1
|
Hao Y, Zhang X, Lin X, Yang S, Huang Y, Lai W, Liao X, Liao W, Fu C, Zhang Z. *The traditional Chinese medicine processing change chemical composition and pharmacological effectiveness: Taking Atractylodes macrocephala Koidz. and honey bran-fried Atractylodes macrocephala Koidz. as examples. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155739. [PMID: 38797027 DOI: 10.1016/j.phymed.2024.155739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.
Collapse
Affiliation(s)
- Yiwen Hao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenjing Lai
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xin Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China
| | - Wan Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
2
|
Liu Y, Sun Z, Zhou X, Wang H, Yu M, Li D. Protective Effects of Polysaccharide of Atractylodes Macrocephala Koidz against Porcine Aortic Valve Endothelial Cells Damage Induced by di (2-ethylhexyl) Phthalate. Cell Biochem Biophys 2024; 82:1409-1419. [PMID: 38722472 DOI: 10.1007/s12013-024-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/25/2024]
Abstract
The activation, injury, and dysfunction of endothelial cells are considered to be the initial key events in the development of atherosclerosis. Di (2-ethylhexyl) phthalate (DEHP), a prevalent organic pollutant, can cause damage to multiple organs. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is a bioactive compound extracted from A. macrocephala Koidz with various biological activities. This study investigates the protective effects of PAMK on porcine aortic valve endothelial cells (PAVEC) damaged by DEHP. PAVECs treated with DEHP alone or with PAMK showed reduced cell apoptosis and death in PAMK-pretreated cells. PAMK up-regulated Bcl-2 expression and down-regulated Bax protein, suppressing apoptosis. Flow cytometry analysis demonstrated that PAMK protected PAVECs from DEHP-induced damage. These findings suggest that PAMK inhibits cell apoptosis and protects against DEHP damage in endothelial cells.
Collapse
Affiliation(s)
- Yunfeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zongyi Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoling Zhou
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, Haerbin, 150069, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miaomiao Yu
- Journal Center of Northeast Agricultural University, Northeast Agricultural University, Harbin, 150030, China
| | - Dejun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
4
|
Yu Y, Fu D, Zhou H, Su J, Chen S, Lv G. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116718. [PMID: 37268258 DOI: 10.1016/j.jep.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/β-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Zhang HX, Si JG, Li JR, Yu M, Qin LL, Zhao CX, Zhang T, Zou ZM. Eudesmane-type sesquiterpenes from the rhizomes of Atractylodes macrocephala and their bioactivities. PHYTOCHEMISTRY 2023; 206:113545. [PMID: 36481315 DOI: 10.1016/j.phytochem.2022.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Fifteen undescribed eudesmane-type sesquiterpenes, named atramacronoids D-R, along with fourteen known analogues were isolated from the rhizomes of Atractylodes macrocephala. The structures of atramacronoids D-R were elucidated based on extensive spectroscopic data analysis, Snatzke's rule, electronic circular dichroism (ECD) calculations, and X-ray crystallographic analysis. Notably, of the undescribed isolates, atramacronoids D and E are the first example of eudesmanolactam-phenol and eudesmanolactam-ethyl hybrids obtained from plants, respectively. A pair of enantiomers, (+)- and (-)-atramacronoids F, were successfully resolved by chiral-phase HPLC. Atramacronoid D exhibited weak cytotoxicity against SGC-7901 cells. Atramacronoid E significantly promoted the proliferation of LPS-induced IEC-6 cells.
Collapse
Affiliation(s)
- Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin-Guang Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Medical Sciences, Guizhou Medical University, Guiyang, 550000, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ling-Ling Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chen-Xu Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
6
|
Lee SH, Kim JG, Le TPL, Han JS, Cho YB, Lee MK, Lee D, Hwang BY. Polyacetylenes from the roots of Cirsium japonicum var. ussuriense. PHYTOCHEMISTRY 2022; 202:113319. [PMID: 35850259 DOI: 10.1016/j.phytochem.2022.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Eight previously undescribed polyacetylenes, cirussurynes A-H, were isolated from the methanolic extract of the roots of Cirsium japonicum var. ussuriense. Their structures were elucidated by interpretation of extensive 1D and 2D NMR spectroscopy and HRESIMS spectrometry data. The configuration of triols in cirussurynes A, B, and E-G was deduced by the J-value based configuration analysis together with specific rotation values. All compounds were evaluated for their inhibitory effects on nitric oxide production against LPS-induced RAW 264.7 macrophages, and exhibited IC50 values ranging from 5.5 to 68.7 μM.
Collapse
Affiliation(s)
- Seung Hyun Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Jun Gu Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Thi Phuong Linh Le
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea.
| |
Collapse
|
7
|
Atramacronoids A−C, three eudesmanolide sesquiterpene-phenol hybrids with an unprecedented C−C linkage from the rhizomes of Atractylodes macrocephala. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Amin A, Hossen MJ, Fu XQ, Chou JY, Wu JY, Wang XQ, Chen YJ, Wu Y, Yin CL, Dou XB, Liang C, Chou GX, Yu ZL. Inhibition of the Akt/NF-κB pathway is involved in the anti-gastritis effects of an ethanolic extract of the rhizome of Atractylodes macrocephala. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115251. [PMID: 35381310 DOI: 10.1016/j.jep.2022.115251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.
Collapse
Affiliation(s)
- Aftab Amin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Muhammad Jahangir Hossen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Qi Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Bing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; EnKang Pharmaceuticals, Limited, Guangzhou, China.
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Center for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
9
|
Sun Z, Zhang Y, Peng X, Huang S, Zhou H, Xu J, Gu Q. Diverse Sesquiterpenoids and Polyacetylenes from Atractylodes lancea and Their Anti-Osteoclastogenesis Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:866-877. [PMID: 35324175 DOI: 10.1021/acs.jnatprod.1c00997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Twenty-two sesquiterpenoids (1-22) and 11 polyacetylenes (23-33) were obtained from the rhizomes of Atractylodes lancea. Among them, 11 compounds (1-5, 11, 12, 23, 24, 30, and 31) are new. The scaffolds represented by the isolates of sesquiterpenoids were found to be varied and included two rare rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton, eight spirovetivanes, three guaianes, eight eudesmanes, and one eremophilane. Their planar structures and relative configurations were elucidated by UV, IR, 1D and 2D NMR, and HRESIMS data analysis. The absolute configurations of the new sesquiterpenoids were determined using X-ray diffraction analysis and by comparison of the calculated and experimental electronic circular dichroism and optical rotation data, as well as chemical transformations. All the isolated compounds (1-33) were evaluated for their activity against RANKL-induced osteoclastogenesis in bone marrow macrophages. Two polyacetylene-type compounds, 25 and 32, showed potent activity with IC50 values of 1.3 and 0.64 μM, respectively. Rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton are reported herein from the genus Atractylodes for the first time. Polyacetylenes were demonstrated as the main active constituents of A. lancea with osteoclastogenesis inhibitory activity.
Collapse
Affiliation(s)
- Zhejun Sun
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shijie Huang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
10
|
Quality Evaluation of Atractylodis Macrocephalae Rhizoma Based on Combinative Method of HPLC Fingerprint, Quantitative Analysis of Multi-Components and Chemical Pattern Recognition Analysis. Molecules 2021; 26:molecules26237124. [PMID: 34885706 PMCID: PMC8658834 DOI: 10.3390/molecules26237124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
A method for the quality evaluation of Atractylodis Macrocephalae Rhizoma (AMR) based on high-performance liquid chromatography (HPLC) fingerprint, HPLC quantification, and chemical pattern recognition analysis was developed and validated. The fingerprint similarity of the 27 batches of AMR samples was 0.887–0.999, which indicates there was very limited variance between the batches. The 27 batches of samples were divided into two categories according to cluster analysis (CA) and principal component analysis (PCA). A total of six differential components of AMR were identified in the partial least-squares discriminant analysis (PLS-DA), among which atractylenolide I, II, III, and atractylone counted 0.003–0.045%, 0.006–0.023%, 0.001–0.058%, and 0.307–1.175%, respectively. The results indicate that the quality evaluation method could be used for quality control and authentication of AMR.
Collapse
|
11
|
Tian D, Yang Y, Yu M, Han ZZ, Wei M, Zhang HW, Jia HM, Zou ZM. Anti-inflammatory chemical constituents of Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology. Food Funct 2021; 11:6340-6351. [PMID: 32608438 DOI: 10.1039/d0fo01000f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum indicum L., is a common functional food and a well-known traditional Chinese medicine (TCM) for the treatment of inflammatory diseases. Previous studies have revealed that FCI has anti-inflammatory activity, but little is known about its anti-inflammatory chemical profile. In this study, the potential anti-inflammatory constituents of FCI were investigated by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with the network pharmacology approach, and further confirmed on a LPS activated RAW264.7 macrophage model. As a result, a total of forty-two compounds, including thirty-two flavonoids, nine phenolic acids and one sesquiterpene, were identified. Among them, fourteen compounds including eight flavonoids (11, 17, 24, 28, 32, 39, 41 and 42) and six caffeoylquinic acids (3, 4, 5, 13, 15 and 20) were recognized as potential key anti-inflammatory constituents of FCI through network pharmacology analysis, because they accounted for 92% of the relative peak area in the UPLC-Q-TOF/MS chromatogram and acted on 87 of 97 the inflammatory targets of FCI. However, only 16 targets were shared between the flavonoids and caffeoylquinic acids, indicative of both acting on more different targets. Further the anti-inflammatory effects of the fourteen constituents were validated with the decreased levels of NO, TNF-α, IL-6 and PGE2 in RAW264.7 macrophage cells treated with LPS. Our results indicated that both flavonoids and caffeoylquinic acids were responsible for the anti-inflammatory effect of FCI through synergetic actions on multi-targets. Moreover, 3,5-dicaffeoylquinic acid (15), luteolin (24) and linarin (28) were the most important active constituents of FCI and could be selected as chemical markers for quality control of FCI. Overall, the findings not only explore the anti-inflammatory chemical constituents of FCI, but also provide novel insights into the effective constituents and mechanism of TCMs.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yong Yang
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou 563000, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zheng-Zhou Han
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
12
|
Qian Y, Li W, Wang H, Hu W, Wang H, Zhao D, Hu Y, Li X, Gao X, Yang W. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala). ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
13
|
Zhao YN, Gao G, Ma JL, Xu RZ, Guo T, Wu LM, Liu XG, Xie ZS, Xu JY, Zhang ZQ, Wang P. Two new sesquiterpenes from the rhizomes of Atractylodes macrocephala and their biological activities. Nat Prod Res 2021; 36:1230-1235. [PMID: 33401972 DOI: 10.1080/14786419.2020.1869970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new sesquiterpenes, named selina-4(14),7,11-trien-9-ol (1) and selina-4(14),11-dien-7-ol (2), along with two known compounds were isolated from rhizomes of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by TDDFT-ECD calculations. Compound 1 was found to moderately inhibit LSD1 activity with IC50 value of 34.0 μM. Compounds 1 and 4 exhibited a regulate effect on Keap1-Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yi-Nan Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Gai Gao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Lian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui-Zhu Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li-Min Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin-Guang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiang-Yan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Zhongjing Wanxi Pharmaceutical Co., Ltd, Zhengzhou, China
| |
Collapse
|
14
|
Wu Q, Hu Y. Integrated network pharmacology and molecular docking strategy to explore the mechanism of medicinal and edible Astragali Radix-Atractylodis Macrocephalae Rhizoma acting on pneumonia via immunomodulation. J Food Biochem 2020; 44:e13510. [PMID: 33025599 DOI: 10.1111/jfbc.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Pneumonia refers to a death-causing infection. Astragali Radix (AR) and Atractylodis Macrocephalae Rhizoma (AMR) are widely used as traditional tonic and promising edible immunomodulatory herbal medicine, but the systemic mechanism is not well understood. Therefore, a strategy based on network pharmacology and molecular docking was designed to explore the systemic mechanism of AR-AMR acting on pneumonia. After a series of bioinformatics assays, seven kernel targets were obtained, including TNF, IL6, IFNG, IL1B, IL10, IL4, and TLR9. And seven key compounds were identified as the synergy components of AR-AMR acting on pneumonia, the four key compounds belonging to AR were (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)-7-chromanol, formononetin, quercetin, and kaempferol, the three key compounds belonging to AMR were atractylone, 14-acetyl-12-senecioyl-2E, 8E, 10E-atractylentriol, and α-Amyrin. The crucial pathways were mainly related to three modules, including immune diseases, infectious disease, and organismal systems. Collectively, these observations strongly suggest that the molecular mechanisms of AR-AMR regulating pneumonia were closely related to the correlation between inflammation and immune response. PRACTICAL APPLICATIONS: Astragali radix and Atractylodis macrocephalae rhizoma can be used as "medicine-food homology" for dietary supplement. AR and AMR are widely used as a traditional tonic and promising edible immunomodulatory herbal medicine. The AR-AMR herb pairs are used for compatibility many times in the recommended prescriptions in COVID-19 develop pneumonia in China. However, the ingredients and mechanisms of AR-AMR acting on Pneumonia via immunomodulation are unclear. In this paper, bioinformatics and network biology were used to systematically explore the mechanisms of the AR-AMR herb pairs in treatment of pneumonia, and further analyze the correlation mechanism between it and COVID-19 develop pneumonia. To sum up, our study reveals the interrelationships between components, targets, and corresponding biological processes of AR-AMR acting on pneumonia. Understanding these relationships may provide guidance and theoretical basis for the further application of AR-AMR herb pairs.
Collapse
Affiliation(s)
- Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yeqing Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Four new sesquiterpene lactones from Atractylodes macrocephala and their CREB agonistic activities. Fitoterapia 2020; 147:104730. [PMID: 32971205 DOI: 10.1016/j.fitote.2020.104730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
One new bisesquiterpenoid, biepiasreorlid II (1), three new sesquiterpene lactones 8α-methoxy-epiasterolid (4), 3β-acetoxyl-8-epiasterolid (5), and 3β-acetoxyl-atractylenolide I (6), along with five known analogues (2-3 and 7-9), were obtained from rhizome of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by the analysis of single-crystal X-ray diffraction with Ga Kα radiation, and 4-6 were elucidated by TDDFT-ECD calculations. The CREB agonistic activity was investigated in HEK293T cells using dual luciferase reporter assay. Compounds 1, 2, 5, and 7-9 exhibited strong to agonistic activities on CREB.
Collapse
|
16
|
Zhang D, Liang R, Liu Z, Yang H, Shi J, Song Y, Zhang D, Liu A. Research on the Interfacial Interaction between Polyacetylene and Silver Nanowire. MACROMOL THEOR SIMUL 2020. [DOI: 10.1002/mats.202000034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Danhui Zhang
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Ruquan Liang
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Zhongkui Liu
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Houbo Yang
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Jianhui Shi
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Yuanmei Song
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Dengbo Zhang
- College of Mechanical and Vehicle Engineering Linyi University Linyi Shandong 276005 China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Panjin 124221 China
| |
Collapse
|
17
|
Cho G, Park HM, Jung WM, Cha WS, Lee D, Chae Y. Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine. Integr Med Res 2020; 9:100436. [PMID: 32742921 PMCID: PMC7388188 DOI: 10.1016/j.imr.2020.100436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Background Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare. Methods We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs. Results We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high-level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy. Conclusions We made a comprehensive list of candidate medicinal herbs for skincare via data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.
Collapse
Affiliation(s)
- Gayoung Cho
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Hyo-Min Park
- Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Won-Mo Jung
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong-Seok Cha
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Younbyoung Chae
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Wu YX, Lu WW, Geng YC, Yu CH, Sun HJ, Kim YJ, Zhang G, Kim T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Essential Oil Derived from the Wild Rhizome of Atractylodes macrocephala. Chem Biodivers 2020; 17:e2000268. [PMID: 32533626 DOI: 10.1002/cbdv.202000268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The present study investigated the chemical composition, antioxidant, antimicrobial, and anti-inflammatory activities of essential oil (EO) derived from the wild rhizomes of Atractylodes macrocephala Koidz. (AMA) growing in Qimen County (eastern China). GC/MS analysis identified fifteen compounds, representing 92.55 % of AMA EO. The major compounds were atractylone (39.22 %), β-eudesmol (27.70 %), thymol (5.74 %), hinesol (5.50 %), and 11-isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-en-10-one (4.71 %). Ferricyanide reducing, 1,1-diphenyl-2-picyrlhydrazyl (DPPH) and 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) scavenging assays revealed that AMA EO exhibited strong antioxidant capacities. Additionally, AMA EO showed inhibitory effects on growth of Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, and Bacillus subtilis, with the minimum inhibitory concentrations (MIC) ranging from 0.5 to 2.0 mg/mL. Treatments with AMA EO also significantly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in lipopolysaccharide-stimulated RAW264.7 cells, indicating anti-inflammatory activity of AMA EO. Furthermore, treatments with AMA EO decreased the transcriptional levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which might be the molecular mechanisms underlying its anti-inflammatory effects. Overall, these results provide a theoretical basis for further study and application of AMA EO in food and medicine products.
Collapse
Affiliation(s)
- Yong-Xiang Wu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Wei-Wei Lu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Yu-Chuang Geng
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Chang-Hao Yu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Han-Ju Sun
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - You-Jeong Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited, Shenzhen, 518101, P. R. China
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| |
Collapse
|
19
|
Ye J, Zhang X, Xie W, Gong M, Liao M, Meng Q, Xue J, Shi R, Zhang L. An Enzyme-Responsive Prodrug with Inflammation-Triggered Therapeutic Drug Release Characteristics. Macromol Biosci 2020; 20:e2000116. [PMID: 32603032 DOI: 10.1002/mabi.202000116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) for relieving inflammatory reactions can lead to severe side effects. It is of great importance to configure new dosing strategies for alleviating the side effects of NSAIDs. In this work, an enzyme-responsive anti-inflammatory prodrug capable of generating indomethacin upon the trigger of inflammation is developed. A monomer is first prepared after the esterification of carboxyl groups of indomethacin by hydroxyl groups of N-(2-hydroxyethyl) acrylamide. Then, a polymer prodrug, with indomethacin linked through ester bonds on the side chain, is synthesized by free radical polymerization of the monomer. The therapeutic drug component can be triggered to release from the prodrug under the stimulation of cholesterol esterase, mimicking the inflammation environment. On the contrary, there is only a small amount of drug released in the absence of the enzyme. Therefore, the drug can be triggered to release under the stimulation of an environment mimicking inflammation. Furthermore, the in vitro studies at the cellular level indicate that the enzyme-responsive prodrug can efficiently relieve inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells while indicating no cytotoxicity.
Collapse
Affiliation(s)
- Jingjing Ye
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xindan Zhang
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenqi Xie
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Min Gong
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meihong Liao
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qinghan Meng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Xue
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, P. R. China
| | - Liqun Zhang
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Feng YY, Ji HY, Dong XD, Liu AJ. An alcohol-soluble polysaccharide from Atractylodes macrocephala Koidz induces apoptosis of Eca-109 cells. Carbohydr Polym 2019; 226:115136. [PMID: 31582084 DOI: 10.1016/j.carbpol.2019.115136] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/24/2023]
Abstract
In this study, polysaccharides from Atractylodes macrocephala Koidz (APA) which were soluble in alcohol were prepared, purified, analyzed the structure and investigated the antitumor activity in vitro cell experiment. Results of high-performance gel permeation chromatography (HPGPC), fourier-transform infrared spectroscopy (FT-IR), and gas chromatography (GC) showed that APA was a 2.1KDa neutral hetero polysaccharide composed of arabinose and glucose (molar ratio, 1.00:4.57) with pyranose rings and α-type and β-type glycosidic linkages. Results by MTT experiments showed that the proliferation inhibition was 74.63% in Eca109 cells treated with 2 mg/mL dose of APA. Annexin V/PI assay, Hoechst 33,258 staining, cell cycle distribution, rhodamine 123 dye assay and western blot assay clarified that APA could accelerate the apoptosis of Eca109 cells by mitochondrial pathway and stocked cells at S phase. These data indicated that APA is a promising potential candidate for therapeutic treatment of esophageal cancer.
Collapse
Affiliation(s)
- Ying-Ying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - Xiao-Dan Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
21
|
Anti-Inflammatory Compounds from Atractylodes macrocephala. Molecules 2019; 24:molecules24101859. [PMID: 31091823 PMCID: PMC6571718 DOI: 10.3390/molecules24101859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.
Collapse
|
22
|
Zhou Y, Tao H, Wang A, Zhong Z, Wu X, Wang M, Bian Z, Wang S, Wang Y. Chinese herb pair Paeoniae Radix Alba and Atractylodis Macrocephalae Rhizoma suppresses LPS-induced inflammatory response through inhibiting MAPK and NF-κB pathway. Chin Med 2019; 14:2. [PMID: 30728853 PMCID: PMC6352364 DOI: 10.1186/s13020-019-0224-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background The combination of Radix Paeoniae Alba (RPA) and Rhizoma Atractylodis Macrocephalae (RAM) has long been used as a classic herb pair for the treatment of gynecologic and gastrointestinal diseases, but the underlying mechanisms of the herb pair remain unknown. This study aims to explore the anti-inflammatory potentials of RPA–RAM herb pair and to elucidate the underlying mechanisms. Methods The bioactive parts of RPA–RAM were extracted and screened through the inhibitory effects against nitric oxide (NO) production. The effects of optimized RPA–RAM extracts (OPAE) on inflammation-associated mediators were investigated by Western blotting, real-time quantitative PCR (RT-qPCR), Enzyme-linked immunosorbent (ELISA) and immunofluorescence staining. Results OPAE potently suppressed the productions of NO, TNF-α, IL-6 and MCP-1 in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, concentration-dependently inhibited protein level of inducible nitric oxide synthase (iNOS), dramatically downregulated mRNA expression of iNOS, TNF-α, IL-6 and MCP-1. In addition, OPAE significantly prevented phosphorylation and degradation of inhibitory kappa Bα (IκBα) and subsequently restrained the nuclear translocation of NF-κB p65. Pretreatment with OPAE also attenuated the LPS-induced phosphorylation of ERK, JNK and p38. Conclusions Our findings demonstrated that OPAE suppressed inflammatory responses in LPS-stimulated RAW 264.7 macrophages by decreasing critical molecules involved in MAPK and NF-κB pathway, suggesting that the herb pair could be a promising therapeutic candidate for inflammation-related diseases. Electronic supplementary material The online version of this article (10.1186/s13020-019-0224-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| | - Xu Wu
- 2Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan China
| | - Mei Wang
- 3Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Zhaoxiang Bian
- 4School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China.,3Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao China
| |
Collapse
|
23
|
Guan H, Luo X, Chang X, Su M, Li Z, Li P, Wang X, Shi Y. Identification of the Chemical Constituents of an Anti-Arthritic Chinese Medicine Wen Luo Yin by Liquid Chromatography Coupled with Mass Spectrometry. Molecules 2019; 24:E233. [PMID: 30634574 PMCID: PMC6359360 DOI: 10.3390/molecules24020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
Wen Luo Yin (WLY), a well-known traditional Chinese medicine formulation, has been used as a complementary therapy for the treatment of rheumatoid arthritis in clinical settings. However, the chemical constituents of WLY remain unclear. In this study, a high-performance liquid chromatography coupled with tandem mass spectrometry method was established to separate and comprehensively identify the chemical constituents of WLY. The analytes were eluted with a mobile phase of acetonitrile and 0.1% aqueous acetic acid. Mass detection was performed in both positive and negative ion mode. The MS/MS fragmentation pathways were proposed for the identification of the components. A total of 42 compounds including sesquiterpenes, alkaloids, biflavonoids, polyacetylenes, phenylpropanoids and acetylenic phenols were identified unambiguously or tentatively according to their retention times and mass behavior with those of authentic standards or literature data. The identification and structural elucidation of chemical constituents may provide important information for quality control and pharmacological research of WLY.
Collapse
Affiliation(s)
- Huanyu Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Xiaomei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaoyan Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Meifeng Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhuangzhuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Pengfei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaoming Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
24
|
Geng J, Ren Q, Chang C, Xie X, Liu J, Du Y. Synthesis and biological activities of petrosiols B and D. RSC Adv 2019; 9:10253-10263. [PMID: 35520890 PMCID: PMC9062523 DOI: 10.1039/c9ra01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/14/2019] [Indexed: 11/21/2022] Open
Abstract
A divergent total synthesis of natural diacetylenic tetraols, petrosiol B and petrosiol D, was accomplished by taking advantage of a carbohydrate chiral template.
Collapse
Affiliation(s)
- Jialin Geng
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| | - Caizhu Chang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Science
- Beijing 100085
- China
| |
Collapse
|
25
|
Jin SE, Ha H, Shin HK. Effects of Herbal Formulas Bojungikgi-tang and Palmijihwang-hwan on Inflammation in RAW 264.7 Cells and the Activities of Drug-Metabolizing Enzymes in Human Hepatic Microsomes. J Med Food 2018; 21:1173-1187. [PMID: 30457473 DOI: 10.1089/jmf.2017.4123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, Bojungikgi-tang (BJIKT: Buzhongyiqi-tang, Hochuekki-to) and Palmijihwang-hwan (PMJHH: Baweidìhuang-wan, Hachimijio-gan), traditional herbal formulas, investigated anti-inflammatory efficacies in murine macrophage cell line and the influence on the activities of drug-metabolizing enzymes (DMEs). The anti-inflammatory potentials of the herbal formulas were evaluated to inhibit the production of the inflammatory mediators and cytokines and the protein expression of inducible nitric oxide and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The activities of the major human DMEs, cytochrome P450 isozymes (CYP450s) and UDP-glucuronosyltransferase isozymes (UGTs), were measured by in vitro enzyme assay systems. BJIKT and PMJHH significantly suppressed the prostaglandin E2 (PGE2) production (IC50 = 317.3 and 282.2 μg/mL, respectively) and the protein expression of COX-2 in LPS-treated RAW264.7 cells. On the human microsomal DMEs, BJIKT inhibited the activities of CYP1A2 (IC50 = 535.05 μg/mL), CYP2B6 (IC50 > 1000 μg/mL), CYP2C9 (IC50 = 800.78 μg/mL), CYP2C19 (IC50 = 563.11 μg/mL), CYP2D6 (IC50 > 1000 μg/mL), CYP2E1 (IC50 > 1000 μg/mL), CYP3A4 (IC50 = 879.60 μg/mL), UGT1A1 (IC50 > 1000 μg/mL), and UGT1A4 (IC50 > 1000 μg/mL), but it showed no inhibition of the UGT2B7 activity at doses less than 1000 μg/mL. PMJHH inhibited the CYP2D6 activity (IC50 = 280.89 μg/mL), but IC50 values of PMJHH exceeded 1000 μg/mL on the activities of CYP1A2, CYP2C19, CYP2E1, and CYP3A4. At concentrations less than 1000 μg/mL, PMJHH did not affect the activities of CYP2B6, CYP2C9, UGT1A1, UGT1A4, and UGT2B7. The results indicate that both BJIKT and PMJHH may be potential candidates to prevent and treat PGE2- and COX-2-mediated inflammatory diseases. In addition, this study will expand current knowledge about herb-drug interactions by BJIKT and PMJHH.
Collapse
Affiliation(s)
- Seong Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyekyung Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| |
Collapse
|
26
|
Zhu B, Zhang QL, Hua JW, Cheng WL, Qin LP. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:143-167. [PMID: 30130541 DOI: 10.1016/j.jep.2018.08.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodes macrocephala Koidz. (called Baizhu in China) is a medicinal plant that has long been used as a tonic agent in various ethno-medical systems in East Asia, especially in China, for the treatment of gastrointestinal dysfunction, cancer, osteoporosis, obesity, and fetal irritability. AIM OF THE REVIEW This review aims to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics, and toxicology of A. macrocephala to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A literature search was performed on A. macrocephala using scientific databases including Web of Science, Google Scholar, Baidu Scholar, Springer, PubMed, SciFinder, and ScienceDirect. Information was also collected from classic books of Chinese herbal medicine, Ph.D. and M.Sc. dissertations, unpublished materials, and local conference papers on toxicology. Plant taxonomy was confirmed to the database "The Plant List" (www.theplantlist.org). RESULTS More than 79 chemical compounds have been isolated from A. macrocephala, including sesquiterpenoids, triterpenoids, polyacetylenes, coumarins, phenylpropanoids, flavonoids and flavonoid glycosides, steroids, benzoquinones, and polysaccharides. Crude extracts and pure compounds of A. macrocephala are used to treat gastrointestinal hypofunction, cancer, arthritis, osteoporosis, splenic asthenia, abnormal fetal movement, Alzheimer disease, and obesity. These extracts have various pharmacological effects, including anti-tumor activity, anti-inflammatory activity, anti-aging activity, anti-oxidative activity, anti-osteoporotic activity, neuroprotective activity, and immunomodulatory activity, as well as improving gastrointestinal function and gonadal hormone regulation. CONCLUSIONS A. macrocephala is a valuable traditional Chinese medicinal herb with multiple pharmacological activities. Pharmacological investigations support the traditional use of A. macrocephala, and may validate the folk medicinal use of A. macrocephala to treat many chronic diseases. The available literature shows that much of the activity of A. macrocephala can be attributed to sesquiterpenoids, polysaccharides and polyacetylenes. However, there is a need to further understand the molecular mechanisms and the structure-function relationship of these constituents, as well as their potential synergistic and antagonistic effects. Further research on the comprehensive evaluation of medicinal quality, the understanding of multi-target network pharmacology of A. macrocephala, as well as its long-term in vivo toxicity and clinical efficacy is recommended.
Collapse
Key Words
- 12-hydroxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5321038)
- 12-hydroxytetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 54242098)
- 12-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyne-1,14-diacetate (PubChem CID: 132941088)
- 13-hydroxyl-atractylenolide Ⅱ (PubChem CID: 132522412)
- 14-acetoxy-12-methylpropionyltetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 132941089)
- 14-acetoxy-12-senecioyloxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 14448076)
- 14-acetoxy-12-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 132941086)
- 14-acetoxy-12α-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319529)
- 14-acetoxy-12α-methylbutyryltetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319530)
- 14-acetoxy-12β-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 14586258)
- 14-acetoxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 129844442)
- 14-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyne-1-ol (PubChem CID: 132919181)
- 14α-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319531)
- 14β-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 102208392)
- 2,6-dimethoxyphenol (PubChem CID: 7041)
- 2,6-dimethoxyquinone (PubChem CID: 68262)
- 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1,4-dione (PubChem CID: 642530)
- 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl) propan-1-one (PubChem CID: 75142)
- 4-ketone-atractylenolide Ⅲ (PubChem CID: 132522410)
- 4-methoxycinnamic acid (PubChem CID: 699414)
- 7-hydroxycoumarin (PubChem CID: 5281426)
- 8β-D-glucopyranosyloxy-4′,5,7-trihydroxy-flavone (PubChem CID: 6420079)
- 8β-methoxyatractylenolide (PubChem CID: 101707485)
- Apigenin (PubChem CID: 5280443)
- Atractylenolactam (PubChem CID: 101707484)
- Atractylenolide I (PubChem CID: 5321018)
- Atractylenolide V (PubChem CID: 102163989)
- Atractylenolide Ⅱ (PubChem CID: 14448070)
- Atractylenolide Ⅲ (PubChem CID: 11311230)
- Atractylenolide Ⅳ (PubChem CID: 132510447)
- Atractylodes macrocephala Koidz.
- Atractylon (PubChem CID: 3080635)
- Atractyloside A (PubChem CID: 71307451)
- Biepiasterolide (PubChem CID: 11351701)
- Caffeic acid (PubChem CID: 689043)
- D-mannitol (PubChem CID: 6251)
- Dictamnoside A (PubChem CID: 44560015)
- Ethyl 3,4-dihydroxycinnamate (PubChem CID: 5317238)
- Eudesm-4(15),7-diene-9α,11-diol (PubChem CID: 102519767)
- Eudesm-4(15)-ene-7β,11-diol (PubChem CID: 102519766)
- Ferulic acid (PubChem CID: 445858)
- Juniper camphor (PubChem CID: 5318734)
- Lupeol (PubChem CID: 259846)
- Luteolin (PubChem CID: 5280445)
- Palmitic acid (PubChem CID: 985)
- Pharmacology
- Phytochemistry
- Protocatechuic acid (PubChem CID: 72)
- Scopoletin (PubChem CID: 5280460)
- Scutellarein 6-O-glucoside (PubChem CID: 54493965)
- Selina-4(15),7(11)-dien-8-one (PubChem CID: 13986100)
- Stigmasterol (PubChem CID: 5280794)
- Syringin (PubChem CID: 5316860)
- Taraxeryl acetate (PubChem CID: 94225)
- Traditional uses
- Uridine (PubChem CID: 6029)
- Z-5-hydroxy ferulic acid (PubChem CID: 446834)
- β-sitosterol (PubChem CID: 222284)
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Quan-Long Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin-Wei Hua
- Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Wen-Liang Cheng
- Lishui Academy of Agricultural Sciences, Lishui 323000, China.
| | - Lu-Ping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
27
|
Kim MI, Kim JH, Syed AS, Kim YM, Choe KK, Kim CY. Application of Centrifugal Partition Chromatography for Bioactivity-Guided Purification of Antioxidant-Response-Element-Inducing Constituents from Atractylodis Rhizoma Alba. Molecules 2018; 23:molecules23092274. [PMID: 30200578 PMCID: PMC6225303 DOI: 10.3390/molecules23092274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023] Open
Abstract
Activity-guided separation of antioxidant response element (ARE)-inducing constituents from the rhizomes of Atractylodis Rhizoma Alba was performed by the combination of centrifugal partition chromatography (CPC) and an ARE luciferase reporter assay. From 3 g of the active n-hexane fraction, one polyacetylene, (6E,12E)-tetradeca-6,12-dien-8,10-diyne-1,3-diyl diacetate (47.3 mg), and two sesquiterpenes, atractylenolide I (40.9 mg), and selina-4(14),7(11)-dien-8-one (6.0 mg) were successfully isolated by CPC with n-hexane–ethyl acetate–methanol–water (8:2:8:2, v/v). The chemical structures of the isolated compounds were determined by 1H- and 13C-NMR and ESI-MS. Among the isolated compounds, (6E,12E)-tetradeca-6,12-diene-8,10-diyne-1,3-diol diacetate and selina-4(14),7(11)-dien-8-one increased ARE activity 32.9-fold and 16.6-fold, respectively, without significant cytotoxicity, when 5 µM sulforaphane enhanced ARE activity 27.1-fold. However, atractylenolide I did not increase ARE activity at 100 µM, and showed cytotoxicity at concentrations over 10 µM.
Collapse
Affiliation(s)
- Myeong Il Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Ji Hoon Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Ahmed Shah Syed
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sindh, Jamshoro 76080, Pakistan.
| | - Young-Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Kevin Kyungsik Choe
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|
28
|
Effect of Orally Administered Atractylodes macrocephala Koidz Water Extract on Macrophage and T Cell Inflammatory Response in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4041873. [PMID: 30174703 PMCID: PMC6106947 DOI: 10.1155/2018/4041873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 11/17/2022]
Abstract
The rhizome of Atractylodes macrocephala Koidz (AM) is a constituent of various Qi booster compound prescriptions. We evaluated inflammatory responses in macrophages and T cells isolated from mice following oral administration of AM water extract (AME). Peritoneal exudate cells were isolated from thioglycollate-injected mice and alterations in scavenger receptors were examined. Peritoneal macrophages were stimulated with lipopolysaccharide (LPS). Serum cytokine responses to intraperitoneal LPS injection were also evaluated. Splenocytes were isolated and their composition and functional responses were measured. The content of atractylenolide I and atractylenolide III, known anti-inflammatory ingredients, in AME was 0.0338 mg/g extract and 0.565 mg/g extract, respectively. AME increased the number of SRA(+)CD11b(+) cells in response to thioglycollate. Peritoneal macrophages isolated from the AME group showed no changes in inflammatory markers such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, inducible nitric oxide synthase, and cyclooxygenase-2 but exhibited a decrease in CD86 expression. Interestingly, AME decreased the serum levels of TNF-α and IL-6 upon intraperitoneal injection of LPS. Regarding the adaptive immune system, AME increased the CD4(+) T cell population and major histocompatibility complex class II molecule expression in the spleen, and cultured splenocytes from the AME group showed increased production of IL-4 concurrent with decreased interferon-γ production during T cell activation. AME promoted the replenishment of peritoneal macrophages during the inflammatory response but its anti-inflammatory activity did not appear to be mediated by the modulation of macrophage activity. AME also altered the immune status of CD4 T cells, promoting the Th2 response.
Collapse
|
29
|
Feng ZM, Xu K, Wang W, Du N, Zhang JH, Yang YN, Jiang JS, Zhang PC. Two new thiophene polyacetylene glycosides from Atractylodes lancea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:531-537. [PMID: 29614875 DOI: 10.1080/10286020.2018.1458841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
Phytochemical investigation on the rhizomes of Atractylodes lancea led to the isolation of two new thiophene polyacetylene glycosides (1 and 2) and six known compounds (3-8). Their structures were elucidated based on the extensive spectroscopic data (UV, IR, 1D and 2D NMR, and HRESIMS). The absolute configurations of new compounds were established by calculated and experimental circular dichroism. All the compounds were assessed on the lipopolysaccharide-induced NO production in BV2 cells and compounds 3, 7, and 8 showed moderate inhibitory activities.
Collapse
Affiliation(s)
- Zi-Ming Feng
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Kuo Xu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Wei Wang
- b Beijing Centre for Physical and Chemical Analysis , Beijing 100089 , China
| | - Ning Du
- b Beijing Centre for Physical and Chemical Analysis , Beijing 100089 , China
| | - Jing-Hua Zhang
- b Beijing Centre for Physical and Chemical Analysis , Beijing 100089 , China
| | - Ya-Nan Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Jian-Shuang Jiang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Pei-Cheng Zhang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , China
| |
Collapse
|
30
|
Wu XW, Wei W, Yang XW, Zhang YB, Xu W, Yang YF, Zhong GY, Liu HN, Yang SL. Anti-Inflammatory Phenolic Acid Esters from the Roots and Rhizomes of Notopterygium incisium and Their Permeability in the Human Caco-2 Monolayer Cell Model. Molecules 2017; 22:molecules22060935. [PMID: 28587222 PMCID: PMC6152638 DOI: 10.3390/molecules22060935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
A new ferulic acid ester named 4-methyl-3-trans-hexenylferulate (1), together with eight known phenolic acid esters (2–9), was isolated from the methanolic extract of the roots and rhizomes of Notopterygium incisium. Their structures were elucidated by extensive spectroscopic techniques, including 2D NMR spectroscopy and mass spectrometry. 4-Methoxyphenethyl ferulate (8) NMR data is reported here for the first time. The uptake and transepithelial transport of the isolated compounds 1–9 were investigated in the human intestinal Caco-2 cell monolayer model. Compounds 2 and 6 were assigned for the well-absorbed compounds, compound 8 was assigned for the moderately absorbed compound, and compounds 1, 3, 4, 5, 7, and 9 were assigned for the poorly absorbed compounds. Moreover, all of the isolated compounds were assayed for the inhibitory effects against nitric oxide (NO) production in the lipopolysaccharide-activated RAW264.7 macrophages model and L-N6-(1-iminoethyl)-lysine (L-NIL) was used as a positive control. Compounds 1, 5, 8, and 9 exhibited potent inhibitory activity on NO production with the half maximal inhibitory concentration (IC50) values of 1.01, 4.63, 2.47, and 2.73 μM, respectively, which were more effective than L-NIL with IC50 values of 9.37 μM. These findings not only enriched the types of anti-inflammatory compounds in N. incisum but also provided some useful information for predicting their oral bioavailability and their suitability as drug leads or promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiu-Wen Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Guo-Yue Zhong
- School of Chinese Materia Medica, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Hong-Ning Liu
- School of Chinese Materia Medica, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Shi-Lin Yang
- School of Chinese Materia Medica, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
31
|
Li Y, Dai M, Peng D. New bisesquiterpenoid lactone from the wild rhizome of Atractylodes macrocephala Koidz grown in Qimen. Nat Prod Res 2017; 31:2381-2386. [DOI: 10.1080/14786419.2017.1309531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| |
Collapse
|
32
|
Schmidt B, Audörsch S. Stereoselective Total Syntheses of Polyacetylene Plant Metabolites via Ester-Tethered Ring Closing Metathesis. J Org Chem 2017; 82:1743-1760. [PMID: 28085285 DOI: 10.1021/acs.joc.6b02987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Total syntheses of five naturally occurring polyacetylenes from three different plants are described. These natural products have in common an E,Z-configured conjugated diene linked to a di- or triyne chain. As the key method to stereoselectively establish the E,Z-diene part, an ester-tethered ring-closing metathesis/base-induced eliminative ring opening sequence was used. The results presented herein do not only showcase the utility of this tethered RCM variant but have also prompted us to suggest that the originally assigned absolute configurations of chiral polyacetylenes from Atractylodes macrocephala should be revised or at least reconsidered.
Collapse
Affiliation(s)
- Bernd Schmidt
- Universität Potsdam , Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Stephan Audörsch
- Universität Potsdam , Institut für Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Jin SE, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK, Jeong SJ. Anti-inflammatory effect and action mechanisms of traditional herbal formula Gamisoyo-san in RAW 264.7 macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:219. [PMID: 27422559 PMCID: PMC4946171 DOI: 10.1186/s12906-016-1197-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/07/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gamisoyo-san (GMSYS) is a traditional herbal formula used to treat insomnia, dysmenorrhea, and infertility in Korea. The purpose of this study was to investigate the anti-inflammatory effect and action mechanisms of GMSYS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The anti-inflammatory effects of GMSYS were investigated using nitric oxide (NO) assay and ELISAs for prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). The anti-inflammatory action mechanisms of GMSYS were evaluated using Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and activation of nuclear transcription factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). RESULTS GMSYS significantly inhibited the LPS-induced production of NO, PGE2, TNF-α, and IL-6 compared with the vehicle-treated cells. GMSYS consistently downregulated the expression of iNOS and COX-2 mRNA induced by LPS. In addition, pretreatment with GMSYS suppressed the LPS-induced activation of NF-κB and MAPKs such as p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). CONCLUSIONS Our results indicate that the anti-inflammatory effects of GMSYS in RAW 264.7 macrophages are associated with inhibition of the release of inflammatory mediators and cytokines through the suppression of MAPK and NF-κB activation. These findings suggest that GMSYS may be a useful therapeutic candidate for the prevention or treatment of inflammatory diseases.
Collapse
|
34
|
Liu R, Tao E, Yu S, Liu B, Dai L, Yu L, Xiong Y, Fu R, Lei L, Lai X. The Suppressive Effects of the Petroleum Ether Fraction fromAtractylodes lancea(Thunb.) DC. On a Collagen-Induced Arthritis Model. Phytother Res 2016; 30:1672-1679. [PMID: 27373691 DOI: 10.1002/ptr.5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Renping Liu
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Enwei Tao
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Shuwen Yu
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Bo Liu
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Lingman Dai
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Liangyu Yu
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| | - Yifeng Xiong
- Department of Orthopedics; The First Affiliated Hospital of Nanchang University; Nanchang 330000 China
| | - Ruijun Fu
- Department of Orthopedics; The First Affiliated Hospital of Nanchang University; Nanchang 330000 China
| | - Lang Lei
- Department of Pathology; The Second Affiliated Hospital of Nanchang University; Nanchang 330006 China
| | - Xiaoping Lai
- Medical Experiment Education Department; Medical College of Nanchang University; Nanchang 330031 China
| |
Collapse
|
35
|
Schmidt B, Audörsch S. Stereoselective Total Synthesis of Atractylodemayne A, a Conjugated 2(E),8(Z),10(E)-Triene-4,6-diyne. Org Lett 2016; 18:1162-5. [DOI: 10.1021/acs.orglett.6b00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie (Organische
Synthesechemie), Karl-Liebknecht-Strasse
24-25, D-14476 Potsdam-Golm, Germany
| | - Stephan Audörsch
- Universitaet Potsdam, Institut fuer Chemie (Organische
Synthesechemie), Karl-Liebknecht-Strasse
24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Hoang LS, Tran MH, Lee JS, Ngo QMT, Woo MH, Min BS. Inflammatory Inhibitory Activity of Sesquiterpenoids from Atractylodes macrocephala Rhizomes. Chem Pharm Bull (Tokyo) 2016; 64:507-11. [DOI: 10.1248/cpb.c15-00805] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Le Son Hoang
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Manh Hung Tran
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Joo-Sang Lee
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Quynh Mai Thi Ngo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| |
Collapse
|
37
|
Pu JB, Xia BH, Hu YJ, Zhang HJ, Chen J, Zhou J, Liang WQ, Xu P. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach. Molecules 2015; 20:22220-35. [PMID: 26690404 PMCID: PMC6332337 DOI: 10.3390/molecules201219837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes.
Collapse
Affiliation(s)
- Jin-Bao Pu
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| | - Bo-Hou Xia
- College of Pharmacy, Hunan Chinese Medical University, Changsha 410208, China.
| | - Yi-Juan Hu
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| | - Hong-Jian Zhang
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310015, China.
| | - Jie Zhou
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| | - Wei-Qing Liang
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| | - Pan Xu
- Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou 310007, China.
| |
Collapse
|
38
|
Zhao P, Li J, Li Y, Tian Y, Wang Y, Zheng C. Systems pharmacology-based approach for dissecting the active ingredients and potential targets of the Chinese herbal Bufei Jianpi formula for the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:2633-56. [PMID: 26674991 PMCID: PMC4676511 DOI: 10.2147/copd.s94043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The Chinese herbal Bufei Jianpi formula (BJF) provides an effective treatment option for chronic obstructive pulmonary disease (COPD). However, the systems-level mechanism underlying the clinical effects of BJF on COPD remains unknown. Methods In this study, a systems pharmacology model based on absorption filtering, network targeting, and systems analyses was applied specifically to clarify the active compounds and therapeutic mechanisms of BJF. Then, a rat model of cigarette smoke- and bacterial infection-induced COPD was used to investigate the therapeutic mechanisms of BJF on COPD and its comorbidity. Results The pharmacological system successfully identified 145 bioactive ingredients from BJF and revealed 175 potential targets. There was a significant target overlap between the herbal constituents of BJF. These results suggested that each herb of BJF connected with similar multitargets, indicating potential synergistic effects among them. The integrated target–disease network showed that BJF probably was efficient for the treatment of not only respiratory tract diseases but also other diseases, such as nervous system and cardiovascular diseases. The possible mechanisms of action of BJF were related to activation of inflammatory response, immune responses, and matrix metalloproteinases, among others. Furthermore, we demonstrated that BJF treatment could effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production in vivo. Conclusion This study using the systems pharmacology method, in combination with in vivo experiments, helped us successfully dissect the molecular mechanism of BJF for the treatment of COPD and predict the potential targets of the multicomponent BJF, which provides a new approach to illustrate the synergetic mechanism of the complex prescription and discover more effective drugs against COPD.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, People's Republic of China ; Key Laboratory of Chinese Internal Medicine, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Jiansheng Li
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, People's Republic of China ; Key Laboratory of Chinese Internal Medicine, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Ya Li
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, People's Republic of China ; Key Laboratory of Chinese Internal Medicine, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yange Tian
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, People's Republic of China ; Key Laboratory of Chinese Internal Medicine, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yonghua Wang
- Key Laboratory of Chinese Internal Medicine, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China ; Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Chunli Zheng
- Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
39
|
Negri R. Polyacetylenes from terrestrial plants and fungi: Recent phytochemical and biological advances. Fitoterapia 2015; 106:92-109. [DOI: 10.1016/j.fitote.2015.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/07/2023]
|
40
|
Mao W, Zhang L, Zou C, Li C, Wu Y, Su G, Guo X, Wu Y, Lu F, Lin Q, Wang L, Bao K, Xu P, Zhao D, Peng Y, Liang H, Lu Z, Gao Y, Jie X, Zhang L, Wen Z, Liu X. Rationale and design of the Helping Ease Renal failure with Bupi Yishen compared with the Angiotensin II Antagonist Losartan (HERBAAL) trial: a randomized controlled trial in non-diabetes stage 4 chronic kidney disease. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:316. [PMID: 26351087 PMCID: PMC4562196 DOI: 10.1186/s12906-015-0830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023]
Abstract
Background Chronic kidney disease (CKD) is a global public health problem. Currently, as for advanced CKD populations, medication options limited in angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB), which were partially effective. A Chinese herbal compound, Bupi Yishen formula, has showed renal protective potential in experiments and retrospective studies. This study will evaluate the efficacy and safety of Bupi Yishen formula (BYF) in patients with CKD stage 4. Design In this double blind, double dummy, randomized controlled trial (RCT), there will be 554 non-diabetes stage 4 CKD patients from 16 hospitals included and randomized into two groups: Chinese medicine (CM) group or losartan group. All patients will receive basic conventional therapy. Patients in CM group will be treated with BYF daily while patients in control group will receive losartan 100 mg daily for one year. The primary outcome is the change in estimated glomerular filtration rate (eGFR) over 12 months. Secondary outcomes include the incidence of endpoint events, liver and kidney function, urinary protein creatinine ratio, cardiovascular function and quality of life. Discussion This study will be the first multi-center, double blind RCT to assess whether BYF, compared with losartan, will have beneficial effects on eGFR for non-diabetes stage 4 CKD patients. The results will help to provide evidence-based recommendations for clinicians. Trial registration Chinese Clinical Trial Registry Number: ChiCTR-TRC-10001518.
Collapse
|
41
|
Chen G, Li KK, Fung CH, Liu CL, Wong HL, Leung PC, Ko CH. Er-Miao-San, a traditional herbal formula containing Rhizoma Atractylodis and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway and MAPKs activation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:711-718. [PMID: 24815219 DOI: 10.1016/j.jep.2014.04.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Er-Miao-San (EMS) is a traditional Chinese herbal formulation that contains combinations of Rhizoma Atractylodis (RA) and Cortex Phellodendri (CP). It exhibits analgesic and anti-inflammatory activities and have been used for the treatment of various "Bi Zheng" for thousand years in China. The aims of the present study were to investigate the anti-inflammatory activities of EMS and elucidate the underlying mechanisms with regard to its molecular basis of action for the best combination. MATERIALS AND METHODS The anti-inflammatory effects of EMS were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) and pro-inflammatory cytokine production in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS), mitogen-activated protein kinases (MAPKs) phosphorylation, p65 phosphorylation, inhibitor-κBα (IκBα) degradation, and NF-κB DNA-binding activity were further investigated. RESULTS The present study demonstrated that EMS could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. However, CP and RA did not have significant inhibitory effect on them. EMS also inhibited the production of tumor necrosis factor-alpha, interleukin-1 beta and macrophage chemotactic protein-1. Further investigations showed EMS could suppress iNOs expression and p38 phosphorylation. EMS significantly decreased the content of IκBα, reduced the level of phosphorylated p65 and suppressed the NF-κB DNA-binding activity. All these results suggested the inhibitory effects of EMS on the production of inflammatory mediators through the inhibition of the NF-κB pathway. CONCLUSIONS Our results indicated that EMS inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of the MAPK and NF-κB pathway. This study gives scientific evidence validating the use of EMS in treatment of patients with "Bi Zheng" in clinical practice in traditional Chinese medicine.
Collapse
Affiliation(s)
- Gang Chen
- School of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Kai-Kai Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chak-Hei Fung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk-Lun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hing-Lok Wong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ping-Chung Leung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People׳s Republic of China..
| | - Chun-Hay Ko
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People׳s Republic of China..
| |
Collapse
|