1
|
Shakhawat MK, Gelda RK, Moore KE, Mukundan R, Lanzarini-Lopes M, McBeath ST, Guzman CD, Reckhow D. Impact of storm events on disinfection byproduct precursors in a drinking water source in the Northeastern United States. WATER RESEARCH 2024; 255:121445. [PMID: 38503182 DOI: 10.1016/j.watres.2024.121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Storm events play a crucial role in organic matter transport within watersheds and can increase the concentration and alter the composition of NOMs and DBP formation potential. To assess the impact that storm events can have on drinking water quality, samples were collected and analyzed across four storm events in the Neversink River, Catskill region, New York in 2019 and 2022. Source water natural organic matter (NOM) was characterized, and the change of NOM quality was evaluated due to storm impacts. During storm events, a high level of NOM mobilization is initiated by heavy precipitation causing overland flow and a rise in the water table. In this way, storms result in increased access to stored NOM pools that are generated during inter-storm periods. A significant correlation was observed between several organic water quality parameters such as UV absorbance (UV254), dissolved organic carbon (DOC) and chlorine demand. Precursors for the total trihalomethanes (TTHM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) exhibited comparable patterns with UV254, DOC, and chlorine demand for four storms. Despite the potential for increased dilution resulting from higher discharges, all organic water quality parameters, including yields of disinfection byproducts (i.e., DBP precursors), exhibited elevated concentrations during periods of higher flows. Three of the four storms showed hysteresis patterns with higher observed concentrations of organic constituents in the falling limb of the hydrographs. Precursors for the nitrogenous DBPs (N-DBPs) were proportional to the DOC for all four storms. The coefficient of determination (R2) for TTHM, DCAA, TCAA with UV254 is higher (R2 0.92-0.98) than corresponding correlations with DOC (R2 0.89-0.92). The R2 for UV254 showed the following hierarchy: DCAA≈TCAA>TTHM. Additionally, the R2 for DOC and specific ultraviolet absorbance (SUVA) had the following hierarchy: DCAA>TCAA>TTHM and TCAA>DCAA>TTHM respectively. A significant correlation between UV254 and DOC (R = 0.99) for all storms was observed. Chlorine demand also yielded a strong correlation (R = 0.91∼0.98) with UV254 and DOC. This research indicates that a significant and disproportionate export of NOM to source waters occurs during storm events compared to baseflow conditions. Consequently, it is recommended for drinking water treatment facilities to reassess chlorine dosages during these events. Treatment plants can employ UV254 as a tool to determine appropriate chlorine dosages, aiming to mitigate DBP formation in treated waters.
Collapse
Affiliation(s)
- Mohammad Kiron Shakhawat
- Civil and Environmental Engineering, Engineering Laboratory II (Elab II), 101 North Service road, Rm#210, UMass Amherst, Amherst MA 01003-9345, United States.
| | - Rakesh K Gelda
- Bureau of Water Supply, NYC Department of Environmental Protection, 71 Smith Ave, Kingston, NY 12401, United States
| | - Karen E Moore
- Bureau of Water Supply, NYC Department of Environmental Protection, 71 Smith Ave, Kingston, NY 12401, United States
| | - Rajith Mukundan
- Bureau of Water Supply, NYC Department of Environmental Protection, 71 Smith Ave, Kingston, NY 12401, United States
| | - Mariana Lanzarini-Lopes
- Civil and Environmental Engineering, Engineering Laboratory II (Elab II), 101 North Service road, Rm#210, UMass Amherst, Amherst MA 01003-9345, United States
| | - Sean T McBeath
- Civil and Environmental Engineering, Engineering Laboratory II (Elab II), 101 North Service road, Rm#210, UMass Amherst, Amherst MA 01003-9345, United States
| | - Christian D Guzman
- Civil and Environmental Engineering, Engineering Laboratory II (Elab II), 101 North Service road, Rm#210, UMass Amherst, Amherst MA 01003-9345, United States
| | - Dave Reckhow
- Civil and Environmental Engineering, Engineering Laboratory II (Elab II), 101 North Service road, Rm#210, UMass Amherst, Amherst MA 01003-9345, United States
| |
Collapse
|
2
|
Xu L, Song S, Graham NJD, Yu W. Direct generation of DBPs from city dust during chlorine-based disinfection. WATER RESEARCH 2024; 248:120839. [PMID: 37980862 DOI: 10.1016/j.watres.2023.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Chlorine-based disinfectants, such as sodium hypochlorite, are extensively used in our daily lives. In particular, during the recent Covid-19 pandemic and post-pandemic period, excessive amounts of chlorine-based disinfectants were used both indoors and outdoors to interrupt virus transmission. However, the interaction between disinfectants and city dust during the disinfection process has not been sufficiently evaluated. In this study, we conducted a comprehensive investigation into the intrinsic characteristics (e.g. morphology, size, elemental composition, and organic content, etc.) of dust collected from various indoor and outdoor areas. The results showed that the organic carbon content of indoor dust reached 6.14 %, with a corresponding measured dissolved organic carbon value of 4.17 ± 0.23 mg/g (normalized to the dust weight). Concentrations of regulated DBPs, resulting from the interaction between dust and NaClO, ranged from 57.78 ± 2.72 to 102.80 ± 22.63 µg/g for THMs and from 119.18 ± 6.50 to 285.14 ± 36.95 µg/g for HAAs (normalized to the dust weight). More significantly, using non-target analysis through gas chromatography quadrupole time-of-flight mass spectrometry (GC-qTOF-MS), we identified a total of 68, 89, and 87 types of halogenated DBPs from three typical indoor and outdoor sites (R-QH, C-JS, and W-BR, respectively). These unknown DBPs included compounds with higher toxicity compared to regulated DBPs. These findings highlight that city dust is a significant source of DBP generation during chlorine-based disinfection, posing potential harm to both the ecological environment and human health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shian Song
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Xiao R, Yang X, Fang C, Zhang R, Chu W. Total organic halogen (TOX) in drinking water: Occurrence, correlation analysis, and precursor removal during drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167445. [PMID: 37777131 DOI: 10.1016/j.scitotenv.2023.167445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Total organic halogen (TOX) in drinking water provides a measurement of the overall organic halogenated disinfection by-products (DBPs) formed during disinfection. Yangtze River Delta is one of the regions with the highest population density, the fastest urbanization process, and the most severe water pollution in China. Collecting water samples from full-scale drinking water treatment plants (DWTPs) in this region, this study firstly surveyed TOX occurrence in drinking water. Besides, the correlation of TOX formation potential (TOXFP) and trihalomethane formation potential (THMFP) with general water quality parameters (e.g., dissolved organic carbon [DOC], UV254, and specific ultraviolet absorbance) and the removal efficiencies of TOX precursors by different water treatment processes were also investigated. TOX levels in DWTP effluents (i.e., finished water) ranged from 29 to 165 μg/L (median 67 μg/L), and those in simulated distribution system waters ranged from 101 to 276 μg/L (median 158 μg/L). There were generally higher linear regression coefficient values for raw water (R2 = 0.51-0.88) than for treated water (R2 = 0.33-0.64) in terms of the relationship between DBP formation potentials and general parameters. However, a relatively stronger correlation between THMFP and TOXFP was observed for treated water (R2 = 0.80, p < 0.001) than for raw water (R2 = 0.64, p < 0.001). The overall treatment efficiencies of investigated parameters in DWTPs generally followed the order of UV254 > DOC > TOX precursors > THM precursors. Notably, the overall removal rates of DOC and TOX precursors in summer (averaging 59 % and 54 %, respectively) were obviously higher than those in winter (averaging 39 % and 38 %, respectively), which was assumed to be related to the seasonal variation of bioactivity in sand filter. These results could expand the knowledge of TOX in drinking water, and provide valuable perspectives to water industry and DBP research.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Ruihua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Okoji AI, Okoji CN, Awarun OS. Performance evaluation of artificial intelligence with particle swarm optimization (PSO) to predict treatment water plant DBPs (haloacetic acids). CHEMOSPHERE 2023; 344:140238. [PMID: 37788747 DOI: 10.1016/j.chemosphere.2023.140238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The prevention of water-borne diseases requires the disinfection of water consumed. Disinfection by-products, however, are an increasing concern, and they require advanced knowledge of water treatment plants before their release for human consumption. In this study, multivariate non-linear regression (MNR) and adaptive neuro-fuzzy inference system (ANFIS: Grid partition - GP and Sub-clustering - SC) integrated with particle swarm optimization (PSO) were proposed for the prediction of haloacetic acids (HAAs) in actual distribution systems. PSO-ANFIS-GP and PSO-ANFIS-SC were trained and verified for a total of 64 sets of data with eight parameters (pH, Temperature, UVA254, DOC, Br-; NH4+-N; NO2--N, residual free chlorine). With MNR, R2 is 0.5184
Collapse
Affiliation(s)
- Anthony I Okoji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria.
| | - Comfort N Okoji
- Department of Biology and Forensic, Admiralty University, Ibusa, Delta state, Nigeria
| | - Olorunfemi S Awarun
- Department of Microbiology, Landmark University, Omu-Aran, Kwara state, Nigeria
| |
Collapse
|
5
|
Chen Y, Jafari I, Zhong Y, Chee MJ, Hu J. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157454. [PMID: 35868393 DOI: 10.1016/j.scitotenv.2022.157454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Combined processes of light-emitting diodes ultraviolet (LED UV) and chlorination (Cl2) are alternative disinfection technologies in drinking water, while the formation of disinfection by-products (DBPs) needs to be evaluated. This study investigated the impacts of critical water matrix factors on the DBP formation in the combined processes. Moreover, the correlation between the degraded natural organic matter (NOM) and the formed DBP was studied. Simultaneous UV/Cl2 outperformed single Cl2 and sequential combined processes in degrading humic acids (HA) and resulted in the highest DBP yield. Iodide at 5-20 μg/L and bromide at 0.05-0.2 mg/L slightly affected the degradation of organics, while increased the formation of brominated DBPs up to 36.6 μg/L. pH 6 was regarded as the optimum pH, achieving high efficiency of HA degradation and a lower level of total DBP formation than pH 7 and 8 by 11 % and 24 %, respectively. Compared to HA samples (46.8-103.9 μg/L per mg/L DOC), NOM in canal water were less aromatic and yielded fewer DBPs (19.6 and 21.2 μg/L per mg/L DOC). However, the extremely high bromide in site 1 samples (18.6 mg/L) shifted the chlorinated DBPs to their brominated analogues, posting around 1 order of magnitude higher levels of toxicities than HA samples. The reduction of absorbance at 254 nm (UV254) correlated with all DBP categories in HA samples, while the correlation coefficients were compromised when included in the canal samples. For the first time, this study found that parallel factor analysis (PARAFAC) would neglect the fluorescence change caused by iodide/bromide in UV/Cl2, while the changes could be captured by self-organising map (SOM) trained with full fluorescence spectra. Fluorescence Ex/Em pairs were proposed to predict DBP formation, suggesting a potential method to develop an online monitoring system for DBPs.
Collapse
Affiliation(s)
- Yiwei Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Iman Jafari
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yu Zhong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Min Jun Chee
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Pérez-Lucas G, Martínez-Menchón M, Vela N, Navarro S. Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115936. [PMID: 35981503 DOI: 10.1016/j.jenvman.2022.115936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Solar heterogeneous photocatalysis was used to remove trihalomethanes (THMs) from drinking water. THMs, mainly trichloromethane (TCM), tribromomethane (TBM), bromodichloromethane (BDCM) and dibromochloromethane (DBCM) are one of the main class of disinfection by-products (DBPs). THMs were determined by HSGC-MS with detection limits (LODs) ranging from 0.5 μg L-1 to 0.9 μg L-1 for TCM and BDCM, respectively. Results show that a great proportion of THMs present in water are finally transferred to air as a result of their high volatility in the order TCM > BDCM > DBCM > TBM. The use of band-gap semiconductor materials (TiO2 and mainly ZnO) used as photocatalysts in combination with Na2S2O8 as electron acceptor and sulfate radical anion (SO4•-) generator enhanced the photooxidation of all THMs as compared to photolytic test. The time required for 50% of THMs to disappear (DT50) from water calculated for the most effective treatment (ZnO/Na2S2O8) were 12, 42, 57 and 61 min for TCM, TBM, BDCM, and DBCM, respectively. Therefore, solar heterogeneous photocatalysis can be considered as an interesting strategy for THMs removal, especially in sunny areas like Mediterranean basin.
Collapse
Affiliation(s)
- Gabriel Pérez-Lucas
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Marina Martínez-Menchón
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health. Faculty of Health Science, Catholic University of Murcia, Campus de Los Jerónimos, s/n. Guadalupe, 30107, Murcia, Spain
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
7
|
Weng H, Wang C, Ye T, Xu Z, Sun H, Lin H, Deng WJ, Wu F, Hong H. Precursor characteristics of mono-HAAs during chlorination and cytotoxicity of mono-HAAs on HEK-293T cells. CHEMOSPHERE 2022; 301:134689. [PMID: 35469898 DOI: 10.1016/j.chemosphere.2022.134689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Monohaloacetic acids (mono-HAAs), a class of disinfection by-products widely occurred in drinking water, receives significant attention due to their extremely high toxicity. Many studies on the biological toxicity of mono-HAAs have been reported, yet the toxic effects of mono-HAAs on human renal cells (kidney is one of the target organs for disinfection by-products) has not been involved. Studies on organic precursors for mono-HAAs formation were also very limited due to their lower levels as compared to di-HAAs and tri-HAAs. Based on this, the formation of mono-HAAs after chlorination of some typical source water samples and their relationship with water quality parameters were investigated. Meanwhile, the cytotoxicity of monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), and monoiodoacetic acid (MIAA) were tested using human embryonic kidney cells (HEK-293 T cells). The results showed that the levels of mono-HAAs formed during chlorination of source water samples were between 0.44 and 0.87 μg/L. Formation of MBAA positively (p < 0.05) correlated with bromide ion and dissolved organic carbon, but negatively (p < 0.01) correlated with SUVA254 (specific UV absorbance at 254 nm), while formation of MCAA was only positively (p < 0.05) related with SUVA254. These results suggested that although MCAA and MBAA both belong to the mono-HAAs, the characteristics of their organic precursors differ significantly. MCAA precursors have high aromaticity and are more hydrophobic, yet MBAA precursors have low aromaticity and are more hydrophilic. The half-lethal concentrations (LC50) of MCAA, MBAA, and MIAA on HEK293T cells were 1196-1211 μM, 16.07-18.96 μM, and 6.08-6.17 μM, respectively. An in-depth analysis showed that the cytotoxicity of mono-HAAs on HEK 293 T cells could not be explained by the parameters concerning cellular uptake (e.g., logP and pKa), but the SN2 reaction of C-X bond with cellular molecules (e.g., glyceraldehyde-3-phosphate dehydrogenase, etc) may be the relevant cause for the cytotoxicity of mono-HAAs on HEK 293 T cells.
Collapse
Affiliation(s)
- Hao Weng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Chuantian Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ting Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjie Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T, Hong Kong
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
8
|
Zhang XY, Du Y, Lu Y, Wang WL, Wu QY. Characteristics of the formation and toxicity index of nine newly identified brominated disinfection byproducts during wastewater ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153924. [PMID: 35182650 DOI: 10.1016/j.scitotenv.2022.153924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Ozonation plays an important role in wastewater treatment for reuse. However, the toxicity of wastewater treated with ozone considerably increases with bromide (Br-) concentration >100 μg/L. Nine newly identified brominated disinfection byproducts (Br-DBPs) that are highly toxic in ozonated Br--containing wastewater were found in our recent work, including 2-bromostyrene, 1-bromo-1-phenylethylene, 2-bromobenzaldehyde, 3-bromobenzaldehyde, 4-bromobenzaldehyde, 2-bromophenylacetonitrile, 3-bromophenylacetonitrile, 4-bromophenylacetonitrile, and 2,4,6-tribromophenol. In the present study, the formation and calculated toxicity index of the nine newly identified Br-DBPs were evaluated. The correlations between the water quality index and the formation of nine Br-DBPs were also analyzed. With the increase of ozone dosage, the concentrations of bromostyrenes, 3-bromobenzaldehyde, 4-bromobenzaldehyde, 2-bromophenylacetonitrile, and 2,4,6-tribromophenyl in the ozonated samples gradually increased. With the increase of Br- concentration, the concentrations of bromostyrene, 2-bromobenzaldehyde, and 2,4,6-tribromophenol gradually increased. With the increase of NH4+ concentration, the concentrations of bromophenylacetonitriles gradually increased. Among the nine Br-DBPs, the bromophenylacetonitriles and 2,4,6-tribromophenol contributed the most to the cytotoxicity index, 2,4,6-tribromophenol and bromostyrenes contributed the most to the genotoxicity index, and bromophenylacetonitriles and bromostyrenes contributed the most to the oxidative damage index. The dissolved organic carbon levels strongly correlated with the formation of 3-bromophenylacetonitrile and 4-bromophenylacetonitrile, and the fluorescence I-V region intensity integral was correlated with the formation of 4-bromobenzaldehyde and 2,4,6-tribromophenol. The results of the present study clarified the formation potential of the nine widely existing newly identified Br-DBPs, confirmed the high calculated toxicity indices, and are of great value for future research on Br-DBPs.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, PR China
| | - Yao Lu
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Liu JL, Han X, Zhang J, Wang HJ, Zhou MX, Li SW, Ma X, Wang Y, Liu AL. Total organic halogen in two drinking water supply systems: Occurrence, variations, and relationship with trihalomethanes. CHEMOSPHERE 2022; 288:132541. [PMID: 34648782 DOI: 10.1016/j.chemosphere.2021.132541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal presence of overall disinfection by-products (DBPs) in two full-scale drinking water supply systems (DWSSs) were investigated using quantification of total organic halogen (TOX). The relationships of TOX with water quality parameters (especially the most regulated DBPs, trihalomethanes (THMs)) were also evaluated. The TOX levels ranged between 2.6 and 70.3 μg Cl/L and between 46.6 and 205.9 μg Cl/L in raw water and distribution water, respectively. The TOX concentration in water increased by an average of nine times after water treatment and varied slightly during distribution, suggesting that TOX in drinking water was mainly formed during chlorination disinfection rather than distribution. No clear seasonality in TOX level was observed. Positive correlations were found between raw water dissolved organic carbon (DOC) with an increase in TOX in treated water and between DOC level with TOX content in distributed water, emphasizing a key role of organics in TOX formation. Chloroform (TCM) was the dominant THM, followed by bromodichloromethane (BDCM) in the drinking water, and the levels of the other two measured THMs (dibromochloromethane and bromoform) were negligible. THM2 (sum of TCM and BDCM) made up average of 18% of the TOX, and was weakly correlated with TOX content (rs = 0.321; P < 0.05), implying that THM is not a suitable surrogate measure for TOX in drinking water. This study provides basic data on the occurrence and variation of TOX within conventional DWSSs and highlights the importance of using TOX measurements to obtain more accurate information about DBP occurrence, for exposure assessment and regulatory determination.
Collapse
Affiliation(s)
- Jun-Ling Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Wuhan Center for Disease Control and Prevention, Wuhan, 430024, China
| | - Xue Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jie Zhang
- Wuhan Water Group Company Limited, Wuhan, 430015, China
| | - Huai-Ji Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Wuhan Center for Disease Control and Prevention, Wuhan, 430024, China
| | | | - Shi-Wei Li
- Wuhan Water Group Company Limited, Wuhan, 430015, China
| | - Xuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Santos D, Hagemann Cauduro V, Wohlmann W, Bizzi CA, Mello PA, Flores EMM. Ultrasound-assisted conversion of tannic acid to gallic acid as a strategy to obtain value-added products. ULTRASONICS SONOCHEMISTRY 2021; 72:105442. [PMID: 33388694 PMCID: PMC7803818 DOI: 10.1016/j.ultsonch.2020.105442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
In this work, ultrasound was applied for the conversion of tannic acid into gallic acid using only diluted H2O2 as reagent. Experiments were carried out using several types of ultrasonic horns operating at 20 kHz (VC750W processor). The following experimental conditions were evaluated: H2O2 concentration (0.2 to 8.5 mol L-1), horn type (10 to 25 mm of diameter), ultrasound amplitude (20 to 70%), sonication time (10 to 45 min), tannic acid concentration (170 to 1360 mg L-1), and reaction temperature (50 to 90 °C). Gallic acid production was monitored with ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS). The isolated gallic acid was confirmed with nuclear magnetic resonance (1H and 13C NMR). It is important to emphasize that this study was developed as a proof of concept to demonstrate the potential of ultrasound for tannic acid conversion into gallic acid using just diluted H2O2. Under selected conditions gallic acid production yield was 128 ± 4 mg g-1 of initial tannic acid (using 170 mg L-1 of tannic acid as starting material). Reaction time was set as 30 min, which was carried out using 1 mol L-1 H2O2 and ultrasound amplitude of 50% at 90 °C. At silent conditions (mechanical stirring, from 100 to 1000 rpm), gallic acid production was halved (less than 78 ± 4 mg g-1 of initial tannic acid).
Collapse
Affiliation(s)
- Daniel Santos
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Wilian Wohlmann
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Cezar A Bizzi
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Paola A Mello
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Erico M M Flores
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Mosaferi M, Asadi M, Aslani H, Mohammadi A, Abedi S, Nemati Mansour S, Maleki S. Temporospatial variation and health risk assessment of trihalomethanes (THMs) in drinking water (northwest Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8168-8180. [PMID: 33052571 DOI: 10.1007/s11356-020-11063-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Trihalomethanes (THMs) are one of the most common classes of disinfection by-products. In this study, the temporospatial trends and health risks due to exposure to THMs in the Tabriz water distribution network were investigated. THM series were analyzed using gas chromatography equipped with electron capture detector. The non-carcinogenic and carcinogenic risks due to exposure to THMs were calculated using Monte Carlo simulations. Mean concentrations of THMs in winter and spring were 10.2 ± 9.3 μg/l and 252 ± 185.9 μg/l, respectively. More than 80% of THMs identified were bromodichloromethane. The mean values of lifetime cancer risk (LTCR) of THMs were calculated as 4.23E-06 and 2.38E-04 for winter and spring, respectively. This study showed that there were noticeable levels of THMs in Tabriz water distribution network, especially in the center of the city. Although the non-cancer risk through THMs was below permissible recommended levels, the cancer risk likely remains due to high levels of THMs in some locations.
Collapse
Affiliation(s)
- Mohammad Mosaferi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrdad Asadi
- School of Engineering and the Built Environment, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Hassan Aslani
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammadi
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Sanaz Abedi
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nemati Mansour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Ates N, Kaplan-Bekaroglu SS, Dadaser-Celik F. Spatial/temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2276-2290. [PMID: 33103680 DOI: 10.1039/d0em00239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims (1) to determine the seasonal and spatial distribution of THMs formed in chlorinated groundwater containing low levels of organic matter (0.4-0.8 mg L-1) and low to high levels of bromine (40-380 μg L-1), and (2) to evaluate the multi-route cancer risks associated with them. The study was conducted in Kayseri (Turkey), where drinking water is supplied from groundwater after chlorination only. THM formation in 50 water samples from 18 storage tanks and 32 distribution points was investigated to evaluate the spatial and temporal changes in THM concentrations for 12 months. The lifetime cancer risk associated with exposure to THMs through multiple pathways (i.e., oral ingestion, dermal absorption, and inhalation) was estimated for males and females. For a 12 month sampling period, the minimum and maximum THM concentrations varied from 2 μg L-1 to 17 μg L-1 and from 2 μg L-1 to 29 μg L-1 in storage tanks and distribution points, respectively. The ranges of median concentrations of THM were 5 μg L-1 to 9 μg L-1 in storage tanks and 5 μg L-1 to 12 μg L-1 in distribution points. In all samples dibromochloromethane was the dominant species, followed by bromoform, chloroform, and bromodichloromethane. The average values of total cancer risk associated with exposure to THMs via oral ingestion, dermal absorption, and inhalation for females and males were 1.31 × 10-5 and 1.25 × 10-5 in storage tanks, and 1.46 × 10-5 and 1.39 × 10-5 in distribution points, respectively. Although THM concentrations were very low, cancer risk values are 1.0 × 10-6 < CR < 1.0 × 10-4, which are higher than the negligible risk level (1.0 × 10-6).
Collapse
Affiliation(s)
- Nuray Ates
- Environmental Engineering Dept., Erciyes University, Kayseri, Turkey.
| | | | | |
Collapse
|
13
|
Cordero JA, He K, Okuta E, Echigo S, Itoh S. Effect of biodegradation on haloacetic acid formation potentials of anthropogenic compounds during chlorination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18117-18128. [PMID: 32172417 DOI: 10.1007/s11356-020-08125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
During drinking water treatment processes, anthropogenic compounds act as important precursors of disinfection by-products such as haloacetic acids (HAAs). Several transformations in these precursors occur prior to the disinfection stage, such as partial biodegradation. We hypothesized that this partial biodegradation of anthropogenic compounds potentially affects their HAA formation potentials (HAAFPs). In this study, the HAAFPs of 51 anthropogenic compounds after short-term contact (less than 1 h) and long-term contact (24 h) with activated sludge were compared. Considerable changes were observed particularly in trichloroacetic acid (TCAA) formation potentials (FPs) of phenols, demonstrating that biodegradation should be considered in investigations of potential precursors of HAAs. Phenols with low HAAFPs, such as hydroquinone, show higher HAAFPs after biodegradation, but HAAFPs of most phenols and anilines decreased after biodegradation. Thus, biodegradation will most likely have a positive impact on water quality from the standpoint of HAAFP reduction. For most aliphatic compounds, changes in HAAFP were negligible, but the dichloroacetic acid (DCAA) FP of acrylic acid largely increased. This study illustrates that biodegradation may have a large effect on the HAAFPs of anthropogenic compounds.
Collapse
Affiliation(s)
- José Andrés Cordero
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8540, Japan
| | - Kai He
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Erika Okuta
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8540, Japan
| | - Shinya Echigo
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8540, Japan
- Department of Environmental Health, National Institute of Public Health, Wako, Saitama, 351-0197, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8540, Japan
| |
Collapse
|
14
|
Sadeghi H, Nasseri S, Yunesian M, Mahvi AH, Nabizadeh R, Alimohammadi M. Trihalomethanes in urban drinking water: measuring exposures and assessing carcinogenic risk. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:619-632. [PMID: 32030138 PMCID: PMC6985399 DOI: 10.1007/s40201-019-00374-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/07/2022]
Abstract
Trihalomethanes (THMs) have been proven to be potentially genotoxic and mutagenic for human. The aim of this study was to characterize the THMs spatiotemporal distribution and its carcinogenic risk potential in Ardabil water distribution system. Water samples were collected over consecutive months from twenty-six points in the city of Ardabil from April 2016 to March 2017. The potential carcinogenic risk assessment of THMs was evaluated quantitatively with uncertainty assessment based on Monte-Carlo simulation technique. The results showed that the mean concentrations of bromodichloromethane, Chloroform, dibromochloromethane and Bromoform in water consumed by residents were 101.97 ± 58.51, 85.18 ± 47.79, 51.67 ± 29.57 and 11.89 ± 6.64 μg/L, respectively, during the sampling period. According to the result of this study, the concentrations of THMs were higher in summer in comparison with other seasons. The mean values of lifetime cancer risks for residents through ingestion, inhalation and dermal contact are 2.85×10-4, 6.46×10-7, and 1.26×10-7, respectively. The lifetime cancer risks for residents through ingestion was found to be 285 times more than the minimum or negligible level set by US.EPA (1.0×10-6) and for dermal contact and inhalation lower than the minimum or negligible level set by US.EPA. The results of the present research may contribute to inform the decision makers of drinking water supply system about the role of water quality in the health of consumers.
Collapse
Affiliation(s)
- Hadi Sadeghi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kolb C, Francis RA, VanBriesen JM. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk. J Environ Sci (China) 2017; 58:191-207. [PMID: 28774609 DOI: 10.1016/j.jes.2017.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation. The regulated surrogate measures are intended to protect against not only the species they directly represent, but also against unregulated DBPs that are not routinely measured. Surrogates that do not incorporate effects of increasing bromide may not adequately capture human health risk associated with drinking water when source water bromide is elevated. The present study analyzes trihalomethanes (THMs), measured as TTHM, with varying source water bromide concentrations, and assesses its correlation with brominated THM, TTHM risk and species-specific THM concentrations and associated risk. Alternative potential surrogates are evaluated to assess their ability to capture THM risk under different source water bromide concentration conditions. The results of the present study indicate that TTHM does not adequately capture risk of the regulated species when source water bromide concentrations are elevated, and thus would also likely be an inadequate surrogate for many unregulated brominated species. Alternative surrogate measures, including THM3 and the bromodichloromethane concentration, are more robust surrogates for species-specific THM risk at varying source water bromide concentrations.
Collapse
Affiliation(s)
- Chelsea Kolb
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Royce A Francis
- Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Du Y, Wu QY, Lu Y, Hu HY, Yang Y, Liu R, Liu F. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:681-690. [PMID: 27889183 DOI: 10.1016/j.jhazmat.2016.11.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Toxic and harmful disinfection byproducts (DBPs) were formed during wastewater chlorination. It was recently suggested that cytotoxicity to mammalian cells reflects risks posed by chlorinated wastewater. Here, ATP assays were performed to evaluate the cytotoxicity to mammalian cells. Chlorination significantly increased cytotoxicity of treated wastewater. Factors affecting cytotoxicity formation during wastewater chlorination were investigated. Quenching with sodium thiosulfate and ascorbic acid decreased the formed cytotoxicity, while ammonium kept the cytotoxicity stable. The chlorine dose required for the maximum cytotoxicity increase was dramatically affected by DOC and ammonia concentrations. The maximum cytotoxicity increase, defined as the cytotoxicity formation potential (CtFP), occurred when wastewater was treated for 48h with a chlorine dose of 2·DOC+11·NH3N+10 (mg-Cl2/L). During chlorination, the amounts of AOX formation was found to be significantly correlated with cytotoxicity formation when no DBPs were destroyed. AOX formation could be used as a surrogate to estimate cytotoxicity increase during wastewater chlorination. Besides, the CtFP of 14 treated wastewater samples was assessed ranged from 5.4-20.4mg-phenol/L. The CtFP could be estimated from UV254 of treated wastewater because CtFP and UV254 were strongly correlated.
Collapse
Affiliation(s)
- Ye Du
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| | - Yang Yang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, PR China
| | - Feng Liu
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
17
|
Long-Term Comparison of Disinfection By-Product Formation Potential in a Full Scale Treatment Plant Utilizing a Multi-Coagulant Drinking Water Treatment Scheme. WATER 2016. [DOI: 10.3390/w8080318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kadmi Y, Favier L, Ionut SA, Matei E, Wolbert D. Improved Determination of Dichloroacetic and Trichloroacetic Acids in Water by Solid Phase Extraction Followed by Ultra-high Performance Liquid Chromatography–Tandem Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1025275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Zheng D, Andrews RC, Andrews SA, Taylor-Edmonds L. Effects of coagulation on the removal of natural organic matter, genotoxicity, and precursors to halogenated furanones. WATER RESEARCH 2015; 70:118-129. [PMID: 25528542 DOI: 10.1016/j.watres.2014.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Natural organic matter (NOM) in drinking water can react with disinfectants to form disinfection by-products (DBPs). Halogenated furanones are a group of emerging DBPs that can account for 20-60% of the total mutagenicity observed in drinking water. This study examined the impacts of bench-scale coagulation and subsequent chlorination on DBP formation as well as genotoxicity using three source waters located in Ontario, Canada. Two halogenated furanones 3-chloro-4-(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA) were analyzed; along with trihalomethanes (THMs), haloacetic acids (HAAs), and absorbable organic halides (AOX). NOM was quantified using liquid chromatography-organic carbon detection (LC-OCD). Measured MX and MCA formation was 6.9-15.3 ng/L and 43.2-315 ng/L following optimized coagulation and subsequent chlorination of the three waters tested. DBP formation and speciation were evaluated as a function of the specific NOM fractions present in the source waters. Humics, building blocks, and biopolymers were highly correlated with DBP formation. Correlations between DBPs were also investigated and a potential relationship between MCA and/or MX vs. HAAs was observed. MX was the only measured DBP that contributed to genotoxicity, representing less than 0.001% of AOX by mass but responsible for 40-67% of the genotoxic response in chlorinated Ottawa River water samples. Genotoxic potential decreased with alum dosages, signifying that coagulation was effective at removing genotoxic DBP precursors.
Collapse
Affiliation(s)
- Dana Zheng
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, Canada M5S 1A4.
| | - Robert C Andrews
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, Canada M5S 1A4.
| | - Susan A Andrews
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, Canada M5S 1A4
| | - Liz Taylor-Edmonds
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, Canada M5S 1A4
| |
Collapse
|
20
|
Peleato NM, Andrews RC. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids. J Environ Sci (China) 2015; 27:159-167. [PMID: 25597674 DOI: 10.1016/j.jes.2014.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 06/04/2023]
Abstract
This work investigated the application of several fluorescence excitation-emission matrix analysis methods as natural organic matter (NOM) indicators for use in predicting the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Waters from four different sources (two rivers and two lakes) were subjected to jar testing followed by 24hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking, and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component (PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets (THMs: 43.7 (μg/L)(2), HAAs: 233.3 (μg/L)(2)). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation-emission matrix-principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied.
Collapse
Affiliation(s)
- Nicolás M Peleato
- Department of Civil Engineering, University of Toronto, Toronto M5S 1A4, Ontario, Canada.
| | - Robert C Andrews
- Department of Civil Engineering, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| |
Collapse
|
21
|
Ates N, Incetan FB. Competition Impact of Sulfate on NOM Removal by Anion-Exchange Resins in High-Sulfate and Low-SUVA Waters. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401814v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuray Ates
- Department
of Environmental Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Fatma Burcin Incetan
- Directorate of
Environment and Urbanization of Kayseri, Ministry of Environment and
Urbanization, 38039 Kayseri, Turkey
| |
Collapse
|
22
|
Bruzzoniti MC, De Carlo RM, Sarzanini C, Caldarola D, Onida B. Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:4176-4183. [PMID: 22529001 DOI: 10.1007/s11356-012-0900-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.
Collapse
|
23
|
Aydin E, Yaman FB, Ates Genceli E, Topuz E, Erdim E, Gurel M, Ipek M, Pehlivanoglu-Mantas E. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:86-91. [PMID: 22542776 DOI: 10.1016/j.jhazmat.2012.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/08/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and <2 and 1648ng/L NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters.
Collapse
Affiliation(s)
- Egemen Aydin
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Molnar JJ, Agbaba JR, Dalmacija BD, Klašnja MT, Dalmacija MB, Kragulj MM. A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 425:169-175. [PMID: 22483747 DOI: 10.1016/j.scitotenv.2012.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/28/2012] [Accepted: 03/11/2012] [Indexed: 05/31/2023]
Abstract
This study compares the effects of ozonation (0.4-3.0 mg O(3)/mg DOC) and TiO(2)-catalyzed ozonation - TiO(2)-O(3) (0.4-3.0 mgO(3)/mg DOC; 1.0 mgTiO(2)/L) at pH 6 on the content and structure of natural organic matter (NOM) and trihalometane (THM) and haloacetonitrile (HAN) precursors in groundwater. The investigated groundwater from Northern Serbia is rich in NOM (9.85 mg/L DOC) which is mostly of hydrophobic character (65% fulvic acid and 14% humic acid fraction). It was found that the TiO(2)-catalyzed process, by favoring the radical mechanism of NOM oxidation, resulted in a more effective reduction in the content of total NOM (up to 18% DOC) compared to ozonation alone (up to 6% DOC). The use of TiO(2) also resulted in an improvement of ozonation in terms of THM precursor content removal (up to 80%). On the other hand, the application of both oxidation treatments resulted in an increase in the HANFP compared to the raw water. NOM oxidation during ozonation and TiO(2)-O(3) caused changes in their structure in the direction of an increased proportion of the hydrophilic fraction (up to 70%), which has the most reactive THM and HAN precursors, as well as the fraction with the highest content of their brominated species.
Collapse
Affiliation(s)
- Jelena J Molnar
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
25
|
Liu B, Gu L, Yu X, Yu G, Zhang H, Xu J. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:508-514. [PMID: 22169394 DOI: 10.1016/j.scitotenv.2011.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/17/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
26
|
Pardakhti AR, Bidhendi GRN, Torabian A, Karbassi A, Yunesian M. Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:499-507. [PMID: 20981567 DOI: 10.1007/s10661-010-1752-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 10/04/2010] [Indexed: 05/09/2023]
Abstract
This research evaluates the lifetime cancer risks from trihalomethanes in Tehran's drinking water. The Trihalomethanes were measured in seven different water districts. Sixty-three samples were taken from tap water across the city for 7 months. The samples were analyzed for trihalomethanes using US EPA method 524.2. The average concentration of total trihalomethanes in different districts were between 0.81 and 9.0 μg/L, and the highest concentrations were detected in district 2 at 19.5 μg/L. Total lifetime cancer risks assessment from exposure to trihalomethanes in drinking water (ingestion, inhalation, and skin routes) were performed for people living in different districts in Tehran. The lifetime cancer risk was 7.19 × 10(-5) in district 2 (a more affluent neighborhood) where mostly surface water sources is used to supply drinking water and 9.38 × 10(-6) in district 7 (a less affluent neighborhood) which is mainly supplied with well water sources. Based on the population data, the total expected lifetime cancer cases from exposure to trihalomethanes are 104, 108, 81, 81, 41, 27, and three for districts 1 through 7, respectively. The average lifetime cancer risk was 4.33 × 10(-5) which means a total of 606 lifetime cancer cases for the entire province of Tehran. The highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts.
Collapse
Affiliation(s)
- Ali Reza Pardakhti
- Environmental Engineering Department, Graduate Faculty of Environment, University of Tehran, PO Box 14155-6135, Tehran, Iran.
| | | | | | | | | |
Collapse
|
27
|
Ge F, Wu X, Wang N, Zhu R, Wang T, Xu Y. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:540-545. [PMID: 21435781 DOI: 10.1016/j.jhazmat.2011.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L(-1) iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L(-1) manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH)(3(am)) or MnO(2(am)) coat the algal cells, which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).
Collapse
Affiliation(s)
- Fei Ge
- Department of Environmental Science and Engineering, Xiangtan University, Egongtang Road, Xiangtan, Hunan 411105, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Parvez S, Rivera-Núñez Z, Meyer A, Wright JM. Temporal variability in trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water systems. ENVIRONMENTAL RESEARCH 2011; 111:499-509. [PMID: 21316653 DOI: 10.1016/j.envres.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 05/30/2023]
Abstract
Previous epidemiological studies in Massachusetts have reported a risk of adverse health outcomes in relation to disinfection by-product (DBP) exposures. Measurement error due to the use of indirect exposure surrogates can lead to misclassification bias in epidemiological studies; therefore, it is important to characterize exposure variability in these populations to assess the potential for exposure misclassification. We used 19,944 trihalomethane (THM) samples and 9291 haloacetic acid (HAA) samples collected in 201 public water systems (PWSs) in Massachusetts to examine temporal variability under different drinking water sources and disinfection types. Annual and seasonal variability was also examined in 46 PWSs with complete quarterly THM4 (i.e., the sum of 4 individual THMs) data from 1995 to 2004 and 19 PWSs with complete HAA5 (i.e., the sum of 5 individual HAAs) data from 2001 to 2004. The quarterly ratio of THM4 and HAA5 and correlations between THM4, HAA5 and individual DBP species were examined to determine the adequacy of using different exposure surrogates in epidemiological studies. Individual PWSs were used to examine monthly variability in relation to quarterly averages. Based on all available matched samples (n=9003) from 1995 to 2004 data, we found a correlation of 0.52 for THM4 and HAA5. The correlation was stronger among the 62 ground water systems (r(s)=0.62) compared to the 81 surface water (r(s)=0.45) and 40 mixed water (r(s)=0.39) systems. Mean THM4 levels were fairly stable over the 10-year study period for 46 PWSs including 39 PWSs that did not change disinfection. Large reductions (∼40 μg/L) in mean THM4 data were found among seven systems that switched from chlorination to alternative disinfectants. As expected, the highest mean THM4 values were detected for Quarter 3, while the lowest values were found in Quarter 1. The highest HAA5 values were detected in Quarters 2 and 3 and the lowest was found in Quarter 4. Data from four systems showed mean differences up to 66 μg/L (67% change) in successive months and by 46 μg/L compared to quarterly mean concentrations. Although longer-term disinfection by-product temporality may be minimal in this study population, the use of monthly average concentrations for exposure assessment may be needed for some PWSs to minimize misclassification of narrow critical periods of exposure in epidemiological studies.
Collapse
Affiliation(s)
- Shahid Parvez
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | | | | | | |
Collapse
|
29
|
Zhang J, Yu J, An W, Liu J, Wang Y, Chen Y, Tai J, Yang M. Characterization of disinfection byproduct formation potential in 13 source waters in China. J Environ Sci (China) 2011; 23:183-188. [PMID: 21516990 DOI: 10.1016/s1001-0742(10)60440-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The formation potential of four trihalomethanes (THMFP) and seven haloacetic acids (HAA7FP) in 13 source waters taken from four major water basin areas in China was evaluated using the simulated distribution system (SDS) chlorination method. The specific ultraviolet absorbance (SUVA254: the ratio of UV254 to dissolved organic carbon (DOC)), which ranged between 0.9 and 5.0 L/(mg x m), showed that the organic compounds in different source waters exhibited different reactivities with chlorine. The HAA7FP of source waters ranged from 20 to 448 microg/L and the THMFP ranged from 29 to 259 microg/L. The HAA7FP concentrations were higher than the THMFP concentrations in all but one of the samples. Therefore, the risks of haloacetic acids (HAAs) should be of concern in some source waters. TCM (chloroform) and BDCM (bromodichloromethane) were the major THM constituents, while TCAA (trichloroacetic acid) and DCAA (dichloroacetic acid) were the major HAA species. Br-THM (brominated THM species) were much higher than Br-HAA (brominated HAA species), and the formation of Br-DBP (Br-THM and Br-HAA) should be of concern when the bromide concentration is over 100 microg/L.
Collapse
Affiliation(s)
- Junzhi Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu S, Zhu Z, Fan C, Qiu Y, Zhao J. Seasonal variation effects on the formation of trihalomethane during chlorination of water from Yangtze River and associated cancer risk assessment. J Environ Sci (China) 2011; 23:1503-1511. [PMID: 22432287 DOI: 10.1016/s1001-0742(10)60573-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
For the system of water samples collected from Yangtze River, the effects of seasonal variation and Fe(III) concentrations on the formation and distribution of trihalomethanes (THMs) during chlorination have been investigated. The corresponding lifetime cancer risk of the formed THMs to human beings was estimated using the parameters and procedure issued by the US EPA. The results indicated that the average concentration of THMs (100.81 microg/L) in spring was significantly higher than that in other seasons, which was related to the higher bromide ion concentration resulted from the intrusion of tidal saltwater. The total cancer risk in spring reached 8.23 x 10(-5) and 8.86 x 10(-5) for males and females, respectively, which were about two times of those in summer under the experimental conditions. Furthermore, it was found that the presence of Fe(III) resulted in the increased level of THMs and greater cancer risk from exposure to humans. Under weak basic conditions, about 10% of the increment of THMs from the water samples in spring was found in the presence of 0.5 mg/L Fe(III) compared with the situation without Fe(III). More attention should be given to the effect of the coexistence of Fe(III) and bromide ions on the risk assessment of human intake of THMs from drinking water should be paid more attention, especially in the coastland and estuaries.
Collapse
Affiliation(s)
- Shaogang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Aquatic Environment of Ministry of Education, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
31
|
Chang EE, Guo HC, Li IS, Chiang PC, Huang CP. Modeling the formation and assessing the risk of disinfection by-products in water distribution systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1185-1194. [PMID: 20563912 DOI: 10.1080/10934529.2010.493776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of water quality parameters and operation conditions of water treatment on the formation of trihalomethanes (THM) and haloacetic acids (HAA) in pilot-scale reactor and water distribution system were investigated. Results indicated that dissolved organic carbon and THM formation increased while the concentration of free chlorine decreased along the length of pipeline from the water treatment plant; but HAA formation showed no relationship with the pipeline length. THM concentration was predicted with hydraulic analytic software, namely WaterCAD. The predicted THM data were within +/-10% of measurements; HAA had a relatively high error of +/-16% due to complex bio-decomposition reactions occurred in the distribution system. Both the hazardous quotient and cancer risk of THM in the water distribution system of an advanced water treatment plant were much lower than those of a conventional water treatment plant; there was no significant difference in hazard quotient and cancer risk of HAA in the above two water distribution systems.
Collapse
Affiliation(s)
- E E Chang
- Department of Biochemistry, Taipei Medical University, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Goslan EH, Krasner SW, Bower M, Rocks SA, Holmes P, Levy LS, Parsons SA. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. WATER RESEARCH 2009; 43:4698-4706. [PMID: 19665750 DOI: 10.1016/j.watres.2009.07.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/09/2009] [Accepted: 07/21/2009] [Indexed: 05/28/2023]
Abstract
Seven water treatment works were selected to compare disinfection by-products (DBPs) formed when using chlorination and chloramination. DBPs measured included trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), trihalonitromethane, iodinated THMs and nitrosamines. Generally treatment works that used chloramination were able to meet the European THM regulatory limit of 100 microg L(-1) whereas the chlorinated works found it significantly more difficult. There were no significant differences in the levels of nitrogenous DBPs between the treatment works using chlorination or chloramination with the exception of the nitrosamine N-nitrosodimethylamine (NDMA) which was present at one treatment works in one season.
Collapse
Affiliation(s)
- Emma H Goslan
- Centre for Water Science, Cranfield University, Cranfield, Bedfordshire, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Farré ML, Pérez S, Kantiani L, Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.09.010] [Citation(s) in RCA: 447] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|