1
|
Wen H, Liu X, Zhao X, Zhao T, Feng C, Chang H, Wang J, Lin J. Evolutionary analysis of the DHHCs in Saccharinae. Sci Rep 2025; 15:2290. [PMID: 39833334 PMCID: PMC11756399 DOI: 10.1038/s41598-025-86463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The DHHC domain genes are crucial for protein lipid modification, a key post-translational modification influencing membrane targeting, subcellular trafficking, and protein function. Despite their significance, the DHHC gene family in Saccharinae remains understudied. Here, we identified 32 (110 alleles), 28, 53, and 48 DHHC genes in Saccharum spontaneum Np-X, Erianthus rufipilus, Miscanthus sinensis, and Miscanthus lutarioriparius, respectively. Collinearity analysis uncovered the loss of two M. lutarioriparius genes, homologues of EruDHHC1C and EruDHHC3A. Phylogenetic and classification analyses categorized DHHC family members into six subgroups (A-F). Ka/Ks ratio analysis indicated that gene duplication in these species was primarily driven by whole-genome duplication (WGD) and dispersed duplication (DSD), with DHHC genes evolving under strong purifying selection. Gene expression and trait correlation analysis revealed a significant negative correlation between SspDHHC28A expression in S. spontaneum and sucrose content, suggesting a role in photosynthesis product transport during rapid growth. This study deepens our understanding of the DHHC gene family's functional dynamics and evolutionary path in Saccharinae, laying a foundation for future research.
Collapse
Affiliation(s)
- Hao Wen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xinyu Liu
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xueting Zhao
- Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Tingting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101, Hainan, China
- Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Cuilian Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101, Hainan, China
- Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Zhanjiang Research Center,Guangdong Academy of Sciences, Guangzhou, 510000, Guangdong, China
| | - Jungang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101, Hainan, China.
- Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, Hainan, China.
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101, Hainan, China.
- Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, Hainan, China.
| |
Collapse
|
2
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
3
|
Guo X, Li J, Li M, Zhou B, Zheng S, Li L. A molecular module connects abscisic acid with auxin signals to facilitate seasonal wood formation in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:4323-4336. [PMID: 38963121 DOI: 10.1111/pce.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.
Collapse
Affiliation(s)
- Xulei Guo
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Li
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Li
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Zheng
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M. Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization versus hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1190-1205. [PMID: 39428689 DOI: 10.1111/tpj.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events. Although both events led to decreased selection pressure on homoeologous gene pairs (compared with diploids and tetraploids), the initial tetraploidization had a greater impact on selection pressure on homoeologous gene pairs than did subsequent hexaploidization. Consistent with this, selection pressure on expression patterns for the initial event relaxed more than those for the subsequent event. Surprisingly, the decreased selection pressure on these homoeologous genes was independent of the existence of in-paralogs within the same subgenome. Wheat homoeologous pairs had different evolutionary consequences compared with orthologs related to other mechanisms (ancient allopolyploidization, ancient autopolyploidization, and small-scale duplication). Furthermore, tetraploidization and hexaploidization also seemed to have different evolutionary consequences. This suggests that homoeologous genes retain unique functions, including functions that are unlikely to be preserved in genes generated by the other duplication mechanisms. We found that their unique functions differed between tetraploidization and hexaploidization (e.g., reproductive and chromosome segregation processes). These findings imply that the substantial number of gene pairs resulting from multiple allopolyploidization events, especially initial tetraploidization, may have been a unique source of functional divergence.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
5
|
Okay A, Kırlıoğlu T, Durdu YŞ, Akdeniz SŞ, Büyük İ, Aras ES. Omics approaches to understand the MADS-box gene family in common bean (Phaseolus vulgaris L.) against drought stress. PROTOPLASMA 2024; 261:709-724. [PMID: 38240857 PMCID: PMC11196313 DOI: 10.1007/s00709-024-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.
Collapse
Affiliation(s)
- Aybüke Okay
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Tarık Kırlıoğlu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Yasin Şamil Durdu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Sanem Şafak Akdeniz
- Kalecik Vocational School Plant Protection Program, Ankara University, Ankara, 06100, Turkey
| | - İlker Büyük
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| |
Collapse
|
6
|
Qiao Z, Deng F, Zeng H, Li X, Lu L, Lei Y, Li L, Chen Y, Chen J. MADS-Box Family Genes in Lagerstroemia indica and Their Involvement in Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:709. [PMID: 38475555 DOI: 10.3390/plants13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
MADS-box is a key transcription factor regulating the transition to flowering and flower development. Lagerstroemia indica 'Xiang Yun' is a new cultivar of crape myrtle characterized by its non-fruiting nature. To study the molecular mechanism underlying the non-fruiting characteristics of 'Xiang Yun', 82 MADS-box genes were identified from the genome of L. indica. The physicochemical properties of these genes were examined using bioinformatics methods, and their expression as well as endogenous hormone levels at various stages of flower development were analyzed. The results showed that LiMADS genes were primarily classified into two types: type I and type II, with the majority being type II that contained an abundance of cis-acting elements in their promoters. By screening nine core proteins by predicted protein interactions and performing qRT-PCR analysis as well as in combination with transcriptome data, we found that the expression levels of most MADS genes involved in flower development were significantly lower in 'Xiang Yun' than in the wild type 'Hong Ye'. Hormonal analysis indicated that 'Xiang Yun' had higher levels of iP, IPR, TZR, and zeatin during its early stages of flower development than 'Hong Ye', whereas the MeJA content was substantially lower at the late stage of flower development of 'Hong Ye'. Finally, correlation analysis showed that JA, IAA, SA, and TZR were positively correlated with the expression levels of most type II genes. Based on these analyses, a working model for the non-fruiting 'Xiang Yun' was proposed. During the course of flower development, plant hormone response pathways may affect the expression of MADS genes, resulting in their low expression in flower development, which led to the abnormal development of the stamen and embryo sac and ultimately affected the fruiting process of 'Xiang Yun'.
Collapse
Affiliation(s)
- Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Xuelu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liushu Lu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxing Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA
| |
Collapse
|
7
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Hu J, Chen Q, Idrees A, Bi W, Lai Z, Sun Y. Structural and Functional Analysis of the MADS-Box Genes Reveals Their Functions in Cold Stress Responses and Flower Development in Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2929. [PMID: 37631141 PMCID: PMC10458798 DOI: 10.3390/plants12162929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
MADS-box genes comprise a large family of transcription factors that play crucial roles in all aspects of plant growth and development. However, no detailed information on the evolutionary relationship and functional characterization of MADS-box genes is currently available for some representative lineages, such as the Camellia plant. In this study, 136 MADS-box genes were detected from a reference genome of the tea plant (Camellia sinensis) by employing a 569 bp HMM (Hidden Markov Model) developed using nucleotide sequencing including 73 type I and 63 type II genes. An additional twenty-seven genes were identified, with five MIKC-type genes. Truncated and/or inaccurate gene models were manually verified and curated to improve their functional characterization. Subsequently, phylogenetic relationships, chromosome locations, conserved motifs, gene structures, and gene expression profiles were systematically investigated. Tea plant MIKC genes were divided into all 14 major eudicot subfamilies, and no gene was found in Mβ. The expansion of MADS-box genes in the tea plant was mainly contributed by WGD/fragment and tandem duplications. The expression profiles of tea plant MADS-box genes in different tissues and seasons were analyzed, revealing widespread evolutionary conservation and genetic redundancy. The expression profiles linked to cold stress treatments suggested the wide involvement of MADS-box genes from the tea plant in response to low temperatures. Moreover, a floral 'ABCE' model was proposed in the tea plant and proved to be both conserved and ancient. Our analyses offer a detailed overview of MADS-box genes in the tea plant, allowing us to hypothesize the potential functions of unknown genes and providing a foundation for further functional characterizations.
Collapse
Affiliation(s)
- Juan Hu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (W.B.)
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Atif Idrees
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Institute of Entomology, Guizhou University, Guiyang 550025, China;
| | - Wanjun Bi
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (W.B.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (W.B.)
| |
Collapse
|
9
|
Chen J, Yang Y, Li C, Chen Q, Liu S, Qin B. Genome-Wide Identification of MADS-Box Genes in Taraxacum kok-saghyz and Taraxacum mongolicum: Evolutionary Mechanisms, Conserved Functions and New Functions Related to Natural Rubber Yield Formation. Int J Mol Sci 2023; 24:10997. [PMID: 37446175 DOI: 10.3390/ijms241310997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
MADS-box transcription regulators play important roles in plant growth and development. However, very few MADS-box genes have been isolated in the genus Taraxacum, which consists of more than 3000 species. To explore their functions in the promising natural rubber (NR)-producing plant Taraxacum kok-saghyz (TKS), MADS-box genes were identified in the genome of TKS and the related species Taraxacum mongolicum (TM; non-NR-producing) via genome-wide screening. In total, 66 TkMADSs and 59 TmMADSs were identified in the TKS and TM genomes, respectively. From diploid TKS to triploid TM, the total number of MADS-box genes did not increase, but expansion occurred in specific subfamilies. Between the two genomes, a total of 11 duplications, which promoted the expansion of MADS-box genes, were identified in the two species. TkMADS and TmMADS were highly conserved, and showed good collinearity. Furthermore, most TkMADS genes exhibiting tissue-specific expression patterns, especially genes associated with the ABCDE model, were preferentially expressed in the flowers, suggesting their conserved and dominant functions in flower development in TKS. Moreover, by comparing the transcriptomes of different TKS lines, we identified 25 TkMADSs related to biomass formation and 4 TkMADSs related to NR content, which represented new targets for improving the NR yield of TKS.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yushuang Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chuang Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiuhui Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shizhong Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bi Qin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
10
|
Yin L, Liu S, Sun W, Ke X, Zuo Y. Genome-wide identification of glutamate receptor genes in adzuki bean and the roles of these genes in light and rust fungal response. Gene 2023:147593. [PMID: 37364697 DOI: 10.1016/j.gene.2023.147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Plant glutamate receptor proteins (GLRs) are involved in plant development, biotic stress, and light-signal transduction. Vigna angularis is a traditional crop with important economic value in China, and the identification of functional genes can facilitate the breeding of stress resistant varieties. Here, we identified the members of the GLR gene family in the adzuki bean genome and investigated gene expression under light and rust fungal (Uromyces vignae) stimuli. Sixteen GLR genes were identified in V. angularis (VaGLRs), and these genes clustered in a single clade (clade III) with two groups. Evolutionary analysis showed that three VaGLRs result from tandem duplications and four result from whole genome/segmental duplications. To understand the regulation of expression of VaGLRs, cis-acting elements were analyzed in the promoter regions of the VaGLRs including cis-acting elements associated with light and stress responsiveness. Expression analysis by qRT-PCR revealed transcripts of eight and 10 VaGLRs in response to light stimuli and rust infection, respectively. For light responsiveness, the expression levels of XP_017430569.1 and XP_017425299.1 were higher under light condition than in darkness, while the expression levels of XP_017406996.1, XP_017425763.1, and XP_017423557.1 gradually recovered during dark treatment. Additionally, the relative expression levels of XP_017413816.1, XP_017436268.1, and XP_017425299.1 were significantly elevated during U. vignae infection in a resistant cultivar compared to the expression levels in a susceptible cultivar. XP_017425299.1 expression was induced both by light and rust infection, suggesting this gene may link light and disease resistance signaling pathways. Our results provide insight into how the VaGLRs contribute to adzuki bean response to light stimulus and pathogen attack. These identified VaGLRs also provide important reference to improve adzuki bean germplasm resources.
Collapse
Affiliation(s)
- Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shengmiao Liu
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
11
|
Gao H, Suo X, Zhao L, Ma X, Cheng R, Wang G, Zhang H. Molecular evolution, diversification, and expression assessment of MADS gene family in Setaria italica, Setaria viridis, and Panicum virgatum. PLANT CELL REPORTS 2023; 42:1003-1024. [PMID: 37012438 DOI: 10.1007/s00299-023-03009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE This paper sheds light on the evolution and expression patterns of MADS genes in Setaria and Panicum virgatum. SiMADS51 and SiMADS64 maybe involved in the ABA-dependent pathway of drought response. The MADS gene family is a key regulatory factor family that controls growth, reproduction, and response to abiotic stress in plants. However, the molecular evolution of this family is rarely reported. Here, a total of 265 MADS genes were identified in Setaria italica (foxtail millet), Setaria viridis (green millet), and Panicum virgatum (switchgrass) and analyzed by bioinformatics, including physicochemical characteristics, subcellular localization, chromosomal position and duplicate, motif distribution, genetic structure, genetic evolvement, and expression patterns. Phylogenetic analysis was used to categorize these genes into M and MIKC types. The distribution of motifs and gene structure were similar for the corresponding types. According to a collinearity study, the MADS genes have been mostly conserved during evolution. The principal cause of their expansion is segmental duplication. However, the MADS gene family tends to shrink in foxtail millet, green millet, and switchgrass. The MADS genes were subjected to purifying selection, but several positive selection sites were also identified in three species. And most of the promoters of MADS genes contain cis-elements related to stress and hormonal response. RNA-seq and quantitative Real-time PCR (qRT-PCR) analysis also were examined. SiMADS genes expression levels are considerably changed in reaction to various treatments, following qRT-PCR analysis. This sheds fresh light on the evolution and expansion of the MADS family in foxtail millet, green millet, and switchgrass, and lays the foundation for further research on their functions.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoman Suo
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinlei Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Chinese Academy of Agricultural Sciences Institute of Crop Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Tang M, Liu L, Hu X, Zheng H, Wang Z, Liu Y, Zhu Q, Cui L, Xie S. Genome-wide characterization of R2R3-MYB gene family in Santalum album and their expression analysis under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1142562. [PMID: 36938022 PMCID: PMC10017448 DOI: 10.3389/fpls.2023.1142562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sandalwood (Santalum album) is a high-value multifunctional tree species that is rich in aromatic substances and is used in medicine and global cosmetics. Due to the scarcity of land resources in tropical and subtropical regions, land in temperate regions is a potential resource for the development of S. album plantations in order to meet the needs of S. album production and medicine. The R2R3-MYB transcription factor family is one of the largest in plants and plays an important role in the response to various abiotic stresses. However, the R2R3-MYB gene family of S. album has not been studied. In this study, 144 R2R3-MYB genes were successfully identified in the assembly genome sequence, and their characteristics and expression patterns were investigated under various durations of low temperature stress. According to the findings, 31 of the 114 R2R3-MYB genes showed significant differences in expression after cold treatment. Combining transcriptome and weighted gene co-expression network analysis (WGCNA) revealed three key candidate genes (SaMYB098, SaMYB015, and SaMYB068) to be significantly involved in the regulation of cold resistance in S. album. The structural characteristics, evolution, and expression pattern of the R2R3-MYB gene in S. album were systematically examined at the whole genome level for the first time in this study. It will provide important information for future research into the function of the R2R3-MYB genes and the mechanism of cold stress response in S. album.
Collapse
Affiliation(s)
- Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Le Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Zukai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| |
Collapse
|
13
|
Gene Structural Specificity and Expression of MADS-Box Gene Family in Camellia chekiangoleosa. Int J Mol Sci 2023; 24:ijms24043434. [PMID: 36834845 PMCID: PMC9960327 DOI: 10.3390/ijms24043434] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MADS-box genes encode transcription factors that affect plant growth and development. Camellia chekiangoleosa is an oil tree species with ornamental value, but there have been few molecular biological studies on the developmental regulation of this species. To explore their possible role in C. chekiangoleosa and lay a foundation for subsequent research, 89 MADS-box genes were identified across the whole genome of C. chekiangoleosa for the first time. These genes were present on all the chromosomes and were found to have expanded by tandem duplication and fragment duplication. Based on the results of a phylogenetic analysis, the 89 MADS-box genes could be divided into either type I (38) or type II (51). Both the number and proportion of the type II genes were significantly greater than those of Camellia sinensis and Arabidopsis thaliana, indicating that C. chekiangoleosa type II genes experienced a higher duplication rate or a lower loss rate. The results of both a sequence alignment and a conserved motif analysis suggest that the type II genes are more conserved, meaning that they may have originated and differentiated earlier than the type I genes did. At the same time, the presence of extra-long amino acid sequences may be an important feature of C. chekiangoleosa. Gene structure analysis revealed the number of introns of MADS-box genes: twenty-one type I genes had no introns, and 13 type I genes contained only 1~2 introns. The type II genes have far more introns and longer introns than the type I genes do. Some MIKCC genes have super large introns (≥15 kb), which are rare in other species. The super large introns of these MIKCC genes may indicate richer gene expression. Moreover, the results of a qPCR expression analysis of the roots, flowers, leaves and seeds of C. chekiangoleosa showed that the MADS-box genes were expressed in all those tissues. Overall, compared with that of the type I genes, the expression of the type II genes was significantly higher. The CchMADS31 and CchMADS58 genes (type II) were highly expressed specifically in the flowers, which may in turn regulate the size of the flower meristem and petals. CchMADS55 was expressed specifically in the seeds, which might affect seed development. This study provides additional information for the functional characterization of the MADS-box gene family and lays an important foundation for in-depth study of related genes, such as those involved in the development of the reproductive organs of C. chekiangoleosa.
Collapse
|
14
|
Yang Z, Nie G, Feng G, Xu X, Li D, Wang X, Huang L, Zhang X. Genome-wide identification of MADS-box gene family in orchardgrass and the positive role of DgMADS114 and DgMADS115 under different abiotic stress. Int J Biol Macromol 2022; 223:129-142. [PMID: 36356860 DOI: 10.1016/j.ijbiomac.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Abiotic stress, a major factor limit growth and productivity of major crops. Orchardgrass is one of the most important cool-season forage grasses in the world, and it is highly tolerant to abiotic stress. The MADS-box transcription factor family is one of the largest families in plants, and it plays vital roles in multiple biological processes. However, MADS-box transcription factors in orchardgrass, especially those involved in abiotic stress, have not yet been elucidated. Here, 123 DgMADS-box members were identified in orchardgrass and a detailed overview has been presented. Syntenic analysis indicated that the expansion of the DgMADS-box genes in orchardgrass is mainly dependent on tandem duplication events. Some DgMADS-box genes were induced by multiple abiotic stresses, indicating that these genes may play critical regulatory roles in orchardgrass response to various abiotic stresses. Heterologous expression showed that DgMADS114 and DgMADS115 could enhance stress tolerance of transgenic Arabidopsis, as revealed by longer root length or higher survival rates under PEG, NaCl, ABA, and heat stress. The results of this study provide a scientific basis for clarifying the functional characterization of MADS-box genes in orchardgrass in response to environmental stress can be further used to improve forages and crops via breeding programs.
Collapse
Affiliation(s)
- Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Wang L, Song J, Han X, Yu Y, Wu Q, Qi S, Xu Z. Functional Divergence Analysis of AGL6 Genes in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2022; 12:158. [PMID: 36616287 PMCID: PMC9824310 DOI: 10.3390/plants12010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6) lineage is an important clade of MADS-box transcription factors that play essential roles in floral organ development. The genome of Prunus mume contains two homoeologous AGL6 genes that are replicated as gene fragments. In this study, two AGL6 homologs, PmAGL6-1 and PmAGL6-2, were cloned from P. mume and then functionally characterized. Sequence alignment and phylogenetic analyses grouped both genes into the AGL6 lineage. The expression patterns and protein-protein interaction patterns showed significant differences between the two genes. However, the ectopic expression of the two genes in Arabidopsis thaliana resulted in similar phenotypes, including the promotion of flowering, alteration of floral organ structure, participation in the formation of the floral meristem and promotion of pod bending. Therefore, gene duplication has led to some functional divergence of PmAGL6-1 and PmAGL6-2 but their functions are similar. We thus speculated that AGL6 genes play a crucial role in flower development in P. mume.
Collapse
|
16
|
Ye LX, Luo MM, Wang Z, Bai FX, Luo X, Gao L, Peng J, Chen QH, Zhang L. Genome-wide analysis of MADS-box gene family in kiwifruit (Actinidia chinensis var. chinensis) and their potential role in floral sex differentiation. Front Genet 2022; 13:1043178. [PMID: 36468015 PMCID: PMC9714460 DOI: 10.3389/fgene.2022.1043178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.
Collapse
Affiliation(s)
- Li-Xia Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min-Min Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fu-Xi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuan Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jue Peng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qing-Hong Chen
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| |
Collapse
|
17
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
18
|
Pan X, Ouyang Y, Wei Y, Zhang B, Wang J, Zhang H. Genome-wide analysis of MADS-box families and their expressions in flower organs development of pineapple ( Ananas comosus (L.) Merr.). FRONTIERS IN PLANT SCIENCE 2022; 13:948587. [PMID: 36311063 PMCID: PMC9597317 DOI: 10.3389/fpls.2022.948587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
MADS-box genes play crucial roles in plant vegetative and reproductive growth, better development of inflorescences, flower, and fruit. Pineapple is a typical collective fruit, and a comprehensive analysis of the MADS-box gene family in the development of floral organs of pineapple is still lacking. In this study, the whole-genome survey and expression profiling of the MADS-box family in pineapple were introduced. Forty-four AcMADS genes were identified in pineapple, 39 of them were located on 18 chromosomes and five genes were distributed in five scaffolds. Twenty-two AcMADS genes were defined as 15 pairs of segmental duplication events. Most members of the type II subfamily of AcMADS genes had higher expression levels in floral organs compared with type I subfamily, thereby suggesting that AcMADS of type II may play more crucial roles in the development of floral organs of pineapple. Six AcMADS genes have significant tissue-specificity expression, thereby suggesting that they may participate in the formation of one or more floral organs. This study provides valuable insights into the role of MADS-box gene family in the floral organ development of pineapple.
Collapse
|
19
|
Zhu X, Wang B, Wang X, Wei X. Genome-wide identification, structural analysis and expression profiles of short internodes related sequence gene family in quinoa. Front Genet 2022; 13:961925. [PMID: 36072673 PMCID: PMC9443693 DOI: 10.3389/fgene.2022.961925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Based on the whole genome data information of Chenopodium quinoa Willd, the CqSRS gene family members were systematically identified and analyzed by bioinformatics methods, and the responses of CqSRS genes to NaCl (100 mmol/L), salicylic acid (200 umol/L) and low temperature (4°C) were detected by qRT-PCR. The results showed that a total of 10 SHI related sequence genes were identified in quinoa, and they were distributed on 9 chromosomes, and there were four pairs of duplicated genes. The number of amino acids encoded ranged from 143 aa to 370 aa, and the isoelectric point ranged from 4.81 to 8.90. The secondary structure was mainly composed of random coil (Cc). Most of the SRS gene encoding proteins were located in the cytoplasm (5 CqSRS). Phylogenetic analysis showed that the CqSRS genes were divided into three groups, and the gene structure showed that the number of exons of CqSRS was between two-five. Promoter analysis revealed that there are a total of 44 elements related to plant hormone response elements, light response elements, stress response elements and tissue-specific expression in the upstream regin of the gene. Protein interaction showed that all 10 CqSRS proteins appeared in the known protein interaction network diagram in Arabidopsis. Expression profile analysis showed that CqSRS genes had different expression patterns, and some genes had tissue-specific expression. qRT-PCR showed that all SRS family genes responded to ABA、NaCl、drought and low-temperature treatments, but the expression levels of different CqSRS genes were significantly different under various stresses. This study lays a foundation for further analyzed the function of CqSRS genes.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Baoqiang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaohong Wei,
| |
Collapse
|
20
|
Liao Y, Liu Z, Gichira AW, Yang M, Mbichi RW, Meng L, Wan T. Deep evaluation of the evolutionary history of the Heat Shock Factor (HSF) gene family and its expansion pattern in seed plants. PeerJ 2022; 10:e13603. [PMID: 35966928 PMCID: PMC9373977 DOI: 10.7717/peerj.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Heat shock factor (HSF) genes are essential in some of the basic developmental pathways in plants. Despite extensive studies on the structure, functional diversification, and evolution of HSF genes, their divergence history and gene duplication pattern remain unknown. To further illustrate the probable divergence patterns in these subfamilies, we analyzed the evolutionary history of HSF genes using phylogenetic reconstruction and genomic syntenic analyses, taking advantage of the increased sampling of genomic data from pteridophytes, gymnosperms and basal angiosperms. We identified a novel clade that includes HSFA2, HSFA6, HSFA7, and HSFA9 with a complex relationship, which is very likely due to orthologous or paralogous genes retained after frequent gene duplication events. We hypothesized that HSFA9 derives from HSFA2 through gene duplication in eudicots at the ancestral state, and then expanded in a lineage-specific way. Our findings indicate that HSFB3 and HSFB5 emerged before the divergence of ancestral angiosperms, but were lost in the most recent common ancestors of monocots. We also presumed that HSFC2 derives from HSFC1 in ancestral monocots. This work proposes that during the radiation of flowering plants, an era during which there was a differentiation of angiosperms, the size of the HSF gene family was also being adjusted with considerable sub- or neo-functionalization. The independent evolution of HSFs in eudicots and monocots, including lineage-specific gene duplication, gave rise to a new gene in ancestral eudicots and monocots, and lineage-specific gene loss in ancestral monocots. Our analyses provide essential insights for studying the evolutionary history of this multigene family.
Collapse
Affiliation(s)
- Yiying Liao
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Zhiming Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Andrew W. Gichira
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Min Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Ruth Wambui Mbichi
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Linping Meng
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Shen G, Wang WL. Circlize package in R and Analytic Hierarchy Process (AHP): Contribution values of ABCDE and AGL6 genes in the context of floral organ development. PLoS One 2022; 17:e0261232. [PMID: 35061694 PMCID: PMC8782415 DOI: 10.1371/journal.pone.0261232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The morphological diversity of floral organs can largely be attributed to functional divergence in the MADS-box gene family. Nonetheless, research based on the ABCDE model has yet to conclusively determine whether the AGAMOUS-LIKE 6 (AGL6) subgroup has a direct influence on floral organ development. In the current study, the ABCDE model was used to quantify the contributions of ABCDE and AGL6 genes in the emergence of floral organs. We determined that the flower formation contribution values of the ABCDE and AGL6 genes were as follows: A gene, 0.192; B gene, 0.231; CD gene, 0.192; E gene, 0.385; and AGL6, 0.077. As AGL6 does not directly influence floral structure formation, the contribution value of AGL6 to flower formation was low. Furthermore, the gradient values of the floral organs were as follows: sepals, 0.572; petals, 1.606; stamens, 2.409; and carpels, 2.288. We also performed detailed analysis of the ABCDE and AGL6 genes using the Circlize package in R. Our results suggest that these genes likely emerged in one of two orders: 1) B genes→CD genes→AGL6→E genes→A genes; or 2) B genes→CD genes→AGL6/E genes→A genes. We use the analytic hierarchy process (AHP) to prove the contribution values and gradient values of floral organs. This is the first study to understand the contribution values of ABCDE and AGL6 genes using the AHP and the Circlize package in R.
Collapse
Affiliation(s)
- Gangxu Shen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
22
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
23
|
Zhang Q, Hou S, Sun Z, Chen J, Meng J, Liang D, Wu R, Guo Y. Genome-Wide Identification and Analysis of the MADS-Box Gene Family in Theobroma cacao. Genes (Basel) 2021; 12:genes12111799. [PMID: 34828404 PMCID: PMC8622960 DOI: 10.3390/genes12111799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
The MADS-box family gene is a class of transcription factors that have been extensively studied and involved in several plant growth and development processes, especially in floral organ specificity, flowering time and initiation and fruit development. In this study, we identified 69 candidate MADS-box genes and clustered these genes into five subgroups (Mα: 11; Mβ: 2; Mγ: 14; Mδ: 9; MIKC: 32) based on their phylogenetical relationships with Arabidopsis. Most TcMADS genes within the same subgroup showed a similar gene structure and highly conserved motifs. Chromosomal distribution analysis revealed that all the TcMADS genes were evenly distributed in 10 chromosomes. Additionally, the cis-acting elements of promoter, physicochemical properties and subcellular localization were also analyzed. This study provides a comprehensive analysis of MADS-box genes in Theobroma cacao and lays the foundation for further functional research.
Collapse
Affiliation(s)
- Qianqian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Sijia Hou
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Zhenmei Sun
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Jing Chen
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Jianqiao Meng
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Dan Liang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Yunqian Guo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
- Correspondence:
| |
Collapse
|
24
|
Louati M, Salazar-Sarasua B, Roque E, Beltrán JP, Salhi Hannachi A, Gómez-Mena C. Isolation and Functional Analysis of a PISTILLATA-like MADS-Box Gene from Argan Tree ( Argania spinosa). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081665. [PMID: 34451710 PMCID: PMC8399449 DOI: 10.3390/plants10081665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Argan trees (Argania spinosa) belong to a species native to southwestern Morocco, playing an important role in the environment and local economy. Argan oil extracted from kernels has a unique composition and properties. Argan trees were introduced in Tunisia, where hundreds of trees can be found nowadays. In this study, we examined reproductive development in Argan trees from four sites in Tunisia and carried out the functional characterization of a floral homeotic gene in this non-model species. Despite the importance of reproductive development, nothing is known about the genetic network controlling flower development in Argania spinosa. Results obtained in several plant species established that floral organ development is mostly controlled by MADS-box genes and, in particular, APETALA3 (AP3) and PISTILLATA (PI) homologs are required for proper petal and stamen identity. Here, we describe the isolation and functional characterization of a MADS-box gene from Argania spinosa. Phylogenetic analyses showed strong homology with PI-like proteins, and the expression of the gene was found to be restricted to the second and third whorls. Functional homology with Arabidopsis PI was demonstrated by the ability of AsPI to confer petal and stamen identity when overexpressed in a pi-1 mutant background. The identification and characterization of this gene support the strong conservation of PI homologs among distant angiosperm plants.
Collapse
Affiliation(s)
- Marwa Louati
- Faculty of Sciences of Tunis, Campus Farhat Hached El Manar, University of Tunis El Manar, Tunis 2092, Tunisia; (M.L.); (A.S.H.)
| | - Blanca Salazar-Sarasua
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (B.S.-S.); (E.R.); (J.P.B.)
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (B.S.-S.); (E.R.); (J.P.B.)
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (B.S.-S.); (E.R.); (J.P.B.)
| | - Amel Salhi Hannachi
- Faculty of Sciences of Tunis, Campus Farhat Hached El Manar, University of Tunis El Manar, Tunis 2092, Tunisia; (M.L.); (A.S.H.)
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (B.S.-S.); (E.R.); (J.P.B.)
| |
Collapse
|
25
|
Zhao W, Zhang LL, Xu ZS, Fu L, Pang HX, Ma YZ, Min DH. Genome-Wide Analysis of MADS-Box Genes in Foxtail Millet ( Setaria italica L.) and Functional Assessment of the Role of SiMADS51 in the Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:659474. [PMID: 34262576 PMCID: PMC8273297 DOI: 10.3389/fpls.2021.659474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 05/26/2023]
Abstract
MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.
Collapse
Affiliation(s)
- Wan Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Li Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Liang Fu
- Xinxiang Academy of Agricultural Sciences of He’nan Province, Xinxiang, China
| | - Hong-Xi Pang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
26
|
Shen G, Jia Y, Wang WL. Evolutionary divergence of motifs in B-class MADS-box proteins of seed plants. ACTA ACUST UNITED AC 2021; 28:12. [PMID: 34049600 PMCID: PMC8161959 DOI: 10.1186/s40709-021-00144-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Background MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins. Results We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development. Conclusions Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00144-7.
Collapse
Affiliation(s)
- Gangxu Shen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan. .,Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| | - Yong Jia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
27
|
Ghosh Dasgupta M, Dev SA, Muneera Parveen AB, Sarath P, Sreekumar VB. Draft genome of Korthalsia laciniosa (Griff.) Mart., a climbing rattan elucidates its phylogenetic position. Genomics 2021; 113:2010-2022. [PMID: 33862180 DOI: 10.1016/j.ygeno.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022]
Abstract
Korthalsia laciniosa (Griff.) Mart. is a climbing rattan used as a source of durable and flexible cane. In the present study, the draft genome of K. laciniosa was sequenced, de novo assembled and annotated. Genome-wide identification of MADS-Box transcription factors revealed loss of Mβ, and Mγ genes belonging to Type I subclass in the rattan lineage. Mining of the genome revealed presence of 13 families of lignin biosynthetic pathway genes and expression profiling of nine major genes documented relatively lower level of expression in cirrus when compared to leaflet and petiole. The chloroplast genome was re-constructed and analysis revealed the phylogenetic relatedness of this genus to Eugeissona, in contrast with its present taxonomic position. The genomic resource generated in the present study will accelerate population structure analysis, genetic resource conservation, phylogenomics and facilitate understanding the unique developmental processes like gender expression at molecular level.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore Pincode-641002, India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India
| | - Abdul Bari Muneera Parveen
- Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore Pincode-641002, India
| | - Paremmal Sarath
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India; Ph.D. Scholar, Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India
| | - V B Sreekumar
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi P. O, Thrissur, Kerala 680653, India
| |
Collapse
|
28
|
Wang Y, Ying J, Zhang Y, Xu L, Zhang W, Ni M, Zhu Y, Liu L. Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish ( Raphanus sativus L.). Int J Mol Sci 2020; 21:E8262. [PMID: 33158201 PMCID: PMC7662821 DOI: 10.3390/ijms21218262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
The CPA (cation proton antiporter) family plays an essential role during plant stress tolerance by regulating ionic and pH homeostasis of the cell. Radish fleshy roots are susceptible to abiotic stress during growth and development, especially salt stress. To date, CPA family genes have not yet been identified in radish and the biological functions remain unclear. In this study, 60 CPA candidate genes in radish were identified on the whole genome level, which were divided into three subfamilies including the Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) families. In total, 58 of the 60 RsCPA genes were localized to the nine chromosomes. RNA-seq. data showed that 60 RsCPA genes had various expression levels in the leaves, roots, cortex, cambium, and xylem at different development stages, as well as under different abiotic stresses. RT-qPCR analysis indicated that all nine RsNHXs genes showed up regulated trends after 250 mM NaCl exposure at 3, 6, 12, and 24h. The RsCPA31 (RsNHX1) gene, which might be the most important members of the RsNHX subfamily, exhibited obvious increased expression levels during 24h salt stress treatment. Heterologous over-and inhibited-expression of RsNHX1 in Arabidopsis showed that RsNHX1 had a positive function in salt tolerance. Furthermore, a turnip yellow mosaic virus (TYMV)-induced gene silence (VIGS) system was firstly used to functionally characterize the candidate gene in radish, which showed that plant with the silence of endogenous RsNHX1 was more susceptible to the salt stress. According to our results we provide insights into the complexity of the RsCPA gene family and a valuable resource to explore the potential functions of RsCPA genes in radish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| |
Collapse
|
29
|
Li SY, Zhang Q, Jin YH, Zou JX, Zheng YS, Li DD. A MADS-box gene, EgMADS21, negatively regulates EgDGAT2 expression and decreases polyunsaturated fatty acid accumulation in oil palm (Elaeis guineensis Jacq.). PLANT CELL REPORTS 2020; 39:1505-1516. [PMID: 32804247 DOI: 10.1007/s00299-020-02579-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 05/13/2023]
Abstract
EgMADS21 regulates PUFA accumulation in oil palm. Oil palm (Elaeis guineensis Jacq.) is the most productive world oil crop, accounting for 36% of world plant oil production. However, the molecular mechanism of the transcriptional regulation of fatty acid accumulation and lipid synthesis in the mesocarp of oil palm by up- or downregulating the expression of genes involved in related pathways remains largely unknown. Here, an oil palm MADS-box gene, EgMADS21, was screened in a yeast one-hybrid assay using the EgDGAT2 promoter sequence as bait. EgMADS21 is preferentially expressed in early mesocarp developmental stages in oil palm fruit and presents a negative correlation with EgDGAT2 expression. The direct binding of EgMADS21 to the EgDGAT2 promoter was confirmed by electrophoretic mobility shift assay. Subsequently, transient expression of EgMADS21 in oil palm protoplasts revealed that EgMADS21 not only binds to the EgDGAT2 promoter but also negatively regulates the expression of EgDGAT2. Furthermore, EgMADS21 was stably overexpressed in transgenic oil palm embryoids by Agrobacterium-mediated transformation. In three independent transgenic lines, EgDGAT2 expression was significantly suppressed by the expression of EgMADS21. The content of linoleic acid (C18:2) in the three transgenic embryoids was significantly decreased, while that of oleic acid (C18:1) was significantly increased. Combined with the substrate preference of EgDGAT2 identified in previous research, the results demonstrate the molecular mechanism by which EgMADS21 regulates EgDGAT2 expression and ultimately affects fatty acid accumulation in the mesocarp of oil palm.
Collapse
Affiliation(s)
- Si-Yu Li
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Qing Zhang
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yuan-Hang Jin
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Ji-Xin Zou
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yu-Sheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Dong-Dong Li
- College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
30
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
31
|
Li C, Chen L, Fan X, Qi W, Ma J, Tian T, Zhou T, Ma L, Chen F. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2020; 40:1247-1259. [PMID: 32348527 DOI: 10.1093/treephys/tpaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The APETALA1/SQUAMOSA (AP1/SQUA)-like genes of flowering plants play crucial roles in the development processes of floral meristems, sepals, petals and fruits. Although many of the AP1/SQUA-like genes have been characterized in angiosperms, few have been identified in basal angiosperm taxa. Therefore, the functional evolution of the AP1/SQUA subfamily is still unclear. We characterized an AP1 homolog, MawuAP1, from Magnolia wufengensis that is an ornamental woody plant belonging to the basal angiosperms. Gene sequence and phylogenetic analyses suggested that MawuAP1 was clustered with the FUL-like homologous genes of basal angiosperms and had FUL motif and paleoAP1 motif domain, but it did not have the euAP1 motif domain of core eudicots. Expression pattern analysis showed that MawuAP1 was highly expressed in vegetative and floral organs, particularly in the early stage of flower bud development and pre-anthesis. Protein-protein interaction pattern analysis revealed that MawuAP1 has interaction with an A-class gene (MawuAP1), C-class gene (MawuAG-1) and E-class gene (MawuAGL9) of the MADS-box family genes. Ectopic expression in Arabidopsis thaliana indicated that MawuAP1 could significantly promote flowering and fruit development, but it could not restore the sepal and petal formation of ap1 mutants. These results demonstrated that there are functional differences in the specification of sepal and petal floral organs and development of fruits among the AP1/SQUA-like genes, and functional conservation in the regulation of floral meristem. These findings provide strong evidence for the important functions of MawuAP1 in floral meristem determination, promoting flowering and fruit development, and further highlight the importance of AP1/SQUA subfamily in biological evolution and diversity.
Collapse
Affiliation(s)
- Cunjie Li
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xiaoning Fan
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Wenjuan Qi
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Tian
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Tao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| |
Collapse
|
32
|
Zhang Y, Li Q, Xu L, Qiao X, Liu C, Zhang S. Comparative analysis of the P-type ATPase gene family in seven Rosaceae species and an expression analysis in pear (Pyrus bretschneideri Rehd.). Genomics 2020; 112:2550-2563. [PMID: 32057915 DOI: 10.1016/j.ygeno.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
P-type ATPases are integral membrane transporters that play important roles in transmembrane transport in plants. However, a comprehensive analysis of the P-type ATPase gene family has not been conducted in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. Here, we identified 419 P-type ATPase genes from seven Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, Prunus mume, Pyrus communis and Pyrus betulifolia). Structural and phylogenetic analyses revealed that P-type ATPase genes can be divided into five subfamilies. Different subfamilies have different conserved motifs and cis-acting elements, which may lead to functional divergence within one gene family. Dispersed duplication and whole-genome duplication may play critical roles in the expansion of the P-type ATPase family. Purifying selection was the primary force driving the evolution of P-type ATPase family genes. Based on the dynamic transcriptome analysis and transient transformation of Chinese white pear fruit, Pbr029767.1 in the P3A subfamily were found to be associated with malate accumulation during pear fruit development. Using a co-expression network, we identified several transcription factors that may have regulatory relationships with the P-type ATPase gene family. Overall, this study lays a solid foundation for understanding the evolution and functions of P-type ATPase genes in Chinese white pear and six other Rosaceae species.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Linlin Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunxin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Wang Q, Dan N, Zhang X, Lin S, Bao M, Fu X. Identification, Characterization and Functional Analysis of C-Class Genes Associated with Double Flower Trait in Carnation ( Dianthus caryphyllus L.). PLANTS 2020; 9:plants9010087. [PMID: 31936710 PMCID: PMC7020439 DOI: 10.3390/plants9010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022]
Abstract
Flowers with more petals are of more ornamental value. It is well known that AGAMOUS (AG) is the core member of the C-class gene which plays an essential role in double flower formation and identification of stamens and carpels in Arabidopsisthaliana. We searched C-class genes in the genome of the carnation, and found two AG orthologs (DcaAGa, DcaAGb). Phylogenetic analysis showed that the two genes were closely related to the euAG subclade. Then we searched the genomes of other Caryophyllales plants (Beta vulgaris, Spinacia oleracea, Chenopodium quinoa) for C-class genes, and found that their C-class genes all belonged to the euAG subclade. Semi-quantitative PCR (sq-PCR) analysis indicated that the expression of DcaAG genes in the single flower phenotype was higher than that in the double flower phenotype. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that the expressions of DcaAG genes in the flower bud were significantly different from those in the root, stem, and leaf between the single and double flower phenotype carnations, and that DcaAG genes were specifically expressed in the stamen and carpel of carnation. Moreover, the expression of other floral organ identity genes (AP1 and AP2, PI and AP3, SEP1 and SEP3 corresponding to the A-, B-, and E-class of genes, respectively) showed no significant difference in all floral organs between the single and double flower phenotype carnations, suggesting that C-class (DcaAG) genes might play an important role in the double flower phenotype in carnation. Petal loss or decrease, precocious flowering, silique shortening, and seed sterility were observed in 35S::DcaAGa and 35S::DcaAGb transgenic Arabidopsis plants. All these results show that DcaAG genes might affect the petal number negatively and have a specific function in stamen and carpel development in carnation.
Collapse
Affiliation(s)
- Qijian Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Naizhen Dan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaoni Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
34
|
Zhang X, Fatima M, Zhou P, Ma Q, Ming R. Analysis of MADS-box genes revealed modified flowering gene network and diurnal expression in pineapple. BMC Genomics 2020; 21:8. [PMID: 31896347 PMCID: PMC6941321 DOI: 10.1186/s12864-019-6421-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple (Ananas comosus). Results Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mβ and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers, which was confirmed by our quantitative RT-PCR results. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis. The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock. Conclusions MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ping Zhou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Academy of Agricultural Sciences, Fruit Research Institute, Fuzhou, 350013, Fujian, China
| | - Qing Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Bjerkan KN, Hornslien KS, Johannessen IM, Krabberød AK, van Ekelenburg YS, Kalantarian M, Shirzadi R, Comai L, Brysting AK, Bramsiepe J, Grini PE. Genetic variation and temperature affects hybrid barriers during interspecific hybridization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:122-140. [PMID: 31487093 DOI: 10.1111/tpj.14523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Genomic imprinting regulates parent-specific transcript dosage during seed development and is mainly confined to the endosperm. Elucidation of the function of many imprinted genes has been hampered by the lack of corresponding mutant phenotypes, and the role of imprinting is mainly associated with genome dosage regulation or allocation of resources. Disruption of imprinted genes has also been suggested to mediate endosperm-based post-zygotic hybrid barriers depending on genetic variation and gene dosage. Here, we have analyzed the conservation of a clade from the MADS-box type I class transcription factors in the closely related species Arabidopsis arenosa, A. lyrata, and A. thaliana, and show that AGL36-like genes are imprinted and maternally expressed in seeds of Arabidopsis species and in hybrid seeds between outbreeding species. In hybridizations between outbreeding and inbreeding species the paternally silenced allele of the AGL36-like gene is reactivated in the hybrid, demonstrating that also maternally expressed imprinted genes are perturbed during hybridization and that such effects on imprinted genes are specific to the species combination. Furthermore, we also demonstrate a quantitative effect of genetic diversity and temperature on the strength of the post-zygotic hybridization barrier. Markedly, a small decrease in temperature during seed development increases the survival of hybrid F1 seeds, suggesting that abiotic and genetic parameters play important roles in post-zygotic species barriers, pointing at evolutionary scenarios favoring such effects. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA562212. All sequences generated in this study have been deposited in the National Center for Biotechnology Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) with project number PRJNA562212.
Collapse
Affiliation(s)
- Katrine N Bjerkan
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Maryam Kalantarian
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Reza Shirzadi
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Luca Comai
- Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Anne K Brysting
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jonathan Bramsiepe
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
36
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
37
|
Flores-Vergara MA, Oneal E, Costa M, Villarino G, Roberts C, De Luis Balaguer MA, Coimbra S, Willis J, Franks RG. Developmental Analysis of Mimulus Seed Transcriptomes Reveals Functional Gene Expression Clusters and Four Imprinted, Endosperm-Expressed Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:132. [PMID: 32161609 PMCID: PMC7052496 DOI: 10.3389/fpls.2020.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critical for proper endosperm and seed development. We use a transcriptional time series analysis to identify genes that are associated with key shifts in seed development, including genes associated with secondary cell wall synthesis, mitotic cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed maturation. We relate these genes to morphological changes in Mimulus seeds. We also identify four endosperm-expressed transcripts that display imprinted (paternal) expression bias. The imprinted status of these four genes is conserved in other flowering plants, suggesting that they are functionally important in endosperm development. Our study explores gene regulatory dynamics in a species with ab initio cellular endosperm development, broadening the taxonomic focus of the literature on gene expression in seeds. Moreover, it is the first to validate genes with imprinted endosperm expression in Mimulus guttatus, and will inform future studies on the genetic causes of seed failure in this model system.
Collapse
Affiliation(s)
- Miguel A. Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Elen Oneal
- Department of Biology, Duke University, Durham, NC, United States
- *Correspondence: Elen Oneal,
| | - Mario Costa
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gonzalo Villarino
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Caitlyn Roberts
- Department of Biology, Berea College, Berea, KY, United States
| | | | - Sílvia Coimbra
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - John Willis
- Department of Biology, Duke University, Durham, NC, United States
| | - Robert G. Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
38
|
Transcriptional Structure of Petunia Clock in Leaves and Petals. Genes (Basel) 2019; 10:genes10110860. [PMID: 31671570 PMCID: PMC6895785 DOI: 10.3390/genes10110860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/20/2023] Open
Abstract
The plant circadian clock coordinates environmental signals with internal processes including secondary metabolism, growth, flowering, and volatile emission. Plant tissues are specialized in different functions, and petals conceal the sexual organs while attracting pollinators. Here we analyzed the transcriptional structure of the petunia (Petunia x hybrida) circadian clock in leaves and petals. We recorded the expression of 13 clock genes in petunia under light:dark (LD) and constant darkness (DD). Under light:dark conditions, clock genes reached maximum expression during the light phase in leaves and the dark period in petals. Under free running conditions of constant darkness, maximum expression was delayed, especially in petals. Interestingly, the rhythmic expression pattern of PhLHY persisted in leaves and petals in LD and DD. Gene expression variability differed among leaves and petals, time of day and photoperiod. The transcriptional noise was higher especially in leaves under constant darkness. We found that PhPRR7, PhPRR5, and PhGI paralogs showed changes in gene structure including exon number and deletions of CCT domain of the PRR family. Our results revealed that petunia petals presented a specialized clock.
Collapse
|
39
|
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20122961. [PMID: 31216621 PMCID: PMC6627509 DOI: 10.3390/ijms20122961] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022] Open
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Xuhu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
40
|
Shen G, Yang CH, Shen CY, Huang KS. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol Res 2019; 52:25. [PMID: 31018872 PMCID: PMC6480507 DOI: 10.1186/s40659-019-0233-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.
Collapse
Affiliation(s)
- Gangxu Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yen Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Zhang R, Wang FG, Zhang J, Shang H, Liu L, Wang H, Zhao GH, Shen H, Yan YH. Dating Whole Genome Duplication in Ceratopteris thalictroides and Potential Adaptive Values of Retained Gene Duplicates. Int J Mol Sci 2019; 20:ijms20081926. [PMID: 31010109 PMCID: PMC6515051 DOI: 10.3390/ijms20081926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Whole-genome duplications (WGDs) are widespread in plants and frequently coincide with global climatic change events, such as the Cretaceous–Tertiary (KT) extinction event approximately 65 million years ago (mya). Ferns have larger genomes and higher chromosome numbers than seed plants, which likely resulted from multiple rounds of polyploidy. Here, we use diploid and triploid material from a model fern species, Ceratopteris thalictroides, for the detection of WGDs. High-quality RNA-seq data was used to infer the number of synonymous substitutions per synonymous site (Ks) between paralogs; Ks age distribution and absolute dating approach were used to determine the age of WGD events. Evidence of an ancient WGD event with a Ks peak value of approximately 1.2 was obtained for both samples; however, the Ks frequency distributions varied significantly. Importantly, we dated the WGD event at 51–53 mya, which coincides with the Paleocene-Eocene Thermal Maximum (PETM), when the Earth became warmer and wetter than any other period during the Cenozoic. Duplicate genes were preferentially retained for specific functions, such as environment response, further support that the duplicates may have promoted quick adaption to environmental changes and potentially resulted in evolutionary success, especially for pantropical species, such as C. thalictroides, which exhibits higher temperature tolerance.
Collapse
Affiliation(s)
- Rui Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jiao Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hui Shang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Li Liu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hao Wang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Guo-Hua Zhao
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Yue-Hong Yan
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| |
Collapse
|
42
|
Sheng XG, Zhao ZQ, Wang JS, Yu HF, Shen YS, Zeng XY, Gu HH. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC PLANT BIOLOGY 2019; 19:106. [PMID: 30890145 PMCID: PMC6425688 DOI: 10.1186/s12870-019-1717-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/12/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND MADS-box genes play important roles in vegetative growth and reproductive development and are essential for the correct development of plants (particularly inflorescences, flowers, and fruits). However, this gene family has not been identified nor their functions analyzed in Brassica oleracea. RESULTS In this study, we performed a whole-genome survey of the complete set of MADS-box genes in B. oleracea. In total, 91 MADS-box transcription factors (TFs) were identified and categorized as type I (Mα, Mβ, Mγ) and type II (MIKCC, MIKC*) groups according to the phylogeny and gene structure analysis. Among these genes, 59 were randomly distributed on 9 chromosomes, while the other 23 were assigned to 19 scaffolds and 9 genes from NCBI had no location information. Both RNA-sequencing and quantitative real-time-PCR analysis suggested that MIKC genes had more active and complex expression patterns than M type genes and most type II genes showed high flowering-related expression profiles. Additional quantitative real-time-PCR analysis of pedicel and four flower whorls revealed that the structure of the B.oleracea MIKC genes was conserved, but their homologues showed variable expression patterns compared to those in Arabidopsis thaliana. CONCLUSION This paper gives a detailed overview of the BolMADS genes and their expression patterns. The results obtained in this study provide useful information for understanding the molecular regulation of flower development and further functional characterization of MADS-box genes in B. oleracea.
Collapse
Affiliation(s)
- Xiao-Guang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zhen-Qing Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Jian-Sheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Hui-Fang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yu-Sen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xiao-Yuan Zeng
- Agricultural Technology Promotion Station of Taizhou, Taizhou, 318000 China
| | - Hong-Hui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
43
|
Plus ça change, plus c'est la même chose: The developmental evolution of flowers. Curr Top Dev Biol 2019; 131:211-238. [DOI: 10.1016/bs.ctdb.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics 2018; 19:726. [PMID: 30285611 PMCID: PMC6171223 DOI: 10.1186/s12864-018-5113-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. Results A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mβ, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. Conclusion Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5113-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huhu Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziming Wang
- School of Stomatology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Silu Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
46
|
Galimba KD, Martínez-Gómez J, Di Stilio VS. Gene Duplication and Transference of Function in the paleo AP3 Lineage of Floral Organ Identity Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:334. [PMID: 29628932 PMCID: PMC5876318 DOI: 10.3389/fpls.2018.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 06/01/2023]
Abstract
The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and independently in Ranunculaceae in correlation with the loss of a specific AP3 paralog, and Thalictrum represents one of these instances. The main goal of this study was to conduct a functional analysis of the three AP3 orthologs present in Thalictrum thalictroides, representing the paleoAP3 gene lineage, to determine the degree of redundancy versus divergence after gene duplication. Because Thalictrum lacks petals, and has lost the petal-specific AP3, we also asked whether heterotopic expression of the remaining AP3 genes contributes to the partial transference of petal function to the first whorl found in insect-pollinated species. To address these questions, we undertook functional characterization by virus-induced gene silencing (VIGS), protein-protein interaction and binding site analyses. Our results illustrate partial redundancy among Thalictrum AP3s, with deep conservation of B-class function in stamen identity and a novel role in ectopic petaloidy of sepals. Certain aspects of petal function of the lost AP3 locus have apparently been transferred to the other paralogs. A novel result is that the protein products interact not only with each other, but also as homodimers. Evidence presented here also suggests that expression of the different ThtAP3 paralogs is tightly integrated, with an apparent disruption of B function homeostasis upon silencing of one of the paralogs that codes for a truncated protein. To explain this result, we propose two testable alternative scenarios: that the truncated protein is a dominant negative mutant or that there is a compensational response as part of a back-up circuit. The evidence for promiscuous protein-protein interactions via yeast two-hybrid combined with the detection of AP3 specific binding motifs in all B-class gene promoters provide partial support for these hypotheses.
Collapse
|
47
|
Genome-wide analysis of banana MADS-box family closely related to fruit development and ripening. Sci Rep 2017; 7:3467. [PMID: 28615681 PMCID: PMC5471262 DOI: 10.1038/s41598-017-03897-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/05/2017] [Indexed: 11/08/2022] Open
Abstract
Proteins encoded by MADS-box genes are important transcription factors involved in the regulation of flowering plant growth and development. Currently, no systematic information exists regarding the MADS-box family in the important tropical fruit banana. Ninety-six MADS-box genes were identified from the banana (Pahang) A genome. Phylogenetic analysis indicated that Musa acuminata MCM1-AGAMOUS- DEFICIENS-SRF (MaMADS) could be divided into MIKCc, MIKC*, Mα/β and Mγ groups. MIKCc could be further divided into 11 subfamilies, which was further supported by conserved motif and gene structure analyses. Transcriptome analysis on the Feng Jiao (FJ) and BaXi Jiao (BX) banana cultivars revealed that MaMADS genes are differentially expressed in various organs, at different fruit development and ripening stages, indicating the involvement of these genes in fruit development and ripening processes. Interactive network analysis indicated that MaMADS24 and 49 not only interacted with MaMADS proteins themselves, but also interacted with hormone-response proteins, ethylene signal transduction and biosynthesis-related proteins, starch biosynthesis proteins and metabolism-related proteins. This systematic analysis identified candidate MaMADS genes related to fruit development and ripening for further functional characterization in plants, and also provided new insights into the transcriptional regulation of MaMADS genes, facilitating the future genetic manipulation of MADS-mediated fruit development and ripening.
Collapse
|
48
|
Zayneb C, Imen RH, Walid K, Grubb CD, Bassem K, Franck V, Hafedh M, Amine E. The phytochelatin synthase gene in date palm (Phoenix dactylifera L.): Phylogeny, evolution and expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:7-17. [PMID: 28231507 DOI: 10.1016/j.ecoenv.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
We studied date palm phytochelatin synthase type I (PdPCS1), which catalyzes the cytosolic synthesis of phytochelatins (PCs), a heavy metal binding protein, in plant cells. The gene encoding PdPCS1 (Pdpcs) consists of 8 exons and 7 introns and encodes a protein of 528 amino acids. PCs gene history was studied using Notung phylogeny. During evolution, gene loss from several lineages was predicted including Proteobacteria, Bilateria and Brassicaceae. In addition, eleven gene duplication events appeared toward interior nodes of the reconciled tree and four gene duplication events appeared toward the external nodes. These latter sequences belong to species with a second copy of PCs suggesting that this gene evolved through subfunctionalization. Pdpcs1 gene expression was measured in seedling hypocotyls exposed to Cd, Cu and Cr using quantitative real-time polymerase chain reaction (qPCR). A Pdpcs1 overexpression was evidenced in P. dactylifera seedlings exposed to metals suggesting that 1-the Pdpcs1 gene is functional, 2-there is an implication of the enzyme in metal detoxification mechanisms. Additionally, the structure of PdPCS1 was predicted using its homologue from Nostoc (cyanobacterium, NsPCS) as a template in Discovery studio and PyMol software. These analyses allowed us to identify the phytochelatin synthase type I enzyme in date palm (PdPCS1) via recognition of key consensus amino acids involved in the catalytic mechanism, and to propose a hypothetical binding and catalytic site for an additional substrate binding cavity.
Collapse
Affiliation(s)
- Chaâbene Zayneb
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia; Laboratoire de Génie Civil et géo-Environnement, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Rekik Hakim Imen
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Kriaa Walid
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - C Douglas Grubb
- Biorecycling Operations Research Laboratory, Des Moines, IA, USA
| | - Khemakhem Bassem
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Vandenbulcke Franck
- Laboratoire de Génie Civil et géo-Environnement, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Mejdoub Hafedh
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Elleuch Amine
- Laboratory of Plant Biotechnology, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia.
| |
Collapse
|
49
|
Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei XX. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:457-483. [PMID: 28226237 DOI: 10.1146/annurev-arplant-042916-041049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616;
| | | | - Amanda R De La Torre
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Sara Montanari
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Xiao-Xin Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
50
|
Ascencio D, Ochoa S, Delaye L, DeLuna A. Increased rates of protein evolution and asymmetric deceleration after the whole-genome duplication in yeasts. BMC Evol Biol 2017; 17:40. [PMID: 28166720 PMCID: PMC5294719 DOI: 10.1186/s12862-017-0895-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background Whole-genome duplication (WGD) events have shaped the genomes of eukaryotic organisms. Relaxed selection after duplication along with inherent functional constraints are thought to determine the fate of the paralogs and, ultimately, the evolution of gene function. Here, we investigated the rate of protein evolution (as measured by dN/dS ratios) before and after the WGD in the hemiascomycete yeasts, and the way in which changes in such rates relate to molecular and biological function. Results For most groups of orthologous genes (81%) we observed a change in the rates of evolution after genome duplication. Genes with atypically-low dN/dS ratio before the WGD were prone to increase their rates of evolution after duplication. Importantly, the paralogs were often different in their rates of evolution after the WGD (50% cases), however, this was more consistent with an asymmetric deceleration in the protein-evolution rates, rather than an asymmetric increase of the initial rates. Functional-category analysis showed that regulatory proteins such as protein kinases and transcription factors were enriched in genes that increase their rates of evolution after the WGD. While changes in the rate of protein-sequence evolution were associated to protein abundance, content of disordered regions, and contribution to fitness, these features were an attribute of specific functional classes. Conclusions Our results indicate that strong purifying selection in ancestral pre-duplication sequences is a strong predictor of increased rates after the duplication in yeasts and that asymmetry in evolution rate is established during the deceleration phase. In addition, changes in the rates at which paralogous sequences evolve before and after WGD are different for specific protein functions; increased rates of protein evolution after duplication occur preferentially in specific protein functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0895-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Ascencio
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Soledad Ochoa
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Luis Delaye
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|