1
|
Yi JR, Zeng B, Liu B, Li RF, Che YF, Man QW. Network pharmacology and in vitro experiments reveal the potential therapeutic effects of Scrophularia ningpoensis Hemsl in the treatment of ameloblastoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102146. [PMID: 39551179 DOI: 10.1016/j.jormas.2024.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE This study aimed to explore active ingredients in Scrophularia ningpoensis Hemsl (SNH) with potential effects on ameloblastoma (AM) using network pharmacological approach, bioinformatic gene analysis and in vitro cell experiments. METHODS The active ingredients and their corresponding targets of SNH were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP), as well as SwissTargetPrediction. Disease targets of AM were selected from GeneCards and DisGeNET databases. Differentially expressed genes (DEGs) of AM were identified, and Gene Ontology enrichment analysis were performed using the Gene Expression Omnibus (GEO) dataset GSE38494 through bioinformatic analysis. The STRING database platform was utilized to generate a protein-protein interaction network diagram, followed by hub gene analysis using Cytoscape software. AutoDock Vina software was used to perform molecular docking verification of the effects of the active ingredients on potential core targets. Additionally, in vitro experiments including quantitative reverse transcription polymerase chain reaction (RT-qPCR), EdU assay and CCK-8 cell proliferation assay were conducted using AM cell line AM-1 after SNH extract treatment. RESULT The study revealed that SNH contains eight active ingredients and a total of 388 drug targets, including 10 potential core targets in AM. Hub genes identified in the analysis were CCNA2, HRAS, PTGS2, PIK3CB, FGFR1, CASP3, MMP1, SLC2A1, MMP14, and MME. Molecular docking analysis demonstrated strong binding activity between key active ingredients (β-sitosterol, scropolioside A_qt, scropolioside D, scropolioside D_qt, and sugiol) and target genes (CASP3, FGFR1, HRAS, PTGS2, and SLC2A1). Gene Ontology enrichment analysis indicated that SNH exerts its effects on AM through pathways related to cellular response to abiotic stimulus, cellular response to hypoxia, and exopeptidase activity. Immunohistochemical analysis using tissue microarray showed higher expression of MMP14 and PTGS2 in AM compared to dentigerous cyst. Using AM-1 cell line, RT-qPCR results confirmed that SNH suppressed the expression of MMP14 and PTGS2 at mRNA level. Additionally, the EdUassay and CCK-8 assay indicated the inhibitory effect of SNH on the proliferation of AM-1 cells. CONCLUSION These findings showed that SNH could suppress expression of MMP14 and PTGS2 and restrain the proliferation of AM. Our study highlights the potential of SNH as a promising therapeutic candidate for AM, which may provide more options for clinical treatment.
Collapse
Affiliation(s)
- Jing-Rui Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bang Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui-Fang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin-Fu Che
- Department of Stomatology, Lanzhou University First Affiliated Hospital, Lanzhou University, Lanzhou, China.
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhao X, Li S, Xiang Z. Veratrum nigrum L.: A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and metabolism, toxicity, and incompatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118219. [PMID: 38663784 DOI: 10.1016/j.jep.2024.118219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Veratrum nigrum L. (V. nigrum) is a well-known herb with a lengthy history of use in Asian and European countries. V. nigrum has been traditionally used to treat epilepsy, hypertension, malignant sores, and stroke, and it possesses emetic and insecticide properties. AIM OF THE REVIEW This review summarized the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and metabolism, and toxicity of V. nigrum as well as its incompatibility with other herbs. Current challenges in the use of V. nigrum and possible future research directions were also discussed. MATERIALS AND METHODS Information on V. nigrum was collected from electronic databases such as PubMed, Google Scholar, Web of Science, CNKI, and WanFang DATA; Masterpieces of Traditional Chinese Medicine; local Chinese Materia Medica Standards; and relevant documents. RESULTS In ethnomedical practice, V. nigrum has been used as an emetic and insecticide. Approximately 137 compounds have been isolated from V. nigrum, including alkaloids, stilbenes, flavonoids, organic acids, and esters. Its crude extracts and compounds have shown various effects, including anticancer, hypotensive, insecticidal, and antimicrobial activities as well as the ability to improve hemorheological abnormalities. Pharmacokinetic studies have indicated that veratramine (VAM) and jervine have high bioavailability and possibly enterohepatic circulation. In addition, the sex-related pharmacokinetic differences in V. nigrum alkaloids warrant further attention. Toxicological studies have indicated that cevanine-type alkaloids and VAM may be the main toxic components of V. nigrum, and purine metabolism disorders may be related to V. nigrum toxicity. Furthermore, the neurotoxicity and embryotoxicity of V. nigrum have also been observed. The quality control of V. nigrum and the mechanism underlying its incompatibility with other herbs also deserve further research and refinement. CONCLUSION This review summarized the existing information on V. nigrum, laying the foundation for further studies on this herb and its safe use. Among the various compounds present in V. nigrum, steroid alkaloids are the most numerous and have high content; furthermore, they are closely related to the pharmacological effects of V. nigrum, but their toxicity can not also be ignored. Given that toxicity is a critical issue limiting the clinical application of V. nigrum, more toxicological studies on V. nigrum and its active ingredients, especially steroid alkaloids, should be conducted in the future to further explore its toxicity targets and the underlying mechanisms and to provide more evidence and recommendations to enhance the safety of its clinical application.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Shiyang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zedong Xiang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| |
Collapse
|
3
|
Ma X, Bai C, Gao X, Duan X, Gu X, Li Y, Huang C, Yang J, Hu K. Identifying ligands directly interacting with target protein in medicinal herbs by metabolomic analysis of T2-filtered HSQC spectra. J Pharm Biomed Anal 2024; 248:116329. [PMID: 38959759 DOI: 10.1016/j.jpba.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
A protocol for efficiently identifying ligands directly interacting with a target protein in complex extracts of medicinal herbs was proposed by combining an adapted 2D perfect-echo Carr-Purcell-Meiboom-Gill heteronuclear single quantum correlation (PE-CPMG HSQC) spectrum with metabolomic analysis. PE-CPMG HSQC can suppress the signal interference from the target protein, allowing more accurate peak quantification than conventional HSQC. Inspired from untargeted metabolomics, regions of interest (ROIs) are constructed and quantified for the mixture or complex extract samples with and without a target protein, and then a binding index (BI) of each ROI is determined. ROIs or corresponding peaks significantly perturbed by the presence of the target protein (BI ≥1.5) are detected as differential features, and potential binding ligands identified from the differential features can be equated with bioactive markers associated with the 'treatment' of the target protein. Quantifying ROI can inclusively report the ligand bindings to a target protein in fast, intermediate and slow exchange regimes on nuclear magnetic resonance (NMR) time scale. The approach was successfully implemented and identified Angoroside C, Cinnamic acid and Harpagoside from the extract of Scrophularia ningpoensis Hemsl. as ligands binding to peroxisome proliferator-activated receptor γ. The proposed 2D NMR-based approach saves excess steps for sample processing and has a higher chance of detecting the weaker ligands in the complex extracts of medicinal herbs. We expect that this approach can be applied as an alternative to mining the potential ligands binding to a variety of target proteins from traditional Chinese medicines and herbal extracts.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Caihong Bai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiaoyan Gao
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaohui Duan
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiu Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Cheng Huang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
4
|
Fu Q, Zhang JJ, Zhu QF, Yu LL, Wang F, Li J, He X, Ao JL, Xu GB, Wei MC, Liao XJ, Liao SG. Uric acid-lowering effect of harpagoside and its protective effect against hyperuricemia-induced renal injury in mice. Biochem Biophys Res Commun 2024; 716:150038. [PMID: 38704891 DOI: 10.1016/j.bbrc.2024.150038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1β in the kidney. Harp was a promising anti-HUA agent.
Collapse
Affiliation(s)
- Qiong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Jin-Juan Zhang
- Guiyang Xintian Pharmaceutical Co., Ltd, Guiyang, 550000, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Ling-Ling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Mao-Chen Wei
- Guiyang Xintian Pharmaceutical Co., Ltd, Guiyang, 550000, Guizhou, China
| | - Xing-Jiang Liao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014, Guiyang, China.
| |
Collapse
|
5
|
Tang J, Wang Z, Zhou C, Wang X, Ma F, Pan Z, Han S, Li B, Du L, Cheng G, Fang D. Mechanism of Jinteng Qingbi granules in the treatment of rheumatoid arthritis using metabolomics analysis. Biomed Chromatogr 2024; 38:e5886. [PMID: 38726863 DOI: 10.1002/bmc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
This study investigated the differential metabolites after rheumatoid arthritis (RA) rats were treated with Jinteng Qingbi granules. Collagen-induced arthritis rats were divided into three groups, namely normal group, model group, and Jinteng Qingbi granules group. Serum compounds were identified, annotated, and classified using metabolomics to explain the physicochemical properties and biological functions. The metabolites were screened using univariate and multivariate statistical analyses. There were differences in serum metabolites between RA and normal rats; Jinteng Qingbi granules improved RA and recovered the metabolite levels to normal. Compared to the normal group, 51 differential ions were screened, and 108 ions were changed in the Jinteng Qingbi granules group compared to the RA model. Eight metabolites were upregulated in the RA model group compared to the normal group, whereas 10 metabolites were downregulated. Treatment with Jinteng Qingbi granules increased the levels of 12 metabolites such as cinnamate and decreased the levels of 16 metabolites such as allamandin in the RA model. Differential ion enrichment was mainly related to the histidine metabolic pathway in amino acid metabolism. Jinteng Qingbi granules resulted in improvements in the RA model, which were mainly associated with lipids and lipid-like molecules, organic acids, and derivatives, providing a new possibility and basis for screening biomarkers for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Jinyang Tang
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongli Wang
- State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi City, China
| | - Caiyun Zhou
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Pan
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Han
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Li
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyan Du
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi City, China
| | - Dingya Fang
- Department of Rheumatology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Sheng MY, Peng DW, Peng HM, Zhang YL, Xiao L, Zhang MR, Wang SY, Zhao CP, Zhu SY, Lu JK, Lin L, Huang R, Nie J, Fang JB. Effective substances and molecular mechanisms guided by network pharmacology: An example study of Scrophulariae Radix treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117965. [PMID: 38423410 DOI: 10.1016/j.jep.2024.117965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophulariae Radix (Xuanshen [XS]) has been used for several years to treat hyperthyroidism. However, its effective substances and pharmacological mechanisms in the treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries have not yet been elucidated. AIM OF THE STUDY This study aimed to explore the pharmacological material basis and potential mechanism of XS therapy for hyperthyroidism and thyroid hormone-induced liver and kidney injuries based on network pharmacology prediction and experimental validation. MATERIALS AND METHODS Based on 31 in vivo XS compounds identified using ultra-performance liquid chromatography tandem quadruple exactive orbitrap high-resolution accurate-mass spectrometry (UPLC-QE-HRMS), a network pharmacology approach was used for mechanism prediction. Systematic networks were constructed to identify the potential molecular targets, biological processes (BP), and signaling pathways. A component-target-pathway network was established. Mice were administered levothyroxine sodium through gavage for 30 d and then treated with different doses of XS extract with or without propylthiouracil (PTU) for 30 d. Blood, liver, and kidney samples were analyzed using an enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS A total of 31 prototypes, 60 Phase I metabolites, and 23 Phase II metabolites were tentatively identified in the plasma of rats following the oral administration of XS extract. Ninety-six potential common targets between the 31 in vivo compounds and the diseases were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that Bcl-2, BAD, JNK, p38, and ERK1/2 were the top targets. XS extract with or without PTU had the following effects: inhibition of T3/T4/fT3/fT4 caused by levothyroxine; increase of TSH levels in serum; restoration of thyroid structure; improvement of liver and kidney structure and function by elevating the activities of anti-oxidant enzymes catalase (CAT),superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); activation anti-apoptotic proteins Bcl-2; inhibition the apoptotic protein p-BAD; downregulation inflammation-related proteins p-ERK1/2, p-JNK, and p-p38; and inhibition of the aggregation of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as immune cells in the liver. CONCLUSION XS can be used to treat hyperthyroidism and liver and kidney injuries caused by thyroid hormones through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. In addition, serum pharmacochemical analysis revealed that five active compounds, namely 4-methylcatechol, sugiol, eugenol, acetovanillone, and oleic acid, have diverse metabolic pathways in vivo and exhibit potential as effective therapeutic agents.
Collapse
Affiliation(s)
- Meng-Yuan Sheng
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China; School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute for Drug Control, Wuhan, 430064, China; Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - De-Wei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui-Ming Peng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ya-Li Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Meng-Ru Zhang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Si-Yu Wang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Peng Zhao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Si-Ying Zhu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Kang Lu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Huang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, China.
| | - Jing Nie
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China; Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Gong Y, Ren W, Zhang Z. Migration Patterns and Potential Risk Assessment of Trace Elements in the Soil-Plant System in the Production Area of the Chinese Medicinal Herb Scrophularia ningpoensis Hemsl. TOXICS 2024; 12:355. [PMID: 38787134 PMCID: PMC11125832 DOI: 10.3390/toxics12050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Scrophularia ningpoensis Hemsl. holds a prominent place among Chinese medicinal herbs. Assessing the soil-plant system of its origin is crucial for ensuring medication safety. Although some trace elements are essential for the normal functioning of living organisms, exposure to higher concentrations is harmful to humans, so in order to assess the possible health risk of trace elements in the soil-plant system of Scrophularia ningpoensis Hemsl. origin for human assessment, we used non-carcinogenic risk (HI) and carcinogenic risk (CR) for their evaluation. In this paper, the following trace elements were studied in the soil-Scrophularia ningpoensis Hemsl. system: manganese (Mn), iron (Fe), cobalt (Co), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As) and lead (Pb). Correlation and structural equation analyses showed that the effect of soil in the root zone on the plant was much greater than the effect of soil in the non-root zone on the plant. The single-factor pollution index (Pi) showed that the soil in the production area of Scrophularia ningpoensis Hemsl. was polluted to a certain extent, notably with Pb showing the highest average Pi values of 0.94 and 0.89 in the non-root and root zones, respectively. Additionally, the Nemerow composite pollution indices (PN) for both zones indicated an alert range. Regarding health risks, exposure to soil in the non-root zone posed higher non-carcinogenic risk (HI) and carcinogenic risk (CR) compared to the root zone, although neither zone presented a significant carcinogenic risk. The potential non-carcinogenic risk (HI) and carcinogenic risk (CR) from consuming Scrophularia ningpoensis Hemsl. leaves and stems were more than ten times higher than that of roots. However, the carcinogenic risk (CR) values for both the soil and plant of interest in the soil- Scrophularia ningpoensis Hemsl. system did not exceed 10-4, and therefore no significant carcinogenic risk existed.
Collapse
Affiliation(s)
- Yufeng Gong
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.G.); (W.R.)
| | - Wei Ren
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.G.); (W.R.)
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- School of Resource and Environmental Engineering/Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
- Field Scientific Observatory of Karst Environment and Ecosystem, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
8
|
Lu YA, Liu SJ, Hou SY, Ge YY, Xia BH, Xie MX. Metabolomics distinguishes different grades of Scrophularia ningpoensis hemsl: Towards a biomarker discovery and quality evaluation. Heliyon 2024; 10:e28458. [PMID: 38601543 PMCID: PMC11004711 DOI: 10.1016/j.heliyon.2024.e28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.
Collapse
Affiliation(s)
- Yu-Ai Lu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Jun Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Yi Hou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yu-Ying Ge
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Ming-Xia Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
9
|
Lai HC, Cheng JC, Yip HT, Jeng LB, Huang ST. Chinese herbal medicine decreases incidence of hepatocellular carcinoma in diabetes mellitus patients with regular insulin management. World J Gastrointest Oncol 2024; 16:716-731. [PMID: 38577471 PMCID: PMC10989382 DOI: 10.4251/wjgo.v16.i3.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is an independent risk factor for hepatocellular carcinoma (HCC), while insulin is a potent mitogen. Identifying a new therapeutic modality for preventing insulin users from developing HCC is a critical goal for researchers. AIM To investigate whether regular herbal medicine use can decrease HCC risk in DM patients with regular insulin control. METHODS We used data acquired from the Taiwanese National Health Insurance research database between 2000 and 2017. We identified patients with DM who were prescribed insulin for > 3 months. The herb user group was further defined as patients prescribed herbal medication for DM for > 3 months per annum during follow-up. We matched the herb users to nonusers at a 1:3 ratio according to age, sex, comorbidities and index year by propensity score matching. We analyzed HCC incidence, HCC survival rates, and the herbal prescriptions involved. RESULTS We initially enrolled 657144 DM patients with regular insulin use from 2000 to 2017. Among these, 46849 patients had used a herbal treatment for DM, and 140547 patients were included as the matched control group. The baseline variables were similar between the herb users and nonusers. DM patients with regular herb use had a 12% decreased risk of HCC compared with the control group [adjusted hazard ratio (aHR) = 0.88, 95%CI = 0.80-0.97]. The cumulative incidence of HCC in the herb users was significantly lower than that of the nonusers. Patients with a herb use of > 5 years cumulatively exhibited a protective effect against development of HCC (aHR = 0.82, P < 0.05). Of patients who developed HCC, herb users exhibited a longer survival time than nonusers (aHR = 0.78, P = 0.0001). Additionally, we report the top 10 herbs and formulas in prescriptions and summarize the potential pharmacological effects of the constituents. Our analysis indicated that Astragalus propinquus (Huang Qi) plus Salvia miltiorrhiza Bunge (Dan Shen), and Astragalus propinquus (Huang Qi) plus Trichosanthes kirilowii Maxim. (Tian Hua Fen) were the most frequent combination of single herbs. Meanwhile, Ji Sheng Shen Qi Wan plus Dan Shen was the most frequent combination of herbs and formulas. CONCLUSION This large-scale retrospective cohort study reveals that herbal medicine may decrease HCC risk by 12% in DM patients with regular insulin use.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung 404327, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital; School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
10
|
Chen S, Yu R, Zhao F, Sun L, Yin Y, Zhang G, Chen Q, Shu Q. Network pharmacology and molecular docking to explore the mechanism of a clinical proved recipe for external use of clearing heat and removing dampness in the treatment of immune-related cutaneous adverse events. Medicine (Baltimore) 2024; 103:e37504. [PMID: 38489696 PMCID: PMC10939542 DOI: 10.1097/md.0000000000037504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Immune-related cutaneous adverse events (ircAEs) will undermine the patients' quality of lives, and interrupt the antitumor therapy. A clinical proved recipe for external use of clearing heat and removing dampness (Qing-Re-Li-Shi Formula, hereinafter referred to as "QRLSF") is beneficial to the treatment of ircAEs in clinical practice. Our study will elucidate the mechanism of QRLSF against ircAEs based on network pharmacology and molecular docking. The active components and corresponding targets of QRLSF were collected through traditional Chinese medicine systems pharmacology database. GeneCards, online Mendelian inheritance in man, and pharmacogenomics knowledgebase were used to screen the targets of ircAEs. The intersecting targets between drug and disease were acquired by venn analysis. Cytoscape software was employed to construct "components-targets" network. Search tool for the retrieval of interacting genes/proteins database was applied to establish the protein-protein interaction network and then its core targets were identified. Gene ontology and Kyoto encyclopedia of genes and genomes analysis was performed to predict the mechanism. The molecular docking verification of key targets and related phytomolecules was accomplished by AutoDock Vina software. Thirty-nine intersecting targets related to QRLSF against ircAEs were recognized. The analysis of network clarified 5 core targets (STAT3, RELA, TNF, TP53, and NFKBIA) and 4 key components (quercetin, apigenin, luteolin, and ursolic acid). The activity of QRLSF against ircAEs could be attributed to the regulation of multiple biological effects via multi-pathways (PI3K-Akt pathway, cytokine-cytokine receptor interaction, JAK-STAT pathway, chemokine pathway, Th17 cell differentiation, IL-17 pathway, TNF pathway, and Toll-like receptor pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of QRLSF against ircAEs, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Rui Yu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangmin Zhao
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Sun
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yudan Yin
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Gaochenxi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qunwei Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Yao H, Sun J, Chen M, Dong Y, Wang P, Xu J, Shao Q, Wang Z. The impact of non-environmental factors on the chemical variation of Radix S crophulariae. Heliyon 2024; 10:e24468. [PMID: 38304803 PMCID: PMC10831622 DOI: 10.1016/j.heliyon.2024.e24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Radix Scrophulariae is a commonly used Chinese herb derived from the dried root of Scrophularia ningpoesis Hemsl. (S. ningpoensis). It is difficult to accurately estimate the dosage of Chinese medicinal materials used in the prescription because of the chemical variation caused by various factors. To analyze the non-environmental factors affecting the chemical variation of Radix Scrophulariae, we planted nine different cultivated varieties of S. ningpoensis in the same plantation. Based on sequence-related amplified polymorphism (SRAP), simple sequence repeats (SSR) markers and high-performance liquid chromatography (HPLC) analysis, we found that the materials from the cultivated varieties could be divided into two groups, the Zhejiang group, and the southwest China group. The genetic distance based on molecular data between the two groups was above 0.3882, and the Euclidean distance based on chemical data between the two groups was above 5.312. The correlation analysis between the genetic distance matrix based on SRAP and the Euclidean distance matrix based on 18 HPLC peaks of the whole underground part revealed that the genetic differentiation and chemical variation were positively related, r = 0.7196 (p < 0.05). The genetic background, different part of the roots and the different development of the roots are the three non-environmental factors causing the chemical variation. The coefficient of variation (C.V) of chemical composition of Radix Scrophulariae with different genetic background reached to 93.62 %, the C.V of the chemical composition of Radix Scrophulariae derived from the same variety reached to 64.21 %, the C.V of the chemical composition of Radix Scrophulariae derived from the middle part of the roots of S. ningpoensis from the same variety reached to 45.55 %. The C.V of chemical composition of Radix Scrophulairae produced in the same plantation could be controlled to 38.43 % by using the same variety of roots with the approximate mass derived from the middle part of the roots under 20 g. Our findings provided insights to decrease the chemical variation of Chinese medicinal materials by controlling non-environmental factors.
Collapse
Affiliation(s)
- Hui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Mengying Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Yu Dong
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Pan Wang
- Institute of Traditional Chinese Medicine Industry Innovation of Pan'an, Pan'an, 322300, China
| | - Jianzhong Xu
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Zhian Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| |
Collapse
|
12
|
Zhao M, Zheng S, Wang M, Wu J, Ma X, Xu W. Molecular Insights into the Macrophage Immunomodulatory Effects of Scrophulariae Radix Polysaccharides. Chem Biodivers 2023; 20:e202301180. [PMID: 37830509 DOI: 10.1002/cbdv.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Scrophulariae Radix (SR) has been widely used in Chinese herbal compound prescriptions, health care products and functional foods. The present study aimed to investigate the immunomodulatory activity of polysaccharides from SR (SRPs) in macrophages and explore the potential mechanisms. The results showed that four SRPs fractions (SRPs40, SRPs60, SRPs80 and SRPs100) had similar absorption peaks and monosaccharide compositions, but the intensities of absorption peaks and monosaccharide contents were distinguished. All SRPs fractions significantly enhanced the pinocytic activity, promoted the production of NO and TNF-α, increased the mRNA expressions of inflammatory factors (IL-1β, IL-6, TNF-α and PTGS2) and TLR2, and elevated the phosphorylation levels of p38, ERK, JNK, p65 and IκB. Moreover, the production of NO and TNF-α stimulated by SRPs was dramatically suppressed by anti-TLR2 antibody. These results indicated that SRPs activated macrophages through MAPK and NF-κB signaling pathways via recognition of TLR2.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
| | - Sichun Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
| | - Mengyu Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
| | - Jiahui Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
| | - Xiaodan Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Xu S, Tan Y, Xia Y, Tang H, Li J, Tan N. Targeted characterization and guided isolation of chemical components in Scrophulariae Radix based on LC-MS. J Pharm Biomed Anal 2023; 235:115569. [PMID: 37557064 DOI: 10.1016/j.jpba.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
How to achieve rapid characterization and efficient isolation of chemical components from traditional Chinese medicines (TCMs) is what the researchers have been exploring. Herein, a strategy integrated diagnostic ion filtering (DIF) and selected ion recording (SIR)-based screen was firstly proposed and successfully applied for targeted characterization and guided isolation of the chemical components from Scrophulariae Radix, one of TCMs. After acquiring the Q-TOF-MS/MS untargeted data, 128 compounds were characterized based on DIF, a self-built database and comparison of the related literatures, in which 38 compounds were reported for the first time. Subsequently, the SIR method of UPLC-QqQ-MS/MS was adopted to guide the isolation of potential new compounds. Finally, three new compounds together with one known compound with the same skeleton were isolated, and unambiguously elucidated by NMR and acid hydrolysis. These results indicated that this integrated analytical approach is effective and reliable in targeted characterizing chemical components and isolating new compounds from the extract of Scrophulariae Radix.
Collapse
Affiliation(s)
- Siyi Xu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yajie Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yun Xia
- Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China
| | - Haojun Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jian Li
- Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
14
|
Zhang M, Chen K, Wang P, Zhang L, Li Y. Comprehensive quality evaluation of processed Scrophulariae Radix from different regions of China using HPLC coupled with chemometrics methods. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:816-829. [PMID: 36704818 DOI: 10.1002/pca.3209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Scrophulariae Radix (SR) has been extensively used in traditional Chinese medicine (TCM) for thousands of years. However, the processing methods and production areas of Scrophularia ningpoensis have undergone notable historic changes. Thus, their effects on the bioactive constituents of SR still need to be studied further. OBJECTIVES This study aimed to establish an objective and comprehensive method to identify the correlation of bioactive constituents of SR with variety, place of origin and processing method for evaluating their qualities. METHODOLOGY An accurate and rapid high-performance liquid chromatography-diode array detector (HPLC-DAD) method for the simultaneous determination of 11 marker components (aucubin, harpagide, 6-O-methyl-catalpol, harpagoside, verbascoside, isoverbascoside, angoroside C, cinnamic acid, l-tyrosine, l-phenylalanine, and l-tryptophan) was established to evaluate the quality of SR for the first time. In addition, the effects of different production areas and processed methods on the target compounds were studied by analysing 66 batches of SR samples with chemometrics methods, including similarity evaluation of chromatographic fingerprints of TCM, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA). RESULTS Compared with "sweating", short-term "steaming" and "slice-drying" could largely preserve the bioactive constituents of SR. When using the model established through PLS-DA, five components were identified as the most significant variables for discrimination. Furthermore, the score plots of PCA and the similarity evaluation revealed that variety had a more notable influence on the quality of SR than the place of origin. CONCLUSION An objective approach of HPLC fingerprint coupled with chemometrics analysis and quantitative assessment could be applied to discriminate different processed SR and evaluate the qualities of SR rapidly.
Collapse
Affiliation(s)
- Mina Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, P. R. China
| | - Pan Wang
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, P. R. China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
15
|
Ren D, Guo K, Sun Q, Zhu B, Qin L. Variations in Rhizospheric and Endophytic Root Fungal Communities of Scrophularia ningpoensis in Different Producing Areas. Curr Microbiol 2023; 80:323. [PMID: 37594529 DOI: 10.1007/s00284-023-03439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Few studies have examined the association of factors associated with soil fertility and composition with the structure of microbial communities in the rhizosphere and endosphere. Hence, this study aimed to explore the effects of geographical differences on fungal communities in the roots of Scrophularia ningpoensis and the relationship between the fungal communities and secondary metabolic components in the host plant. We found that there was greater diversity in the fungal communities of the rhizosphere compartment than in endosphere communities. Ascomycota and Basidiomycota were dominant among the endosphere fungi, whereas Mortierellomycota was distributed in the rhizosphere. The composition of bulk soil obtained from different producing areas was significantly different, and the correlation between the rhizospheric and physicochemical compartments of the soil was higher than that observed with the endophytic compartment. Redundancy analysis and canonical correspondence analysis of the rhizospheric and endophytic samples revealed that the organic matter, total organic carbon, total nitrogen, and Hg levels were adequately correlated with the composition of rhizospheric and endophytic fungal communities. Multiple linear regression analyses facilitated the identification of potentially beneficial fungi whose abundance was correlated with levels of secondary metabolites, such as harpagide and harpagoside. These fungi could potentially provide valuable information regarding the use of S. ningpoensis in the medicinal plant industry.
Collapse
Affiliation(s)
- Dan Ren
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicial University, Hangzhou, 310053, China
| | - Kunyuan Guo
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, China
| | - Qingmei Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicial University, Hangzhou, 310053, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicial University, Hangzhou, 310053, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicial University, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Jo HG, Kim H, Baek E, Lee D, Hwang JH. Efficacy and Key Materials of East Asian Herbal Medicine Combined with Conventional Medicine on Inflammatory Skin Lesion in Patients with Psoriasis Vulgaris: A Meta-Analysis, Integrated Data Mining, and Network Pharmacology. Pharmaceuticals (Basel) 2023; 16:1160. [PMID: 37631075 PMCID: PMC10459676 DOI: 10.3390/ph16081160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis is a chronic inflammatory disease that places a great burden on both individuals and society. The use of East Asian herbal medicine (EAHM) in combination with conventional medications is emerging as an effective strategy to control the complex immune-mediated inflammation of this disease from an integrative medicine (IM) perspective. The safety and efficacy of IM compared to conventional medicine (CM) were evaluated by collecting randomized controlled trial literature from ten multinational research databases. We then searched for important key materials based on integrated drug data mining. Network pharmacology analysis was performed to predict the mechanism of the anti-inflammatory effect. Data from 126 randomized clinical trials involving 11,139 patients were used. Compared with CM, IM using EAHM showed significant improvement in the Psoriasis Area Severity Index (PASI) 60 (RR: 1.4280; 95% CI: 1.3783-1.4794; p < 0.0001), PASI score (MD: -3.3544; 95% CI: -3.7608 to -2.9481; p < 0.0001), inflammatory skin lesion outcome, quality of life, serum inflammatory indicators, and safety index of psoriasis. Through integrated data mining of intervention data, we identified four herbs that were considered to be representative of the overall clinical effects of IM: Rehmannia glutinosa (Gaertn.) DC., Isatis tinctoria subsp. athoa (Boiss.) Papan., Paeonia × suffruticosa Andrews, and Scrophularia ningpoensis Hemsl. They were found to have mechanisms to inhibit pathological keratinocyte proliferation and immune-mediated inflammation, which are major pathologies of psoriasis, through multiple pharmacological actions on 19 gene targets and 8 pathways in network pharmacology analysis. However, the quality of the clinical trial design and pharmaceutical quality control data included in this study is still not optimal; therefore, more high-quality clinical and non-clinical studies are needed to firmly validate the information explored in this study. This study is informative in that it presents a focused hypothesis and methodology for the value and direction of such follow-up studies.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Gyeonggi-do, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital 12, Haeol 2-gil, Paju-si 10865, Gyeonggi-do, Republic of Korea;
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
18
|
Al-Dalahmeh Y, Almahmoud SAJ, Al-Bataineh N, Alghzawi TA, Alhamzani AG, Al-Mutairi AA, Al-Jaber HI, Abu Orabi ST, Bataineh TT, Al-Sheraideh MS, Al-Qudah MA. Scrophularia peyronii Post. from Jordan: Chemical Composition of Essential Oil and Phytochemical Profiling of Crude Extracts and Their In Vitro Antioxidant Activity. Life (Basel) 2023; 13:1404. [PMID: 37374186 DOI: 10.3390/life13061404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The genus Scrophularia is one of the largest genera belonging to the Scrophulariaceae family. Different members of the genus exhibit an interesting, wide spectrum of bioactivities. Accordingly, the current study aimed to investigate, for the first time, the chemical composition of the essential oil of Scrophularia peyronii Post. from Jordan. Additionally, extracts obtained from the aerial parts with solvents of different polarities were assayed for their phytochemical constituents and in vitro antioxidant activities. The major constituents detected in the essential oil, as revealed by GC/MS analysis, contained mainly Z,Z-farnesyl acetone (11.04%), β-elemene (6.36%), n-octanal (5.98%), and spathulenol (4.58%). Each of the aqueous methanol (Sp-M) and butanol (Sp-B) extracts contained flavonoids, saponins, anthraquinone, and glycosides. Both extracts were evaluated for their total phenolic content (TPC), total flavonoid content (TFC), and their in vitro antioxidant activity, which were assayed using the DPPH radical scavenging activity and ABTS radical scavenging methods. Additionally, the two extracts were then subjected to LC-ESI-MS/MS for the qualitative determination of their secondary metabolite content, especially in flavonoids and phenolic compounds. The results showed that the Sp-B extract of S. peyronii had the highest contents of both phenolic compounds and flavonoids and showed high radical scavenging activity, as determined by the two assay methods, when compared with the Sp-M extract. The LC-ESI-MS/MS analysis resulted in the detection of 21 compounds, including 8 flavonoids, 6 phenolic acids, 6 iridoids, and 2 acids. Although the majority of compounds were detected in both extracts, it was noticed that scropolioside B, 6'-O-cinnamoylharpagide, isoferulic acid, and 6-O-methylcatapol were only detected in the Sp-M fraction.
Collapse
Affiliation(s)
- Yousef Al-Dalahmeh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 1162, Jordan
| | - Sondos Abdullah J Almahmoud
- Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Nezar Al-Bataineh
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Taqwa A Alghzawi
- Department of Chemistry, Faculty of Science, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Abdulrahman G Alhamzani
- Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hala I Al-Jaber
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan
| | - Sultan T Abu Orabi
- Department of Chemistry, Faculty of Science, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
- Department of Medical Analysis, Faculty of Science, Kurdistan Regional Government, Tishk International University, Erbil 44001, Iraq
| | - Tareq T Bataineh
- Department of Chemistry, Faculty of Science, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammed S Al-Sheraideh
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 383, Dammam 31113, Saudi Arabia
| | - Mahmoud A Al-Qudah
- Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| |
Collapse
|
19
|
Guo L, Wang X, Wang R, Li P. Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae). Int J Mol Sci 2023; 24:10034. [PMID: 37373180 DOI: 10.3390/ijms241210034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Scrophularia ningpoensis, a perennial medicinal plant from the Scrophulariaceae family, is the original species of Scrophulariae Radix (SR) in the Chinese Pharmacopoeia. This medicine is usually deliberately substituted or accidentally contaminated with other closely related species including S. kakudensis, S. buergeriana, and S. yoshimurae. Given the ambiguous identification of germplasm and complex evolutionary relationships within the genus, the complete chloroplast genomes of the four mentioned Scrophularia species were sequenced and characterized. Comparative genomic studies revealed a high degree of conservation in genomic structure, gene arrangement, and content within the species, with the entire chloroplast genome spanning 153,016-153,631 bp in full length, encoding 132 genes, including 80 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 18 duplicated genes. We identified 8 highly variable plastid regions and 39-44 SSRs as potential molecular markers for further species identification in the genus. The consistent and robust phylogenetic relationships of S. ningpoensis and its common adulterants were firstly established using a total of 28 plastid genomes from the Scrophulariaceae family. In the monophyletic group, S. kakudensis was determined to be the earliest diverging species, succeeded by S. ningpoensis. Meanwhile, S. yoshimurae and S. buergeriana were clustered together as sister clades. Our research manifestly illustrates the efficacy of plastid genomes in identifying S. ningpoensis and its counterfeits and will also contribute to a deeper understanding of the evolutionary processes within Scrophularia.
Collapse
Affiliation(s)
- Lei Guo
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xia Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Li H, Wang L, Zhang L, Liu J, Zhang H, Wang D, Yang W. Study on material basis and anti-hypertensive metabolomics of different extraction methods of the Uncaria rhynchophylla Scrophularia Formula. J Pharm Biomed Anal 2023; 233:115464. [PMID: 37209496 DOI: 10.1016/j.jpba.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Hypertension is one of the most challenging public health problems worldwide. Previous studies suggested that the Uncaria rhynchophylla Scrophularia Formula (URSF), a medical institution preparation of the affiliated Hospital of Shandong University of Traditional Chinese Medicine, is effective for essential hypertension. However, the efficacy of URSF for hypertension remains unclear. We aimed to clarify the anti-hypertensive mechanism of the URSF. The material basis of URSF was identified by the LC-MS. We also evaluated the antihypertensive efficacy of URSF on SHR rats by body weight, blood pressure and biochemical indicators. The LC-MS spectrometry-based serum non-targeted metabolomics was used to seek potential biomarkers and relevant pathways for URSF in the treatment of SHR rats. 56 biomarkers were metabolically disturbed in SHR rats in the model group compared with the control group. After URSF intervention, 13 biomarkers showed a recovery in the optimal method compared with the other three groups. We identified 3 metabolic pathways in which URSF is involved: the arachidonic acid metabolism pathway, the niacin and nicotinamide metabolism pathway, and the purine metabolism pathway. These discoveries offer a basis for the study of URSF for the treatment of hypertension.
Collapse
Affiliation(s)
- Haichao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinlei Liu
- Shandong Gujinzhong Medicine Technology Co., Ltd, Jinan 250104, China
| | - Hao Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenqing Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
21
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
22
|
Liang R, Sheng M, Li X, Jin J, Yi Y. Transcriptomic analysis reveals that the anti-PCOS effects of Zishen Qingre Lishi Huayu recipe may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress, and inflammation in granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116551. [PMID: 37121450 DOI: 10.1016/j.jep.2023.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Qingre Lishi Huayu recipe (ZQLHR) is a Chinese medicine compound composed of nine herbs for the treatment of polycystic ovary syndrome (PCOS). It is used to nourish kidneys, clear heat, reduce dampness and dissipation blood stasis by promoting diuresis and blood circulation, dredging the meridians and harmonizing menstruation in the treatment of PCOS. Several clinical studies have shown that ZQLHR is effective in the treatment of PCOS, but the underlying mechanism remains unclear. AIM OF THE STUDY In this study, we researched on the effects and mechanism of action of ZQLHR during treatment of human granulosa cells (hGCs) obtained from PCOS patients in order to provide a scientific basis for the clinical application of ZQLHR in the treatment of PCOS, emphasize the importance of some genes that have been reported to play a role in the pathogenesis or therapeutic mechanisms of PCOS from the perspective of disease treatment, and identify some new genes and signaling pathways that may play an important role in the treatment of PCOS. MATERIALS AND METHODS KGN cells (a granulosa cell-like tumor cell line) were subjected to a cell counting kit-8 assay to explore the appropriate intervention concentration and duration of ZQLHR. Treated with or without ZQLHR (ZQLHR and control groups), the hGCs obtained from PCOS patients were sequenced using RNA sequencing, and the genes thus detected were further analyzed through Kyoto encyclopedia of genes and genomes enrichment analysis, gene set enrichment analysis, and individuation gene analysis. These genes were also compared with PCOS-related genes in other databases. To further verify the authenticity of the differentially expressed genes between the two groups, the expression of eight randomly selected vital genes and three proteins of interest was verified through real time quantitative polymerase chain reaction and Western blot experiment respectively. RESULTS The best intervention concentration and duration for ZQLHR to promote the proliferation of KGN cells were 0.2% and 48 h respectively in this experiment. Multiple signaling pathways and 55 focus differentially expressed genes, both related to autophagy, steroidogenesis, oxidative stress-related longevity, inflammation, and complications of PCOS, may play an important role in the therapeutic mechanism of action of ZQLHR. The expression of eight genes is consistent with the result of RNA sequencing, and the expression of three proteins of interest is the same as expected. CONCLUSIONS The promotion of hGCs proliferation upon treatment with ZQLHR may be a manifestation of ZQLHR in the treatment of PCOS patients. The positive effects of ZQLHR against PCOS may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress-related longevity, and inflammation in hGCs. Some components of ZQLHR applied for the treatment of PCOS may also be effective for the treatment of some complications of PCOS.
Collapse
Affiliation(s)
- Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Mengzhen Sheng
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Jing Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
23
|
Wang LS, Chen PJ, Cheng WC, Chang YC, El-Shazly M, Chen LY, Peng BR, Su CH, Yen PT, Hwang TL, Lai KH. Chemometric-guided chemical marker selection: A case study of the heat-clearing herb Scrophularia ningpoensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1153710. [PMID: 37056509 PMCID: PMC10088908 DOI: 10.3389/fpls.2023.1153710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The selection of medicinal plants' chemical markers focuses on bioactivity as the primary goal, followed by the nature of secondary metabolites, their stability, and availability. However, herbal medicines are valued for their complex and holistic pharmacological effects. A correct chemical marker can be carefully selected by a systematic clarification of their chemical-biological relationships. In the current study, the multi-informative molecular networking (MIMN) approach was employed to construct the anti-inflammatory metabolomic pattern of a heat-clearing herb, Scrophularia ningpoensis Hemsl. (S. ningpoensis). The MIMN molecular families characterized by cinnamic acid glycosides showed a higher bioactivity score compared with the other two major chemical classes (iridoid glycosides and iridoid-cinnamic acid glycosides). The Global Natural Product Social Molecular Networking (GNPS) and Reaxys database were used to assist in the putative annotation of eighteen metabolites from the bioactive and non-bioactive molecular families. The anti-inflammatory validation step was based on the detection of reactive oxygen species (ROS) generation by activated human neutrophils. All compounds from the bioactive MIMN molecular families dose-dependently inhibited the total ROS generation promoted by fMLF (IC50: 0.04-0.42 μM), while the compounds from non-bioactive MIMN clusters did not show any significant anti-inflammatory effect. The ROS-dependent anti-inflammatory activity of these cinnamic acid glycosides was attributed to their oxygen radical scavenging ability. The most abundant cinnamic acid glycoside, angoroside C (IC50: 0.34 μM) was suggested to be selected as a chemical marker for S. ningpoensis. In this study, the MIMN platform was applied to assist in the chemical marker selection of S. ningpoensis. The correct selection of markers will aid in the compilation and revision of herbal monographs and pharmacopeias resulting in the precise analysis and classification of medicinal plants on a scientific basis.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Cornucopia Traditional Medicine Clinic, Tainan, Taiwan
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan, Taiwan
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chi Cheng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Su
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pei-Tzu Yen
- Cornucopia Traditional Medicine Clinic, Tainan, Taiwan
- Jian Sheng Tang Chinese Medicine Clinic, Kaohsiung, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Sun J, Li X, Qu Z, Wang H, Cheng Y, Dong S, Zhao H. Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1832-1845. [PMID: 36271763 DOI: 10.1002/jsfa.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scrophularia ningpoensis is a well-known medicinal crop. Continuous cropping seriously affects the yield and quality, but little is known about the influence of continuous cropping on metabolic pathways. In this study, the difference in protein abundance between continuous cropping and non-continuous cropping of S. ningpoensis roots was studied by proteomics, and the molecular mechanism that protects S. ningpoensis against continuous cropping was explored. RESULTS The results suggested that continuous cropping in S, ningpoensis altered the expression of proteins related to starch and sucrose metabolism, glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, monoterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and steroid biosynthesis. Among these processes, the most affected were phenylpropanoid biosynthesis and starch and sucrose metabolism, which may be important for continuous cropping resistance. CONCLUSION The effect of continuous cropping on S. ningpoensis was demonstrated at the proteome level in this work, and identified candidate proteins that may cause continuous cropping reactions. The paper provides the theoretical foundation and scientific reference for enhancing the continuous cropping resistance of S. ningpoensis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiachen Sun
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuejiao Li
- Endocrine and Metabolic Disease Center, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Huairui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yao Cheng
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
25
|
Yan S, Lu W, Zhou J, Guo X, Li J, Cheng H, Zhu X, Zhao Y, Duan M, Yang H, Zhang Y, Wang Q, Chen L, Zheng T. Aqueous extract of Scrophularia ningpoensis improves insulin sensitivity through AMPK-mediated inhibition of the NLRP3 inflammasome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154308. [PMID: 35792447 DOI: 10.1016/j.phymed.2022.154308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Scrophularia ningpoensis Hemsl. is a commonly used medicinal plant in China for the treatment of diabetes mellitus (DM), but its mechanism of action remains poorly described. Type 2 diabetes mellitus (T2DM) accounts for > 90% of all DM cases and is characterized by insulin resistance. PURPOSE The aim of this study was to investigate whether the insulin sensitivity can be improved by treatment with aqueous extract of S. ningpoensis (AESN) and further explore its mechanism(s) of activity. METHODS Primary mouse hepatocytes and human HepG2 hepatocytes were used to investigate the effects of AESN on cell viability, AMP-activated protein kinase (AMPK) activation and glucose output under normal culture conditions. To mimic hyperglycemia and insulin resistance in vitro, hepatocytes were exposed to high glucose (HG), and the influences of AESN on AMPK phosphorylation, NLRP3 inflammation activation, insulin signaling, lipid accumulation and glucose output were investigated. Increasing doses of AESN (50, 100 and 200 mg/kg/day) were administered by gavage to db/db mice for 8 weeks, and then biochemical analysis and histopathological examinations were performed. RESULTS AESN significantly activated AMPK and inhibited glucose output in hepatocytes, but did not impact cell viability under normal culture conditions. Moreover, in HG-treated hepatocytes, AESN protected against aberrant AMPK activity, NLRP3 inflammasome activation, insulin signaling, and lipid accumulation. AMPK inhibition abolished the regulatory effects of AESN on the NLRP3 inflammasome, insulin signaling, lipid accumulation, and glucose output of hepatocytes following HG exposure. Furthermore, AESN administration reduced blood glucose and serum insulin levels, improved lipid profiles and insulin resistance, and corrected the aberrant AMPK activity and NLRP3 inflammasome activation in liver tissues. CONCLUSION AESN improves insulin sensitivity via AMPK-mediated NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Shan Yan
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Zhou
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Guo
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Cheng
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoyan Zhu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Zhao
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingzhu Duan
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hongxu Yang
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li Chen
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China,.
| | - Tao Zheng
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China,.
| |
Collapse
|
26
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
27
|
Scrophulariae Radix: An Overview of Its Biological Activities and Nutraceutical and Pharmaceutical Applications. Molecules 2021; 26:molecules26175250. [PMID: 34500684 PMCID: PMC8434300 DOI: 10.3390/molecules26175250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety of SR, including SB and SN, need to be conducted.
Collapse
|
28
|
Hetrick B, Yu D, Olanrewaju AA, Chilin LD, He S, Dabbagh D, Alluhaibi G, Ma YC, Hofmann LA, Hakami RM, Wu Y. A traditional medicine, respiratory detox shot (RDS), inhibits the infection of SARS-CoV, SARS-CoV-2, and the influenza A virus in vitro. Cell Biosci 2021; 11:100. [PMID: 34051873 PMCID: PMC8164078 DOI: 10.1186/s13578-021-00609-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has resulted in the infection of over 128 million people and has caused over 2.8 million deaths as of April 2021 in more than 220 countries and territories. Currently, there is no effective treatment for COVID-19 to reduce mortality. We investigated the potential anti-coronavirus activities from an oral liquid of traditional medicine, Respiratory Detox Shot (RDS), which contains mostly herbal ingredients traditionally used to manage lung diseases. RESULTS Here we report that RDS inhibited the infection of target cells by lenti-SARS-CoV, lenti-SARS-CoV-2, and hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudoviruses, and by infectious SARS-CoV-2 and derived Ha-CoV-2 variants including B.1.1.7, B.1.351, P.1, B.1.429, B.1.2, B.1.494, B.1.1.207, B.1.258, and B.1.1.298. We further demonstrated that RDS directly inactivates the infectivity of SARS-CoV-2 virus particles. In addition, we found that RDS can also block the infection of target cells by Influenza A virus. CONCLUSIONS These results suggest that RDS may broadly inhibit the infection of respiratory viruses.
Collapse
Affiliation(s)
- Brian Hetrick
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Adeyemi A Olanrewaju
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Linda D Chilin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Sijia He
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ghaliah Alluhaibi
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Yuan-Chun Ma
- Dr. Ma's Laboratories Inc., Burnaby, BC, V5J 0E5, Canada
| | | | - Ramin M Hakami
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|