1
|
Kou B, Huo L, Cao M, Yu T, Wu Y, Hui K, Tan W, Yuan Y, Zhu X. Applying kitchen compost promoted soil chrysene degradation by optimizing microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122761. [PMID: 39369537 DOI: 10.1016/j.jenvman.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Chrysene, as a high molecular weight polycyclic aromatic hydrocarbon (PAH), has become an important factor in degrading soil quality and constraining the safe production of food crops. Compost has been widely used to amend contaminated soil. However, to date, the main components of kitchen compost that enhance the biodegradation of chrysene in the soil remain unidentified. Thus, in this study, the enhancing effect and mechanisms of kitchen compost (KC) and kitchen compost-derived dissolved organic matter (KCOM) on chrysene removal from soil were investigated through cultivation experiments combined with high-throughput sequencing technology. Additionally, the key components influencing the degradation of chrysene were identified. The results showed that KCOM was the main component of compost that promoted the degradation of chrysene. The average degradation rate of chrysene in 1% KC- and 1% KCOM-treated soil increased by 27.20% and 24.18%, respectively, at different levels of chrysene pollution compared with the control treatment (CK). KC and KCOM significantly increased soil nutrient content, accelerated humification of organic matter, and increased microbial activity in the chrysene-contaminated soil. Correlation analyses revealed that the application of KC and KCOM optimized the microbial community by altering soil properties and organic matter structure. This optimization enhanced the degradation of soil chrysene by increasing the abundance of chrysene-degrading functional bacteria from the genera Bacillus, Arthrobacter, Pseudomonas, Lysinibacillus, and Acinetobacter. This study provides insight into the identification of key components that promote chrysene degradation and into the microbial-enhanced remediation of chrysene-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Němcová K, Lhotský O, Stavělová M, Komárek M, Semerád J, Filipová A, Najmanová P, Cajthaml T. Effects of different organic substrate compositions on the decontamination of aged PAH-polluted soils through outdoor co-composting. CHEMOSPHERE 2024; 362:142580. [PMID: 38866336 DOI: 10.1016/j.chemosphere.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The effects of different organic substrate compositions on the efficiency of outdoor co-composting as a bioremediation technology for decontaminating soil polluted by polycyclic aromatic hydrocarbons (PAHs) were investigated. Four different substrate mixtures and two different aged PAH-contaminated soils were used in a semi-pilot-scale experiment that lasted nearly 700 days. The two soils (A and B) differed concerning both the initial concentrations of the Ʃ16 US EPA PAHs (5926 vs. 369 mg kg-1, respectively) and the type of predominant PAH group by molecular weight. The experiments revealed that while the composition of the organic substrate had an impact on the rate of PAH degradation, it did not significantly influence the final extent of PAH degradation. Notably, the organic substrate consisting of green waste and wood chips (GW) was found to facilitate the most rapid rate of PAH degradation (first-order rate constant k = 0.033 ± 0.000 d-1 with soil A over the initial 42 days of the experiment and k = 0.036 ± 0.000 d-1 with soil B over the initial 56 days). Despite the differences in organic substrate compositions and types of soil being treated, PAH degradation levels exceeded at least 95% in all the treatments after more than 680 days of co-composting. Regardless of the composition, the removal of low- and medium- molecular-weight (2-4 rings) PAHs was nearly complete by the end of the experiment. Furthermore, high-molecular-weight PAHs (5 rings and more) were significantly degraded during co-composting, with reductions ranging from 54% to 79% in soil A and from 59% to 68% in soil B. All composts were dominated by Proteobacteria, Firmicutes, and Actinobacteria, with significant differences in abundance between soils. Genera with PAH degradation potentials were detected in all samples. The results of a battery of toxicity tests showed that there was almost no toxicity associated with the final composts.
Collapse
Affiliation(s)
- Kateřina Němcová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Lhotský
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Monika Stavělová
- AECOM CZ s.r.o., Trojská 92, CZ-171 00, Prague 7, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague - Suchdol, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Najmanová
- Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
| |
Collapse
|
3
|
Qian S, Zhou X, Fu Y, Song B, Yan H, Chen Z, Sun Q, Ye H, Qin L, Lai C. Biochar-compost as a new option for soil improvement: Application in various problem soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162024. [PMID: 36740069 DOI: 10.1016/j.scitotenv.2023.162024] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Due to the synergistic effects of biochar and compost/composting, the combined application of biochar and compost (biochar-compost) has been recognized as a highly promising and efficient method of soil improvement. However, the willingness to apply biochar-compost for soil improvement is still low compared to the use of biochar or compost alone. This paper collects data on the application of biochar-compost in several problem soils that are well-known and extensively investigated by agronomists and scientists, and summarizes the effects of biochar-compost application in common problem soils. These typical problem soils are classified based on three different characteristics: climatic zones, abiotic stresses, and contaminants. The improvement effect of biochar-compost in different soils is assessed and directions for further research and suggestions for application are made. Generally, biochar-compost mitigates the high mineralization rate of soil organic matter, phosphorus deficiency and aluminum toxicity, and significantly improves crop yields in most tropical soils. Biochar-compost can help to achieve long-term sustainable management of temperate agricultural soils by sequestering carbon and improving soil physicochemical properties. Biochar-compost has shown positive performance in the remediation of both dry and saline soils by reducing the threat of soil water scarcity or high salinity and improving the consequent deterioration of soil conditions. By combining different mechanisms of biochar and compost to immobilize or remove contaminants, biochar-compost tends to perform better than biochar or compost alone in soils contaminated with heavy metals (HMs) or organic pollutants (OPs). This review aims to improve the practicality and acceptability of biochar-compost and to promote its application in soil. Additionally, the prospects, challenges and future directions for the application of biochar-compost in problem soil improvement were foreseen.
Collapse
Affiliation(s)
- Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
4
|
Mackiewicz-Walec E, Krzebietke SJ, Borowik A, Klasa A. The Effect of Spring Barley Fertilization on the Content of Polycyclic Aromatic Hydrocarbons, Microbial Counts and Enzymatic Activity in Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3796. [PMID: 36900816 PMCID: PMC10001663 DOI: 10.3390/ijerph20053796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Soil-dwelling microorganisms play an important role in the environment by decomposing organic matter, degrading toxic compounds and participating in the nutrient cycle. The microbiological properties of soil are determined mainly by the soil pH, granulometric composition, temperature and organic carbon content. In agricultural soils, these parameters are modified by agronomic operations, in particular fertilization. Soil enzymes participate in nutrient cycling and they are regarded as sensitive indicators of microbial activity and changes in the soil environment. The aim of the present study was to determine whether PAH content in soil is associated with the microbial activity and biochemical properties of soil during the growing season of spring barley treated with manure and mineral fertilizers. Soil samples for analysis were collected on four dates in 2015 from a long-term field experiment established in 1986 in Bałcyny near Ostróda (Poland). The total content of PAHs was lowest in August (194.8 µg kg-1) and highest in May (484.6 µg kg-1), whereas the concentrations of heavier weight PAHs was highest in September (158.3 µg kg-1). The study demonstrated that weather conditions and microbial activity induced considerable seasonal variations in PAHs content. Manure increased the content of organic carbon and total nitrogen, the abundance of organotrophic, ammonifying and nitrogen-fixing bacteria, actinobacteria and fungi and enhanced the activity of soil enzymes, including dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase.
Collapse
Affiliation(s)
- Ewa Mackiewicz-Walec
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Sławomir Józef Krzebietke
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Andrzej Klasa
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Lu Q, Jiang Z, Feng W, Yu C, Jiang F, Huang J, Cui J. Exploration of bacterial community-induced polycyclic aromatic hydrocarbons degradation and humus formation during co-composting of cow manure waste combined with contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116852. [PMID: 36435124 DOI: 10.1016/j.jenvman.2022.116852] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
To solve polycyclic aromatic hydrocarbons (PAHs) pollution, composting was chosen as a remediation method. During composting, the dissipation of PAHs was carried out by resource utilization of organic solid waste and its degradation by bacteria. This study was conducted by co-composting with contaminated soil and cow manure. The results showed that the degradation rates of naphthalene (Nap), phenanthrene (Phe), and benzo[α]pyrene (BaP) could reach 82.2%, 79.4%, and 59.6% respectively during composting. Cluster analysis indicated that polyphenol oxidase (PPO), laccase, and protease were important drivers of PAHs transformation. The content of humic substances (HS) was 106.67 g/kg in PAH treatment, which was significantly higher than that in the control group at 65 days. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) and network analysis was used to infer the degradation mechanism of PAHs by microorganisms. The degradation of PAHs by PPO was found to have a significant contribution to the formation of HS. It was shown that PAHs and metabolic intermediates were more inclined to be oxidized and decomposed by PPO to form quinone, which in turn condensed with amino acids to form HS. Composting could promote the degradation of PAHs while improving the quality of compost, achieving a win-win situation.
Collapse
Affiliation(s)
- Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chunjing Yu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
6
|
Rondon-Afanador C, Pinilla-Meza G, Casallas-Cuervo FC, Diaz-Vanegas C, Barreto-Gomez D, Benavides C, Buitrago N, Calvo M, Forero-Forero C, Galvis-Ibarra V, Moscoso-Urdaneta V, Perdomo-Rengifo MC, Torres L, Arbeli Z, Brigmon RL, Roldan F. Bioremediation of heavy oily sludge: a microcosms study. Biodegradation 2023; 34:1-20. [PMID: 36463546 PMCID: PMC9935733 DOI: 10.1007/s10532-022-10006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2022]
Abstract
Oily sludge is a residue from the petroleum industry composed of a mixture of sand, water, metals, and high content of hydrocarbons (HCs). The heavy oily sludge used in this study originated from Colombian crude oil with high density and low American Petroleum Institute (API) gravity. The residual waste from heavy oil processing was subject to thermal and centrifugal extraction, resulting in heavy oily sludge with very high density and viscosity. Biodegradation of the total petroleum hydrocarbons (TPH) was tested in microcosms using several bioremediation approaches, including: biostimulation with bulking agents and nutrients, the surfactant Tween 80, and bioaugmentation. Select HC degrading bacteria were isolated based on their ability to grow and produce clear zones on different HCs. Degradation of TPH in the microcosms was monitored gravimetrically and with gas chromatography (GC). The TPH removal in all treatments ranged between 2 and 67%, regardless of the addition of microbial consortiums, amendments, or surfactants within the tested parameters. The results of this study demonstrated that bioremediation of heavy oily sludge presents greater challenges to achieve regulatory requirements. Additional physicochemical treatments analysis to remediate this recalcitrant material may be required to achieve a desirable degradation rate.
Collapse
Affiliation(s)
- Cinthya Rondon-Afanador
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Gustavo Pinilla-Meza
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Francy C. Casallas-Cuervo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Diaz-Vanegas
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Daniela Barreto-Gomez
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Carolina Benavides
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Nicole Buitrago
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Melissa Calvo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Forero-Forero
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Valentina Galvis-Ibarra
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Victoria Moscoso-Urdaneta
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Maria C. Perdomo-Rengifo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Laura Torres
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Ziv Arbeli
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | | | - Fabio Roldan
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia.
| |
Collapse
|
7
|
Udume OA, Abu GO, Stanley HO, Vincent-Akpu IF, Momoh Y. Impact of composting factors on the biodegradation of lignin in Eichhornia crassipes (water hyacinth): A response surface methodological (RSM) investigation. Heliyon 2022; 8:e10340. [PMID: 36097472 PMCID: PMC9463370 DOI: 10.1016/j.heliyon.2022.e10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Water hyacinth (Eichhornia crassipes) is a hydrophyte weed that causes havoc in the aquatic ecosystem as an invasive plant that can obstruct waterways and bring about nutrient imbalance. This study aims to address how this invasive hydrophyte can be physically harvested and biochemically transformed into a bioproduct that can enhance the restoration of damaged soil. Biocomposting, a low-cost biotechnological technique, was designed to degrade the lignocellulosic Eichhornia crassipes biomass and transform it into a valuable bioproduct. The process used response surface methodology (RSM) to investigate the aggregate effect of moisture content, turning frequency, and microbial isolate (Chitinophaga terrae) inoculum size on the breakdown of lignin over 21 days. The moisture content (A), (45, 55, 65) % v/w, inoculum size (B), (5, 7.5, 10)% v/v, and turning frequency (C), (1, 3, 5) days were considered independent variables, while percentage lignin degradation was considered a response variable. The optimal conditions for lignin breakdown were 65.7 percent (v/w) moisture, 7.5 percent (v/v) inoculum concentration, and 5-day interval turning. The R2 score of 0.9733 demonstrates the model's integrity and reliability. Thus, the RSM approach resulted in a fine grain dark brown Nutri-compost that proved effective in enhancing soil fertility. This procedure is recommended for a scale-up process where large quantities of the hydrophyte could be treated for conversion into Nutri compost.
Collapse
Affiliation(s)
- Ogochukwu Ann Udume
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Gideon O. Abu
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Herbert O. Stanley
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Ijeoma F. Vincent-Akpu
- Department of Animal and Environmental Biology, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Yusuf Momoh
- Department of Environmental Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
8
|
Rizzo PF, Young BJ, Pin Viso N, Carbajal J, Martínez LE, Riera NI, Bres PA, Beily ME, Barbaro L, Farber M, Zubillaga MS, Crespo DC. Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:124-135. [PMID: 34968898 DOI: 10.1016/j.wasman.2021.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The egg industry has increased its production worldwide during the last decades. Several waste management strategies have been proposed to treat large volumes of poultry manure. Composting and anaerobic digestion are the main stabilization processes used. However, there are disagreements on the criteria for applying raw and treated poultry manure to the soil. We studied the relationship between physicochemical, toxicological, microbiological, parasitological, and metabarcoding parameters of raw and treated poultry manure (compost and digestate). Subsequently, we evaluated the mineralization of C, N and P, and the effects of amended soil on horticultural and ornamental crops. Compost and digestate presented better general conditions than poultry manure for use as organic soil amendments. The highest pathogenic microorganism content (total and fecal coliforms, Escherichia coli, and Salmonella spp.) was recorded for poultry manure. Multivariate analyses allowed associating a lower phytotoxicity with compost and a higher microbial diversity with digestate. Therefore, only compost presented stability and maturity conditions. We found high released CO2-C, N loss, and P accumulation in soil amended with a high dose of poultry manure during mineralization. However, high doses of poultry manure and digestate increased the biomass production in the valorization assay. We recommend the soil application of stabilized and mature poultry manure-derived amendments, which reduce the negative impacts on the environment and promote more sustainable practices in agricultural systems.
Collapse
Affiliation(s)
- Pedro Federico Rizzo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Natalia Pin Viso
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Jazmín Carbajal
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Laura Elizabeth Martínez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mendoza, San Martin 3853, M5534, Luján de Cuyo, Mendoza, Argentina.
| | - Nicolás Iván Riera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Alina Bres
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - María Eugenia Beily
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Lorena Barbaro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Cerro Azul, Ruta Nacional 14. Km. 836, 3313, Cerro Azul, Misiones, Argentina.
| | - Marisa Farber
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Marta Susana Zubillaga
- Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Diana Cristina Crespo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, Abid A, Samuel AD. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30528-30550. [PMID: 33905061 DOI: 10.1007/s11356-021-14127-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.
Collapse
Affiliation(s)
- Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Pascale Bourgeade
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Badr Aloui-Sossé
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Alina Dora Samuel
- Department of Biology, Faculty of Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
10
|
Anae J, Ahmad N, Kumar V, Thakur VK, Gutierrez T, Yang XJ, Cai C, Yang Z, Coulon F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144351. [PMID: 33453509 DOI: 10.1016/j.scitotenv.2020.144351] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal/metalloids (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soil have caused serious environmental problems, compromised agriculture quality, and have detrimental effects on all forms of life including humans. There is a need to develop appropriate and effective remediation methods to resolve combined contaminated problems. Although conventional technologies exist to tackle contaminated soils, application of biochar as an effective renewable adsorbent for enhanced bioremediation is considered by many scientific researchers as a promising strategy to mitigate HM/PAH co-contaminated soils. This review aims to: (i) provide an overview of biochar preparation and its application, and (ii) critically discuss and examine the prospects of (bio)engineered biochar for enhancing HMs/PAHs co-remediation efficacy by reducing their mobility and bioavailability. The adsorption effectiveness of a biochar largely depends on the type of biomass material, carbonisation method and pyrolysis conditions. Biochar induced soil immobilise and remove metal ions via various mechanisms including electrostatic attractions, ion exchange, complexation and precipitation. PAHs remediation mechanisms are achieved via pore filling, hydrophobic effect, electrostatic attraction, hydrogen bond and partitioning. During last decade, biochar engineering (modification) via biological and chemical approaches to enhance contaminant removal efficiency has garnered greater interests. Hence, the development and application of (bio)engineered biochars in risk management, contaminant management associated with HM/PAH co-contaminated soil. In terms of (bio)engineered biochar, we review the prospects of amalgamating biochar with hydrogel, digestate and bioaugmentation to produce biochar composites.
Collapse
Affiliation(s)
- Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
11
|
Gielnik A, Pechaud Y, Huguenot D, Cébron A, Esposito G, van Hullebusch ED. Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111648. [PMID: 33213993 DOI: 10.1016/j.jenvman.2020.111648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.
Collapse
Affiliation(s)
- Anna Gielnik
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France; University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy.
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Giovanni Esposito
- University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy
| | - Eric D van Hullebusch
- IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601 DA, Delft, the Netherlands; Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
12
|
Medina R, David Gara PM, Rosso JA, Del Panno MT. Effects of organic matter addition on chronically hydrocarbon-contaminated soil. Biodegradation 2021; 32:145-163. [PMID: 33586077 DOI: 10.1007/s10532-021-09929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
Soil is the recipient of organic pollutants as a consequence of anthropogenic activities. Hydrocarbons are contaminants that pose a risk to human and environmental health. Bioremediation of aging contaminated soils is a challenge due to the low biodegradability of contaminants as a result of their interaction with the soil matrix. The aim of this work was to evaluate the effect of both composting and the addition of mature compost on a soil chronically contaminated with hydrocarbons, focusing mainly on the recovery of soil functions and transformations of the soil matrix as well as microbial community shifts. The initial pollution level was 214 ppm of polycyclic aromatic hydrocarbons (PAHs) and 2500 ppm of aliphatic hydrocarbons (AHs). Composting and compost addition produced changes on soil matrix that promoted the release of PAHs (5.7 and 15 % respectively) but not the net PAH elimination. Interestingly, composting stimulated AHs elimination (about 24 %). The lack of PAHs elimination could be attributed to the insufficient PAHs content to stimulate the microbial degrading capacity, and the preferential consumption of easily absorbed C sources by the bacterial community. Despite the low PAH catabolic potential of the aging soil, metabolic shift was driven by the addition of organic matter, which could be monitored by the ratio of Proteobacteria to Actinobacteria combined with E4/E6 ratio. Regarding the quality of the soil, the nutrients provided by the exogenous organic matter contributed to the recovery of the global functions and species diversity of the soil along with the reduction of phytotoxicity.
Collapse
Affiliation(s)
- Rocío Medina
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET- UNLP, La Plata, Argentina.
- Centro de Investigación de Fitopatologías (CIDEFI), CICBA - UNLP, La Plata, Argentina.
| | - Pedro M David Gara
- Centro de Investigaciones Ópticas (CIOp), CONICET - CICBA - UNLP, La Plata, Argentina
| | - Janina A Rosso
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET- UNLP, La Plata, Argentina
| | - María T Del Panno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET- UNLP, La Plata, Argentina
| |
Collapse
|
13
|
Zhou J, Ge W, Zhang X, Wu J, Chen Q, Ma D, Chai C. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil. CHEMOSPHERE 2020; 259:127462. [PMID: 32590177 DOI: 10.1016/j.chemosphere.2020.127462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Spent mushroom substrate (SMS) is an agricultural waste with a high potential for polycyclic aromatic hydrocarbons (PAH) removal in aged contaminated soils. In this study, fresh and air-dried Pleurotus ostreatus, Pleurotus eryngii, and Auricularia auricular SMSs were used to remove PAHs in agricultural soil under 60-day incubation. The potential of SMS in PAH dissipation was studied by detecting the dissipation rate and the soil physicochemical index, enzyme activity, PAH-degradation bacterial biomass, and microbial diversity. Results showed that SMS significantly enhanced the dissipation of PAHs and fresh SMS had a better effect than air-dried SMS. The highest dissipation rate of 16 PAHs was 34.5%, which was observed in soil amended with fresh P. eryngii SMS, and the PAH dissipation rates with low and high molecular weights were 41.3% and 19.4%, respectively. By comparison, fresh P. eryngii SMS presented high nutrient contents, which promoted the development of PAH-degrading bacteria and changed the soil bacterial community involved in degradation, thereby promoting the PAH dissipation. The lignin-degrading enzymes in fresh SMS were abundant, and the laccase and manganese peroxidase activities in the treatment of fresh P. eryngii SMS was higher than those in other treatments. Fresh P. eryngii SMS improved the relative abundance of Microbacterium, Rhizobium, and Pseudomonas in soil, which were all related to PAH degradation. Consequently, adding fresh P. eryngii SMS was an effective method for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Jiajing Zhou
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ma
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China.
| |
Collapse
|
14
|
Wu M, Guo X, Wu J, Chen K. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil. CHEMOSPHERE 2020; 256:126998. [PMID: 32470727 DOI: 10.1016/j.chemosphere.2020.126998] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
Efficient degradation of polycyclic aromatic hydrocarbons (PAHs) in a petroleum-contaminated soil was challenging which requires ample PAH-degrading flora and nutrients. In this study, we investigated the effects of 'natural attenuation', 'bioaugmentation', 'compost only (raw materials of compost included pig manure and rice husk mixed at a 1:2 proportion, supplemented with 2.5% charcoal)', and 'compost with bioaugmentation' treatments on degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial community shifts during the remediation of petroleum-contaminated soil. After sixteen weeks of incubation, the removal efficiencies of PAHs were 0.52 ± 0.04%, 6.92 ± 0. 32%, 9.53 ± 0.29%, and 18.2 ± 0.64% in the four treatments, respectively. 'Compost with bioaugmentation' was the most effective for PAH removal among all the treatments. Illumina sequencing analysis suggested that both the 'compost only' and 'compost with bioaugmentation' treatments changed soil microbial community structures and enhanced microbial biodiversity. Some of the microorganisms affiliated with the compost including Azomonas, Luteimonas, Pseudosphingobacterium, and Parapedobacter were able to survive and become dominant in the contaminated soil. The 'bioaugmentation and 'natural attenuation' treatments had no significant effects on soil microbial community structure. Inoculation of the PAH degraders including Bacillus, Pseudomonas, and Acinetobacter directly into the contaminated soil led to lower biodiversity under natural conditions. This result suggested that compost addition increased the α-diversity of both the bacterial and fungal communities in petroleum-contaminated soil, leading to higher PAH degradation efficiency in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Manli Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Xiqian Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Jialuo Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kaili Chen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
15
|
Ani KA, Chukwuma EC. Kinetics and statistical analysis of the bio-stimulating effects of goat litter in crude oil biodegradation process. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00055-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The kinetics and statistical analysis of crude oil (CO) degradation in CO-contaminated soil (COCS) using goat litter (GL) were investigated. The data obtained from the CO degradation process was fitted to the first- and second-order kinetic models. The effects of process parameters such as temperature and the initial CO concentrations on the CO degradation process were also investigated. The one-way ANOVA and Turkey’s post-hoc analysis were also used to study the statistical significance of the process parameters on the CO degradation process.
Results
The microbial count showed that the GL contained a total viable count (TVC), coliform, and mold counts of 2.6 × 107 CFUg−1, 2.6 × 107 CFUg−1, and 6.9 × 103 CFUg-1, respectively. The error and linear regression analysis between experimental and model-predicted values revealed that the first-order kinetic model gave a better explanation of the CO degradation process. The rejection of the null hypothesis was evident from one-way ANOVA and Turkey’s post-hoc analysis as the P values at a temperature of 30 °C and initial CO concentrations of 70 gL−1 and 90 gL−1 were less than the significant level of 0.05. Notable organic nutrients in the GL which were beneficial in the COCS treatment process as indicated by the Fourier-transform infrared spectrophotometer (FTIR) analysis were phosphorous and nitrogen.
Conclusions
It may be concluded that GL could be used as an effective organic treatment for COCS at CO initial concentrations of 70 and 90 gL-1 and a temperature of 30 °C.
Collapse
|
16
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
17
|
Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.
Collapse
|
18
|
Bao H, Wang J, Li J, Zhang H, Wu F. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109745. [PMID: 31606644 DOI: 10.1016/j.ecoenv.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In order to provide a viable option for remediation of PAHs-contaminated soils, a greenhouse experiment was conducted to assess the effect of corn straw amendment (1%, 2%, 4% or 6%, w/w) on dissipation of aged polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Backpropagation artificial neural network (BP-ANN) was applied to model the relationships between soil properties and PAHs concentration in soils. The removal rate of PAHs, enzyme activity (catalase and dehydrogenase), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in soils were investigated to evaluate the dissipation of PAHs under different ratio of corn straw amendment. The present study showed that corn straw amendment apparently accelerated the dissipation of PAHs after incubation of 112 days, especially under 4% and 6% treatments. Compared with non-amended soil, corn straw amendment significantly (p < 0.05) increased the removal rate of low molecular weight (LMW) PAHs and significantly (p < 0.05) enhanced the dissipation of high molecular weight (HMW) PAHs only under 6% treatment. Moreover, corn straw amendment increased activities of catalase and dehydrogenase, concentrations of DOC and MBC in soils, which are beneficial to the degradation of PAHs in soils. The performance of the BP-ANN model was assessed through the root mean square error (RMSE) and determination coefficient (R2). The results indicated that BP-ANN model could provide satisfactory prediction of PAHs concentration in soils during incubation period at R2 and RMSE values of 0.948, 187.4 μg kg-1, respectively. The results indicated that high amendment of corn straw was a potential option for remediation of PAHs-contaminated soils and that the BP-ANN model could successfully provide prompt prediction of PAHs concentration in soils.
Collapse
Affiliation(s)
- Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - He Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Liu X, Ge W, Zhang X, Chai C, Wu J, Xiang D, Chen X. Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120820. [PMID: 31271936 DOI: 10.1016/j.jhazmat.2019.120820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Paracoccus sp. LXC combined with humic acid (HA) and spent mushroom substrate (SMS) obtained from Auricularia auricular and Sarcomyxa edulis was tested for the remediation of agricultural soil contaminated with aged polycyclic aromatic hydrocarbons (PAHs). The biomass and diversity of bacteria and fungi and the soil enzyme activity were analyzed. PAH removal and dissipation kinetics were examined. The highest degradation rate of PAHs was 56.5% when soil was amended with Paracoccus sp. LXC combined with HA and unsterilized SMS from A. auricular. The half-life of PAHs decreased from 2323.3 days in natural attenuation to 66.6-277.2 days in amended treatments. Soil treated with Paracoccus sp. LXC combined with HA and SMS from A. auricular acquired high contents of organic matter and nutrients. HA and SMS aided the growth of PAH-degrading bacteria and promoted the diversity of bacteria but not of fungi. The degradation rate of PAHs was mainly correlated positively with soil laccase activity. Low- and middle-molecular-weight PAHs were significantly removed by Paracoccus sp. LXC, HA and SMS. High-molecular-weight PAHs were removed by SMS but not by Paracoccus sp. LXC. Biodegradation by Paracoccus sp. LXC combined with HA and SMS is a promising choice for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xiuchu Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dan Xiang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
20
|
Farber R, Rosenberg A, Rozenfeld S, Banet G, Cahan R. Bioremediation of Artificial Diesel-Contaminated Soil Using Bacterial Consortium Immobilized to Plasma-Pretreated Wood Waste. Microorganisms 2019; 7:E497. [PMID: 31661854 PMCID: PMC6921085 DOI: 10.3390/microorganisms7110497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 11/16/2022] Open
Abstract
Bioaugmentation is a bioremediation option based on increasing the natural in-situ microbial population that possesses the ability to degrade the contaminating pollutant. In this study, a diesel-degrading consortium was obtained from an oil-contaminated soil. The diesel-degrading consortium was grown on wood waste that was plasma-pretreated. This plasma treatment led to an increase of bacterial attachment and diesel degradation rates. On the 7th day the biofilm viability on the plasma-treated wood waste reached 0.53 ± 0.02 OD 540 nm, compared to the non-treated wood waste which was only 0.34 ± 0.02. Biofilm attached to plasma-treated and untreated wood waste which was inoculated into artificially diesel-contaminated soil (0.15% g/g) achieved a degradation rate of 9.3 mg day-1 and 7.8 mg day-1, respectively. While, in the soil that was inoculated with planktonic bacteria, degradation was only 5.7 mg day-1. Exposing the soil sample to high temperature (50 °C) or to different soil acidity did not influence the degradation rate of the biofilm attached to the plasma-treated wood waste. The two most abundant bacterial distributions at the family level were Xanthomonadaceae and Sphingomonadaceae. To our knowledge, this is the first study that showed the advantages of biofilm attached to plasma-pretreated wood waste for diesel biodegradation in soil.
Collapse
Affiliation(s)
- Ravit Farber
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Alona Rosenberg
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Shmuel Rozenfeld
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Gabi Banet
- Dead Sea-Arava Science Center, Arava 86910, Israel.
| | - Rivka Cahan
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
21
|
Guillen Ferrari D, Pratscher J, Aspray TJ. Assessment of the use of compost stability as an indicator of alkane and aromatic hydrocarbon degrader abundance in green waste composting materials and finished composts for soil bioremediation application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:365-369. [PMID: 31351622 DOI: 10.1016/j.wasman.2019.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Green waste composting materials and finished composts were collected from different commercial ex situ composting sites all treating source segregated green waste feedstocks. Stability of each material was determined using the standard ORG0020 dynamic respiration test. To assess whether stability could be used as an indicator for the potential suitability of green waste composting materials and finished composts as amendments for soil bioremediation, comparison was made with alkane and aromatic hydrocarbon degrader abundance determined using a quantitative PCR (qPCR) approach. Specifically, primers targeting alkB and, polyaromatic hydrocarbon ring-hydroxylating dioxygenases genes (PAH-RHD) of Gram positive (GP) and Gram negative (GN) populations were used for qPCR analysis. The results showed no direct correction between compost stability and gene abundance. Further, increase in alkB gene abundance was not linked to PAH-RHD gene abundance. The results support the use of qPCR as a tool for screening organic amendments on a site by site basis for soil bioremediation treatment.
Collapse
Affiliation(s)
- Diana Guillen Ferrari
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Jennifer Pratscher
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK; Solidsense Ltd, Bearsden, East Dunbartonshire, G61 3BA Scotland, UK; Environmental Reclamation Services Ltd, Westerhill Road, Bishopbriggs, Glasgow, G64 2QH Scotland, UK.
| |
Collapse
|
22
|
Gielnik A, Pechaud Y, Huguenot D, Cébron A, Riom JM, Guibaud G, Esposito G, van Hullebusch ED. Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:271-281. [PMID: 30903900 DOI: 10.1016/j.scitotenv.2019.03.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Digestate is an organic by-product of biogas production via anaerobic digestion processes and has a great potential as soil fertilizer due to concentrated nutrients. In this study, we examined digestate as a potential nutrient and microbial seeding for bioremediation of weathered (aged) petroleum hydrocarbon contaminated soils. We analysed 6 different treatments in microcosm using two industrial soils having different textures: a clay rich soil and a sandy soil. After 30 days of incubation, the highest total petroleum hydrocarbons (TPH) removal was observed in microcosms containing digestate together with bulking agent (17.8% and 12.7% higher than control in clay rich soil and sandy soil, respectively) or digestate together with immobilized bacteria (13.4% and 9% higher than control in clay rich soil and sandy soil, respectively). After digestate application microbial respiration was enhanced in sandy soil and inhibited in clay rich soil due to aggregates formation. After bulking agent addition to clay rich soil aggregates size was reduced and oxygen uptake was improved. Application of digestate to soil resulted in the development of distinct microbial groups in amended and non-amended soils. Genera containing species able to degrade TPH like Acinetobacter and Mycobacterium were abundant in digestate and in soil amended with digestate. Quantification of alkB genes, encoding alkane monoxygenase, revealed high concentration of these genes in digestate bacterial community. After application of digestate, the level of alkB genes significantly increased in soils and remained high until the end of the treatment. The study revealed great potential of digestate as a nutrient and bacteria source for soil bioremediation.
Collapse
Affiliation(s)
- Anna Gielnik
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France; University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125 Napoli, Italy; University of Limoges, PEIRENE, Équipe Développement d'indicateurs ou prévision de la qualité des eaux, URA IRSTEA, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Jean-Michel Riom
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Gilles Guibaud
- University of Limoges, PEIRENE, Équipe Développement d'indicateurs ou prévision de la qualité des eaux, URA IRSTEA, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Giovanni Esposito
- University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125 Napoli, Italy
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601, DA, Delft, the Netherlands; Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238 Paris, France
| |
Collapse
|
23
|
Alves D, Villar I, Mato S. Thermophilic composting of hydrocarbon residue with sewage sludge and fish sludge as cosubstrates: Microbial changes and TPH reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:30-37. [PMID: 30878872 DOI: 10.1016/j.jenvman.2019.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The hydrocarbon residue in petroleum product storage tanks is waste generated in large quantities that must be properly managed to reduce its risk to the environment. By comparing the effect of two organic cosubstrates, the aim of our research is to determine the feasibility of composting as a bioremediation method for the treatment of the solid phase of the hydrocarbon residue. For this purpose, four treatments of the pollutant waste were established in triplicate: waste only; waste with bulking agent (1:2); waste with fish sludge and bulking agent (1:2:6); and waste with municipal sewage sludge and bulking agent (1:2:6). The composting system consisted of 12 reactors with a capacity of 30 L, each equipped with aeration and temperature control. Both at the beginning and the end of the experiment (20 days), we evaluated the physicochemical parameters, the structure of the microbial community through phospholipid fatty acid analysis, and the total petroleum hydrocarbon content (TPH). Treatments with cosubstrates maintained thermophilic temperatures, during 14 and 8 days in fish and municipal sludge respectively, while in the controls mesophilic conditions were maintained. The incorporation of fish sludge decreased TPH present in the initial mixture by 39.5%. The municipal sludge treatment resulted in a lower of temperatures and a TPH decrease close to 23.9%. In the control treatments, there was a slight TPH decrease, mainly due to the forced ventilation. Although, both composting treatments with cosubstrates proved adequate for the bioremediation of residue from hydrocarbon storage tanks, fish sludge presented best bioremediation conditions. Municipal sewage sludge provided a bioaugmentation effect due to its rich diversity and microbial biomass. Fish sludge could have biostimulant and surfactant effect producing an aliphatic mixture of pollutant waste with the nutritional requirements to promote the development of fungal communities.
Collapse
Affiliation(s)
- David Alves
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain
| | - Iria Villar
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain.
| | - Salustiano Mato
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain
| |
Collapse
|
24
|
Response surface optimization and effects of agricultural wastes on total petroleum hydrocarbon degradation. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Sari GL, Trihadiningrum Y, Wulandari DA, Pandebesie ES, Warmadewanthi IDAA. Compost humic acid-like isolates from composting process as bio-based surfactant: Properties and feasibility to solubilize hydrocarbon from crude oil contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:356-363. [PMID: 30119010 DOI: 10.1016/j.jenvman.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Biodecomposition of organic solid waste during composting process produces compost humic acid-like (cHAL), which is classified as biobased surfactant. The present study aimed to characterize the properties of cHAL substance which was formed during the composting process of crude oil contaminated soil, in terms of surface tension decline (ΔST) and emulsification activity (EA), and evaluate the ability to solubilize hydrocarbons. Crude oil contaminated soil from a public oilfield in Wonocolo Sub-district, Bojonegoro, Indonesia, was composted under aerobic condition with varied biodegradable waste (yard waste and rumen residue) in separate reactors. The cHAL compounds were isolated from composting products from yard waste (Y100), rumen residue (R100), control of contaminated soil (S100), and mixed of contaminated soil and biodegradable waste (S50YR50). The results showed that ΔST of cHAL isolates were ranged from 6.65 to 21.50 mN/m. The EA of cHAL isolates were in the range of 7.35-38.01%. The cHAL isolates were capable to solubilize 99 to 10,710 μg/g of hydrocarbons. The cHAL isolates from R100 and S50YR50 are potential as surface tension reducer and emulsifier for hydrocarbon with values of those isolates were close to 0.50% Tween 80 characteristics, and the abilities to solubilize hydrocarbon were comparable to 1.00% Tween 80. A composition of 50% crude oil contaminated soil and 50% of biodegradable waste (yard waste and rumen residue) is recommended for composting crude oil contaminated soil.
Collapse
Affiliation(s)
- Gina Lova Sari
- Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia; Faculty of Engineering, Universitas Singaperbangsa Karawang, Teluk Jambe Timur, Karawang, 41361, Indonesia.
| | - Yulinah Trihadiningrum
- Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Dwiyanti Agustina Wulandari
- Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Ellina Sitepu Pandebesie
- Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - I D A A Warmadewanthi
- Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
26
|
Marín M, Artola A, Sánchez A. Production of proteases from organic wastes by solid-state fermentation: downstream and zero waste strategies. 3 Biotech 2018; 8:205. [PMID: 29607286 PMCID: PMC5876165 DOI: 10.1007/s13205-018-1226-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w:v solid-solvent in static mode is advised for SF, and 1:2 w:v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.
Collapse
Affiliation(s)
- Maria Marín
- Composting Research Group, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Adriana Artola
- Composting Research Group, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Antoni Sánchez
- Composting Research Group, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona Spain
| |
Collapse
|
27
|
Kumari M, Ghosh P, Thakur IS. Application of Microbes in Remediation of Hazardous Wastes: A Review. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7485-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Davie-Martin CL, Stratton KG, Teeguarden JG, Waters KM, Simonich SLM. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9458-9468. [PMID: 28836766 DOI: 10.1021/acs.est.7b02956] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.
Collapse
Affiliation(s)
- Cleo L Davie-Martin
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Department of Microbiology, Oregon State University , Corvallis, Oregon 97331, United States
| | - Kelly G Stratton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Justin G Teeguarden
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Katrina M Waters
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
29
|
Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lukić B, Panico A, Huguenot D, Fabbricino M, van Hullebusch ED, Esposito G. A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/21622515.2017.1310310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Borislava Lukić
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
- Department of Civil and Mechanical Engineering, University of Cassino and the Southern Lazio, Cassino, Italy
| | | | - David Huguenot
- Laboratoire Géomatériaux et Environnement (EA 4508), Université Paris-Est (UPEM), Marne-la-Vallée, France
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| | - Eric D. van Hullebusch
- Laboratoire Géomatériaux et Environnement (EA 4508), Université Paris-Est (UPEM), Marne-la-Vallée, France
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and the Southern Lazio, Cassino, Italy
| |
Collapse
|
31
|
Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1599-1610. [PMID: 27608610 DOI: 10.1016/j.scitotenv.2016.08.199] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
There is a continuously increasing worldwide concern for the development of wastewater and contaminated soil treatment technologies. Fenton processes and biological treatments have long been used as common technologies for treating wastewater and polluted soil but they still need to be modified because of some defects (high costs of Fenton process and long remediation time of biotreatments). This work first briefly introduced the Fenton technology and biotreatment, and then discussed the main considerations in the construction of a combined system. This review shows a critical overview of recent researches combining Fenton processes (as pre-treatment or post-treatment) with bioremediation for treatment of wastewater or polluted soil. We concluded that the combined treatment can be regarded as a novel and competitive technology. Furthermore, the outlook for potential applications of this combination in different polluted soil and wastewater, as well as the mechanism of combination was also discussed.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Chanjuan Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China
| |
Collapse
|
32
|
Marchand C, Hogland W, Kaczala F, Jani Y, Marchand L, Augustsson A, Hijri M. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1136-47. [PMID: 27216854 DOI: 10.1080/15226514.2016.1186594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.
Collapse
Affiliation(s)
- Charlotte Marchand
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| | - William Hogland
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Fabio Kaczala
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Yahya Jani
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | | | - Anna Augustsson
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Mohamed Hijri
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
33
|
Lukić B, Huguenot D, Panico A, Fabbricino M, van Hullebusch ED, Esposito G. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15041-15052. [PMID: 27083907 DOI: 10.1007/s11356-016-6635-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.
Collapse
Affiliation(s)
- B Lukić
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio, 43, 03043, Cassino, FR, Italy
| | - D Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France.
| | - A Panico
- Telematic University Pegaso, Piazza Trieste e Trento 48, 80132, Naples, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - E D van Hullebusch
- Telematic University Pegaso, Piazza Trieste e Trento 48, 80132, Naples, Italy
| | - G Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio, 43, 03043, Cassino, FR, Italy
| |
Collapse
|
34
|
García-Delgado C, D'Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:20-28. [PMID: 25437949 DOI: 10.1016/j.scitotenv.2014.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Lorena Pesciaroli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Felipe Yunta
- Department of Geology and Geochemistry, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Geng C, Haudin CS, Zhang Y, Lashermes G, Houot S, Garnier P. Modeling the release of organic contaminants during compost decomposition in soil. CHEMOSPHERE 2015; 119:423-431. [PMID: 25078972 DOI: 10.1016/j.chemosphere.2014.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Composts, incorporated in soils as amendments, may release organic contaminants during their decomposition. COP-Soil is presented here as a new model to simulate the interaction between organic contaminants and compost, using one module for organic matter and one for organic pollutants, with these modules being linked by several assumptions. Published results of laboratory soil incubations using labeled carbon pollutants from compost were used to test the model for one polycyclic aromatic hydrocarbon (PAH), two surfactants and one herbicide. Several simulation scenarios were tested using (i) the organic pollutant module either alone or coupled to the organic matter module, (ii) various methods to estimate the adsorption coefficients (Kd) of contaminants on organic matter and (iii) different degrading biomasses. The simulations were improved if the organic pollutant module was coupled with the organic matter module. Multiple linear regression model for Kd as a function of organic matter quality yielded the most accurate simulation results. The inclusion of specific biomass in the model made it possible to successfully predict the PAH mineralization.
Collapse
Affiliation(s)
- Chunnu Geng
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France; Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Claire-Sophie Haudin
- AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France
| | - Yuan Zhang
- Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Gwenaëlle Lashermes
- INRA, UMR 614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - Sabine Houot
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France
| | - Patricia Garnier
- INRA, UMR 1091 Environnement et Grandes Cultures, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
36
|
Kaczyńska G, Borowik A, Wyszkowska J. Soil Dehydrogenases as an Indicator of Contamination of the Environment with Petroleum Products. WATER, AIR, AND SOIL POLLUTION 2015; 226:372. [PMID: 26478635 PMCID: PMC4600725 DOI: 10.1007/s11270-015-2642-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/03/2015] [Indexed: 05/10/2023]
Abstract
The aim of the research was to compare the effects of various petroleum products, biodiesel, diesel oil, fuel oil and unleaded petrol on soil dehydrogenases, and to evaluate biostimulation with compost and urea in the restoration of homeostasis of the soil contaminated with these products. The obtained results allowed for defining the weight of dehydrogenases in monitoring of the environment subjected to pressure from petroleum hydrocarbons. The studies were carried out under laboratory conditions for 180 days, and loamy sand was the soil formation used in the experiment. The petroleum products were used in the following amounts: 0, 2, 4, 8 and 16 g kg-1 DM of soil. Indices of the influence of the petroleum product and the stimulating substance on the activity of dehydrogenases were calculated. It was proved that the petroleum products affect soil dehydrogenases in various ways. Biodiesel, diesel oil and fuel oil stimulate these enzymes, while petrol acts as an inhibitor. Among the substances tested regarding biostimulation of soils contaminated with petroleum products, compost is definitely more useful than urea, and therefore, the former should be used for the remediation of such soils. Stimulation of dehydrogenases by compost, both in contaminated and non-contaminated soils, proves that it may accelerate microbiological degradation of petroleum-derived contaminants.
Collapse
Affiliation(s)
- Grażyna Kaczyńska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
37
|
Jolanun B, Kaewkam C, Bauoon O, Chiemchaisri C. Turned windrow composting of cow manure as appropriate technology for zero discharge of mulberry pulp wastewater. ENVIRONMENTAL TECHNOLOGY 2014; 35:2104-2114. [PMID: 24956805 DOI: 10.1080/09593330.2014.894128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Turned windrow composting was investigated as appropriate technology for recycling the wastewater (excluding black liquor) from mulberry pulp and paper handicrafts. Two exterior turned windrows (1.5 m width x 1.5 m height x 2.0 m length) with dry leaves/cow manure/sawdust wet weight ratios of 60:40:0 (Pile A) and 55:40:5 (Pile B) were used for the investigation. Changes in the physical and chemical properties of the compost were examined and a phytotoxicity analysis was performed. A soil incubation test and an informal focus group discussion were also conducted. The results revealed that while both piles met the regulatory processing requirements for further reduced pathogens (>or= 55 degrees C for 15 days or longer), the operation without sawdust (Pile A) not only significantly enhanced the thermophilic temperature regime (P < 0.05) but also yielded the highest amount (1.4 m3 ton-1 pile) of wastewater elimination during the first 2 months of composting. It was found that the constant rates of degradation were 0.006 day- 1 (Pile A) and 0.003 day-1 (Pile B), and no pronounced statistically significant difference in N losses was found (P > 0.05). The germination index of two plant species in both piles varied between 126% and 230% throughout the experiment, and no pronounced differences (P > 0.05) among the samples were found. Addition of the compost significantly improved soil organic matter and pH (7-8), as well as reduced the loss of NO3-N. Local discussion groups were initiated to evaluate the cost-benefits, the potential of wastewater removal, the cooperation of community users and supporters, the compost quality and the potential compost market.
Collapse
|
38
|
Wu G, Li X, Kechavarzi C, Sakrabani R, Sui H, Coulon F. Influence and interactions of multi-factors on the bioavailability of PAHs in compost amended contaminated soils. CHEMOSPHERE 2014; 107:43-50. [PMID: 24875869 DOI: 10.1016/j.chemosphere.2014.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/18/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
Compost amendment to contaminated soils is a potential approach for waste recycling and soil remediation. The relative importance and interactions of multiple factors on PAH bioavailability in soils were investigated using conjoint analysis and five-way analysis of variance. Results indicated that soil type and contact time were the two most significant factors influencing the PAH bioavailability in amended soils. The other two factors (compost type and ratio of compost addition) were less important but their interactions with other factors were significant. Specifically the 4-factor interactions showed that compost addition stimulated the degradation of high molecular PAHs at the initial stage (3 month) by enhancing the competitive sorption within PAH groups. Such findings suggest that a realistic decision-making towards hydrocarbon bioavailability assessment should consider interactions among various factors. Further to this, this study demonstrated that compost amendment can enhance the removal of recalcitrant hydrocarbons such as PAHs in contaminated soils.
Collapse
Affiliation(s)
- Guozhong Wu
- Department of Environmental Science and Technology, Cranfield University, Cranfield MK43 0AL, UK; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre for Distillation Technology, Tianjin 300072, China
| | - Cédric Kechavarzi
- Department of Environmental Science and Technology, Cranfield University, Cranfield MK43 0AL, UK
| | - Ruben Sakrabani
- Department of Environmental Science and Technology, Cranfield University, Cranfield MK43 0AL, UK
| | - Hong Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre for Distillation Technology, Tianjin 300072, China
| | - Frédéric Coulon
- Department of Environmental Science and Technology, Cranfield University, Cranfield MK43 0AL, UK; Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa.
| |
Collapse
|
39
|
Lim YK, Jeong CS, Han KW, Jang YJ. Analysis of Jet Fuel for the Judgment of Soil Polluter. APPLIED CHEMISTRY FOR ENGINEERING 2014. [DOI: 10.14478/ace.2013.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Lipińska A, Kucharski J, Wyszkowska J. Activity of Arylsulphatase in Soil Contaminated with Polycyclic Aromatic Hydrocarbons. WATER, AIR, AND SOIL POLLUTION 2014; 225:2097. [PMID: 25221368 PMCID: PMC4158175 DOI: 10.1007/s11270-014-2097-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/24/2014] [Indexed: 05/15/2023]
Abstract
An experiment has been performed to determine the activity of arylsulphatase in soil submitted to pressure of four polycyclic aromatic hydrocarbons: naphthalene, phenanthrene, anthracene, and pyrene, in the amount of: 0, 1,000, 2,000, and 4,000 mg kg-1 dm of soil. Soil samples were also applied some organic substances, such as: cellulose, sucrose, and compost, in the amount of 0 and 9 g kg-1 dm of soil. The experiment was run under laboratory conditions. It was established on soil which belonged to loamy sand. The soil resistance (RS) and resilience (RL) indices were computed. It has been discovered that the PAHs stimulated arylsulphatase activity, with anthracene raising the activity of the enzyme to the highest degree. The activity of arysulphatase depended significantly on the dose of a PAH, duration of pressure, and type of organic substances added to soil. The highest resistance (RS) was determined in soil exposed to phenanthrene, and the lowest one-in soil polluted with pyrene. Low values of the RL index prove that polycyclic aromatic hydrocarbons cause lasting disorders in the activity of arylsulphatase.
Collapse
Affiliation(s)
- Aneta Lipińska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
41
|
Lipińska A, Kucharski J, Wyszkowska J. The Effect of Polycyclic Aromatic Hydrocarbons on the Structure of Organotrophic Bacteria and Dehydrogenase Activity in Soil. Polycycl Aromat Compd 2013. [DOI: 10.1080/10406638.2013.844175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Pelaez AI, Lores I, Sotres A, Mendez-Garcia C, Fernandez-Velarde C, Santos JA, Gallego JLR, Sanchez J. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:190-9. [PMID: 23867700 DOI: 10.1016/j.envpol.2013.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 05/15/2023]
Abstract
An "on site" bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m(3) of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera.
Collapse
Affiliation(s)
- A I Pelaez
- Environmental Biotechnology and Geochemistry Group, Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, C/Gonzalo Gutierrez Quirós s/n, 33600 Mieres, Asturias, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu G, Kechavarzi C, Li X, Sui H, Pollard SJT, Coulon F. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. CHEMOSPHERE 2013; 90:2240-2246. [PMID: 23141842 DOI: 10.1016/j.chemosphere.2012.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
A laboratory microcosm study was carried out to assess the influence of compost amendment on the degradation and bioavailability of PAHs in contaminated soils. Three soils, contaminated with diesel, coal ash and coal tar, respectively, were amended with two composts made from contrasting feedstock (green waste and predominantly meat waste) at two different rates (250 and 750 t ha(-1)) and incubated for 8 months. During this period the treatments were sampled for PAH analysis after 0, 3, 6 and 8 months. Total and bioavailable fractions were obtained by sequential ultrasonic solvent extraction and hydroxypropyl-β-cyclodextrin extraction, respectively, and PAHs were identified and quantified by GC-MS. Bioavailability decrease due to sorption was only observed at the first 3 months in the diesel spiked soil. After 8 months, compost addition resulted in over 90% loss of total PAHs irrespective of soil types. Desorption and degradation contributed to 30% and 70%, respectively, of the PAH loss in the spiked soil, while PAH loss in the other two soils resulted from 40% enhanced desorption and 60% enhanced degradation. Compost type and application rates had little influence on PAH bioavailability, but higher PAH removal was observed at higher initial concentration during the early stage of incubation. The bioavailable fraction of PAH was inversely correlated to the number of benzene rings and the octanol-water partition coefficient. Further degradation was not likely after 8-month although over 30% of the residual PAHs were bioavailable, which highlighted the application of bioavailability concept during remediation activities.
Collapse
Affiliation(s)
- Guozhong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
44
|
An CJ, Huang GH, Yao Y, Sun W, An K. Performance of in-vessel composting of food waste in the presence of coal ash and uric acid. JOURNAL OF HAZARDOUS MATERIALS 2012; 203-204:38-45. [PMID: 22188789 DOI: 10.1016/j.jhazmat.2011.11.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/24/2011] [Accepted: 11/20/2011] [Indexed: 05/31/2023]
Abstract
Massive quantities of food waste often coexist with other agroindustrial and industrial waste, which might contain coal ash (CA) and uric acid (UA). This study investigated the influence of CA and UA on the composting of food waste in the in-vessel system. The patterns of food waste composting were compared among various combinations. The results showed that the temperature level was enhanced in the presence of CA and UA during the first 8 days. The significant drop in pH was observed in the treatment without any amendment. But the presence of CA could alleviate the drop of pH. More intensive organic mass reduction took place in the treatments with amended CA and UA in the first half of process. The O(2) uptake rate in the reactor with CA and UA was higher than that with only CA in the early stage. Both thermophilic and mesophilic microorganisms were present throughout the composting period. The populations of both thermophilic and mesophilic microorganisms were influenced when amended with CA and UA. The decreasing trend in C/N ratio was shown in all the reactors, while a relatively lower C/N ratio was obtained in the series with both CA and UA.
Collapse
Affiliation(s)
- Chun-Jiang An
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | | | | | | | | |
Collapse
|
45
|
Santis-Navarro A, Gea T, Barrena R, Sánchez A. Production of lipases by solid state fermentation using vegetable oil-refining wastes. BIORESOURCE TECHNOLOGY 2011; 102:10080-10084. [PMID: 21903382 DOI: 10.1016/j.biortech.2011.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 05/31/2023]
Abstract
Lipases were produced by a microbial consortium derived from a mixture of wastewater sludges in a medium containing solid industrial wastes rich in fats, under thermophilic conditions (temperature higher than 45°C for 20 days) in 4.5-L reactors. The lipases were extracted from the solid medium using 100mM Tris-HCl, pH 8.0 and a cationic surfactant agent (cetyltrimethylammonium chloride). Different doses of surfactant and buffer were tested according to a full factorial experimental design. The extracted lipases were most active at 61-65°C and at pH 7.7-9. For the solid samples, the lipolytic activity reached up to 120,000 UA/g of dry matter. These values are considerably higher than those previously reported in literature for solid-state fermentation and highlight the possibility to work with the solid wastes as effective biocatalysts.
Collapse
Affiliation(s)
- Angélica Santis-Navarro
- Composting Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. ENVIRONMENT INTERNATIONAL 2011; 37:1362-75. [PMID: 21722961 DOI: 10.1016/j.envint.2011.06.003] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 05/22/2023]
Abstract
Due to human activities to a greater extent and natural processes to some extent, a large number of organic chemical substances such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents and pesticides pollute the soil and aquatic environments. Remediation of these polluted sites following the conventional engineering approaches based on physicochemical methods is both technically and economically challenging. Bioremediation that involves the capabilities of microorganisms in the removal of pollutants is the most promising, relatively efficient and cost-effective technology. However, the current bioremediation approaches suffer from a number of limitations which include the poor capabilities of microbial communities in the field, lesser bioavailability of contaminants on spatial and temporal scales, and absence of bench-mark values for efficacy testing of bioremediation for their widespread application in the field. The restoration of all natural functions of some polluted soils remains impractical and, hence, the application of the principle of function-directed remediation may be sufficient to minimize the risks of persistence and spreading of pollutants. This review selectively examines and provides a critical view on the knowledge gaps and limitations in field application strategies, approaches such as composting, electrobioremediation and microbe-assisted phytoremediation, and the use of probes and assays for monitoring and testing the efficacy of bioremediation of polluted sites.
Collapse
Affiliation(s)
- Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, SA 5095, Australia
| | | | | | | | | |
Collapse
|