1
|
Li J, Toyama H, Matsumoto T, Qasimi MI, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Changes in fecal microbiota during estrous cycle in healthy thoroughbred mares. J Equine Vet Sci 2024; 135:105034. [PMID: 38428754 DOI: 10.1016/j.jevs.2024.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota plays a crucial role in various physiological processes, including the regulation of the reproductive system and steroid sex hormones. Throughout the normal estrous cycle of healthy mares, the levels of estradiol-17β (E2) and progesterone (P4) in the blood exhibit periodic changes. To investigate the relationship between cyclic changes in steroid sex hormones and the gut microbiome of mares, we analyzed the fecal microbiota composition in healthy mares during the typical estrous cycle. Blood and fecal samples from five healthy mares were collected, E2 and P4 levels in serum were analyzed using radioimmunoassay (RIA), and the gut microbiome was analyzed by 16S rRNA sequencing. The overall richness and composition of the gut microbiota remained relatively stable during the normal estrous cycle in mares. The Linear Discriminant Analysis Effect Size analysis of the microbial composition during the follicular and luteal phases identified the Rhodococcus genus as differentially abundant. These findings indicate that the mare's gut microbiota's significant composition remains consistent throughout the estrous cycle. At the same time, specific low-abundance pathogenic bacteria exhibit changes that align with sexual hormonal fluctuations.
Collapse
Affiliation(s)
- Junjie Li
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Touko Matsumoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mohammad Ibrahim Qasimi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
2
|
Lotti S, Dinu M, Colombini B, Amedei A, Sofi F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr Metab Cardiovasc Dis 2023; 33:1490-1500. [PMID: 37246076 DOI: 10.1016/j.numecd.2023.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
AIMS Over the past years, interest in chrono-nutrition has grown enormously as the fundamental role of circadian rhythms in regulating most physiological and metabolic processes has become clearer. Recently, the influence of circadian rhythms on the gut microbiota (GM) composition has also emerged, as more than half of the total microbial composition fluctuates rhythmically throughout the day. At the same time, other studies have observed that the GM itself synchronises the host's circadian biological clock through signals of a different nature. Therefore, it has been hypothesised that there is a two-way communication between the circadian rhythms of the host and the GM, but researchers have only just begun to identify some of its action mechanisms. The manuscript aim is, therefore, to gather and combine the latest evidence in the field of chrono-nutrition with the more recent research on the GM, in order to investigate their relationship and their potential impact on human health. DATA SYNTHESIS Considering current evidence, a desynchronization of circadian rhythms is closely associated with an alteration in the abundance and functionality of the gut microbiota with consequent deleterious effects on health, such as increased risk of numerous pathologies, including cardiovascular disease, cancer, irritable bowel disease, and depression. A key role in maintaining the balance between circadian rhythms and GM seems to be attributed to meal-timing and diet quality, as well as to certain microbial metabolites, in particular short-chain fatty acids. CONCLUSIONS Future studies are needed to decipher the link between the circadian rhythms and specific microbial patterns in relation to different disease frameworks.
Collapse
Affiliation(s)
- Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
3
|
Elghandour MMMY, Maggiolino A, García EIC, Sánchez-Aparicio P, De Palo P, Ponce-Covarrubias JL, Pliego AB, Salem AZM. Effects of Microencapsulated Essential Oils on Equine Health: Nutrition, Metabolism and Methane Emission. Life (Basel) 2023; 13:life13020455. [PMID: 36836812 PMCID: PMC9963397 DOI: 10.3390/life13020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
This review examines the available data regarding the positive effects of microencapsulated essential oils (EOs) on the nutrition, metabolism, and possibly the methane emission of horses. A literature review was conducted on the effect of microencapsulated (EOs) on the health of horses. The information comprises articles published in recent years in indexed journals. The results indicate that mixtures of microencapsulated EOs may be beneficial to equine health due to their antimicrobial and antioxidant activity, as well as their effects on enteric methane production, nutrient absorption, and immune system enhancement. Moreover, encapsulation stabilizes substances such as EOs in small doses, primarily by combining them with other ingredients.
Collapse
Affiliation(s)
- Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
- Correspondence: (A.M.); (A.Z.M.S.)
| | | | - Pedro Sánchez-Aparicio
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - José Luis Ponce-Covarrubias
- Escuela Superior de Medicina Veterinaria y Zootecnia No. 3, Universidad Autónoma de Guerrero (UAGro), Técpan de Galeana 40900, Guerrero, Mexico
| | - Alberto Barbabosa Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
- Correspondence: (A.M.); (A.Z.M.S.)
| |
Collapse
|
4
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
5
|
Li Y, Ma Q, Shi X, Liu G, Wang C. Integrated multi-omics reveals novel microbe-host lipid metabolism and immune interactions in the donkey hindgut. Front Immunol 2022; 13:1003247. [PMID: 36466834 PMCID: PMC9716284 DOI: 10.3389/fimmu.2022.1003247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 09/07/2023] Open
Abstract
Evidence has shown that gut microbiota play a key role in host metabolism and health; however, little is known about the microbial community in the donkey hindgut as well as the interactions that occur between gut microbes and the host. This study aimed to explore the gut microbiome differences by analyzing the microbial community and differentially expressed genes (DEGs) related to lipid metabolism and the immune system along the donkey hindgut. The hindgut tissues (cecum, ventral colon, and dorsal colon) were separated, and the contents of each section were collected from six male donkeys for multi-omics analysis. There were significant differences in terms of dominant bacteria among the three sections, especially between the cecum and dorsal colon sites. For instance, species belonging to Prevotella and Treponema were most abundant in the cecum, while the Clostridiales_bacterium, Streptococcus_equinus, Ruminococcaceae_bacterium, etc., were more abundant in the dorsal colon. Apart from propionate, the concentrations of acetate, isobutyrate, valerate and isovalerate were all lower in the cecum than in the dorsal colon (p < 0.05). Furthermore, we identified some interesting DEGs related to lipid metabolism (e.g., ME1, MBOAT1, ACOX1, ACOX2 and LIPH) and the immune system (e.g., MUC3B, mucin-2-like, IL17RC, IL1R2, IL33, C1QA, and MMP9) between the cecum and dorsal colon and found that the PPAR pathway was mainly enriched in the cecum. Finally, we found a complex relationship between the gut microbiome and gene expression, especially with respect to the immune system, and combined with protein-protein interaction (PPI) data, suggesting that the PPAR pathway might be responsible, at least in part, for the role of the hindgut microbiota in the donkeys' gut homeostasis. Our data provide an in-depth understanding of the interaction between the microbiota and function in the healthy equine hindgut and may also provide guidance for improving animal performance metrics (such as product quality) and equine welfare.
Collapse
Affiliation(s)
| | | | | | | | - Changfa Wang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Feltre K, Balieiro JCDC, Gobesso AADO. Behavioral and metabolic responses of ponies fed a complete single diet, thermally processed and containing long fiber. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Brown MD, Shinn LM, Reeser G, Browning M, Schwingel A, Khan NA, Holscher HD. Fecal and soil microbiota composition of gardening and non-gardening families. Sci Rep 2022; 12:1595. [PMID: 35102166 PMCID: PMC8804003 DOI: 10.1038/s41598-022-05387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Historically, humans have interacted with soils, which contain a rich source of microorganisms. Fruit and vegetable gardening is the primary interaction humans have with soil today. Animal research reveals that soil microorganisms can be transferred to the rodent intestine. However, studies on fecal and soil microbial changes associated with gardening in humans are lacking. The current case-controlled cohort study aimed to characterize the fecal and soil microbiota of gardening families (n = 10) and non-gardening (control) families (n = 9). Families included two adults and one child (5-18 years) for a total of 56 participants. All participants provided a fecal sample, soil sample, and diet history questionnaires before the gardening season (April) and during the peak of the gardening season (August). Healthy Eating Index (HEI-2015) scores and nutrient analysis were performed. Fecal and soil DNA were extracted and amplified. Sequence data were then processed and analyzed. Peak season gardening families tended to have greater fecal operational features, a greater Faith's Phylogenetic Diversity score, greater fiber intake, and higher abundances of fiber fermenting bacteria than peak control families. Soil endemic microbes were also shared with gardening participant's fecal samples. This study revealed that the fecal microbiota of gardening families differs from non-gardening families, and that there are detectable changes in the fecal microbial community of gardeners and their family members over the course of the gardening season. Additional research is necessary to determine if changes induced by gardening on the gut microbiota contribute to human health.
Collapse
Affiliation(s)
- Marina D Brown
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Leila M Shinn
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ginger Reeser
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew Browning
- Parks, Recreation, and Tourism Management, Clemson University, Clemson, SC, USA
| | - Andiara Schwingel
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Family Resiliency Center, University of Illinois, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Family Resiliency Center, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
8
|
Monteiro FDDO, Borges LPB, Cardoso TDS, Teixeira PPM, Filho DZ, Sartori VC, Pereira RN, Flores FN, Coelho CMM, Silva MAM, Valadão CAA. Animal Model of Video-Assisted Cecum and Ileum Instrumentation for Equine Visceral Pain Study. J Equine Vet Sci 2021; 108:103799. [PMID: 34856499 DOI: 10.1016/j.jevs.2021.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to describe an animal model for studying equine visceral pain using minimally invasive and video-assisted cecum and ileum instrumentation. The access to the cecum and ileum was affected because of a previous typhlostomy. For video-assisted distention of the cecum and ileum, a distention device, which we developed using an endotracheal Rusch probe, was used, adapted, and coupled to a cuffometer to inflate and measure the pressure of the cuff attached to its distal portion. In a video-assisted manner, the distal portion of the device was introduced into the cecum and ileum, which contained the cuff in its distal portion, properly positioning it in the lumen. The cuff of the distension device was insufflated after the measurement of baseline physiological parameters of the animals and video-assisted confirmation of its right placement in the cecum and ileum lumen (M0). Was performed in one moment through two simultaneous cuff compressions and 1 minute of animal observation to evaluate the degree of abdominal discomfort manifestations (M1). To cease these stimuli, the cuff was deflated by disconnecting the extensor of the distension device attached to its proximal portion (M2). The procedure was easily performed in most cases. Slow and progressive insufflation allowed subjective adjustment of the intensity of the pain stimulus based on behavioral manifestations. Even with a low rate of complications, the model is feasible and reproducible for studies on visceral pain and the evaluation of analgesic effects.
Collapse
Affiliation(s)
| | - Luisa Pucci Bueno Borges
- Instituto of Veterinary Medicine, Federal University of Pará (UFPA), Campus Castanhal, Castanhal, Pará, Brazil
| | - Thiago da Silva Cardoso
- Instituto of Veterinary Medicine, Federal University of Pará (UFPA), Campus Castanhal, Castanhal, Pará, Brazil
| | - Pedro Paulo Maia Teixeira
- Instituto of Veterinary Medicine, Federal University of Pará (UFPA), Campus Castanhal, Castanhal, Pará, Brazil
| | | | - Vitor Cibiac Sartori
- School of Agricultural and Veterinarian Scienses, Jaboticabal, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Zhu Y, Wang X, Liu B, Yi Z, Zhao Y, Deng L, Holyoak R, Li J. The Effect of Ryegrass Silage Feeding on Equine Fecal Microbiota and Blood Metabolite Profile. Front Microbiol 2021; 12:715709. [PMID: 34497595 PMCID: PMC8419423 DOI: 10.3389/fmicb.2021.715709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Silage is fed to horses in China and other areas in the world, however, knowledge about the impact of feeding silage on horse health is still limited. In the current study, 12 horses were assigned into two groups and fed ryegrass silage and ryegrass hay, respectively, for 8 weeks. High-throughput sequencing was applied to analyze fecal microbiota, while liquid chromatography-tandem mass spectrometry (LC-MS/MS) based metabolomics technique was used for blood metabolite profile to investigate the influence of feeding ryegrass silage (group S) compared to feeding ryegrass hay (group H) on equine intestinal and systemic health. Horses in group S had significantly different fecal microbiota and blood metabolomes from horses in group H. The results showed that Verrucomicrobia was significantly less abundant which plays important role in maintaining the mucus layer of the hindgut. Rikenellaceae and Christensenellaceae were markedly more abundant in group S and Rikenellaceae may be associated with some gut diseases and obesity. The metabolomics analysis demonstrated that ryegrass silage feeding significantly affected lipid metabolism and insulin resistance in horses, which might be associated with metabolic dysfunction. Furthermore, Pearson's correlation analysis revealed some correlations between bacterial taxa and blood metabolites, which added more evidence to diet-fecal microbiota-health relationship. Overall, ryegrass silage feeding impacted systemic metabolic pathways in horses, especially lipid metabolism. This study provides evidence of effects of feeding ryegrass silage on horses, which may affect fat metabolism and potentially increase risk of insulin resistance. Further investigation will be promoted to provide insight into the relationship of a silage-based diet and equine health.
Collapse
Affiliation(s)
- Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuefan Wang
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Liu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziwen Yi
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yufei Zhao
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liang Deng
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Reed Holyoak
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Paradiso R, Borriello G, Bolletti Censi S, Salzano A, Cimmino R, Galiero G, Fusco G, De Carlo E, Campanile G. Different Non-Structural Carbohydrates/Crude Proteins (NCS/CP) Ratios in Diet Shape the Gastrointestinal Microbiota of Water Buffalo. Vet Sci 2021; 8:vetsci8060096. [PMID: 34073108 PMCID: PMC8229247 DOI: 10.3390/vetsci8060096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The microbiota of the gastrointestinal tract (GIT) are crucial for host health and production efficiency in ruminants. Its microbial composition can be influenced by several endogenous and exogenous factors. In the beef and dairy industry, the possibility to manipulate gut microbiota by diet and management can have important health and economic implications. The aims of this study were to characterize the different GIT site microbiota in water buffalo and evaluate the influence of diet on GIT microbiota in this animal species. We characterized and compared the microbiota of the rumen, large intestine and feces of water buffaloes fed two different diets with different non-structural carbohydrates/crude proteins (NSC/CP) ratios. Our results indicated that Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla in all the GIT sites, with significant differences in microbiota composition between body sites both within and between groups. This result was particularly evident in the large intestine, where beta diversity analysis displayed clear clustering of samples depending on the diet. Moreover, we found a difference in diet digestibility linked to microbiota modification at the GIT level conditioned by NSC/CP levels. Diet strongly influences GIT microbiota and can therefore modulate specific GIT microorganisms able to affect the health status and performance efficiency of adult animals.
Collapse
Affiliation(s)
- Rubina Paradiso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giorgia Borriello
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | | | - Angela Salzano
- Department of Veterinary Medicine, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence: ; Tel.: +39-0812536215
| | | | - Giorgio Galiero
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Esterina De Carlo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine, University of Naples “Federico II”, 80137 Naples, Italy;
| |
Collapse
|
11
|
Hesta M, Costa M. How Can Nutrition Help with Gastrointestinal Tract-Based Issues? Vet Clin North Am Equine Pract 2021; 37:63-87. [PMID: 33820610 DOI: 10.1016/j.cveq.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many horses are fed differently than their wild ancestors. They often have limited access to pasture and are fed conserved forage and concentrates rich in starch and sugars, in only 2 meals per day. Feeding practices in contrast to natural feeding behavior can lead to gastrointestinal issues. Standard nutritional evaluation is warranted because of its important role in prevention and in treatment and management of diseases. When medical and nutritional treatments are combined, success rates are higher. New techniques to characterize equine microbiota have been used, allowing for microbiota manipulation to prevent and treat intestinal diseases.
Collapse
Affiliation(s)
- Myriam Hesta
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B9820, Belgium.
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
12
|
Park T, Yoon J, Kim A, Unno T, Yun Y. Comparison of the Gut Microbiota of Jeju and Thoroughbred Horses in Korea. Vet Sci 2021; 8:81. [PMID: 34064714 PMCID: PMC8151153 DOI: 10.3390/vetsci8050081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: The large intestine of horses is an anaerobic fermentative chamber filled with fibrolytic bacteria that play essential roles in digesting and absorbing nutrients for energy production. Although Jeju horses are a prominent local breed in Korea, few studies have investigated the gut microbiota of Jeju horses; (2) Methods: This study performed sequencing of V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from horse fecal samples and compared the gut microbiota between Jeju and Thoroughbred horses. Thirty and 24 fecal samples were obtained from Jeju and Thoroughbred horses, respectively; (3) Results: The gut microbiota belonged to 23 phyla and 159 families. Firmicutes and Bacteroidetes were the most abundant and predominant phyla, followed by Verrucomicrobia, Euryachaeota, and Spirochaete. The ratio of Firmicutes to Bacteroidetes (F/B), which is known as a relevant marker of gut dysbiosis, was 1.84 for Jeju horses, whereas it was 1.76 for Thoroughbred horses. Moreover, at the genus level, 21 genera were significantly different between the Jeju and Thoroughbred horses (p < 0.05); (4) Conclusions: The Thoroughbred horse's gut microbiotas had significantly higher diversity than the Jeju horses (p < 0.05). In addition, beneficial commensal bacteria that produce short-chain fatty acids thus providing a significant source of energy are also more abundant in Thoroughbred horses. These results provide novel information on the horse gut microbiota and insights for further studies related to the horse gut microbiota.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Tatsuya Unno
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju 63243, Korea
| | - Youngmin Yun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
13
|
Effects of Pasture Grass, Silage, and Hay Diet on Equine Fecal Microbiota. Animals (Basel) 2021; 11:ani11051330. [PMID: 34066969 PMCID: PMC8148540 DOI: 10.3390/ani11051330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The intestinal microbial community in horses is very complex and interacts closely with diets. Apart from traditional forage diets, such as hay and pasture grass, silage is used to feed horses in China and other areas of the world for economic reasons or convenience of storage. Additionally, silage is also used for its convenience of harvesting and its nutrient components, including lactic acid and volatile fatty acids. In this study, we detected the characteristic composition of a fecal microbial community in horses that were fed silage with the use of a relatively new sequencing technique; we compared this result with that from horses that were fed hay and pasture grass. This study revealed some characteristic findings on the fecal microbial composition in horses that were given each of type of diet and showed significant differences between the groups. Our results provided novel data about the fecal microbial composition in horses on the silage diet. We hope that these could help balance the intestinal microbiota in horses that are mainly fed silage in combination with other types of forages in order to maintain intestinal health. Abstract Diet is an important factor affecting intestinal microbiota in horses. Fecal microbiota is commonly used as a substitute for studying hindgut microbiota when investigating the relationship between intestinal microbial changes and host health. So far, no study has compared the difference between the fecal microbiota found in horses that are fed pasture grass, silage, and hay. The present study aims to characterize the fecal microbiota in horses that were exclusively on one of the three forage diets, and to analyze the potential impact of these forages, especially silage, on horse intestinal health. There were 36 horses randomly assigned to each of the three groups; each group was fed only one type of forage for 8 weeks. High throughput sequencing was applied to analyze the bacterial taxa in fecal samples collected from the horses at the end of the feeding trial. The Lachnospiraceae family was statistically more abundant in horses fed with hay, while it was the least abundant in horses fed with silage. The Streptococcaceae spp., considered a core microbial component in equine intestinal microbiota, were present in significantly lower quantities in feces from horses that were fed pasture grass as compared to those from horses fed hay or silage. The novel data may help promote the balancing of horse intestinal microbiota and the maintenance of intestinal health in horses.
Collapse
|
14
|
McKenna CF, Salvador AF, Hughes RL, Scaroni SE, Alamilla RA, Askow AT, Paluska SA, Dilger AC, Holscher HD, De Lisio M, Khan NA, Burd NA. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am J Physiol Endocrinol Metab 2021; 320:E900-E913. [PMID: 33682457 DOI: 10.1152/ajpendo.00574.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.0 g·kg-1·day-1) or higher (HIGH: ∼1.6 g·kg-1·day-1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. In all, 50 middle-aged adults (age: 50 ± 8 yr, BMI: 27.2 ± 4.1 kg/m2) were randomized to either MOD or HIGH protein intake during a 10-wk resistance training program (3 × wk). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate postexercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P < 0.050). There was a main effect of time for LBM (P < 0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P < 0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.NEW & NOTEWORTHY Our research evaluates the efficacy of higher in comparison with moderate animal-based protein intake on resistance exercise training-induced muscle strength, clinical biomarkers, and gut microbiota in middle-aged adults through a dietary counseling-controlled intervention. Higher protein intake did not potentiate training adaptations, nor did the intervention effect disease biomarkers. Both diet and exercise modified gut microbiota composition. Collectively, moderate amounts of high-quality, animal-based protein is sufficient to promote resistance exercise adaptations at the onset of aging.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amadeo F Salvador
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Riley L Hughes
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Susannah E Scaroni
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rafael A Alamilla
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Andrew T Askow
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Division of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics and Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
15
|
Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat Ecol Evol 2021; 5:431-441. [PMID: 33526890 DOI: 10.1038/s41559-020-01385-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Tackling antibiotic resistance necessitates deep understanding of how resource competition within and between species modulates the fitness of resistant microbes. Recent advances in ecological coexistence theory offer a powerful framework to probe the mechanisms regulating intra- and interspecific competition, but the significance of this body of theory to the problem of antibiotic resistance has been largely overlooked. In this Perspective, we draw on emerging ecological theory to illustrate how changes in resource niche overlap can be equally important as changes in competitive ability for understanding costs of resistance and the persistence of resistant pathogens in microbial communities. We then show how different temporal patterns of resource and antibiotic supply, alongside trade-offs in competitive ability at high and low resource concentrations, can have diametrically opposing consequences for the coexistence and exclusion of resistant and susceptible strains. These insights highlight numerous opportunities for innovative experimental and theoretical research into the ecological dimensions of antibiotic resistance.
Collapse
|
16
|
Reed KJ, Kunz IGZ, Scare JA, Nielsen MK, Turk PJ, Coleman RJ, Coleman SJ. The pelvic flexure separates distinct microbial communities in the equine hindgut. Sci Rep 2021; 11:4332. [PMID: 33619300 PMCID: PMC7900177 DOI: 10.1038/s41598-021-83783-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
As hindgut fermenters, horses are especially dependent on the microbiota residing in their cecum and large intestines. Interactions between these microbial populations and the horse are critical for maintaining gut homeostasis, which supports proper digestion. The current project was motivated to determine if any features of the fecal microbiota are informative of the microbial communities from the cecum, ventral colon, or dorsal colon. Digesta from the cecum, ventral colon, dorsal colon and feces were collected from 6 yearling miniature horses. Microbial DNA was isolated and the microbiota from each sample was characterized by profiling the V4 region of the 16S rRNA. Principal coordinate analysis of the beta diversity results revealed significant (p = 0.0001; F = 5.2393) similarities between the microbial populations from cecal and ventral colon and the dorsal colon and fecal samples, however, there was little overlap between the proximal and distal ends of the hindgut. These distinct population structures observed in our results coincide with the pelvic flexure, which itself separates intestinal compartments with distinct roles in digestive physiology. An indicator species analysis confirmed the population differences, supported by the identification of several microbial families characteristic of the compartments upstream of the pelvic flexure that were not represented following it. Our data suggest that the fecal microbiota is not informative of the proximal hindgut but can provide insight into communities of the distal compartments. Further, our results suggest that the pelvic flexure might be an important anatomical landmark relative to the microbial communities in the equine large intestine.
Collapse
Affiliation(s)
- Kailee J. Reed
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.47894.360000 0004 1936 8083Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80521 USA
| | - Isabelle G. Z. Kunz
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA
| | - Jessica A. Scare
- grid.266539.d0000 0004 1936 8438M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546 USA
| | - Martin K. Nielsen
- grid.266539.d0000 0004 1936 8438M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546 USA
| | - Philip J. Turk
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.427669.80000 0004 0387 0597Atrium Health, Charlotte, NC 28203 USA
| | - Robert J. Coleman
- grid.266539.d0000 0004 1936 8438Animal and Food Sciences, University of Kentucky, Lexington, KY 40546 USA
| | - Stephen J. Coleman
- grid.47894.360000 0004 1936 8083Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA ,grid.47894.360000 0004 1936 8083Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80521 USA
| |
Collapse
|
17
|
Sorensen RJ, Drouillard JS, Douthit TL, Ran Q, Marthaler DG, Kang Q, Vahl CI, Lattimer JM. Effect of hay type on cecal and fecal microbiome and fermentation parameters in horses. J Anim Sci 2021; 99:skaa407. [PMID: 33515482 PMCID: PMC7846146 DOI: 10.1093/jas/skaa407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
The effect of hay type on the microbiome of the equine gastrointestinal tract is relatively unexplored. Our objective was to characterize the cecal and fecal microbiome of mature horses consuming alfalfa or Smooth Bromegrass (brome) hay. Six cecally cannulated horses were used in a split-plot design run as a crossover in two periods. The whole plot treatment was ad libitum access to brome or alfalfa hay fed over two 21-d acclimation periods with subplots of sampling location (cecum and rectum) and sampling hour. Each acclimation period was followed by a 24-h collection period where cecal and fecal samples were collected every 3 h for analysis of pH and volatile fatty acids (VFA). Fecal and cecal samples were pooled and sent to a commercial lab (MR DNA, Shallowater, TX) for the amplification of the V4 region of the 16S rRNA gene and sequenced using Illumina HiSeq. The main effects of hay on VFA, pH, and taxonomic abundances were analyzed using the MIXED procedure of SAS 9.4 with fixed effects of hay, hour, location, period, and all possible interactions and random effect of horse. Alpha and beta diversities were analyzed using the R Dame package. Horses fed alfalfa had greater fecal than cecal pH (P ≤ 0.05), whereas horses fed brome had greater cecal than fecal pH (P ≤ 0.05). Regardless of hay type, total VFA concentrations were greater (P ≤ 0.05) in the cecum than in feces, and alfalfa resulted in greater (P ≤ 0.05) VFA concentrations than brome in both sampling locations. Alpha diversity was greater (P ≤ 0.05) in fecal compared with cecal samples. Microbial community structure within each sampling location and hay type differed from one another (P ≤ 0.05). Bacteroidetes were greater (P ≤ 0.05) in the cecum compared with the rectum, regardless of hay type. Firmicutes and Firmicutes:Bacteroidetes were greater (P ≤ 0.05) in the feces compared with cecal samples of alfalfa-fed horses. In all, fermentation parameters and bacterial abundances were impacted by hay type and sampling location in the hindgut.
Collapse
Affiliation(s)
- Rachel J Sorensen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - James S Drouillard
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Teresa L Douthit
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Qinghong Ran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Douglas G Marthaler
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Qing Kang
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | - Christopher I Vahl
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | - James M Lattimer
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
18
|
Holman DB, Gzyl KE. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 2020; 95:5497297. [PMID: 31116403 DOI: 10.1093/femsec/fiz072] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
Abstract
The bovine gastrointestinal (GI) tract microbiota has important influences on animal health and production. Presently, a large number of studies have used high-throughput sequencing of the archaeal and bacteria 16S rRNA gene to characterize these microbiota under various experimental parameters. By aggregating publically available archaeal and bacterial 16S rRNA gene datasets from 52 studies we were able to determine taxa that are common to nearly all microbiota samples from the bovine GI tract as well as taxa that are strongly linked to either the rumen or feces. The methanogenic genera Methanobrevibacter and Methanosphaera were identified in nearly all fecal and rumen samples (> 99.1%), as were the bacterial genera Prevotella and Ruminococcus (≥ 92.9%). Bacterial genera such as Alistipes, Bacteroides, Clostridium, Faecalibacterium and Escherichia/Shigella were associated with feces and Fibrobacter, Prevotella, Ruminococcus and Succiniclasticum with the rumen. As expected, individual study strongly affected the bacterial community structure, however, fecal and rumen samples did appear separated from each other. This meta-analysis provides the first comparison of high-throughput sequencing 16S rRNA gene datasets generated from the bovine GI tract by multiple studies and may serve as a foundation for improving future microbial community research with cattle.
Collapse
Affiliation(s)
- Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| |
Collapse
|
19
|
Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311. [PMID: 32433513 PMCID: PMC7239938 DOI: 10.1038/s41598-020-65444-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Alice Ruet
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia, 08018, Barcelona, Spain
| | | | - Yuliaxis Ramayo-Caldas
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Elisa Crisci
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Samuel Pennarun
- US UMR 1426, INRAE, Genomic platform, 31326, Castanet-Tolosan, France
| | - Sophie Dhorne-Pollet
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Aline Foury
- University of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076, Bordeaux, France
| | | | - Léa Lansade
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| |
Collapse
|
20
|
Massacci FR, Clark A, Ruet A, Lansade L, Costa M, Mach N. Inter-breed diversity and temporal dynamics of the faecal microbiota in healthy horses. J Anim Breed Genet 2019; 137:103-120. [PMID: 31523867 DOI: 10.1111/jbg.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Understanding gut microbiota similarities and differences across breeds in horses has the potential to advance approaches aimed at personalized microbial modifications, particularly those involved in improving sport athletic performance. Here, we explore whether faecal microbiota composition based on faecal 16S ribosomal RNA gene sequencing varies across six different sport breeds at two time points 8 months apart within a cohort of 189 healthy horses cared for under similar conditions. Lusitano horses presented the smallest and Hanoverians the greatest bacterial diversity. We found subtle but significant differences in β-diversity between Lusitano, Anglo Arabian and the central European breeds, and we reproduced these results across the two time points. Repeat sampling of subjects showed community to be temporally more stable in Lusitano and Anglo Arabian breeds. Additionally, we found that 27 genera significantly varied in abundance across breeds. Overall, 33% of these taxa overlapped with previously identified taxa that were associated with genetic variation in humans or other species. However, a non-significant correlation was observed between microbial composition and the host pedigree-based kinship. Despite a notable variation in the diversity and composition of the faecal microbiota, breed exerted limited effects on the equine faecal microbiota.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Research and Development Department, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Agricultural and Food Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Allison Clark
- Gastroenterology Department, Vall d'Hebron Research Center, Barcelona, Spain
| | - Alice Ruet
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Léa Lansade
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Marcio Costa
- Biomedical Veterinary Sciences Department, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Núria Mach
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
21
|
Plancade S, Clark A, Philippe C, Helbling JC, Moisan MP, Esquerré D, Le Moyec L, Robert C, Barrey E, Mach N. Unraveling the effects of the gut microbiota composition and function on horse endurance physiology. Sci Rep 2019; 9:9620. [PMID: 31270376 PMCID: PMC6610142 DOI: 10.1038/s41598-019-46118-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
An integrated analysis of gut microbiota, blood biochemical and metabolome in 52 endurance horses was performed. Clustering by gut microbiota revealed the existence of two communities mainly driven by diet as host properties showed little effect. Community 1 presented lower richness and diversity, but higher dominance and rarity of species, including some pathobionts. Moreover, its microbiota composition was tightly linked to host blood metabolites related to lipid metabolism and glycolysis at basal time. Despite the lower fiber intake, community type 1 appeared more specialized to produce acetate as a mean of maintaining the energy supply as glucose concentrations fell during the race. On the other hand, community type 2 showed an enrichment of fibrolytic and cellulolytic bacteria as well as anaerobic fungi, coupled to a higher production of propionate and butyrate. The higher butyrate proportion in community 2 was not associated with protective effects on telomere lengths but could have ameliorated mucosal inflammation and oxidative status. The gut microbiota was neither associated with the blood biochemical markers nor metabolome during the endurance race, and did not provide a biomarker for race ranking or risk of failure to finish the race.
Collapse
Affiliation(s)
- Sandra Plancade
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- ISBA, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Allison Clark
- Gastroenterology Department, Vall d'Hebron Institut de Reserca, Barcelona, Spain
| | - Catherine Philippe
- UMR 1319, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Marie-Pierre Moisan
- UMR 1286, INRA, Université Bordeaux, Nutrition et neurobiologie intégrée, Bordeaux, France
| | | | - Laurence Le Moyec
- Unité de Biologie Intégrative et Adaptation à l'Exercice, UBIAE, EA7362, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Céline Robert
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Barrey
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Núria Mach
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
22
|
Digestive effects and intestinal health of ponies fed a complete single diet, thermally processed and containing long fiber. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Walshe N, Duggan V, Cabrera-Rubio R, Crispie F, Cotter P, Feehan O, Mulcahy G. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int J Parasitol 2019; 49:489-500. [PMID: 30986403 DOI: 10.1016/j.ijpara.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the "helminthome") provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Orna Feehan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland.
| |
Collapse
|
24
|
The Dietary Components and Feeding Management as Options to Offset Digestive Disturbances in Horses. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Kunz IGZ, Reed KJ, Metcalf JL, Hassel DM, Coleman RJ, Hess TM, Coleman SJ. Equine Fecal Microbiota Changes Associated With Anthelmintic Administration. J Equine Vet Sci 2019; 77:98-106. [PMID: 31133326 DOI: 10.1016/j.jevs.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
The gastrointestinal microbiota (GIM) plays an essential role in maintaining intestinal homeostasis with disruptions having profound effects on the wellbeing of the host animal. Parasitic infection is a long-standing issue for the equine industry, and the use of anthelmintic drugs for parasite control has long been standard practice. The impact of anthelmintic treatment on the GIM in healthy horses is not well known. This study evaluated the hypothesis that anthelmintic administration will alter the equine fecal microbiota in horses without an observed helminth infection. Ten horses were treated with a single dose of QUEST PLUS (active ingredients: Moxidectin and Praziquantel) (Zoetis), and fecal samples were collected before and after treatment. Amplicon sequencing data were quality filtered, processed, and analyzed using QIIME2. Anthelmintic treatment corresponded with a small but significant decrease in alpha diversity (P-value < .05). Analysis of taxonomic abundances before and after treatment with DESeq2 identified 21 features that were significantly different after treatment (Padj-value < .05). Differences in beta diversity associated with treatment were not significant and potentially suggest factors unique to the individual may play an essential role in the specific responses observed. Overall, the present study does not indicate a broad, large-scale impact on the GIM after anthelmintic treatment. The results do, however, suggest the potential of individualized responses that are based instead on host factors. Identification of these factors and investigation of their impact on the host/microbiota relationship will contribute significantly to our understanding of the role of the microbiome in horse health.
Collapse
Affiliation(s)
- Isabelle G Z Kunz
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO
| | - Kailee J Reed
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO
| | - Jessica L Metcalf
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO
| | - Diana M Hassel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Robert J Coleman
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY
| | - Tanja M Hess
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO
| | - Stephen J Coleman
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO.
| |
Collapse
|
26
|
Francis JM, Apgar GA, Crandell KG, Handlos GC, Perry EB. The Effects of Hydroponic Wheat Fodder on Fecal Metabolites in Equines. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.05.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Elghandour MMMY, Adegbeye MJ, Barbabosa-Pilego A, Perez NR, Hernández SR, Zaragoza-Bastida A, Salem AZM. Equine Contribution in Methane Emission and Its Mitigation Strategies. J Equine Vet Sci 2018; 72:56-63. [PMID: 30929784 DOI: 10.1016/j.jevs.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 11/26/2022]
Abstract
Greenhouses gas emission mitigation is a very important aspect of earth sustainability with greenhouse gasses reduction, a focus of agricultural and petrochemical industries. Methane is produced in nonruminant herbivores such as horses because they undergo hindgut fermentation. Although equine produce less methane than ruminant, increasing population of horses might increase their contribution to the present 1.2 to 1.7 Tg, estimate. Diet, feeding frequency, season, genome, and protozoa population influence methane production equine. In population, Methanomicrobiales, Methanosarcinales, Methanobacteriales, and Methanoplasmatales are the clade identified in equine. Methanocorpusculum labreanum is common among hindgut fermenters like horses and termite. Naturally, acetogenesis and interrelationship between the host and the immune-anatomical interaction are responsible for the reduced methane output in horses. However, to reduce methane output in equine, and increase energy derived from feed intake, the use of biochar, increase in acetogens, inclusion of fibre enzymes and plant extract, and recycling of fecal energy through anaerobic gas fermentation. These might be feasible ways to reducing methane contribution from horse and could be applied to ruminants too.
Collapse
Affiliation(s)
- Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - Moyosore Joseph Adegbeye
- Department of Animal Science, College of Agriculture, Joseph Ayo Babalola University, Ilesha, Nigeria
| | - Alberto Barbabosa-Pilego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - Nallely Rivero Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Saúl Rojas Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México.
| |
Collapse
|
28
|
Kaczmarek JL, Liu X, Charron CS, Novotny JA, Jeffery EH, Seifried HE, Ross SA, Miller MJ, Swanson KS, Holscher HD. Broccoli consumption affects the human gastrointestinal microbiota. J Nutr Biochem 2018; 63:27-34. [PMID: 30317146 DOI: 10.1016/j.jnutbio.2018.09.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The human gastrointestinal microbiota is increasingly linked to health outcomes; however, our understanding of how specific foods alter the microbiota is limited. Cruciferous vegetables such as broccoli are a good source of dietary fiber and phytonutrients, including glucosinolates, which can be metabolized by gastrointestinal microbes. This study aimed to determine the impact of broccoli consumption on the gastrointestinal microbiota of healthy adults. A controlled feeding, randomized, crossover study consisting of two 18-day treatment periods separated by a 24-day washout was conducted in healthy adults (n=18). Participants were fed at weight maintenance with the intervention period diet including 200 g of cooked broccoli and 20 g of raw daikon radish per day. Fecal samples were collected at baseline and at the end of each treatment period for microbial analysis. Beta diversity analysis indicated that bacterial communities were impacted by treatment (P=.03). Broccoli consumption decreased the relative abundance of Firmicutes by 9% compared to control (P=.05), increased the relative abundance of Bacteroidetes by 10% compared to control (P=.03) and increased Bacteroides by 8% relative to control (P=.02). Furthermore, the effects were strongest among participants with body mass index <26 kg/m2, and within this group, there were associations between bacterial relative abundance and glucosinolate metabolites. Functional prediction revealed that broccoli consumption increased the pathways involved in the functions of the endocrine system (P=.05), transport and catabolism (P=.04), and energy metabolism (P=.01). These results reveal that broccoli consumption affects the composition and function of the human gastrointestinal microbiota.
Collapse
Affiliation(s)
- Jennifer L Kaczmarek
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States.
| | - Xiaoji Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 260 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States.
| | - Craig S Charron
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, RM. 117, BLDG. 307C, BARC-EAST, Beltsville, MD, 20705, United States.
| | - Janet A Novotny
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, RM. 117, BLDG. 307C, BARC-EAST, Beltsville, MD, 20705, United States.
| | - Elizabeth H Jeffery
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 260 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States.
| | - Harold E Seifried
- Division of Cancer Prevention, National Cancer Institute/National Institute of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States.
| | - Sharon A Ross
- Division of Cancer Prevention, National Cancer Institute/National Institute of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States.
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 260 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States.
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Animal Sciences Laboratory, 1207 W. Gregory Drive, Urbana, IL, 61801, United States.
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 260 Bevier Hall, 905 S. Goodwin Ave, Urbana, IL, 61801, United States.
| |
Collapse
|
29
|
Perry E, Cross TWL, Francis JM, Holscher HD, Clark SD, Swanson KS. Effect of Road Transport on the Equine Cecal Microbiota. J Equine Vet Sci 2018; 68:12-20. [DOI: 10.1016/j.jevs.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
30
|
Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, Novotny JA, Baer DJ. Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. J Nutr 2018; 148:861-867. [PMID: 29726951 PMCID: PMC5991202 DOI: 10.1093/jn/nxy004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Background Epidemiologic data suggest that diets rich in nuts have beneficial health effects, including reducing total and cause-specific mortality from cancer and heart disease. Although there is accumulating preclinical evidence that walnuts beneficially affect the gastrointestinal microbiota and gut and metabolic health, these relations have not been investigated in humans. Objective We aimed to assess the impact of walnut consumption on the human gastrointestinal microbiota and metabolic markers of health. Methods A controlled-feeding, randomized crossover study was undertaken in healthy men and women [n = 18; mean age = 53.1 y; body mass index (kg/m2): 28.8]. Study participants received isocaloric diets containing 0 or 42 g walnuts/d for two 3-wk periods, with a 1-wk washout between diet periods. Fecal and blood samples were collected at baseline and at the end of each period to assess secondary outcomes of the study, including effects of walnut consumption on fecal microbiota and bile acids and metabolic markers of health. Results Compared with after the control period, walnut consumption resulted in a 49-160% higher relative abundance of Faecalibacterium, Clostridium, Dialister, and Roseburia and 16-38% lower relative abundances of Ruminococcus, Dorea, Oscillospira, and Bifidobacterium (P < 0.05). Fecal secondary bile acids, deoxycholic acid and lithocholic acid, were 25% and 45% lower, respectively, after the walnut treatment compared with the control treatment (P < 0.05). Serum LDL cholesterol and the noncholesterol sterol campesterol concentrations were 7% and 6% lower, respectively, after walnut consumption compared with after the control treatment (P < 0.01). Conclusion Walnut consumption affected the composition and function of the human gastrointestinal microbiota, increasing the relative abundances of Firmicutes species in butyrate-producing Clostridium clusters XIVa and IV, including Faecalibacterium and Roseburia, and reducing microbially derived, proinflammatory secondary bile acids and LDL cholesterol. These results suggest that the gastrointestinal microbiota may contribute to the underlying mechanisms of the beneficial health effects of walnut consumption. This trial was registered at www.clinicaltrials.gov as NCT01832909.
Collapse
Affiliation(s)
- Hannah D Holscher
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL,Division of Nutritional Sciences, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to HDH (e-mail: )
| | - Heather M Guetterman
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kelly S Swanson
- Division of Nutritional Sciences, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Ruopeng An
- Division of Nutritional Sciences, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Janet A Novotny
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville MD
| | - David J Baer
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville MD
| |
Collapse
|
31
|
Jenkins EK, DeChant MT, Perry EB. When the Nose Doesn't Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Front Vet Sci 2018; 5:56. [PMID: 29651421 PMCID: PMC5884888 DOI: 10.3389/fvets.2018.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.
Collapse
Affiliation(s)
- Eileen K Jenkins
- First Year Graduate Veterinary Education Program, Public Health Activity - Fort Bragg, United States Army, Fort Bragg, NC, United States
| | - Mallory T DeChant
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| | - Erin B Perry
- Department of Animal Science, Food & Nutrition, College of Agricultural Science, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
32
|
Clark A, Sallé G, Ballan V, Reigner F, Meynadier A, Cortet J, Koch C, Riou M, Blanchard A, Mach N. Strongyle Infection and Gut Microbiota: Profiling of Resistant and Susceptible Horses Over a Grazing Season. Front Physiol 2018; 9:272. [PMID: 29618989 PMCID: PMC5871743 DOI: 10.3389/fphys.2018.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal strongyles are a major threat to horses' health and welfare. Given that strongyles inhabit the same niche as the gut microbiota, they may interact with each other. These beneficial or detrimental interactions are unknown in horses and could partly explain contrasted susceptibility to infection between individuals. To address these questions, an experimental pasture trial with 20 worm-free female Welsh ponies (10 susceptible (S) and 10 resistant (R) to parasite infection) was implemented for 5 months. Fecal egg counts (FEC), hematological and biochemical data, body weight and gut microbiological composition were studied in each individual after 0, 24, 43, 92 and 132 grazing days. R and S ponies displayed divergent immunological profiles and slight differences in microbiological composition under worm-free conditions. After exposure to natural infection, the predicted R ponies exhibited lower FEC after 92 and 132 grazing days, and maintained higher levels of circulating monocytes and eosinophils, while lymphocytosis persisted in S ponies. Although the overall gut microbiota diversity and structure remained similar during the parasite infection between the two groups, S ponies exhibited a reduction of bacteria such as Ruminococcus, Clostridium XIVa and members of the Lachnospiraceae family, which may have promoted a disruption of mucosal homeostasis at day 92. In line with this hypothesis, an increase in pathobionts such as Pseudomonas and Campylobacter together with changes in several predicted immunological pathways, including pathogen sensing, lipid metabolism, and activation of signal transduction that are critical for the regulation of immune system and energy homeostasis were observed in S relative to R ponies. Moreover, S ponies displayed an increase in protozoan concentrations at day 92, suggesting that strongyles and protozoa may contribute to each other's success in the equine intestines. It could also be that S individuals favor the increase of these carbohydrate-degrading microorganisms to enhance the supply of nutrients needed to fight strongyle infection. Overall, this study provides a foundation to better understand the mechanisms that underpin the relationship between equines and natural strongyle infection. The profiling of horse immune response and gut microbiota should contribute to the development of novel biomarkers for strongyle infection.
Collapse
Affiliation(s)
- Allison Clark
- Department of Health Science, Open University of Catalonia, Barcelona, Spain
| | - Guillaume Sallé
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Valentine Ballan
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fabrice Reigner
- UEPAO 1297, Institut National de la Recherche Agronomique, Unité Expérimentale de Physiologie Animale de l'Orfrasière, Nouzilly, France
| | - Annabelle Meynadier
- UMR 1388, Institut National de la Recherche Agronomique, GenPhySE, Toulouse, France
| | - Jacques Cortet
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Christine Koch
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France
| | - Mickaël Riou
- UE-1277, Institut National de la Recherche Agronomique, Plate-Forme d'Infectiologie Expérimentale, Nouzilly, France
| | - Alexandra Blanchard
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Université François-Rabelais, Nouzilly, France.,Pancosma SA, Geneva, Switzerland
| | - Núria Mach
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
33
|
Kaczmarek JL, Thompson SV, Holscher HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev 2018; 75:673-682. [PMID: 28938796 PMCID: PMC5914376 DOI: 10.1093/nutrit/nux036] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human health is intricately intertwined with the composition and function of the trillions of microorganisms that make up the gastrointestinal (GI) microbiome. The GI microbiome is essentially a microbial organ that provides metabolic, immunologic, and protective functions for the host. Habitual diet, changes in macronutrient composition, and consumption of nondigestible dietary fibers have all been shown to impact the human GI microbiome. Intriguingly, the impact of diet on the microbiome may be related not only to what humans eat but also to the timing of food consumption. Emerging preclinical research suggests that gut microbes experience diurnal rhythms, and the health effects of eating patterns, including time-restricted feeding and meal frequency, may be related to the GI microbiome. Herein, the complex connections among circadian rhythms, eating behaviors, the GI microbiome, and health are reviewed, highlighting the need for additional translational research in this area.
Collapse
Affiliation(s)
- Jennifer L Kaczmarek
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharon V Thompson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences and the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ. Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients 2018; 10:E126. [PMID: 29373513 PMCID: PMC5852702 DOI: 10.3390/nu10020126] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Almond processing has been shown to differentially impact metabolizable energy; however, the effect of food form on the gastrointestinal microbiota is under-investigated. OBJECTIVE We aimed to assess the interrelationship of almond consumption and processing on the gastrointestinal microbiota. DESIGN A controlled-feeding, randomized, five-period, crossover study with washouts between diet periods was conducted in healthy adults (n = 18). Treatments included: (1) zero servings/day of almonds (control); (2) 1.5 servings (42 g)/day of whole almonds; (3) 1.5 servings/day of whole, roasted almonds; (4) 1.5 servings/day of roasted, chopped almonds; and (5) 1.5 servings/day of almond butter. Fecal samples were collected at the end of each three-week diet period. RESULTS Almond consumption increased the relative abundances of Lachnospira, Roseburia, and Dialister (p ≤ 0.05). Comparisons between control and the four almond treatments revealed that chopped almonds increased Lachnospira, Roseburia, and Oscillospira compared to control (p < 0.05), while whole almonds increased Dialister compared to control (p = 0.007). There were no differences between almond butter and control. CONCLUSIONS These results reveal that almond consumption induced changes in the microbial community composition of the human gastrointestinal microbiota. Furthermore, the degree of almond processing (e.g., roasting, chopping, and grinding into butter) differentially impacted the relative abundances of bacterial genera.
Collapse
Affiliation(s)
- Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA.
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Andrew M Taylor
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA.
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Janet A Novotny
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| | - David J Baer
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
35
|
Collado MC, Engen PA, Bandín C, Cabrera-Rubio R, Voigt RM, Green SJ, Naqib A, Keshavarzian A, Scheer FAJL, Garaulet M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study. FASEB J 2018; 32:2060-2072. [PMID: 29233857 DOI: 10.1096/fj.201700697rr] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The composition of the diet (what we eat) has been widely related to the microbiota profile. However, whether the timing of food consumption (when we eat) influences microbiota in humans is unknown. A randomized, crossover study was performed in 10 healthy normal-weight young women to test the effect of the timing of food intake on the human microbiota in the saliva and fecal samples. More specifically, to determine whether eating late alters daily rhythms of human salivary microbiota, we interrogated salivary microbiota in samples obtained at 4 specific time points over 24 h, to achieve a better understanding of the relationship between food timing and metabolic alterations in humans. Results revealed significant diurnal rhythms in salivary diversity and bacterial relative abundance ( i.e., TM7 and Fusobacteria) across both early and late eating conditions. More importantly, meal timing affected diurnal rhythms in diversity of salivary microbiota toward an inverted rhythm between the eating conditions, and eating late increased the number of putative proinflammatory taxa, showing a diurnal rhythm in the saliva. In a randomized, crossover study, we showed for the first time the impact of the timing of food intake on human salivary microbiota. Eating the main meal late inverts the daily rhythm of salivary microbiota diversity which may have a deleterious effect on the metabolism of the host.-Collado, M. C., Engen, P. A., Bandín, C., Cabrera-Rubio, R., Voigt, R. M., Green, S. J., Naqib, A., Keshavarzian, A., Scheer, F. A. J. L., Garaulet, M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.
Collapse
Affiliation(s)
- María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Phillip A Engen
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Cristina Bandín
- Department of Physiology, University of Murcia, Murcia Spain.,Murcian Institute of Biosanitary Research (IMIB)-Arrixaca, Murcia, Spain
| | - Raúl Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain.,Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland.,Moorepark Teagasc Food Research Centre, Fermoy, Ireland
| | - Robin M Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; and.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia Spain.,Murcian Institute of Biosanitary Research (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
36
|
Kaczmarek JL, Musaad SM, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr 2017; 106:1220-1231. [PMID: 28971851 DOI: 10.3945/ajcn.117.156380] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Preclinical research has shown that the gastrointestinal microbiota exhibits circadian rhythms and that the timing of food consumption can affect the composition and function of gut microbes. However, there is a dearth of knowledge on these relations in humans.Objective: We aimed to determine whether human gastrointestinal microbes and bacterial metabolites were associated with time of day or behavioral factors, including eating frequency, percentage of energy consumed early in the day, and overnight-fast duration.Design: We analyzed 77 fecal samples collected from 28 healthy men and women. Fecal DNA was extracted and sequenced to determine the relative abundances of bacterial operational taxonomic units (OTUs). Gas chromatography-mass spectroscopy was used to assess short-chain fatty acid concentrations. Eating frequency, percentage of energy consumed before 1400, and overnight-fast duration were determined from dietary records. Data were analyzed by linear mixed models or generalized linear mixed models, which controlled for fiber intake, sex, age, body mass index, and repeated sampling within each participant. Each OTU and metabolite were tested as the outcome in a separate model.Results: Acetate, propionate, and butyrate concentrations decreased throughout the day (P = 0.006, 0.04, and 0.002, respectively). Thirty-five percent of bacterial OTUs were associated with time. In addition, relations were observed between gut microbes and eating behaviors, including eating frequency, early energy consumption, and overnight-fast duration.Conclusions: These results indicate that the human gastrointestinal microbiota composition and function vary throughout the day, which may be related to the circadian biology of the human body, the microbial community itself, or human eating behaviors. Behavioral factors, including timing of eating and overnight-fast duration, were also predictive of bacterial abundances. Longitudinal intervention studies are needed to determine causality of these biological and behavioral relations. This trial was registered at clinicaltrials.gov as NCT01925560.
Collapse
Affiliation(s)
| | | | - Hannah D Holscher
- Division of Nutritional Sciences, .,Family Resiliency Center, and.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
37
|
Mach N, Foury A, Kittelmann S, Reigner F, Moroldo M, Ballester M, Esquerré D, Rivière J, Sallé G, Gérard P, Moisan MP, Lansade L. The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology. Front Physiol 2017; 8:535. [PMID: 28790932 PMCID: PMC5524898 DOI: 10.3389/fphys.2017.00535] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i) the effect of two different weaning methods on the composition of gut microbiota across time and (ii) how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P) or an abrupt (A) weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d). Different host phenotypes and gut microbiota composition were studied across 6 age strata (days -30, 0, 3, 5, 7, and 30 after weaning) by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella, and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus, on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp.) were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is likely to confer better stress response adaptation following weaning. This study identified potential microbial biomarkers that could predict the likelihood for physiological adaptations to weaning in horses, although causality remains to be addressed.
Collapse
Affiliation(s)
- Núria Mach
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Aline Foury
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Sandra Kittelmann
- AgResearch Ltd, Grasslands Research CentrePalmerston North, New Zealand
| | - Fabrice Reigner
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Marco Moroldo
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries, Torre MarimonCaldes de Montbui, Spain
| | - Diane Esquerré
- UMR 444, Institut National de la Recherche Agronomique, Plateforme GETCastanet-Tolosan, France
| | - Julie Rivière
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Guillaume Sallé
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Philippe Gérard
- UMR 1319, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Marie-Pierre Moisan
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Léa Lansade
- PRC, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, IFCE, Université de ToursNouzilly, France
| |
Collapse
|
38
|
|