1
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
2
|
Bi SJ, Yuan AL, Chen ZJ, Ren Y, Liu KY, Liu CQ, Xu ZZ, Wang ZW, Zhang YL. Quantitative predictive model for screening optimal processing methods of Polygonati rhizoma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39150175 DOI: 10.1080/10286020.2024.2390496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Polygonati rhizoma (Huangjing in Chinese) is a common clinical tonic with the traditional effects of tonifying Qi, nourishing Yin. However, the lack of precise control of processing parameters has led to the uneven quality of processed Huangjing. A prediction model using the CRITIC method optimizes processing by correlating method, component contents, and biological activity, ensuring consistent quality and efficacy.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - An-Lei Yuan
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zi-Jun Chen
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Ren
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kai-Yang Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chao-Qun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ze-Wen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Ling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
3
|
Qu SY, Liu YH, Liu JT, Li PF, Liu TQ, Wang GX, Yu Q, Ling F. Catechol compounds as dual-targeting agents for fish protection against Ichthyophthirius multifiliis infections. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109717. [PMID: 38914179 DOI: 10.1016/j.fsi.2024.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Aquaculture is one of the fastest growing sectors in global food production, recognized as a significant contributor to poverty alleviation, food security, and income generation. However, the frequent occurrence of diseases caused by pathogen infections result in reduced yields and economic losses, posing a substantial constraint to the sustainable development of aquaculture. Here, our study identified that four catechol compounds, quercetin, luteolin, caffeic acid, and chlorogenic acid, exhibited potent antiparasitic effects against Ichthyophthirius multifiliis in both, in vitro and in vivo. The parasite is recognized as one of the most pathogenic to fish worldwide. Using a combination of in silico methods, the dipeptidyl peptidase (DPP) was identified as a critical target for catechol compounds. The two hydroxyl radicals of the catechol group were essential for its binding to and interacting with the DPP protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that catechol compounds disrupt pathways associated with the metabolism and growth of I. multifiliis, thereby exerting antiparasitic effects. Furthermore, these compounds attenuated the expression of proinflammatory cytokines in vivo in fish and promoted macrophage polarization toward M2 phenotype by inhibiting the STAT1 signaling pathway. The dual activity of catechol compounds, acting as both direct antiparasitic and anti-inflammatory agents in fish, offers a promising therapeutic approach for combating I. multifiliis infections in aquaculture.
Collapse
Affiliation(s)
- Shen-Ye Qu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi-Hang Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie-Tao Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng-Fei Li
- Guangxi Academy of Sciences, Nanning, 530000, China
| | - Tian-Qiang Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qing Yu
- Guangxi Academy of Sciences, Nanning, 530000, China.
| | - Fei Ling
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zheng Y, Ren X, Qi X, Song R, Zhao C, Ma J, Li X, Deng Q, He Y, Kong L, Qian L, Zhang F, Li M, Sun M, Liu W, Liu H, She G. Bao Yuan decoction alleviates fatigue by restraining inflammation and oxidative stress via the AMPK/CRY2/PER1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118058. [PMID: 38513778 DOI: 10.1016/j.jep.2024.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS In total, 114 compounds from the water extract of BYD were identified as major compounds. Na₂SO₃-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaodan Qi
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingmei Kong
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Liyan Qian
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haibin Liu
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Wei X, Wang D, Liu J, Zhu Q, Xu Z, Niu J, Xu W. Interpreting the Mechanism of Active Ingredients in Polygonati Rhizoma in Treating Depression by Combining Systemic Pharmacology and In Vitro Experiments. Nutrients 2024; 16:1167. [PMID: 38674858 PMCID: PMC11054788 DOI: 10.3390/nu16081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polygonati Rhizoma (PR) has certain neuroprotective effects as a homology of medicine and food. In this study, systematic pharmacology, molecular docking, and in vitro experiments were integrated to verify the antidepressant active ingredients in PR and their mechanisms. A total of seven compounds in PR were found to be associated with 45 targets of depression. Preliminarily, DFV docking with cyclooxygenase 2 (COX2) showed good affinity. In vitro, DFV inhibited lipopolysaccharide (LPS)-induced inflammation of BV-2 cells, reversed amoeba-like morphological changes, and increased mitochondrial membrane potential. DFV reversed the malondialdehyde (MDA) overexpression and superoxide dismutase (SOD) expression inhibition in LPS-induced BV-2 cells and decreased interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 mRNA expression levels in a dose-dependent manner. DFV inhibited both mRNA and protein expression levels of COX2 induced by LPS, and the activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and caspase1 was suppressed, thus exerting an antidepressant effect. This study proves that DFV may be an important component basis for PR to play an antidepressant role.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Dan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiajia Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ziming Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinzhe Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, China
| |
Collapse
|
6
|
Zhou L, Liu T, Yan T, Yang M, Wang P, Shi L. 'Nine Steaming Nine Sun-drying' processing enhanced properties of Polygonatum kingianum against inflammation, oxidative stress and hyperglycemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3123-3138. [PMID: 38072675 DOI: 10.1002/jsfa.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Polygonatum kingianum Coll. & Hemsl (PK), a prominent medicine and food homology plant, has been consumed as a decoction from boiling water for thousands of years. 'Nine Steaming Nine Sun-drying' processing has been considered an effective method for enriching tonic properties, but studies investigating such impacts on PK and underlying mechanisms are extremely rare. RESULTS We first demonstrated substantial improvements in the anti-oxidative, anti-inflammatory and anti-hyperglycemia effects of the Nine Steaming Nine Sun-drying processed PK water extracts compared with crude PK in cell models (i.e., HepG2 and Raw 264.7 cells). We then integrated foodomics and network pharmacology analysis to uncover the key compounds responsible for the improved benefits. A total of 551 metabolites of PK extracts were identified, including polyphenols, flavonoids, alkaloids, and organic acids. During processing, 204 metabolites were enhanced, and 32 metabolites were recognized as key constituents of processed PK responsible for the improved health-promoting activities, which may affect PI3K-Akt-, MAPK-, and HIF-1 pathways. We further confirmed the high affinity between identified key constituents of processed PK and their predicted acting targets using molecular docking. CONCLUSION Our results provide novel insights into bioactive compounds of processed PK, elaborating the rationality of processing from the perspective of tonic effects. Consuming processed PK could be an efficacious strategy to combat the high prevalence of metabolic diseases that currently affect millions of people worldwide. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tao Yan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Minmin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
7
|
Rakshit S, More A, Gaikwad S, Seniya C, Gade A, Muley VY, Mukherjee A, Kamble K. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon 2024; 10:e24350. [PMID: 38288021 PMCID: PMC10823083 DOI: 10.1016/j.heliyon.2024.e24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Diosgenin, an essential sapogenin steroid with significant biological implications, is composed of a hydrophilic sugar moiety intricately linked to a hydrophobic steroid aglycone. While the antiviral properties of diosgenin against numerous RNA viruses have been extensively documented, its potential in combating Human Immunodeficiency Virus infections remains unexplored. Experimental procedure This current investigation presents a comprehensive and systematic analysis of extracts derived from the leaves of Helicteres isora, which are notably enriched with diosgenin. Rigorous methodologies, including established chromatographic techniques and Fourier-transform infrared spectroscopy were employed for the characterization of the active diosgenin compound followed by molecular interaction analyses with the key HIV enzymes and mechanistic validation of HIV inhibition. Key results The inhibitory effects of extracted diosgenin on the replication of HIV-1 were demonstrated using a permissive cellular system, encompassing two distinct subtypes of HIV-1 strains. Computational analyses involving molecular interactions highlighted the substantial occupancy of critical active site pocket residues within the key HIV-1 proteins by diosgenin. Additionally, the mechanistic underpinnings of diosgenin activity in conjunction with standard controls were elucidated through specialized colorimetric assays, evaluating its impact on HIV-1 Reverse Transcriptase and Integrase enzymes. Conclusions To our current state of knowledge, this study represents the inaugural demonstration of the anti-HIV efficacy inherent to diosgenin found in the leaves of Helicteres isora, and can be taken further for drug design and development for the management of HIV infection.
Collapse
Affiliation(s)
- Smita Rakshit
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Chandrabhan Seniya
- VIT Bhopal University, School of Biosciences, Engineering and Technology, Bhopal, MP, India
| | - Aniket Gade
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, MH, India
| | | | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Kapil Kamble
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| |
Collapse
|
8
|
Xue A, Zhao D, Zhao C, Li X, Yang M, Zhao H, Zhao C, Lei X, Wu J, Zhang N. Study on the neuroprotective effect of Zhimu-Huangbo extract on mitochondrial dysfunction in HT22 cells induced by D-galactose by promoting mitochondrial autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117012. [PMID: 37567426 DOI: 10.1016/j.jep.2023.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhimu-Huangbo (ZB) herb pair is a common prescription drug used by physicians of all dynasties, and has significant neuroprotective effect, such as the ZB can significantly promote neuronal cell regeneration, repair neuronal damage, and improve cognitive disorders. However, its ingredients are urgently needed to be identified and mechanisms is remained unclear. AIM OF THE STUDY Using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), the study of neuroprotective mechanism of Zhimu-Huangbo extract (ZBE) is investigated, and the network pharmacology technology and experimental validation is also performed. MATERIAL AND METHODS Firstly, UPLC-Q-TOF-MS technology was used to characterize the chemical components contained in the ZBE. After that, the TCMSP database and the Swiss Target Prediction method were used to search for potential target genes for ZBE compounds. At the same time, the OMIM and GeneCards disease databases were used to search for Alzheimer's disease (AD) targets and expanded with the GEO database. Then, GO and KEGG enrichment analysis was performed using OECloud tools. Subsequently, the potential mechanism of ZBE therapeutic AD predicted by network pharmacological analysis was experimentally studied and verified in vitro. RESULTS In the UPLC-Q-TOF-MS analysis of the ZBE, a total of 39 compounds were characterized including Neomangiferin, Oxyberberine, Timosaponin D, Berberine, Timosaponin A-III, Anemarsaponin E, Timosaponin A-I, Smilagenin and so on. A total of 831 potential targets and 13995 AD-related target genes were screened. A further analysis revealed the number of common targets between ZBE and AD is 698. Through GO and KEGG enrichment analysis, we found that ZBE's anti-AD targets were significantly enriched in autophagy and mitochondrial autophagy related pathways. The results of cell experiments also confirmed that ZBE can promote mitochondrial autophagy induced by D-galactose (D-gal) HT22 cells through the PTEN-induced kinase 1/Parkin (PINK1/Parkin) pathway. CONCLUSION ZBE can promote autophagy of mitochondria and play a protective role on damaged neurons.
Collapse
Affiliation(s)
- Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Deping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Chenyu Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xue Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Meng Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Hongmei Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Can Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xia Lei
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, 214000, China.
| | - Jianli Wu
- Academy of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
9
|
Lin H, Wang W, Peng M, Kong Y, Zhang X, Wei X, Shang H. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin Med 2024; 19:1. [PMID: 38163901 PMCID: PMC10759625 DOI: 10.1186/s13020-023-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenhui Wang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mengqi Peng
- Weifang Medical University, Weifang, 261000, China
| | - Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaowei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
10
|
Lin X, Chi W, Geng X, Jiang Q, Ma B, Dai B, Sui Y, Jiang J. Evaluation of the Mechanism of Yishan Formula in Treating Breast Cancer Based on Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:2583-2597. [PMID: 38178684 DOI: 10.2174/0113862073266004231105164321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Yishan formula (YSF) has a significant effect on the treatment of breast cancer, which can improve the quality of life and prolong the survival of patients with breast cancer; however, its mechanism of action is unknown. OBJECTIVE In this study, network pharmacology and molecular docking methods have been used to explore the potential pharmacological effects of the YSF, and the predicted targets have been validated by in vitro experiments. METHODS Active components and targets of the YSF were obtained from the TCMSP and Swiss target prediction website. Four databases, namely GeneCards, OMIM, TTD, and DisGeNET, were used to search for disease targets. The Cytoscape v3.9.0 software was utilized to draw the network of drug-component-target and selected core targets. DAVID database was used to analyze the biological functions and pathways of key targets. Finally, molecular docking and in vitro experiments have been used to verify the hub genes. RESULTS Through data collection from the database, 157 active components and 618 genes implicated in breast cancer were obtained and treated using the YSF. After screening, the main active components (kaempferol, quercetin, isorhamnetin, dinatin, luteolin, and tamarixetin) and key genes (AKT1, TP53, TNF, IL6, EGFR, SRC, VEGFA, STAT3, MAPK3, and JUN) were obtained. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the YSF could affect the progression of breast cancer by regulating biological processes, such as signal transduction, cell proliferation and apoptosis, protein phosphorylation, as well as PI3K-Akt, Rap1, MAPK, FOXO, HIF-1, and other related signaling pathways. Molecular docking suggested that IL6 with isorhamnetin, MAPK3 with kaempferol, and EGFR with luteolin have strong binding energy. The experiment further verified that YSF can control the development of breast cancer by inhibiting the expression of the hub genes. CONCLUSION This study showed that resistance to breast cancer may be achieved by the synergy of multiple active components, target genes, and signal pathways, which can provide new avenues for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyue Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wencheng Chi
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150000, China
| | - Xue Geng
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Qinghui Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Baozhu Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bowen Dai
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Jiakang Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150000, China
| |
Collapse
|
11
|
Song HY, Deng ML, Yang JF, Ma J, Shu FF, Cheng WJ, Zhu XQ, Zou FC, He JJ. Transcriptomic, 16S ribosomal ribonucleic acid and network pharmacology analyses shed light on the anticoccidial mechanism of green tea polyphenols against Eimeria tenella infection in Wuliangshan black-boned chickens. Parasit Vectors 2023; 16:330. [PMID: 37726789 PMCID: PMC10510215 DOI: 10.1186/s13071-023-05922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.
Collapse
Affiliation(s)
- Hai-Yang Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wen-Jie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
12
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Rana A, Malik AA, Tripathi SB, Kumar A. Novel SNP based analysis of genetic diversity in Polygonatum verticillatum Linn . across Indian Himalayas. 3 Biotech 2023; 13:242. [PMID: 37346388 PMCID: PMC10279605 DOI: 10.1007/s13205-023-03654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Polygonatum verticillatum Linn. is an endangered medicinal herb from Himalayas whose rhizomes have recently been used to curate symptoms of COVID-19. During present investigation, a gene bank of P. verticillatum was established at High Altitude Herbal Garden of Forest Research Institute, Dehradun at Chakrata, at 2600 m amsl with germplasm collected from different states and union territory of India including Himachal Pradesh, Sikkim, Uttarakhand and Jammu and Kashmir covering a wide range of geographical locations from an altitude of 1800 to 3600 m amsl. Genotyping by sequencing was applied to a set of 66 accessions of P. verticillatum to identify genome-wide high quality single nucleotide polymorphisms (SNPs) for analysis of genetic diversity. Neighbour-joining tree created from the distance matrix data grouped the genotypes into five distinct clusters. The results of principal coordinate analysis and Cluster analysis overlapped to identify Narkanda, Shimla (Himachal Pradesh) and Sunil village, Chamoli (Uttarakhand) as the regions with undisturbed, highly diverse natural populations of P. verticillatum. The species displayed little congruence in terms of genetic similarities with altitudinal range. This investigation is first of its kind on generation and utilization of SNPs to analyse genetic diversity in P. verticillatum with a very vivid sample collection across the entire Himalayan range in India. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03654-4.
Collapse
Affiliation(s)
- Anchal Rana
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, 248 195 India
| | - Anoop Anand Malik
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, 110070 India
| | | | - Ashok Kumar
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, 248 195 India
| |
Collapse
|
14
|
Zhao L, Xu C, Zhou W, Li Y, Xie Y, Hu H, Wang Z. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116296. [PMID: 36841378 DOI: 10.1016/j.jep.2023.116296] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizoma (PR), which contains rich national cultural connotations, is a traditional Chinese medicine with homology of medicine and food. It has been used for a long time as a tonic in China's multi-ethnic medical system, and is also used to treat diseases such as premature graying hair, deficiency of blood and essence, diabetes, hypertension, etc. Meanwhile, PR is often used as food in China, India, South Korea and other Asian countries, which can satisfy hunger and provide many health benefits. AIM OF THE REVIEW This paper systematically reviewed the ethnopharmacology, botany, phytochemistry, pharmacology and related applications research of PR, and provided a reference for the comprehensive applications of PR, including basic research, product development and clinical applications. This paper also refined the national application characteristics of PR, such as rich plant resources, special chemical components and anti-hidden hungry, which laid a foundation for its high value and high connotation development in the future. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine. RESULTS A comprehensive analysis of the above literature confirmed that PR has been used in the ethnic medicine system of Asian countries such as China for thousands of years. In this paper, 12 species including official species that can be used as PR are summarized, which provide rich plant resources for PR. The chemical components in PR are divided into nutritional components and active components. The former not only contains non-starch polysaccharides and fructo-oligosaccharides, which account for about 50% in PR and are recognized as high-quality diet in the world, but also contains inorganic elements and mineral elements. And a total of 199 kinds active ingredients, including saponins, flavonoids, alkaloids, etc., were sorted out by us. The above ingredients make PR have a special property of anti-hidden hunger. Studies have shown that PR has a wide range of pharmacological activities, such as immune regulation, blood glucose regulation, lipid-lowering, antioxidant, anti-tumor, antibacterial, etc. It has been widely used in medicine, food, cosmetics, gardens and other fields. CONCLUSIONS PR, as a classic medicinal material of the same origin, is widely used in the traditional ethnic medicine system. It contains abundant potential plant resources, chemical components and pharmacological activities. This paper also suggests that PR with high application value in food industry, has the potential to become a high-quality coarse grain. Exploring the way of grain and industrialization of PR is beneficial to fully develop the economic value of PR.
Collapse
Affiliation(s)
- Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
15
|
Houeze EA, Wang Y, Zhou Q, Zhang H, Wang X. Comparison study of Beninese and Chinese herbal medicines in treating COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116172. [PMID: 36773790 PMCID: PMC9911150 DOI: 10.1016/j.jep.2023.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide use of natural remedies is an alternative therapeutic solution to strengthen immunity, fight, and prevent this disease. The rapid spread of the coronavirus disease worldwide has promoted the search for therapeutic solutions following different approaches. China and Benin have seen the use of natural remedies such as Chinese herbal medicine and local endemic plants as alternative solutions in treating COVID-19. AIM OF THE STUDY The present study was designed to identify the prevalence of medicinal plant use in four municipalities of Benin most affected by COVID-19 and compare them with traditional Chinese medicine and finally verify the efficacy of the main components of the six plants most frequently used, via in vitro experiments. MATERIALS AND METHODS This study targeting market herbalists and traditional healers was conducted in the form of an ethnomedicinal survey in four representative communities (Cotonou, Abomey-Calavi, Zè, and Ouidah) of southern Benin. The chemical compositions of the six most commonly used herbs were investigated using network pharmacology. Network-based global prediction of disease genes and drug, target, function, and pathway enrichment analysis of the top six herbs was conducted using databases including IPA and visualised using Cytoscape software. The natural botanical drugs involved three medicines and three formulas used in the treatment of COVID-19 in China from the published literature were compared with the top six botanical drugs used in Benin to identify similarities between them and guide the clinical medication in both countries. Finally, the efficacy of the common ingredients in six plants was verified by measuring the viability of BEAS-2B cells and the release of inflammatory factors after administration of different ingredients. Binding abilities of six components to COVID-19 related targets were verified by molecular docking. RESULTS According to the medication survey investigation, the six most used herbs were Citrus aurantiifolia (13.18%), Momordica charantia (7.75%), Ocimum gratissimum (7.36%), Crateva adansonii (6.59%), Azadirachta indica (5.81%), and Zanthoxylum zanthoxyloides (5.42%). The most represented botanical families were Rutaceae, Lamiaceae, Cucurbitaceae, Meliaceae, and Capparaceae. The network pharmacology of these six herbal plants showed that the flavonoids quercetin, kaempferol, and β-sitosterol were the main active ingredients of the Benin herbal medicine. Chinese and Beninese herbal medicine are similar in that they have the same targets and pathways in inflammation and oxidative stress relief. Mild COVID-19-related targets come from C. aurantiifolia and M. charantia, and severe COVID-19-related targets come from A. indica A. Juss. Cell viability and enzyme-linked immunosorbent assay results confirmed that six major compounds could protect BEAS-2B cells against injury by inhibiting the expression of inflammatory factors, among which quercetin and isoimperatorin were more effective. Docking verified that the six compounds have good binding potential with COVID-19 related targets. CONCLUSIONS These results suggest that Benin herbal medicine and Chinese herbal medicine overlap in compounds, targets, and pathways to a certain extent. Among the commonly used plants in Benin, C. aurantiifolia and M. charantia may have a good curative effect on the treatment of mild COVID-19, while for severe COVID-19, A. indica can be added on this basis.
Collapse
Affiliation(s)
- Elisabeth A Houeze
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoying Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
16
|
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061217. [PMID: 36986905 PMCID: PMC10053535 DOI: 10.3390/plants12061217] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post-Graduate Institute of Post-Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402 116, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 77-1054 Amilcar, Carthage 1054, Tunisia
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemoson University, Clemosn, SC 29634, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University, ERICA Campus, Ansan 11558, Republic of Korea
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
Manna K, Khan ZS, Saha M, Mishra S, Gaikwad N, Bhakta JN, Banerjee K, Das Saha K. Manjari Medika Grape Seed Extract Protects Methotrexate-Induced Hepatic Inflammation: Involvement of NF-κB/NLRP3 and Nrf2/HO-1 Signaling System. J Inflamm Res 2023; 16:467-492. [PMID: 36785716 PMCID: PMC9922067 DOI: 10.2147/jir.s338888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/20/2022] [Indexed: 02/09/2023] Open
Abstract
Objective Grape Seed Extract is a natural source of various polyphenols, which have been shown to possess potent antioxidant and free radical-scavenging activities. The earlier studies have reported that grape seed extract exhibits broad-spectrum pharmacological activities. Therefore, studying the hepatoprotective effects and elucidation of mechanisms of action of the Indian Variety, Manjari Medika grape seed extract (GSE), may give an insight into therapeutic benefits. Methotrexate (MTX) is the first-line pharmacological therapy for different rheumatic diseases. The major adverse events such as hepatotoxicity are evident even in the low doses used for the treatment. The present study investigated the role of MTX on hepatic damage in murine liver and the plausible protective effects of the Indian grape variety, Manjari Medika grape seed extract, in ameliorating it. Methods and Results To assess the hepatological modulation, mice were divided into eight groups to investigate the ameliorative potential of this GSE (75 and 125 mg/kg) and correlate the experimental findings. The active components of the extract were assessed through UPLC-(ESI)-QToF-MS analysis. On the other hand, various biochemical and immunological indices were carried out to correlate the experimental data. The result demonstrated that the prophylactic administration of GSE reduced MTX-induced hepatic toxicity indices, which subsequently restored the hepatic morphological architecture. Moreover, the application of GSE in a dual dosage (75 and 125 mg/kg) suppressed MTX-induced reactive oxygen species generation, followed by lipid peroxidation and cellular nitrite formation. MTX-induced inflammasome activation through the redox-assisted cascade of TLR4/NF-κB signaling was further reduced by applying the GSE. The results showed that the activation of cytoprotective transcription factor Nrf2 enhanced the level of endogenous antioxidants. Furthermore, through the regulation of TLR4/NF-κB and Nrf2/HO-1 axis, this extract could reduce the MTX-mediated hepatic damage. Conclusion Our findings suggest that Manjari Medika seed extract could be used as a therapeutic agent to relieve the side effects of MTX and other hepatic disorders.
Collapse
Affiliation(s)
- Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Zareen S Khan
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Nilesh Gaikwad
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra, 413255, India
| | - Jatindra Nath Bhakta
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India,Kaushik Banerjee, National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India, Email
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India,Correspondence: Krishna Das Saha, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India, Tel +91 33 2499 5810, Fax +91 33 2473 5197, Email
| |
Collapse
|
18
|
Nguyen HT, Do VM, Phan TT, Nguyen Huynh DT. The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics. Bioinform Biol Insights 2023; 17:11779322221149622. [PMID: 36654765 PMCID: PMC9841859 DOI: 10.1177/11779322221149622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak is alarmingly escalating and raises challenges in finding efficient compounds for treatment. Repurposing phytochemicals in herbs is an ideal and economical approach for screening potential herbal components against COVID-19. Andrographis paniculata, also known as Chuan Xin Lian, has traditionally been used as an anti-inflammatory and antibacterial herb for centuries and has recently been classified as a promising herbal remedy for adjuvant therapy in treating respiratory diseases. This study aimed to screen Chuan Xin Lian's bioactive components and elicit the potential pharmacological mechanisms and plausible pathways for treating COVID-19 using network pharmacology combined with molecular docking. The results found terpenoid (andrographolide) and flavonoid (luteolin, quercetin, kaempferol, and wogonin) derivatives had remarkable potential against COVID-19 and sequelae owing to their high degrees in the component-target-pathway network and strong binding capacities in docking scores. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the PI3K-AKT signaling pathway might be the most vital molecular pathway in the pathophysiology of COVID-19 and long-term sequelae whereby therapeutic strategies can intervene.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Van Mai Do
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Thanh Thuy Phan
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dung Tam Nguyen Huynh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei,Dung Tam Nguyen Huynh, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei.
| |
Collapse
|
19
|
Bi Y, Liang H, Han X, Li K, Zhang W, Lai Y, Wang Q, Jiang X, Zhao X, Fan H. β-Sitosterol Suppresses LPS-Induced Cytokine Production in Human Umbilical Vein Endothelial Cells via MAPKs and NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9241090. [PMID: 36636603 PMCID: PMC9831711 DOI: 10.1155/2023/9241090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023]
Abstract
Atherosclerosis (AS) is an inflammatory disease, whose occurrence and development mechanism is related to a great number of inflammatory cytokines. β-sitosterol (BS), a natural compound extracted from numerous vegetables and plant medicines, has been suggested to improve AS, but the underlying mechanism remains vague. This work focused on investigating how BS affected the lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs) and further exploring the potential targets and mechanisms through network pharmacology (NP) and molecular docking (MD). According to in vitro experiments, LPS resulted in an increase in the expression of inflammatory cytokines like tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6). Besides, secretion of IL-6, interleukin-1β (IL-1β), and TNF-α also increased in HUVECs, whereas BS decreased the expression and secretion of these cytokines. NP analysis revealed that the improvement effect of BS on AS was the result of its comprehensive actions targeting 99 targets and 42 pathways. In this network, MAPKs signaling pathway was the core pathway, whereas MAPK1, MAPK8, MAPK14, and NFKB1 were the hub targets. MD analysis also successfully validated the interactions between BS and these targets. Moreover, verification test results indicated that BS downregulated the abnormal expression and activation of MAPKs and NF-κB signaling pathways in LPS-treated cells, including p38, JNK, ERK, NF-κB, and IκB-α phosphorylation expressions. Furthermore, p65 nuclear translocation was also regulated by BS treatment. In conclusion, the BS-related mechanisms in treating AS are possibly associated with inflammatory response inhibition by regulating MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yiming Bi
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongfeng Liang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kongzheng Li
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Wei Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xuefeng Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Li X, Liang H, Wu J, Wang J, Sun M, Semiromi D, Liu F, Kang Y. Investigation of herbal plant medicines Baishouwu on the mechanism of the digestion of body: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Sahoo A, Mandal AK, Kumar M, Dwivedi K, Singh D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat Anticancer Drug Discov 2023; 18:470-494. [PMID: 36336805 DOI: 10.2174/1574892818666221104113703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Each year, millions of people worldwide are diagnosed with cancer, and more than half of them die. Various conventional therapies for cancer, including chemotherapy and radiotherapy, have extreme side effects. Therefore, to minimize the global burden of lethal diseases like cancer, an effective and novel drug must be discovered. Its patent should be acquired to secure the novel medicament. The pharmacological potential of different natural products has made them popular in the healthcare and pharmaceutical industries. Various anticancer compounds are obtained from natural sources such as plants, microbes, and marine and terrestrial animals, including alkaloids, terpenoids, biophenols, enzymes, glycosides, etc. The term "natural products" is defined as the product of secondary or non-essential metabolic processes produced by living organisms (such as plants, invertebrates, and microorganisms). Although more precise definitions of NPs exist, they do not always meet consensus. Others define NPs as small molecules (excluding biomolecules) that emerge from the metabolic reaction. A handful of effective compounds are used currently from natural or analog moieties, and many more are in clinical studies. There is an excellent need for patenting molecules from natural products as the hit lead molecules are derived, isolated, and synthesized from natural products. However, these naturally occurring products may not be patentable under the law because they come from nature. This review highlights why natural products and compounds are hard to patent, under what patent law criteria we can patent these natural products and compounds, patent procedural guideline sources and why researchers prefer publication rather than a patent. Here, various patent scenarios of natural products and compounds for cancer have been given.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu, Nepal, 44600
| | - Mayank Kumar
- Department of Pharmaceutical Chemistry, Aryakul College of Pharmacy and Research, Natkur, Lucknow, Uttar Pradesh-226002, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| |
Collapse
|
22
|
de Matos PH, da Silva TP, Mansano AB, Gancedo NC, Tonin FS, Pelloso FC, Petruco MV, de Melo EB, Fernandez-Llimos F, Sanches ACC, de Mello JCP, Chierrito D, de Medeiros Araújo DC. Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review. Inflamm Res 2022; 71:1489-1500. [PMID: 36307652 PMCID: PMC9616414 DOI: 10.1007/s00011-022-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The current study aimed to summarize the evidence of compounds contained in plant species with the ability to block the angiotensin-converting enzyme 2 (ACE-II), through a scoping review. METHODS PubMed and Scopus electronic databases were used for the systematic search and a manual search was performed RESULTS: Studies included were characterized as in silico. Among the 200 studies retrieved, 139 studies listed after the exclusion of duplicates and 74 were included for the full read. Among them, 32 studies were considered eligible for the qualitative synthesis. The most evaluated class of secondary metabolites was flavonoids with quercetin and curcumin as most actives substances and terpenes (isothymol, limonin, curcumenol, anabsinthin, and artemisinin). Other classes that were also evaluated were alkaloid, saponin, quinone, substances found in essential oils, and primary metabolites as the aminoacid L-tyrosine and the lipidic compound 2-monolinolenin. CONCLUSION This review suggests the most active substance from each class of metabolites, which presented the strongest affinity to the ACE-II receptor, what contributes as a basis for choosing compounds and directing the further experimental and clinical investigation on the applications these compounds in biotechnological and health processes as in COVID-19 pandemic.
Collapse
Affiliation(s)
- Pedro Henrique de Matos
- Centro Universitário Ingá-UNINGÁ, Rodovia PR 317, 6114. Parque Industrial, 200, Maringá,, PR, 87035-510, Brazil
| | - Thalita Prates da Silva
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Amanda Benites Mansano
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Naiara Cássia Gancedo
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Fernanda Stumpf Tonin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Avenida Prefeito Lothário Meissner 632, Curitiba, Brazil
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Fernando Castilho Pelloso
- Complexo Hospital de Clínicas, Universidade Federal Do Paraná, Rua General Carneiro, Curitiba, 181, Brazil
| | | | - Eduardo Borges de Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitário 2069, Cascavel, Brazil
| | - Fernando Fernandez-Llimos
- Departamento de Ciências do Medicamento, Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal
| | | | | | - Danielly Chierrito
- Centro Universitário Ingá-UNINGÁ, Rodovia PR 317, 6114. Parque Industrial, 200, Maringá,, PR, 87035-510, Brazil
| | | |
Collapse
|
23
|
Al-Rahim AM, Mahmood RI, Mohammed MM, Omer D. In vitro evaluation of antioxidant and cytotoxic activity of folate-methotrexate conjugated to bovine serum albumin nanoparticles against MCF-7, HepG2, and PC3 cell lines. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Sheikh A, Huang H, Parvin S, Badruzzaman M, Ahamed T, Hossain E, Baran IS, Saud ZA. A multi-population-based genomic analysis uncovers unique haplotype variants and crucial mutant genes in SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:149. [PMID: 36318347 PMCID: PMC9626712 DOI: 10.1186/s43141-022-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Background COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rigorous detection and treatment strategies against SARS-CoV-2 have become very challenging due to continuous evolutions to the viral genome. Therefore, careful genomic analysis is sorely needed to understand transmission, the cellular mechanism of pathogenicity, and the development of vaccines or drugs. Objective In this study, we intended to identify SARS-CoV-2 genome variants that may help understand the cellular and molecular foundation of coronavirus infections required to develop effective intervention strategies. Methods SARS-CoV-2 genome sequences were downloaded from an open-source public database, processed, and analyzed for variants in target detection sites and genes. Results We have identified six unique variants, G---AAC, T---AAC---T, AAC---T, AAC--------T, C----------T, and C--------C, at the nucleocapsid region and eleven major hotspot mutant genes: nsp3, surface glycoprotein, nucleocapsid phosphoprotein, ORF8, nsp6, nsp2, nsp4, helicase, membrane glycoprotein, 3′-5′ exonuclease, and 2′-O-ribose methyltransferases. In addition, we have identified eleven major mutant genes that may have a crucial role in SARS-CoV-2 pathogenesis. Conclusion Studying haplotype variants and 11 major mutant genes to understand the mechanism of action of fatal pathogenicity and inter-individual variations in immune responses is inevitable for managing target patient groups with identified variants and developing effective anti-viral drugs and vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00431-3.
Collapse
Affiliation(s)
- Afzal Sheikh
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - He Huang
- Research and Development Department, Bioengineering Lab. Co., Ltd, 657 Nagatake Midori-ku, Sagamihara-shi, Kanagawa-ken 252-0154 Japan
| | - Sultana Parvin
- grid.263023.60000 0001 0703 3735Department of Biology, Faculty of Science and Engineering, Saitama University, Saitama, Japan
| | - Mohammad Badruzzaman
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Tofayel Ahamed
- grid.443108.a0000 0000 8550 5526Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Ekhtear Hossain
- grid.263880.70000 0004 0386 0655Department of Biological Sciences and Chemistry, Southern University and A&M College, 244 William James Hall, Baton Rouge, LA 70813 USA
| | - Iri Sato Baran
- Genesis Institute of Genetic Research, Genesis Healthcare Corporation, Yebisu Garden Place Tower 15F/26F 4-20-3 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Zahangir Alam Saud
- grid.412656.20000 0004 0451 7306Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
25
|
Zhang J, Zhu Y, Si J, Wu L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr Res Food Sci 2022; 5:1882-1896. [PMID: 36276242 PMCID: PMC9579210 DOI: 10.1016/j.crfs.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.
Collapse
|
26
|
Wang Q, Wen H, Ma S, Zhang Y. Polygonum multiflorum Thunb. Induces hepatotoxicity in SD rats and hepatocyte spheroids by Disrupting the metabolism of bilirubin and bile acid. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115461. [PMID: 35728710 DOI: 10.1016/j.jep.2022.115461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver damage associated with Polygonum multiflorum Thunb. (P. multiflorum) and its preparations have aroused widespread concern. Opinions on the toxicity mechanisms and targets of P. multiflorum vary, and the toxic components are even more controversial. However, based on the current research results, we believed that any single component in P. multiflorum could not directly lead to liver injury, but may be the synergistic effect of multiple components. In addition, the toxicity mechanism also involved multiple targets. AIM OF THE STUDY This study aimed to elucidate the mechanism and target of the hepatotoxicity of P. multiflorum. MATERIALS AND METHODS In this study, the manifestations of liver injury triggered by P. multiflorum and the associated metabolic enzymes/transporters in the metabolic pathways of bilirubin and bile acid were investigated to elucidate the mechanism and target of the hepatotoxicity of P. multiflorum and related components. First, the hepatotoxicity and potential effect of P. multiflorum on both metabolic pathways were studied in rats administered P. multiflorum extracts (in 70% ethanol) for 42 days. Then, in vitro cultured hepatocyte spheroids were used to determine the hepatotoxicity of monomer components. RESULTS This revealed that P. multiflorum could simultaneously block bilirubin(BIL) and bile acid(BA) metabolism pathways, subsequently leading to liver damage. The targets and modes of action include reducing the activity of UGT1A1, the only metabolic enzyme of BIL, downregulating BIL and BA uptake transporters NTCP, OATP1B1, OATP1B3, efflux transporters MRP2, and BSEP, and upregulating efflux transporter MRP3. Furthermore, our data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside (TSG) and emodin-8-O-β-D-glucoside (EG) are the main toxic components in P. multiflorum. TSG accounts for 3.71% of the total content of P. multiflorum. In addition to markedly downregulating UGT1A1, TSG can upregulate OATP1B1/3 and promote the uptakes of bilirubin and bile acid, producing synergistic toxicity. EG accounts for 0.29% of the total content and demonstrates direct hepatotoxicity and extensive substrate overlap with bilirubin and bile acids. It can affect these two metabolic pathways simultaneously, promoting the accumulation of both bilirubin and bile acid for further toxic effects. Emodin is other major component, accounting for 0.01% of the total content, and its hepatotoxicity mechanisms include direct toxicity and inhibitory effects on bilirubin metabolizing enzymes. However, emodin is mainly distributed in the kidneys, so its hepatotoxicity risk is relatively low. CONCLUSION The simultaneous blockade of bilirubin and bile acid metabolic pathways as the critical toxic mechanism of P. multiflorum-induced liver injury, and potential toxic components were TSG and EG.
Collapse
Affiliation(s)
- Qi Wang
- Beijing University of Chinese Medicine, Beijing, China; National Institutes for Food and Drug Control, Beijing, China
| | - Hairuo Wen
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China.
| | - Yujie Zhang
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
27
|
Zhao J, Wang J, Liu J, Li S, Liu P, Zhang X. Effect and mechanisms of kaempferol against endometriosis based on network pharmacology and in vitro experiments. BMC Complement Med Ther 2022; 22:254. [PMID: 36184634 PMCID: PMC9528065 DOI: 10.1186/s12906-022-03729-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Endometriosis is a common gynecological disease, and its underlying mechanisms remain elusive. Patients are at a higher risk of recurrence after surgery or drug withdrawal. In this study, to identify a potentially effective and safe therapy for endometriosis, we screened potential target genes of kaempferol on endometriosis using network pharmacology and further validation. Network pharmacology showed kaempferol may suppress migratory and invasive properties by modulating the phosphoinositide 3-kinase (PI3K) pathway and its downstream target matrix metalloproteinase (MMP)9. Furthermore, in vitro experiments showed that kaempferol repressed the migration and invasion of endometrial cells, and this effect may be involved in mediating the PI3K-related genes, phosphatase and tensin homolog (PTEN) and MMP9. Network pharmacology and in vitro experiments showed that kaempferol, repressed the implantation of endometrial cells and formation of ectopic lesions by inhibiting migration and invasion and regulating PTEN and MMP9, which may be associated with the PI3K pathway.
Collapse
Affiliation(s)
- Junde Zhao
- grid.452402.50000 0004 1808 3430Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012 China ,grid.452402.50000 0004 1808 3430Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012 China ,grid.464402.00000 0000 9459 9325First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Juntao Wang
- grid.452402.50000 0004 1808 3430Division of Hand and Foot Surgery, Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Jinxing Liu
- grid.464402.00000 0000 9459 9325First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Shuling Li
- grid.452402.50000 0004 1808 3430Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Pengfei Liu
- grid.464402.00000 0000 9459 9325First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiaodan Zhang
- grid.452402.50000 0004 1808 3430Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012 China
| |
Collapse
|
28
|
Yu J, Chen W, Zhao L, Yue T, Yang W, Wang X. Efficient separation of anti-inflammatory isolates from Polygonti rhizome by three different modes of high-speed counter-current chromatography. J Sep Sci 2022; 45:4012-4022. [PMID: 36136041 DOI: 10.1002/jssc.202200545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022]
Abstract
Successful isolation of 15 compounds from Polygonti rhizome was obtained by an efficient technique combined with macroporous resin column chromatography pretreatment and three different modes of high-speed counter-current chromatography for the first time. For the pretreatment, AB-8 resin was applied to remove the polysaccharides and enrich four different parts (samples I, II, III, and IV) by polarities. For the separation, sample I was separated by pH-zone-refining counter-current chromatography and seven cycle recycling mode high-speed counter-current chromatography, yielding four alkaloids (1--4); samples II-IV were further separated by the conventional high-speed counter-current chromatography, yielding seven flavonoids (5-10, 12), one steroid saponin (11), and three terpenoids (13-15). Finally, the isolates were assayed for their anti-inflammatory activities against nitric oxide production with compounds 5, 9-10, 13 showing significant anti-inflammatory activities, IC50 values which were 13.0, 16.2, 17.1, and 14.7 μM, respectively, while others showing moderate and weak anti-inflammatory activities, respectively.
Collapse
Affiliation(s)
- Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Wenxiu Chen
- Weifang Engineering Vocational College, Weifang, P. R. China
| | - Lei Zhao
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Tao Yue
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Wencui Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
29
|
Luo M, Hu Z, Zhong Z, Liu L, Lin C, He Q. Chemical Structures and Pharmacological Properties of Typical Bioflavonoids in Polygonati Rhizoma (PGR). JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:4649614. [PMID: 36570783 PMCID: PMC9788903 DOI: 10.1155/2022/4649614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/05/2023]
Abstract
Most medicines are coming with toxic and detrimental side effects. In addition, microbials are resisting the medicine. Therefore, alternative drugs with low toxic and side effects and low microbial resistance are needed. Plants offer good potential candidates due to a broad range of chemicals they contain. These chemicals have been studied, and research is still going on to probe chemical properties of plant chemicals. In China, traditional Chinese medicine is practised, whereby plant extracts are obtained, and then sold in packages for reasons like memory enhancement, cancer treatment, boosting immune system, and so on. Among the herbs cultivated in China is Polygonati rhizoma (PGR). This plant contains various bioflavonoids such as diosgenin, kaempferol, catechin, daidzein, and 3'-methoxydaidzein. In this review, we discussed the pharmacological effects of these chemicals, including luteolin antimicrobial activity in a manner that it circumvents antibiotic resistance; rutin antivenom property; kaempferol as an agent that mitigates neuropathic pain; genistein anticancer property; isorhamnetin's ability to alleviate chronic obstructive pulmonary diseases (COPD); proanthocyanidins' ability to deal with diabetic neuropathy and analgesic property of catechin.
Collapse
Affiliation(s)
- Min Luo
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- Institute of 5G Health Management with Synergy of Chinese and Western Medicine, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- Department of Nephrology, The Second Xiangya Hospital, Changsha, 410011 Hunan Province, China
| | - Zongren Hu
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- Institute of 5G Health Management with Synergy of Chinese and Western Medicine, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Changsha, 410208 Hunan Province, China
| | - Zixuan Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Changsha, 410208 Hunan Province, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Changsha, 410208 Hunan Province, China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua, 418099 Hunan Province, China
| | - Qinghu He
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- Institute of 5G Health Management with Synergy of Chinese and Western Medicine, Hunan University of Medicine, Huaihua, 418000 Hunan Province, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Changsha, 410208 Hunan Province, China
| |
Collapse
|
30
|
Ruchawapol C, Fu WW, Xu HX. A review on computational approaches that support the researches on traditional Chinese medicines (TCM) against COVID-19. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154324. [PMID: 35841663 PMCID: PMC9259013 DOI: 10.1016/j.phymed.2022.154324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprecedentedly disrupting global economies and societies, and the urgent development of new antiviral medications are required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of them was fast and fully developed. PURPOSE This study examined the computational approaches that have played a significant role in drug discovery and development against COVID-19, and these computational methods and tools will be helpful for the discovery of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the prevention and control of the other diseases. METHODS A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as eligible articles. RESULTS In this review, we highlight three main categories of computational approaches including structure-based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, respectively. Network-based approaches were mainly provided to help readers understanding the complex mechanisms of multiple TCM ingredients, targets, diseases, and networks. CONCLUSION Computational approaches have been broadly applied to the research of phytochemicals and TCM against COVID-19, and played a significant role in drug discovery and development in terms of the financial and time saving.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| |
Collapse
|
31
|
Anti-inflammatory properties of novel galloyl glucosides isolated from the Australian tropical plant Uromyrtus metrosideros. Chem Biol Interact 2022; 368:110124. [PMID: 36007634 DOI: 10.1016/j.cbi.2022.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Two new galloyl glucosides, galloyl-lawsoniaside A (4) and uromyrtoside (6), were isolated from the polar fraction of Uromyrtus metrosideros leaf extract along with another four previously identified phytochemicals (1, 2, 3, and 5). The structures of these six compounds were characterised using low and high-resolution mass spectrometry (L/HRMS) and 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. These compounds were not toxic to human peripheral blood mononuclear cells (PBMCs) at 10 μg/mL over 24 h, yet showed significant in vitro suppression of proinflammatory cytokines involved in the pathogenesis of inflammatory bowel disease (IBD). Specifically, the release of interferon γ (IFN-γ), interleukin (IL)-17A, and IL-8 from phorbol myristate acetate/ionomycin (P/I) and anti-CD3/anti-CD28-activated cells were significantly suppressed by compounds 4 and 5. Interestingly, no effect on tumour necrosis factor (TNF) release was observed. These results show that the newly characterised compound 4 has promising cytokine suppressive properties, which could be further investigated as a candidate for IBD treatment.
Collapse
|
32
|
Madikyzy M, Tilegen M, Nazarbek G, Mu C, Kutzhanova A, Li X, Ma C, Xie Y. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12:14296. [PMID: 35995784 PMCID: PMC9395372 DOI: 10.1038/s41598-022-15338-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Honghua (Carthami flos) and Xihonghua (Croci stigma) have been used in anti-COVID-19 as Traditional Chinese Medicine, but the mechanism is unclear. In this study, we applied network pharmacology by analysis of active compounds and compound-targets networks, enzyme kinetics assay, signaling pathway analysis and investigated the potential mechanisms of anti-COVID-19. We found that both herbs act on signaling including kinases, response to inflammation and virus. Moreover, crocin likely has an antiviral effect due to its high affinity towards the human ACE2 receptor by simulation. The extract of Honghua and Xihonghua exhibited nanozyme/herbzyme activity of alkaline phosphatase, with distinct fluorescence. Thus, our data suggest the great potential of Honghua in the development of anti-COVID-19 agents.
Collapse
Affiliation(s)
- Malika Madikyzy
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Nur-Sultan, Republic of Kazakhstan
| | - Meruyert Tilegen
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Nur-Sultan, Republic of Kazakhstan
| | - Guldan Nazarbek
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Nur-Sultan, Republic of Kazakhstan
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Aidana Kutzhanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Nur-Sultan, Republic of Kazakhstan
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000, Nur-Sultan, Republic of Kazakhstan.
| |
Collapse
|
33
|
Wang F, Chen H, Hu Y, Chen L, Liu Y. Integrated comparative metabolomics and network pharmacology approach to uncover the key active ingredients of Polygonati rhizoma and their therapeutic potential for the treatment of Alzheimer’s disease. Front Pharmacol 2022; 13:934947. [PMID: 35991900 PMCID: PMC9385993 DOI: 10.3389/fphar.2022.934947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) has become a worldwide disease affecting human health and resulting in a heavy economic burden on the healthcare system. Polygonati rhizoma (PR), a kind of traditional Chinese medicine (TCM), is known to improve learning and memory abilities. However, its AD-treating material basis and therapeutic potential for the treatment of AD have remained unclear. Therefore, the present study aimed to uncover the key active ingredients of PR and its therapeutic potential for the treatment of AD. First, we used comparative metabolomics to identify the potential key active ingredients in the edible and medicinal PR. Second, network pharmacology was used to decipher the effects and potential targets of key active ingredients in the PR for the treatment of AD, and molecular docking was further used to identify the binding ability of those active ingredients with AD-related target of AChE. The rate of acetylcholinesterase (AChE) inhibition, oxidative stress, neuroprotective effects, and anti-inflammatory activity were assessed in vitro to screen the potential active ingredients in the PR with therapeutic potential against AD. Finally, APPswe/PS1dE9 AD mice were used to screen the therapeutic components in the PR. Seven overlapping upregulated differential metabolites were identified as the key active ingredients, among which cafestol, isorhamnetin, and rutin have AChE inhibitory activity, anti-inflammatory activity, and neuroprotective effects in vitro validation assays. Furthermore, in vivo results showed that cafestol, isorhamnetin, and rutin displayed several beneficial effects in AD transgenic mice by reducing the number of Aβ-positive spots and the levels of inflammatory cytokines, inhibiting the AChE activity, and increasing the antioxidant levels. Each compound is involved in a different function in the early stages of AD. In conclusion, our results corroborate the current understanding of the therapeutic effects of PR on AD. In addition, our work demonstrated that the proposed network pharmacology-integrated comparative metabolomics strategy is a powerful way of identifying key active ingredients and mechanisms contributing to the pharmacological effects of TCM.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Youping Liu,
| | | |
Collapse
|
34
|
Zheng S, Xue T, Wang B, Guo H, Liu Q. Application of network pharmacology in the study of the mechanism of action of traditional chinese medicine in the treatment of COVID-19. Front Pharmacol 2022; 13:926901. [PMID: 35991891 PMCID: PMC9387999 DOI: 10.3389/fphar.2022.926901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Network pharmacology was rapidly developed based on multidisciplinary holistic analysis of biological systems, which has become a popular tool in traditional Chinese medicine (TCM) research in recent years. Its characteristics of integrity and systematization provide a new approach for the study on complex TCM systems, which has many similarities with the holistic concept of TCM. It has been widely used to explain the mechanism of TCM treatment of diseases, drug repositioning, and interpretation of compatibility of TCM prescriptions, to promote the modernization of TCM. The use of TCM have provided crucial support on prevention and treatment of diseases such as the famous “three medicines and three prescriptions”. Furthermore, TCM has become an important part of the treatment of COVID-19 and is one of the main contents of the “Chinese plan” to fight the epidemic. The current review demonstrated the role of TCM in treating diseases with multiple components, multiple targets, and multiple pathways, interprets the connotation of TCM treatment method selection based on pathogenesis and also discusses the application of network pharmacology in the study of COVID-19 treatment in TCM including single drug and prescription. However, there are still some shortcomings such as the lack of experimental verification and regular upgrading of the TCM pharmacology network. Therefore, we must pay attention to the characteristics of TCM and develop a network pharmacology method suitable for TCM system research when applying network pharmacology to TCM research.
Collapse
Affiliation(s)
- Shihao Zheng
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Tianyu Xue
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Bin Wang
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Haolin Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Qiquan Liu
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- Department of Spleen and Stomach, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qiquan Liu,
| |
Collapse
|
35
|
Protective effect and mechanism of cannabidiol on myocardial injury in exhaustive exercise training mice. Chem Biol Interact 2022; 365:110079. [PMID: 35926578 DOI: 10.1016/j.cbi.2022.110079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Cannabinoid diphenol (CBD) is a non-toxic main component extracted from cannabis, which has the effects of anti-inflammatory, anti-apoptosis and anti-oxidative stress. In recent years, exercise-induced myocardial injury has become a research hotspot in the field of sports medicine and sports physiology. Exercise-induced myocardial injury is closely related to oxidative stress, inflammatory response and apoptosis. However, there is no clear evidence of the relationship between CBD and exercise-induced myocardial injury. In this study, by establishing an animal model of exhaustive exercise training in mice, the protective effect of CBD on myocardial injury in mice was elaborated, and the possible molecular mechanism was discussed. After CBD intervention, the arrangement and rupture of myocardial fiber tissue and the degree of inflammatory cell infiltration were reduced, the deposition of collagen fibers in myocardial tissue decreased. CBD can also significantly inhibit cardiac hypertrophy. Meanwhile, the expression of IL-6, IL-10, TNF-α, Bax, Caspase-3, Bcl-2, MDA-5, IRE-1α, NOX-2, SOD-1, Keap1, Nrf2, HO-1, NF-κB and COX-2 was recovered to normal. In addition, after CBD intervention, the protein expression of Keap1 was down-regulated, the translocation of Nrf2 from the cytoplasm to the nucleus was significantly increased, then the transcriptional activity was increased, and the expression of the downstream HO-1 antioxidant protein was increased, indicating that CBD may improve the cardiac function of exhaustive exercise training mice by activating Keap1/Nrf2/HO-1 signaling pathway. Molecular docking results also confirmed that CBD had a good binding effect with Keap1/Nrf2/HO-1 signaling pathway proteins. In conclusion, the protective mechanism of CBD on myocardial injury in exhaustive exercise training mice may be to activate Keap1/Nrf2/HO-1 signaling pathway, and then exert anti-inflammatory, anti-apoptosis and inhibition of oxidative stress.
Collapse
|
36
|
Determination of Therapeutic and Safety Effects of Zygophyllum coccineum Extract in Induced Inflammation in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7513155. [PMID: 35898689 PMCID: PMC9314163 DOI: 10.1155/2022/7513155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Background Z. coccineum is a facultative plant with many medicinal applications. This study examined the anti-inflammatory activity of Zygophyllum coccineum (Z. coccineum) in an arthritis animal model. Materials and Methods Seventy-Six Wistar Albino rats of either sex randomly divided into six groups (12/each). The inflammation model was done using Complete Freund's Adjuvant in albino rats. The anti-inflammatory activities of the extract were estimated at different dose levels (15.6, 31, and 60 mg/kg) as well as upon using methotrexate (MTX) as a standard drug (0.3 mg/kg). Paw volume and arthritis index scores have been tested in all examined animals' treatments. Histological examination of joints was also performed. Flow cytometric studies were done to isolated osteoclasts. Cytokines assay as well as biochemical testing was done in the examined samples. Results. In vitro studies reported an IC50 of 15.6 μg/ml for Z. coccineum extract in lipoxygenase inhibition assay (L.O.X.). Moreover, it could be noticed that isorhamnetin-3-O-glucoside, tribuloside, and 7-acetoxy-4-methyl coumarin were the most common compounds in Z. coccineum extract separated using L.C.–ESI-TOF–M.S. (liquid chromatography-electrospray ionization ion-trap time-of-flight mass spectrometry). Microscopic examinations of synovial tissue and hind limb muscles revealed the effect of different doses of Z. coccineum extract on restoring chondrocytes and muscles structures. Osteoclast size and apoptotic rate examinations revealed the protective effect of Z. coccineum extract on osteoclast. The results upon induction of animals and upon treatment using of MTX significantly increased apoptotic rate of osteoclast compared to control, while using of 15.6 μg/ml. for Z. coccineum extract lead to recover regular apoptotic rate demonstrating the protective effect of the extract. Z. coccineum extract regulated the secretion of proinflammatory and anti-inflammatory cytokines. Biochemical tests indicated the safety of Z. coccineum extract on kidney and liver functions. Conclusion. Z. coccineum extract has efficient and safe anti-inflammatory potential in an induced rat model.
Collapse
|
37
|
Wang L, Bao Y, Tong H, Zhang K, Cheng Y, Jin H, Shi J, Wang T, Wang H, Chen G, Wang C. Traditional Mongolian medicine (HHQG) attenuates CCl 4-induced acute liver injury through inhibiting monocyte/macrophage infiltration via the p-P38/p-JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115152. [PMID: 35240240 DOI: 10.1016/j.jep.2022.115152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honghua Qinggan 13 Flavor Pills (HHQG), whose Mongolian name is Guri Gumu-13, is a traditional Mongolian medicine, that was stated in the "Diagnosis and Treatment of Ming Medical Code". The HHQG has been included in the Mongolian Medicine Division of the Ministry of Health Drug Standards (1998 edition). Based on our clinical expertise, HHQG demonstrated satisfactory therapeutic effects in hepatitis and liver failure. However, the pharmacological effects and potential mechanisms of HHQG have not been investigated. AIM OF THE STUDY In this study, we combined network pharmacology, transcriptomics, and molecular biology to detect the underlying mechanism for the effect of HHQG on acute liver injury in mice. MATERIALS AND METHODS Network pharmacology was used to explore the pathways involved in the protective effect HHQG in acute liver injury. This effect was further verified by injecting carbon tetrachloride (CCl4; 10 mL/kg, i.p.) to induce acute liver injury in mice. Serum markers of liver injury, morphology, histology, and monocyte/macrophage infiltration in the liver tissue were investigated. Transcriptomics further defined the HHQG targets. Transwell analysis was performed to confirm that HHQG inhibited monocyte/macrophage RAW.264.7 infiltration. qPCR and Western blot were performed to explore the mechanism of action of HHQG. RESULTS Network pharmacology showed that HHQG exerted anti-oxidative and anti-inflammatory effects and promoted metabolic effects against acute liver injury. Pretreatment of mice with HHQG significantly maintained their body weight and decreased serum tumor necrosis factor-alpha (TNF-α) levels induced by CCl4 treatment in vivo. Histopathological examination further confirmed that HHQG protected the liver cells from CCl4-induced damage. Importantly, HHQG significantly inhibited CCl4-induced monocyte/macrophage infiltration. Transcriptomic analysis revealed that HHQG significantly reduced the expression of chemokines and cell adhesion molecules. We determined that HHQG significantly downregulated the expression of the key chemokine (monocyte chemokine protein-1, CCL2) at the gene and protein levels. Further research showed that HHQG inhibited chemokine production in hepatocytes by inhibiting the p-P38 and p-JNK pathways, thereby reducing monocyte/macrophage infiltration. CONCLUSIONS These combined data showed that HHQG alleviated acute liver injury in mice, and further verified that HHQG exerted protective effects by inhibiting the production of CCL2 and reducing the infiltration of monocyte/macrophage by inhibiting the p-P38 and p-JNK pathways.
Collapse
Affiliation(s)
- Li Wang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
| | - Yulong Bao
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - He Tong
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Kefan Zhang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Yipeng Cheng
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Haowei Jin
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Jing Shi
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, 010065, China
| | - Haisheng Wang
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Guilin Chen
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China.
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China; Affiliated Hospital, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028007, China.
| |
Collapse
|
38
|
Hong L, He M, Li S, Zhao J. Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chin Med 2022; 17:84. [PMID: 35799189 PMCID: PMC9261255 DOI: 10.1186/s13020-022-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lianhua Qingwen Capsules (LHQW) is a traditional Chinese medicine prescription commonly used to treat viral influenza in China. There has been sufficient evidence that LHQW could effectively treat COVID-19. Nevertheless, the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds in LHQW are still vague. METHODS The compounds of LHQW and targets were collected from TCMSP, TCMID, Shanghai Institute of Organic Chemistry of CAS database, and relevant literature. Autodock Vina was used to carry out molecular docking. The pkCSM platform to predict the relevant parameters of compound absorption in vivo. The protein-protein interaction (PPI) network was constructed by the STRING database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was carried out by Database for Annotation, Visualization, and Integrated Discovery (DAVID). The anti-(mutant) SARS-CoV-2 and anti-inflammation networks were constructed on the Cytoscape platform. RESULTS 280 compounds, 16 targets related to SARS-CoV-2, and 54 targets related to cytokine storm were obtained by screening. The key pathways Toll-like receptor signaling, NOD-like receptor signal pathway, and Jak-STAT signaling pathway, and the core targets IL6 were obtained by PPI network and KEGG pathway enrichment analysis. The network analysis predicted and discussed the 16 main anti-SARS-CoV-2 active compounds and 12 main anti-inflammation active compounds. Ochnaflavone and Hypericin are potential anti-mutant virus compounds in LHQW. CONCLUSIONS In summary, this study explored the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of LHQW against COVID-19, which can provide new ideas and valuable references for discovering active compounds in the treatment of COVID-19.
Collapse
Affiliation(s)
- Liang Hong
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Min He
- grid.412982.40000 0000 8633 7608Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Shaoping Li
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jing Zhao
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
39
|
Lu YC, Tseng LW, Huang YC, Yang CW, Chen YC, Chen HY. The Potential Complementary Role of Using Chinese Herbal Medicine with Western Medicine in Treating COVID-19 Patients: Pharmacology Network Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070794. [PMID: 35890093 PMCID: PMC9323801 DOI: 10.3390/ph15070794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in 2019—coronavirus disease (COVID-19). More and more Western medicine (WM) and Chinese herbal medicine (CHM) treatments have been used to treat COVID-19 patients, especially among Asian populations. However, the interactions between WM and CHM have not been studied. This study aims at using the network pharmacology approach to explore the potential complementary effects among commonly used CHM and WM in a clinical setting from a biomolecular perspective. Three well-published and widely used CHM formulas (National Research Institute of Chinese Medicine 101 (NRICM101), Qing-Fei-Pai-Du-Tang (QFPDT), Hua-Shi-Bai-Du-Formula (HSBDF)) and six categories of WM (Dexamethasone, Janus kinase inhibitors (JAKi), Anti-Interleukin-6 (Anti-IL6), anticoagulants, non-vitamin K antagonist oral anticoagulants (NOAC), and Aspirin) were included in the network pharmacology analysis. The target proteins on which these CHM and WM had direct effects were acquired from the STITCH database, and the potential molecular pathways were found in the REACTOME database. The COVID-19-related target proteins were obtained from the TTD database. For the three CHM formulas, QFPDT covered the most proteins (714), and 27 of them were COVID-19-related, while HSBDF and NRICM101 covered 624 (24 COVID-19-related) and 568 (25 COVID-19-related) proteins, respectively. On the other hand, WM covered COVID-19-related proteins more precisely and seemed different from CHM. The network pharmacology showed CHM formulas affected several inflammation-related proteins for COVID-19, including IL-10, TNF-α, IL-6, TLR3, and IL-8, in which Dexamethasone and Aspirin covered only IL-10 and TNF-α. JAK and IL-6 receptors were only inhibited by WM. The molecular pathways covered by CHM and WM also seemed mutually exclusive. WM had advantages in cytokine signaling, while CHM had an add-on effect on innate and adaptive immunity, including neutrophil regulation. WM and CHM could be used together to strengthen the anti-inflammation effects for COVID-19 from different pathways, and the combination of WM and CHM may achieve more promising results. These findings warrant further clinical studies about CHM and WM use for COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yi-Chin Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Liang-Wei Tseng
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Yu-Chieh Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
40
|
Rathod NB, Elabed N, Özogul F, Regenstein JM, Galanakis CM, Aljaloud SO, Ibrahim SA. The Impact of COVID-19 Pandemic on Seafood Safety and Human Health. Front Microbiol 2022; 13:875164. [PMID: 35814679 PMCID: PMC9257084 DOI: 10.3389/fmicb.2022.875164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Charis M. Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Sulaiman Omar Aljaloud
- College of Sports Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, 171 Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, United States
| |
Collapse
|
41
|
Al-Kuraishy HM, Al-Hussaniy HA, Al-Gareeb AI, Negm WA, El-Kadem AH, Batiha GES, N. Welson N, Mostafa-Hedeab G, Qasem AH, Conte-Junior CA. Combination of Panax ginseng C. A. Mey and Febuxostat Boasted Cardioprotective Effects Against Doxorubicin-Induced Acute Cardiotoxicity in Rats. Front Pharmacol 2022; 13:905828. [PMID: 35814241 PMCID: PMC9257079 DOI: 10.3389/fphar.2022.905828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer agent for treating solid and soft tissue malignancies. However, the clinical use of DOX is restricted by cumulative, dose-dependent cardiotoxicity. Therefore, the present study aimed to assess the cardioprotective effects of P. ginseng C. A. Mey, febuxostat, and their combination against DOX-induced cardiotoxicity. Thirty-five Sprague Dawley male rats were used in this study. The animals were randomly divided into five groups, with seven rats per group. The control group received normal saline, the induced group received DOX only, and the treated group received P. ginseng, febuxostat, and their combination before DOX treatment. Biomarkers of acute cardiac toxicity were assessed in each group. Results showed that treatment with the combination of febuxostat and P. ginseng before DOX led to a significant improvement in the biomarkers of acute DOX-induced cardiotoxicity. In conclusion, the combination of P. ginseng and febuxostat produced more significant cardioprotective effects against DOX-induced cardiotoxicity when compared to either P. ginseng or febuxostat when used alone. The potential mechanism of this combination was mainly mediated by the anti-inflammatory and antioxidant effects of P. ginseng and febuxostat.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | | | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya H. El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed H Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
43
|
Luo W, Ding R, Guo X, Zhan T, Tang T, Fan R, Wang Y. Clinical data mining reveals Gancao-Banxia as a potential herbal pair against moderate COVID-19 by dual binding to IL-6/STAT3. Comput Biol Med 2022; 145:105457. [PMID: 35366469 PMCID: PMC8957363 DOI: 10.1016/j.compbiomed.2022.105457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) keeps spreading globally. Chinese medicine (CM) exerts a critical role for the prevention or therapy of COVID-19 in an integrative and holistic way. However, mining and development of early, efficient, multisite binding CMs that inhibit the cytokine storm are imminent. METHODS The formulae were extracted retrospectively from clinical records in Hunan Province. Clinical data mining analysis and association rule analysis were employed for mining the high-frequency herbal pairs and groups from formulae. Network pharmacology methods were applied to initially explore the most critical pair's hub targets, active ingredients, and potential mechanisms. The binding power of active ingredients to the hub targets was verified by molecular docking. RESULTS Eight hundred sixty-two prescriptions were obtained from 320 moderate COVID-19 through the Hunan Provincial Health Commission. Glycyrrhizae Radix et Rhizoma (Gancao) and Pinelliae Rhizoma (Banxia) were used with the highest frequency and support. There were 49 potential genes associated with Gancao-Banxia pair against moderate COVID-19 patients. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that Gancao-Banxia might act via inflammatory response, viral defense, and immune responses signaling pathways. IL-6 and STAT3 were the two most hub targets in the protein-protein interaction (PPI) network. The binding of five active ingredients originated from Gancao-Banxia to IL-6-STAT3 was verified by molecular docking, namely quercetin, coniferin, licochalcone a, Licoagrocarpin and (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, maximizing therapeutic efficacy. CONCLUSIONS This work provided some potential candidate Chinese medicine formulas for moderate COVID-19. Among them, Gancao-Banxia was considered the most potential herbal pair. Bioinformatic data demonstrated that Gancao-Banxia pair may achieve dual inhibition of IL-6-STAT3 via directly interacting with IL-6 and STAT3, suppressing the IL-6 amplifier. SARS-CoV-2 models will be needed to validate this possibility in the future.
Collapse
Affiliation(s)
- Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Ruoqi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xiaohang Guo
- Hunan University of Chinese Medicine, Changsha, 410008, PR China
| | - Tao Zhan
- Department of Integrated TCM and Western Medicine, The First Hospital of Changsha, Changsha, 410005, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Rong Fan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China,Corresponding author. Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China,Corresponding author. Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| |
Collapse
|
44
|
Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X, Meng X. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol 2022; 925:175015. [PMID: 35561751 DOI: 10.1016/j.ejphar.2022.175015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Salidroside (Sal), an active ingredient from Rhodiola crenulate, has been reported to exert neuroprotection in cerebral injury from hypobaric hypoxia (HH) at high altitude. However, it remains to be understood whether its protective effects are related to inflammation suppression. In the present work, we aimed to reveal the mechanism of Sal attenuating HH-induced brain injury in mice caused by an animal hypobaric and hypoxic chamber. Our results provided that Sal could attenuate HH-evoked pathological injury and oxidative stress response by decreasing the content of ROS and MDA, and elevating the activities of SOD and GSH-Px. Sal treatment could partly enhance the energy metabolism, evidenced by increasing the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, ATP, SDH, HK and PK, while decreasing the release of LDH and LD. Meanwhile, Sal administration reversed the degradation of tight junction proteins ZO-1, Occludin and Claudin-5. Further, the increased levels of TNF-α, IL-1β and IL-6 were confined with Sal administration under the HH condition. Importantly, Sal could downregulate the proteins expression of p-NF-κB-p65, NLRP3, cleaved-Caspase-1 and ASC. Sal also decreased the protein expression of iNOS and COX2 with the increased CD206 and Arg1 expression. Taken together, these data provided that the inhibited NF-κB/NLRP3 pathway by Sal could attenuate HH-induced cerebral oxidative stress injury, inflammatory responses and the blood brain barrier (BBB) damage, attributing to the improved energy metabolism and the microglial phenotype of anti-inflammatory M2. The findings suggested that Sal was expected to be a promising anti-inflammatory agent for high altitude HH-induced brain injury.
Collapse
Affiliation(s)
- Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lu Yang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ke Chen
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihao Sun
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nanjia Cairang
- University of Tibetan Medicine, Lasa, Tibet, 850000, China.
| | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
45
|
Wang L, Xiong F, Zhao S, Yang Y, Zhou G. Network pharmacology combined with molecular docking to explore the potential mechanisms for the antioxidant activity of Rheum tanguticum seeds. BMC Complement Med Ther 2022; 22:121. [PMID: 35505340 PMCID: PMC9066831 DOI: 10.1186/s12906-022-03611-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rheum tanguticum (R. tanguticum) is an edible and medicinal plant that exhibits high antioxidant activity. The purpose of the present study was to investigate the bioactive components of its seeds and the potential mechanisms of antioxidant activity to provide a foundation for further developmental work on R. tanguticum seeds as a functional food. METHODS In this study, the antioxidant activities of R. tanguticum seeds were measured using DPPH, ABTS and FRAP assays. LC-Q-TOF/MS was used to identify the active compounds in the seeds, and Swiss Target Prediction was used to identify their potential targets. The DisGENET, DrugBank, OMIM and GeneCard databases were used to search for antioxidant-related targets. RESULTS The component-target-pathway network was constructed and included 5 compounds and 9 target genes. The hub genes included ESR1, APP, MAPK8, HSP90AA1, AKT1, MMP2, PTGS2, TGFB1 and JUN. The antioxidant activity signaling pathways of the compounds for the treatment of diseases were the cancer signaling pathway, estrogen signaling pathway, colorectal cancer signaling pathway, MAPK signaling pathway, etc. Molecular docking revealed that the compounds in R. tanguticum seeds could inhibit potential targets (AKT1, ESR1 and PTGS2). CONCLUSION Molecular docking studies revealed that the binding energy score between liriodenine and PTGS2 was the highest (8.16), followed by that of chrysophanol (7.10). This result supports the potential for PTGS2-targeted drug screening and design.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuo Zhao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
46
|
Kazybay B, Sun Q, Dukenbayev K, Nurkesh AA, Xu N, Kutzhanova A, Razbekova M, Kabylda A, Yang Q, Wang Q, Ma C, Xie Y. Network Pharmacology with Experimental Investigation of the Mechanisms of Rhizoma Polygonati against Prostate Cancer with Additional Herbzymatic Activity. ACS OMEGA 2022; 7:14465-14477. [PMID: 35531567 PMCID: PMC9069460 DOI: 10.1021/acsomega.1c03018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 05/12/2023]
Abstract
A combination therapy of Rhizoma Polygonati (RP) with goji (Lycium chinense) has earned a long history in the prescriptions to promote male health. However, the mechanisms at both molecular and nanoscale quantum levels are unclear. Here, we found that processed RP extract induces apoptosis and cell cycle arrest in cancer cells, thereby inhibiting prostate cancer cell proliferation enhanced by processed goji extract associated with an augment of the nanoscale herbzyme of phosphatase. For network pharmacology analysis, RP-induced PI3K-AKT pathways are essential for both benign prostatic hyperplasia and prostate cancer, and the RP/goji combination induces potent pathways which include androgen and estrogen response, kinase regulation, apoptosis, and prostate cancer singling. In addition, the experimental investigation showed that the prostate cancer cells are sensitive to RP extract for inhibiting colony formation. Finally, the natural compound baicalein found in RP ingredients showed a linked activity of top-ranked signaling targets of kinases including MAPK, AKT, and EGFR by the database of cMAP and HERB. Thus, both the nanozyme and ingredients might contribute to the RP in anti-prostate cancer which can be enhanced by goji extract. The proposed nanoscale RP extract might be of significance in developing novel anti-prostate cancer agents by combining goji compositions and targeted therapy compounds.
Collapse
Affiliation(s)
- Bexultan Kazybay
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qinglei Sun
- Key
Laboratory for Applied Technology of Sophisticated Analytical Instrument
of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| | - Kanat Dukenbayev
- School
of Engineering and Digital Science, Nazarbayev
University, Nur-Sultan 010000, Kazakhstan
| | - Ayan Amantaiuly Nurkesh
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Na Xu
- Key
Laboratory for Applied Technology of Sophisticated Analytical Instrument
of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| | - Aidana Kutzhanova
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Madina Razbekova
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Anar Kabylda
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qing Yang
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qian Wang
- Shandong
Taishanghuangjing Biotechnology Co. Ltd., Taian 271000, China
| | - Cuiping Ma
- Shandong
Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic
Acid Rapid Detection Engineering Research Center, College of Marine
Science and Biological Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Yingqiu Xie
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
47
|
Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114988. [PMID: 35032588 DOI: 10.1016/j.jep.2022.114988] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
48
|
Hu Y, Yin M, Bai Y, Chu S, Zhang L, Yang M, Zheng X, Yang Z, Liu J, Li L, Huang L, Peng H. An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red. FRONTIERS IN PLANT SCIENCE 2022; 13:891775. [PMID: 35519815 PMCID: PMC9062581 DOI: 10.3389/fpls.2022.891775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polygonati rhizoma (Huangjing in Chinese) is a traditional and classic dual-purpose material used in food and medicine. Herbalists in China and Japan have noticed several different rhizome types in Huangjing with different qualities. Rhizome of Polygonatum cyrtonema Hua and P. sibiricum Red. is divided into five types: "Jitou-type" Polygonati rhizoma (JTPR), atypical "Jitou-type" Polygonati rhizoma (AJTPR), "Jiang-type" Polygonati rhizoma (JPR), "Cylinder-type" Polygonati rhizoma (CPR), and "Baiji-type" Polygonati rhizoma (BJPR). This study observed the microstructure and histochemical localization of polysaccharides, saponins, and proteins in Huangjing. Nutritional and medicinal component data and antioxidant capacity (DPPH and ABTS) were analyzed to evaluate the quality of different types of Huangjing. The results showed that the comprehensive quality of the rhizomes, BJPR and JTPR, was better, regardless of their nutritional or medicinal values. Altogether, these results could recommend future breeding efforts to produce Huangjing with improved nutritional and medicinal qualities.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Yunjun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Lei Li
- Jinzhai Senfeng Agricultural Technology Development Co., Ltd., Lu’an, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| |
Collapse
|
49
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
50
|
Kang X, Jin D, Jiang L, Zhang Y, Zhang Y, An X, Duan L, Yang C, Zhou R, Duan Y, Sun Y, Lian F. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 2022; 17:30. [PMID: 35227280 PMCID: PMC8883015 DOI: 10.1186/s13020-022-00587-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), traditional Chinese medicine (TCM) has made an important contribution to the prevention and control of the epidemic. This review aimed to evaluate the efficacy and explore the mechanisms of TCM for COVID-19. We systematically searched 7 databases from their inception up to July 21, 2021, to distinguish randomized controlled trials (RCTs), cohort studies (CSs), and case–control studies (CCSs) of TCM for COVID-19. Two reviewers independently completed the screening of literature, extraction of data, and quality assessment of included studies. Meta-analysis was performed using Review Manager 5.4 software. Eventually, 29 RCTs involving 3060 patients and 28 retrospective studies (RSs) involving 12,460 patients were included. The meta-analysis demonstrated that TCM could decrease the proportion of patients progressing to severe cases by 55% and the mortality rate of severe or critical patients by 49%. Moreover, TCM could relieve clinical symptoms, curtail the length of hospital stay, improve laboratory indicators, and so on. In addition, we consulted the literature and obtained 149 components of Chinese medicinal herbs that could stably bind to antiviral targets or anti-inflammatory or immune-regulating targets by the prediction of molecular docking. It suggested that the mechanisms involved anti-virus, anti-inflammation, and regulation of immunity. Our study made a systematic review on the efficacy of TCM for COVID-19 and discussed the possible mechanisms, which provided clinical reference and theoretical basis for further research on the mechanism of TCM for COVID-19.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|