35846482 PMCID: PMC9280575 DOI: 10.1016/j.heliyon.2022.e09192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the cytotoxic activity of Tamoxifen (TMX), an anti-estrogen drug, with microalgal crude extracts (MCEs) in single and synergistic application (TMX-MCEs) on MCF-7 and 4T1 breast cancer cells, and non-cancerous Vero cells. The MCEs of Nannochloropsis oculata, Tetraselmis suecica and Chlorella sp. from five different solvents (methanol, MET; ethanol, ETH; water, W; chloroform, CHL; and hexane, HEX) were developed. The TMX-MCEs-ETH and W at the 1:2 and 1:3 ratios, attained IC50 of 15.84-29.51 μg/mL against MCF-7; 13.8-31.62 μg/mL against 4T1; and 24.54-85.11 μg/mL against Vero cells. Higher late apoptosis was exhibited against MCF-7 by the TMX-N. oculata-ETH (41.15 %); and by the TMX-T. suecica-ETH (65.69 %) against 4T1 cells. The TMX-T. suecica-ETH also showed higher ADP/ATP ratios, but comparable Caspase activities to control. For Vero cells, overall apoptotic effects were lowered with synergistic application, and only early apoptosis was higher with TMX-T. suecica-ETH but at lower levels (29.84 %). The MCEs-W showed the presence of alanine, oleic acid, linoleic acid, lactic acid, and fumaric acid. Based on Principal Component Analysis (PCA), the spectral signals for polar solvents such as MET and ETH, were found in the same cluster, while the non-polar solvent CHL was with HEX, suggesting similar chemical profiles clustered for the same polarity. The CHL and HEX were more effective with N. oculata and T. suecica which were of the marine origin, while the ETH and MET were more effective with Chlorella sp., which was of the freshwater origin. The synergistic application of microalgal bioactive compounds with TMX can maintain the cytotoxicity against breast cancer cells whilst reducing the toxicity against non-cancerous Vero cells. These findings will benefit the biopharmaceutical, and functional and healthy food industries.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - Murni Nur Islamiah Kassim
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia
| |
Collapse
|