1
|
Liu Y, Zhu G, Yu Z, Li C, Lin B, Liu G, Jin R, Zheng M. Priority Organic Pollutant Monitoring Inventory and Relative Risk Reduction Potential for Solid Waste Incineration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18356-18367. [PMID: 39264101 DOI: 10.1021/acs.est.4c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Incineration is a promising sustainable treatment method for solid waste. However, the ongoing revelation of new toxic pollutants in this process has become a controversial issue impeding its development. Thus, identifying and regulating high-risk pollutants emerge as pivotal strides toward reconciling this debate. In this study, we proposed a workflow aimed at establishing priority monitoring inventories for organic compounds emitted by industries involving full-component structural recognition, environmental behavior prediction, and emission risk assessment, specifically focusing on solid waste incineration (SWI). A total of 174 stack gas samples from 29 incinerators were first collected. Nontarget full organic recognition technology was then deployed to analyze these samples, and 646 organic compounds were identified. The characteristics, i.e., toxicity effects, toxicity concentrations, persistence, and bioaccumulation potential, of these compounds were assessed and ranked based on the TOXCAST database from the US Environmental Protection Agency and structural effect models. Combined with consideration of changes in seasons and waste types, a priority control inventory consisting of 28 organic pollutants was finally proposed. The risks associated with SWI across different regions in China and various countries were assessed, and results pinpointed that by controlling the priority pollutants, the average global emission risk attributed to SWI was anticipated to be reduced by 71.4%. These findings offer significant guidance for decision-making in industrial pollutant management, emphasizing the importance of targeted regulation and monitoring to enhance the sustainability and safety of incineration processes.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohua Zhu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhefu Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Bondar KM, Tsiupa IV. Long- and short-term pollution effect in megapolis assessed from magnetic and geochemical measurements on soils, tree trunk bark, and air filters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1041. [PMID: 39388036 PMCID: PMC11467103 DOI: 10.1007/s10661-024-13194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
This study identifies factors influencing spatial and temporal variations in magnetic susceptibility and heavy metal content in soils and airborne particulate matter within the Kyiv megapolis, Ukraine, and highlights how source apportionment differs in the long and short run. Topsoil magnetic susceptibility anomalies of > 70 × 10-8 m3kg-1 are observed around old factories. The tree bark magnetic susceptibility map provides a record of industry general low emissions for the last 2-3 decades. The patterns of both spatial distributions confirm that factory emissions dominate the composition of particulate falling on the ground in urban area, with exclusion of streets with heavy traffic. Enhanced concentrations of Cu, Ni, and Zn have been found in urban soils, showing a positive correlation with magnetic susceptibility. Re-suspended road dust dominates temporal variation of particulate matter magnetic susceptibility collected on air filters. The air at busy streets is cleaner in winter, when the street dust gets immobilized by snow cover or freezing. Industries in Kyiv pose no significant effect on air quality; the concentrations of Cr, Ni, Cu, Zn, Cd, and Pb are at normal urban level with the exception of the near vicinity to factories. Air in streets with heavy traffic is enriched with Fe and Mn. Principal component analysis reveals different pattern of air pollution for the busy streets and yard areas. Yards are less affected by road dust; thus, contribution of industrial emissions can be distinguished. The results provide context for further quantification of any alterations in ecological state of Kyiv megapolis that may have arisen from socio-economic shocks and direct threats connected to the current war.
Collapse
Affiliation(s)
- Kseniia M Bondar
- Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452, Warsaw, Poland.
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str, Kiev, 03022, Ukraine.
| | - Iryna V Tsiupa
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str, Kiev, 03022, Ukraine
| |
Collapse
|
3
|
Lei R, He Y, Liu W, Hussain J, Liu L, Han J, Li C, Xing Y, Su W. Unintentional persistent organic pollutants in cremation process: Emissions, characteristics, and inventory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172495. [PMID: 38649056 DOI: 10.1016/j.scitotenv.2024.172495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Pollutants produced by cremation furnaces have gradually caused concern because of the increasing rate of cremation around the world. In this study, the levels, patterns, and emission factors of unintentional persistent organic pollutants (UPOPs) from cremation were investigated. The toxic equivalent (TEQ) concentrations (11 % O2 normalized) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in flue gas ranged from 0.036 to 22 ng TEQ/Nm3, while the levels of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in flue gas samples ranged from 0.0023 to 1.2 ng TEQ/Nm3 and 0.17-44 pg TEQ/Nm3, respectively. The average concentrations of UPOPs in flue gas from car-type furnaces were higher than those from flat-panel furnaces. Secondary chambers and air pollution control devices were effective for controlling UPOPs emissions. However, heat exchangers were not as effective for reducing UPOPs emissions. It was observed that the UPOPs profiles exhibited dissimilarities between fly ash and flue gas samples. HxCDF, OCDD, and PeCDF were the dominant homologs of PCDD/Fs in flue gas, while HxCDF, PeCDF, and HpCDF were the dominant homologs in fly ash. The fractions of MoCBs and MoCNs in fly ash were higher than those in flue gas. Finally, we conducted an assessment of the global emissions of UPOPs from cremation in the years of 2019 and 2021. The total emission of UPOPs in 47 countries was estimated at 239 g TEQ in 2021, which was during the peak period of the COVID-19 pandemic worldwide. The emissions in 2021 increased by approximately 24 % compared to 2019, with the impact of COVID-19 being a significant factor that cannot be disregarded.
Collapse
Affiliation(s)
- Rongrong Lei
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing 100083, China
| | - Yunchen He
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Lijun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinglei Han
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Changliang Li
- Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Yi Xing
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Su
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Amani Room S, Huang KT, Pan SY, Chen PJ, Hsu YC, Chi KH. Health assessment of emerging persistent organic pollutants (POPs) in PM 2.5 in northern and central Taiwan. CHEMOSPHERE 2024; 353:141573. [PMID: 38428532 DOI: 10.1016/j.chemosphere.2024.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 μg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 μg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 μg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai Ting Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Po Jui Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuam-Cheng Hsu
- National Environmental Research Academy, Ministry of Environment, Taoyuan, 330, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
5
|
Klimczak M, Liu G, Fernandes AR, Kilanowicz A, Falandysz J. An updated global overview of the manufacture and unintentional formation of polychlorinated naphthalenes (PCNs). JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131786. [PMID: 37302193 DOI: 10.1016/j.jhazmat.2023.131786] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
This review updates information on the historical manufacture and unintentional production of polychlorinated naphthalenes (PCNs). The direct toxicity of PCNs as a result of occupational human exposure and through contaminated feed in livestock was recognised decades ago, making PCNs a precursor chemical for consideration in occupational medicine and occupational safety. This was confirmed by the listing of PCNs by the Stockholm Convention as a persistent organic pollutant in the environment, food, animals and humans. PCNs were manufactured globally between 1910 ∼ 1980, but reliable data on the volumes produced or national outputs are scarce. A total figure for global production would be useful for the purposes of inventory and control and it is clear that combustion related sources such as waste incineration, industrial metallurgy and use of chlorine are current major sources of PCNs to the environment. The upper bound estimate of total global production has been put at 400,000 metric tons but the amounts (at least, many 10 s of tonnes) that are currently emitted unintentionally every year through industrial combustion processes should also be inventoried along with estimates for emissions from bush and forest fires. This would however require considerable national effort, financing and co-operation from source operators. The historical (1910-1970 s) production and resulting emissions through diffusive/evaporative releases through usage, are still reflected in documented occurrence and patterns of PCNs in human milk in Europe and other locations worldwide. More recently, PCN occurrence in human milk from Chinese provinces has been linked to local unintentional emissions from thermal processes.
Collapse
Affiliation(s)
- Michał Klimczak
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10-100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 12-100049, China.
| | - Awyn R Fernandes
- University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - Anna Kilanowicz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
6
|
Zhang S, Li H, He R, Deng W, Ma S, Zhang X, Li G, An T. Spatial distribution, source identification, and human health risk assessment of PAHs and their derivatives in soils nearby the coke plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160588. [PMID: 36470383 DOI: 10.1016/j.scitotenv.2022.160588] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The coking industry can generate large amounts of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, which may negatively impact the environment and human health. In this study, soils nearby a typical coking plant were sampled to assess the impact of coke production on the surrounding residential areas and human health. The mean concentration of PAHs and their derivatives in residential area soils nearby the coke plant was 4270 ng/g dw, which was 1 order of magnitude higher than that observed in areas far from the coke plant and approximately 4 times lower than that revealed the coke plant. In addition, the results showed that coking processing area was the most contaminant area of the coke plant (mean: 74.4 μg/g dw), where was also the main source of pollutants in residential areas. In terms of vertical soils in coking plant, the maximum levels of chemicals (mean: 205 μg/g dw) were presented at the leakage of underground pipelines, where were much higher than those in surface soils, and decreased with the increase of depth. The analysis of variance (ANOVA) results showed obvious differences in the concentrations of 6-nitrochrysene between the plant, residential areas and control areas. Meanwhile, 6-nitrochrysene had potential cancer risk (CR) for human in the coking site. Thus, 6-nitrochrysene was the most noteworthy PAH derivatives. Furthermore, the CR (mean: 5.94 × 10-5) and toxic equivalent quantities (TEQs) (mean: 14.8 μg·TEQ/g) of PAHs and their derivatives was assessed in this study. This finding suggested that PAHs and their derivatives especially those extremely toxic chemicals (Nitro-PAHs (NPAHs) and Br/Cl-PAHs (XPAHs)) might pose a potential health risk to residents nearby the coke plant. The current study provides further insights into the pollution characteristics of PAHs and their derivatives in coke plants and potential risks to the workers and surrounding residents.
Collapse
Affiliation(s)
- Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rujian He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Song S, Chen K, Huang T, Ma J, Wang J, Mao X, Gao H, Zhao Y, Zhou Z. New emission inventory reveals termination of global dioxin declining trend. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130357. [PMID: 36444062 DOI: 10.1016/j.jhazmat.2022.130357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Accurate estimates of spatiotemporally resolved Polychlorinated dibenzo-p-dioxins (PCDD/Fs, or dioxins) emissions are critical for understanding their environmental fate and associated health risks. In this study, by utilizing an empirical regression model for PCDD/Fs emissions, we developed a global emission inventory for 17 toxic PCDD/Fs congeners from 8 source sectors with a spatial resolution of 1° × 1° from 2002 to 2018. The results show that PCDD/Fs emissions decreased by 25.7 % (12.5 kg TEQ) between 2002 and 2018, mostly occurring in upper- and lower-middle income countries. Globally, open-burning processes, waste incineration, ferrous and nonferrous metal production sectors and heat and power generation were the major source sectors of PCDD/Fs. Spatially, high PCDD/Fs emissions were mainly identified in East and South Asia, Southeast Asia, and part of Sub-Saharan Africa. We find that the declining trend of dioxin emissions over the past decades terminated from the early 2010s due to increasing significance of wildfire induced emissions in the total emission. The PCDD/Fs emission inventory developed in the present study was verified by inputting the inventory as initial conditions into an atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), to simulate PCDD/Fs concentrations in air and soil. The predicted concentrations were compared to field sampling data. The good agreement between the modeled and measured concentrations demonstrates the reliability of the inventory.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Jiaxin Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhifang Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
8
|
Guo F, Qiu G, Guo Y, Jia W, Chen L, Zhang Y, Jiang L, Hu X, Wu J, Zhang H. Efficient dewatering of waste gasification fine slag based on mechanical pressure-vacuum fields: Dewatering characteristics, energy optimization and potential environmental benefits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115881. [PMID: 35952565 DOI: 10.1016/j.jenvman.2022.115881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Landfill is the major waste disposal method of high-moisture coal gasification fine slag (GFS) which causes the pollution of soil and water and brings the waste of resources. GFS efficient dewatering is an urgent problem to be solved, which is beneficial to realize its resource utilization. In this paper, mechanical pressure and vacuum coupling energy fields are applied to carry out the dewatering processes of GFS. The pressure field provides strong power for water migration, which makes water leave the particle system, while the vacuum field provides traction for water removal from system. The fine slag produced from Coal-to-methanol (named JC) with larger size particles tends to form "bridging" frameworks among particles, which provides water occurrence space and increases the moisture migration resistance. The mechanical dewatering process has an energy advantage interval, when the sample moisture is reduced to a certain degree, the mechanical force field is mainly used for particle friction and breakage but not for moisture migration. Through dewatering process energy optimization, high moisture gasification fine slag can be removed about 15% water within 30s and energy consumption of efficient dewatering is 2.63 kJ/g which is much lower than that of drying. Efficient dewatering is benefit to the GFS recycling which reduces hazardous materials release to environment. The potential effects of high efficiency dewatering process on GFS resource utilization and the possible eco-design framework for products recycled from the waste GFS were proposed. The research results will provide theoretical guidance for the gasification fine slag efficient dewatering and is benefit to the environment.
Collapse
Affiliation(s)
- Fanhui Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Guofeng Qiu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Yang Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Wenke Jia
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Liqing Chen
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Yixin Zhang
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Lixiang Jiang
- China Energy Investment Corporation Co., Ltd., Beijing 100011, PR China
| | - Xianghong Hu
- Jiangsu Botong Environmental Protection Technology Co., Ltd., Lianyungang 222000, PR China
| | - Jianjun Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Haijun Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, PR China.
| |
Collapse
|
9
|
Shi J, Huang L, Sanganyado E, Mo J, Zhao H, Xiang L, Wong MH, Liu W. Spatial distribution and ecological risks of polychlorinated biphenyls in a river basin affected by traditional and emerging electronic waste recycling in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114010. [PMID: 36030683 DOI: 10.1016/j.ecoenv.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
With development of e-waste related legislation in China, formal recycling activities are designated in some areas while informal ones are illegally transferred to emerging areas to avoid supervision. However, the resulting environmental impact and ecological risks are not clear. Here, we investigated the discharge of polychlorinated biphenyls (PCBs) to soil and aquatic environments by e-waste recycling activities in the Lian River Basin, China. The study area included a designated industrial park in the traditional e-waste recycling area (Guiyu, known as the world's largest e-waste center), several emerging informal recycling zones, and their surrounding areas and coastal area. A total of 27 PCBs were analyzed, and the highest concentration was found in an emerging site for soil (354 ng g-1) and in a traditional site for sediment (1350 ng g--1) respectively. The pollution levels were significantly higher in both the traditional and emerging recycling areas than in their respective upstream countryside areas (p = 0.0356 and 0.0179, respectively). Source analysis revealed that the traditional and emerging areas had similar PCB sources mainly associated with three PCB technical mixtures manufactured in Japan (KC600) and the USA (Aroclor 1260 and Aroclor 1262). The PCB pollution in their downstream areas including the coastal area was evidently affected by the formal and informal recycling activities through river runoff. The ecological risk assessments showed that PCBs in soils and sediments in the Lian River Basin could cause adverse ecotoxicological consequences to humans and aquatic organisms.
Collapse
Affiliation(s)
- Jingchun Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linlin Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of China
| | - Hongzhi Zhao
- College of Environmental Science & Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong, Special Administrative Region of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, Special Administrative Region of China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
10
|
Huang Y, Chen Y, Li Y, Zhou L, Zhang S, Wang J, Du W, Yang J, Chen L, Meng W, Tao S, Liu M. Atmospheric emissions of PCDDs and PCDFs in China from 1960 to 2014. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127320. [PMID: 34597929 DOI: 10.1016/j.jhazmat.2021.127320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Quantification of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) is a requirement of the Stockholm Convention on persistent organic pollutants (POPs), and essential to evaluate and understand their environmental fate and associated health risks. Unfortunately, works estimating the emission of PCDD/Fs in China are limited, especially in terms of historical trends and information on spatial distribution. In this study, provincial emissions of 17 toxic PCDD/Fs congeners from 79 sources were quantified from 1960 to 2014, and 0.1º × 0.1º gridded emissions for 2014 were obtained by applying a source-specific, annually varying emission factor (EF) dataset with similar time trends as measurements for China. Historical national PCDD/F emissions showed an increasing trend until around 1980, and then plateaued due to decreased emissions from cement production and waste burning. Decreased emissions from cement production and waste burning in northeast, east, and south China, and Taiwan province were the main causes for the stabilized national emissions after 1980. Spatially, highly positive correlations of emission densities with population and GDP densities were identified, but no clear temporal patterns were observed. Emission densities showed a decreasing trend in the order of cities, towns and rural areas, while the opposite was seen for per capita emissions.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China.
| | - Yan Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | | | - Shanshan Zhang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Wei Du
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjun Meng
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
11
|
Lei R, Xu Z, Xing Y, Liu W, Wu X, Jia T, Sun S, He Y. Global status of dioxin emission and China's role in reducing the emission. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126265. [PMID: 34102354 DOI: 10.1016/j.jhazmat.2021.126265] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The global status of dioxin emissions across 150 countries/regions were compiled in this study. China, the major emitter of dioxin and the largest developing country, was chosen as an example to illustrate its emission reductions. The global dioxin emissions were about 97.0 kg TEQ/year, Asia and Africa emitted the most dioxins among the continents. Globally, open burning processes were the most important sources of dioxins. Dioxin emissions in developed countries have remained at low and stable level, while those in developing countries have remained at relatively high level or have continued to increase in recent years. It can be speculated that the global dioxin emissions will increase first and then decrease in the future. Chinese dioxin emissions were stable around 9 kg toxic equivalent (TEQ) in recent years, while 17 subcategories are the key sources of dioxin control in the future. Moreover, according to analysis toward China's dioxin emission trend and sources, there is a large space for dioxins reduction in industries such as metal production, waste incineration and disposal. The results indicated that there is at least 30-70% of reduction scope in China based on three scenarios, and this will reduce the world's annual dioxin emissions by 2.7-6.8%.
Collapse
Affiliation(s)
- Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, 999077, Hong Kong, China
| | - Ying Xing
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Xie W, Song C, Ren W, Zhang J, Chen L, Sun J. Reduction-oxidation series coupling degradation of chlorophenols in Pd-Catalytic Electro-Fenton system. CHEMOSPHERE 2021; 274:129654. [PMID: 33545583 DOI: 10.1016/j.chemosphere.2021.129654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides are widespread in soils, sediments and even in groundwater, causing great concern to human health because of its toxicity and carcinogenic effects. The remarkable mineralization and lowered toxicity are particularly important during the removal of organochlorine pesticides. In this study, Pd/CeO2 was prepared and employed as a bifunctional catalyst, to construct the reduction-oxidation series coupling Electro-Fenton (EF) system. The removal of chlorophenols (CPs) reached over 95% within 10 min at pH 3.0 and a current density of 25 mA/cm2 in Pd/CeO2-EF system. The second-order rate constant of CPs degradation was 10.28 L mmol-1min-1 in Pd/CeO2-EF system, which was 29 times as fast as the sum of electrolysis with Pd/CeO2 (0.24 L mmol-1min-1) and EF (0.11 L mmol-1min-1). Dehydrochlorination by Pd [H] contributed to the removal of CPs in Pd/CeO2-EF system. The generated reactive oxygen species, mainly OH was also confirmed by ESR to contribute to the removal of CPs. The reduction-oxidation series coupling degradation of CPs in Pd/CeO2-EF system increased the TOC removal to 70% in 360 min. The analysis of intermediate products further revealed the reductive and oxidative products in Pd/CeO2-EF. Moreover, the system of Pd/CeO2-EF exhibited an excellent performance treatment for CPs in actual groundwater. This study provides a new stratagem to eliminate organochlorine pesticides in groundwater environments rapidly and thoroughly.
Collapse
Affiliation(s)
- Wenjing Xie
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Chencheng Song
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Wei Ren
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Jingyi Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Lei Chen
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Jie Sun
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
13
|
Shen J, Yang L, Liu G, Zhao X, Zheng M. Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145692. [PMID: 33940761 DOI: 10.1016/j.scitotenv.2021.145692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The steelmaking industry is an important source of unintentionally produced persistent organic pollutants (UP-POPs). This review summarizes the emission levels, characteristics, and formation mechanisms of UP-POPs, including halogenated dioxins, polychlorinated biphenyls, polychlorinated naphthalenes, and penta- and hexa- chlorobenzenes in the steelmaking industry to improve our understanding of the emissions of UP-POPs from the steelmaking industry. The factors influencing UP-POP formation during the iron ore sintering (IOS) process are also reviewed. The raw materials and temperature during the steelmaking process are important factors influencing UP-POP generation. Raw materials containing plastics, paints, cutting oil, rubber, and iron from electronic waste recycling can contribute to high emissions of UP-POPs during steelmaking processes. Electrostatic precipitator dust contains chlorine, carbon, and metals, which are usually recycled as a component of the raw material, and could also promote dioxin formation and emissions from IOS. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are easily formed in high concentrations at temperatures in the range of 200 °C-650 °C. This review also provides a comprehensive summary of the UP-POP emission limits in the steel industry worldwide and the best available techniques and environmental practices for UP-POP emission reduction. The information in this review will be useful for the reduction of UP-POPs in the steelmaking process.
Collapse
Affiliation(s)
- Jia Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoguang Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Adithya S, Jayaraman RS, Krishnan A, Malolan R, Gopinath KP, Arun J, Kim W, Govarthanan M. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. CHEMOSPHERE 2021; 271:129866. [PMID: 33736213 DOI: 10.1016/j.chemosphere.2021.129866] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
The environmental impacts of persistent organic pollutants (POPs) is an increasingly prominent topic in the scientific community. POPs are stable chemicals that are accumulated in living beings and can act as endocrine disruptors or carcinogens on prolonged exposure. Although efforts have been taken to minimize or ban the use of certain POPs, their use is still widespread due to their importance in several industries. As a result, it is imperative that POPs in the ecosystem are degraded efficiently and safely in order to avoid long-lasting environmental damage. This review focuses on the degradation techniques of hexachlorocyclohexane (HCH), a pollutant that has strong adverse effects on a variety of organisms. Different technologies such as adsorption, bioremediation and advanced oxidation process have been critically analyzed in this study. All 3 techniques have exhibited near complete removal of HCH under ideal conditions, and the median removal efficiency values for adsorption, bioremediation and advanced oxidation process were found to be 80%, 93% and 82% respectively. However, it must be noted that there is no ideal HCH removal technique and the selection of removal method depends on several factors. Furthermore, the fates of HCH in the environment and challenges faced by HCH degradation have also been explained in this study. The future scope for research in this field has also received attention.
Collapse
Affiliation(s)
- Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
15
|
Nguyen TTT, Hoang AQ, Nguyen VD, Nguyen HT, Van Vu T, Vuong XT, Tu MB. Concentrations, profiles, emission inventory, and risk assessment of chlorinated benzenes in bottom ash and fly ash of municipal and medical waste incinerators in northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13340-13351. [PMID: 33184790 DOI: 10.1007/s11356-020-11385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Concentrations and congener profiles of seven di- to hexachlorinated benzenes (CBzs) were characterized in bottom ash and fly ash samples collected simultaneously from one medical waste incinerator (MEWI) and one municipal waste incinerator (MUWI) in northern Vietnam. Total concentrations of seven CBzs in the fly ash samples ranged from 6.98 to 34.4 (median 19.1) ng g-1 in the MEWI, and ranged from 59.1 to 391 (median 197) ng g-1 in the MUWI. Concentrations of CBzs in the bottom ash samples of the MEWI (median 1.95; range 1.53-5.98 ng g-1) were also lower than those measured in the MUWI samples (median 17.4; range 14.5-42.6 ng g-1). Levels of CBzs in the fly ash samples were significantly higher than concentrations measured in the bottom ash samples, partially indicating the low-temperature catalytic formation of these pollutants in post-combustion zone. In general, higher chlorinated congeners (e.g., hexachlorobenzene, pentachlorobenzene, and 1,2,4,5-tetrachlorobenzene) were more abundant than lower chlorinated compounds. However, compositional profiles of CBzs were different between the ash types and incinerators and even between the same sample types of different sampling days, suggesting that the formation of CBzs in these incinerators is complicated and influenced by many factors. Emission factors and annual emission amounts of CBzs were estimated for the two incinerators by using actually measured data of CBz concentrations in the ash. Daily intake doses and cancer risks of ash-bound CBzs estimated for workers in the two incinerators were generally lower than critical values, but cancer risks caused by other relevant pollutants (e.g., polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and dioxin-related compounds) were not considered.
Collapse
Affiliation(s)
- Thu Thuy Thi Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam.
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Hue Thi Nguyen
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
- University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Tu Van Vu
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Xuan Truong Vuong
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam.
| |
Collapse
|
16
|
Li H, Liu W, Lu A, Li C, Die Q, Lei R, Wu X. PCDD/Fs emissions from secondary copper production synergistically controlled by fabric filters and desulfurization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116065. [PMID: 33221088 DOI: 10.1016/j.envpol.2020.116065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of fabric filters and desulfurization systems during secondary copper smelting on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) concentrations, emission coefficients, and profiles were studied in an oxygen-rich smelting furnace and an anode furnace. In the anode furnace, the toxic equivalent (TEQ) concentration ranges were 0.106-1.04 ng World Health Organization (WHO)-TEQ/m3 at the fabric filters inlet and 0.027-0.17 ng WHO-TEQ/m3 at the outlet. For the oxygen-rich smelting furnace, the TEQ concentration ranges were 1.21-1.93 and 0.010-0.019 ng WHO-TEQ/m3 at the desulfurization system inlet and outlet, respectively. The TEQs in the outlet stack gases of the desulfurization system from the anode furnace were 0.0041-0.016 ng WHO-TEQ/m3. It is likely that PCDD/Fs that were taken away from the stack gases were adsorbed by the fly ash and gypsum. Solid residues were the dominant release routes for PCDD/Fs. PCDD/Fs congener and homologue profiles of stack gases from different smelting stages were similar. The contributions of more chlorinated homologues from the anode furnace decreased observably after the stack gases passed through the fabric filters. However, the desulfurization process did not greatly change the PCDD/Fs homologue profiles. Overall, both the fabric filters and desulfurization systems showed excellent removal efficiencies for PCDD/Fs in the stack gases, which reduced the TEQ emissions to well below the 0.5 ng WHO-TEQ/m3 to achieve standard discharge.
Collapse
Affiliation(s)
- Haifeng Li
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Anxiang Lu
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Cheng Li
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Qingqi Die
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Mu L, Li X, Liu X, Bai H, Peng L, Li Y, Tian M, Zheng L. Characterization and emission factors of carbonaceous aerosols originating from coke production in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115768. [PMID: 33120149 DOI: 10.1016/j.envpol.2020.115768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Coking is a substantial source of carbonaceous aerosols in China, but the emission characteristics and pollution levels of coking-produced organic carbon (OC) and elemental carbon (EC) remain unknown, causing considerable uncertainty in emission estimates. In this study, the emission factors of OC (EFOC) and EC (EFEC) of typical coking plants in Shanxi, China, were measured. The measured EFEC and EFOC from fugitive emissions (7.43 and 9.54 g/t) were significantly higher than those from flue gas (1.67 and 3.71 g/t). The technological conditions of coke production affect the emissions of OC and EC. For example, the total emissions from coke plants that use 3.2-m-high coke ovens were greater than those from plants that use 4.3- and 6-m-high ovens. The EFOC and EFEC for plants conducting stamp charging were considerably higher than those for plants using top charging. The stable carbon isotopes of total carbon (δ13CTC), OC (δ13COC), and EC (δ13CEC) for fly ash during coking were -23.74‰ to -24.17‰, -23.32‰ to -23.87‰, and -23.84‰ to -24.14‰, respectively, and no clear isotopic fractionation was found during coke production. Different EC/OC ratios from different emission pathways and the carbon isotope signature of coke production should be considered when investigating the sources of carbonaceous aerosols. The total estimated EC and OC emissions from coke production in China were 3.93 and 5.72 Gg in 2017, and Shanxi, Hebei, and Shaanxi made the largest contributions.
Collapse
Affiliation(s)
- Ling Mu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuemei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaofeng Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huiling Bai
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lin Peng
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yangyong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mei Tian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lirong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
18
|
Cheng JO, Liu KK, Ko FC. Environmental assessment of persistent organic pollutants in surface sediments of the Danshui River basin, Taipei, Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44165-44176. [PMID: 32757130 DOI: 10.1007/s11356-020-10315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Surface sediments from the Danshui River basin were collected and analyzed for persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dichloro-diphenyl-trichloroethanes (DDTs). The total concentrations of each category ranged from 96 to 3803 ng g-1 for PAHs, 0.02 to 54.9 ng g-1 for PCBs, and from below the detection limit to 10.3 ng g-1 for DDTs. These values are within the ranges observed for river and estuarine sediments of industrial and urbanized areas in Taiwan and worldwide. A decreasing trend of POP levels was observed in comparison with the levels reported in previous studies. Significant correlations between the levels of compounds and black carbon (BC) were found, suggesting that these POPs and BC may have similar transport processes. Based on sediment quality guidelines (SQGs), the ecological risk posed by these POPs toward sediment-dwelling organisms in the Danshui River basin is relatively low. Long-term monitoring of contaminant levels is necessary to develop appropriate management tools due to the importance of the Danshui river basin as a water source for metropolitan areas.
Collapse
Affiliation(s)
- Jing-O Cheng
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan
| | - Kon-Kee Liu
- Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Chung-Li, Taiwan
| | - Fung-Chi Ko
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung, Taiwan.
| |
Collapse
|
19
|
Jabłońska-Czapla M, Zerzucha P, Grygoyć K. Impact of River Water and Bottom Sediment Pollution on Accumulation of Metal(loid)s and Arsenic Species in the Coastal Plants Stuckenia pectinata L., Galium aparine L., and Urtica dioica L.: A Chemometric and Environmental Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:60-79. [PMID: 32285162 PMCID: PMC7297822 DOI: 10.1007/s00244-020-00727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The role of water and bottom sediment pollution of a river subjected to a strong industrial anthropo-pressure in coastal plants was investigated. The work presented the influence of polluted environment on accumulation of metal(loid)s (including arsenic and its species) in Stuckenia pectinata L., Galium aparine L., and Urtica dioica L. The study provided important information on the contents of organic and inorganic arsenic species in selected plants and their response to heavy metal and arsenic contamination. The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid), and DMA (dimethylarsinic acid) ions were successfully separated on the Hamilton PRP-X100 column with high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The Pollution Load Index and geo-accumulation Index (Igeo) values clearly indicate significant pollution of the examined ecosystem with heavy metals. The chemometric analysis with the concepts of (Dis)similarity Analysis, Cluster Analysis, and Principal Component Analysis helped to visualize the variability of the As species concentrations and to analyse correlations between sampling point locations and analyte contents.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland.
| | - Piotr Zerzucha
- Faculty of Philosophy, The Pontifical University of John Paul II, 9 Kanonicza Street, 31-002, Kraków, Poland
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland
| |
Collapse
|
20
|
Waheed S, Khan MU, Sweetman AJ, Jones KC, Moon HB, Malik RN. Exposure of polychlorinated naphthalenes (PCNs) to Pakistani populations via non-dietary sources from neglected e-waste hubs: A problem of high health concern. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113838. [PMID: 32023785 DOI: 10.1016/j.envpol.2019.113838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
To date limited information's are available concerning unintentional productions, screening, profiling, and health risks of polychlorinated naphthalenes (PCNs) in ambient environment and occupational environment. Literature reveals that dust is a neglected environmental matrix never measured for PCNs. To our knowledge, this is the first study to investigate the concentrations and health risks of PCNs in indoor dust, air, and blood of major e-waste recycling hubs in Pakistan. Indoor air (n = 125), dust (n = 250), and serum (n = 250) samples were collected from five major e-waste hubs and their vicinity to measure 39 PCN congeners using GC-ECNI-MS. ∑39PCN concentrations in indoor air, dust, and serum (worker > resident > children) samples ranged from 7.0 to 9583 pg/m3, from 0.25 to 697 ng/g, and from 0.15 to 401 pg/g lipid weight, respectively. Predominant PCN congeners in indoor air and dust were tri- and tetra-CNs, while tetra- and penta-CNs were dominant in human serum samples. The higher PCNs contribution was recorded at the recycling units, while the lower was observed at the shops of the major e-waste hubs. Higher contribution of combustion origin CNs in air, dust and human samples showed combustion sources at the major e-waste hubs, while Halowax and Aroclor based technical mixture showed minor contribution in these samples. Mean toxic equivalent (TEQ) concentrations of PCNs were 2.79E+00 pg-TEQ/m3, 1.60E-02 ng-TEQ/g, 8.11E-01 pg-TEQ/g, 7.14E-01 pg-TEQ/g, and 6.37E-01 pg-TEQ/g for indoor air, dust, and serum samples from workers, residents, and children, respectively. In our study, CNs- 66/67 and -73 in indoor air, dust, and human serum were the great contributors to total TEQ concentrations of PCNs. This first base line data directs government and agencies to implement rules, regulation to avoid negative health outcomes and suggests further awareness in regard of provision of proper knowledge to the target population.
Collapse
Affiliation(s)
- Sidra Waheed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Usman Khan
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Andrew J Sweetman
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
21
|
Xu C, Hu J, Wu J, Wei B, Zhu Z, Yang L, Zhou T, Jin J. Polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in soils in an industrial park in Northwestern China: Levels, source apportionment, and potential human health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109895. [PMID: 31706238 DOI: 10.1016/j.ecoenv.2019.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Seventeen soil samples collected in an industrial park located in Ningxia Province, Northwestern China were analyzed for polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). The PCN, PCDD/F, and PCB concentration ranges were 183-3340, 7.00-215, and 45.1-355 pg/g, respectively. Positive matrix factorization showed that secondary ferrous metal smelters and cement kilns contributed more than 70% of the total PCN concentration. Historical use of Halowax 1051 also affected the PCN concentrations in soil. Principal component analysis indicated that the PCDD/F concentrations in soil in the study area were mainly affected by thermal processes in secondary ferrous metal smelters. CB-209 was an important contributor to total PCBs in the study area, and likely originated from the phthalocyanine-type pigments used in a local recycled paper mill. Samples S10, S1, S17, and S6 had high ∑TEQ (PCDD/Fs + PCNs + PCBs) concentrations, and the carcinogenic risks of PCDD/Fs, PCNs, and PCBs for workers from these samples were 0.487 × 10-6, 0.234 × 10-6, 0.230 × 10-6, and 0.210 × 10-6, respectively. According to our results, the health risks of PCDD/Fs, PCNs, and PCBs for workers in this area should be given more attention.
Collapse
Affiliation(s)
- Chenyang Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| | - Jing Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Baokai Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhenlei Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liwen Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tingting Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China
| |
Collapse
|
22
|
Yang L, Zheng M, Zhao Y, Yang Y, Li C, Liu G. Unintentional persistent organic pollutants in cement kilns co-processing solid wastes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109373. [PMID: 31255869 DOI: 10.1016/j.ecoenv.2019.109373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Co-processing solid waste in cement kilns has become increasingly widespread in recent years. Persistent organic pollutants (POPs) can be unintentionally produced and emitted from cement kilns, especially kilns in which solid waste is co-processed. Unintentionally produced POP formation and emission by cement kilns co-processing solid waste therefore need to be studied in detail to allow the potential risks posed by cement kiln co-processing techniques to be assessed. Many field studies and laboratory simulation experiments have been performed to investigate the formation and release of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). However, the formations, characteristics and emission factors of various emerging unintentionally produced POPs have not been comprehensively reviewed. Here, emissions of well-known unintentionally produced POPs (PCDD/Fs and polychlorinated biphenyls) and emerging unintentionally produced dioxin-like POPs (polybrominated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, and chlorinated and brominated polycyclic aromatic hydrocarbons) in cement kilns co-processing solid waste are reviewed, focusing on formations and influencing factors of those unintentional POPs. Data from field studies indicated that the main stages in which POPs are unintentionally produced in cement kilns co-processing solid waste are the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter. The raw material composition, chlorine and bromine contents, and temperature are the most important factors affecting POP formation. The homolog distributions and congener profiles of POPs formed unintentionally in cement kilns were compared, and it was found that larger amounts of less-chlorinated homologs than more-chlorinated homologs are emitted. Emission factors for various unintentionally produced POPs for cement kilns co-processing solid waste were summarized, and could be useful for compiling global emission inventories for pollutants covered by the Stockholm Convention. This comprehensive review improves our understanding of unintentional production and emissions of POPs by cement kilns co-processing solid waste.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minghui Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Lin SL, Lee KL, Wu JL, Kiprotich Cheruiyot N. Effects of a quenching treatment on PCDD/F reduction in the bottom ash of a lab waste incinerator to save the energy and cost incurred from post-thermal treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:316-324. [PMID: 31351617 DOI: 10.1016/j.wasman.2019.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/27/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Bottom ash (BA) from incineration has been reused as a construction material for years. However, thermal treatments, which incur extra cost and higher energy demand, are essential to reduce/stabilize the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in BA, which can be released from BA during the next startup and cause peak emissions. In this study, the bottom ash from a laboratory waste incinerator (LWI) was collected and quenched at various temperatures during three shutdown operations to determine the results of the gradual cooling process. The PCDD/F content in the BA was quantified using gas chromatography-mass spectrometry. The PCDD/Fs in BA was significantly lower (0.0239 ng WHO-TEQ g-1) after being quenched at >400 °C, which was only 1/300 of that in the sample gradually cooled to <200 °C (6.21 ng WHO-TEQ g-1). The PCDD/PCDF ratios were less than 1 in all of the samples, suggesting that de novo synthesis might be the predominant formation mechanism, and exponential relationships between the PCDD/F growth ratio and quenching temperature were found, with an r2 > 0.97. In other words, careful operation of the cooling process is an important PCDD/F inhibition strategy and effectively reduces the subsequent startup emissions. Interestingly, the extremely low PCDD/F levels in the BA after quenching were found to further save the cost of thermal treatment, reduce electricity use by 500 MWh, and lower fuel consumption by 27 kL of diesel, as well as reducing annual CO2e emissions by 351 tons in an LWI. This finding could be further applied to simultaneously control PCDD/F emissions, save post-treatment costs, and reduce the secondary pollutants in other incinerators.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung 83347, Taiwan, ROC; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan, ROC; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan, ROC.
| | - Kuan-Lin Lee
- Environmental Resource and Management Research Center, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan, ROC
| | - Jhong-Lin Wu
- Environmental Resource and Management Research Center, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan, ROC.
| | - Nicholas Kiprotich Cheruiyot
- Department of Environmental Engineering, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan, ROC
| |
Collapse
|
24
|
Pham MTN, Hoang AQ, Nghiem XT, Tu BM, Dao TN, Vu DN. Residue concentrations and profiles of PCDD/Fs in ash samples from multiple thermal industrial processes in Vietnam: Formation, emission levels, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17719-17730. [PMID: 31030397 DOI: 10.1007/s11356-019-05015-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The residue concentrations and congener profiles of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) were examined in fly ash and bottom ash released from different thermal industrial processes in Vietnam. PCDD/F concentrations and toxic equivalents (TEQs) in the ash samples varied greatly and decreased in the following order: steel making > aluminum recycling > medical waste incinerator > boilers > municipal waste incinerator > tin production > brick production > coal-fired power plant. Both the precursor and de novo synthesis were estimated as possible formation mechanisms of dioxins in the ash, but the latter pathway was more prevalent. The highest emission factors were estimated for the ash released from some steel-making plants, aluminum-recycling facilities, and a medical waste incinerator. The emission factors of PCDD/Fs in ash released from some steel plants of this study were two to six times higher than the UNEP Toolkit default value. The annual emission amount of ash-bound dioxins produced by 15 facilities in our study was estimated to be 26.2 to 28.4 g TEQ year-1, which mainly contributed by 3 steel plants. Health risk related to the dioxin-containing ash was evaluated for workers at the studied facilities, indicating acceptable risk levels for almost all individuals. More comprehensive studies on the occurrence and impacts of dioxins in waste streams from incineration and industrial processes and receiving environments should be conducted, in order to promote effective waste management and health protection scheme for dioxins and related compounds in this rapidly industrializing country.
Collapse
Affiliation(s)
- Mai Thi Ngoc Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam.
| | - Anh Quoc Hoang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam.
- Center of Advanced Technology for the Environment (CATE), The United Graduate School of Agricultural Sciences (UGAS), Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| | - Xuan Truong Nghiem
- Vietnam-Russia Tropical Center, Ministry of National Defence, Nguyen Van Huyen, Cau Giay, Hanoi, Vietnam
| | - Binh Minh Tu
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Thi Nhung Dao
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Duc Nam Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
25
|
Nguyen Thi H, Nguyen Thi Thu T, Pham Hai L, Nguyen Thanh H, Chu Viet H, Chu Thi H, Nghiem Xuan T, Tung NH. Emission of Unintentionally Produced Persistent Organic Pollutants from Some Industrial Processes in Northern Vietnam. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:287-296. [PMID: 30547219 DOI: 10.1007/s00128-018-2519-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Concentrations of PCDD/Fs, dioxin-like PCBs (dl-PCBs), PeCB and HCB were determined in flue gas, fly ash and bottom ash samples collected from brick production, steel production, and zinc production plants, an industrial waste incinerator and a medical waste incinerator in northern Vietnam to understand the contamination levels, accumulation patterns and extent of emission. Total TEQs concentrations of PCDD/Fs and dl-PCBs in flue gas and ash samples from these industrial plants ranged from 0.304 to 50.55 pg/Nm3 and 1.43 to 440 pg/g, respectively. PeCB and HCB residues in flue gas samples ranged from 0.839 to 46.59 ng/Nm3 and 1.16 to 60.5 ng/Nm3, respectively. The emission factors of 4.8-740 ngTEQs/tonne for PCDD/Fs and dl-PCBs, 67.12-240.7 µg/ton for PeCB and 11.64-889.3 µg/ton for HCB were obtained in flue gas samples. This is among the first reports on the emission factor of PCDD/Fs, dl-PCBs, PeCB, HCB in brick production, zinc production and waste incineration in Vietnam.
Collapse
Affiliation(s)
- Hue Nguyen Thi
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
- University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Thuy Nguyen Thi Thu
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen, Vietnam
| | - Long Pham Hai
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Hai Nguyen Thanh
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Hai Chu Viet
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Hue Chu Thi
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong Street, Hanoi, Vietnam
| | - Truong Nghiem Xuan
- Vietnam - Russia Tropical Center, Ministry of Defense, Nguyen Van Huyen Street, Hanoi, Vietnam
| | - Nguyen Hoang Tung
- Vietnam Academy of Science and Technology, Institute of Environmental Technology and Graduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| |
Collapse
|
26
|
Nguyen HT, Nguyen TTT, Tung NH, Hoang AQ, Pham LH, Minh TB. Levels, profiles, and emission characteristics of chlorobenzenes in ash samples from some industrial thermal facilities in northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:188-198. [PMID: 30387061 DOI: 10.1007/s11356-018-3591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Chlorobenzenes (CBzs) are unintentionally produced organic contaminants from different thermal industrial processes, which have been scarcely surveyed in Asian developing countries including Vietnam. In this study, residue concentrations, profiles, emission factors, and annual emissions of seven chlorobenzene compounds were investigated in fly ash and bottom ash samples of some industrial facilities including brick making plant, steel and zinc production plants, and industrial and municipal waste incinerators in northern Vietnam. Total concentrations of seven CBzs in the ash samples were generally decreased in the order: industrial waste incinerator > municipal waste incinerator > steel-making plant > brick making plant. Emission pattern of CBzs varied considerably among different industrial plants, with 1,2- and 1,3-dichloro-, 1,2,3,4-tetrachloro-, and hexachlorobenzene as predominant compounds in the industrial waste incinerators and steel-making plants. Emission factors of CBzs estimated for the fly ash and bottom ash samples were in the range of 118-2020 and 5.3-22,600 μg ton-1, respectively. Average annual emissions (AEs) of total seven CBzs estimated for fly ash and bottom ash in the investigated plants were in the range of 154-54,300 and 20,160-161,400 mg year-1, respectively. The AEs of CBzs estimated for fly ash in the steel-making plant were higher than those in the waste incinerators. Meanwhile, CBz emissions for bottom ash were the highest in the steel-making plant, followed by the industrial and municipal waste incinerators. This is among the first studies on the emission characteristics of both low and highly chlorinated benzenes from industrial activities in Vietnam.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
- University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Thu Thuy Thi Nguyen
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, Vietnam
| | - Nguyen Hoang Tung
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Long Hai Pham
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
27
|
Jin R, Yang L, Zheng M, Xu Y, Li C, Liu G. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1346-1352. [PMID: 30125845 DOI: 10.1016/j.envpol.2018.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are widespread persistent organic pollutants (POPs) in environments. Identifying the new sources of Cl/Br-PAHs is important for implementing source control and reducing environmental risk. Although co-processing of solid wastes by cement kilns increased recently, the occurrences and characteristics of Cl/Br-PAHs as emerging POPs during cement kiln co-processing solid wastes have not been investigated. This study firstly investigated the occurrences, characteristics, and variations of Cl/Br-PAHs from four cement kilns co-processing different solid wastes. The concentration ranges of Cl-PAHs and Br-PAHs in stack gas samples from the investigated cement kilns were 15.6-94.1 ng m-3 and 1.04-4.28 ng m-3, respectively. Emission factors of Cl-PAHs and Br-PAHs through stack gases were 29.9-275 μg t-1 and 3.0-8.3 μg t-1, respectively. Variations of Cl/Br-PAHs in particle samples collected from different process stages within the cement kiln system indicated that the kiln end was the major formation zone for Cl/Br-PAHs. Congener profiles of Cl/Br-PAHs varied with the co-processed solid waste types, indicating the important influence of raw material compositions. Calculations of net emissions of Cl/Br-PAHs within the cement kiln systems suggested efficient destruction (87.6%-98.8%) of Cl/Br-PAHs by the cement kilns.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, PR China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Ren Z, Lu Y, Li Q, Sun Y, Wu C, Ding Q. Occurrence and characteristics of PCDD/Fs formed from Chlorobenzenes production in China. CHEMOSPHERE 2018; 205:267-274. [PMID: 29702346 DOI: 10.1016/j.chemosphere.2018.04.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
China had a large production capacity of chlorobenzenes. An extensive investigation was conducted to understand the occurrence and characteristics of PCDD/Fs from four chlorobenzene production plants. The concentrations of PCDD/Fs in mono-CB production and in a new di-CB production routine were revealed. Concentrations of PCDD/Fs in residues, byproducts, products and wastewater varied between 8.4*103-4.0*106 ng TEQ/kg, 1.5-5.0*104 ng TEQ/kg, ND∼0.12 ng TEQ/kg and 6.0*104-9.1*104 pg TEQ/L, respectively. OCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, and 2,3,7,8-TeCDF were the most abundant congeners of the 17 2,3,7,8-substituted PCDD/Fs. In most samples, PCDFs contributed more than 99% of the total TEQs of PCDD/Fs, in which 2,3,4,7,8-PeCDF was the dominating contributor. It is inferred PCDFs were mainly formed in the chlorination reactions. The emission factors were suggested and the amount of PCDD/Fs formed in CB production was estimated to be 450 g TEQ in 2012. Residue, byproduct and wastewater were potentially the main pathways of PCDD/Fs to the environmental releases.
Collapse
Affiliation(s)
- Zhiyuan Ren
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing, PR China.
| | - Yong Lu
- CSD IDEA (Beijing) Environmental Test & Analysis Co. Ltd., Beijing, PR China
| | - Qiushuang Li
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing, PR China
| | - Yangzhao Sun
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing, PR China
| | - Changmin Wu
- CSD IDEA (Beijing) Environmental Test & Analysis Co. Ltd., Beijing, PR China
| | - Qiong Ding
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing, PR China
| |
Collapse
|
29
|
Zhang H, Jiang L, Zhou X, Zeng T, He Z, Huang X, Chen J, Song S. Determination of hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in waste incineration fly ash using ultrasonic extraction followed by column cleanup and GC-MS analysis. Anal Bioanal Chem 2018; 410:1893-1902. [DOI: 10.1007/s00216-018-0849-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
|
30
|
An assessment of different extraction and quantification methods of penta- and hexa-chlorobenzene from SRF fly-ash. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ancr.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Zhao Y, Zhan J, Liu G, Ren Z, Zheng M, Jin R, Yang L, Wang M, Jiang X, Zhang X. Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:337-344. [PMID: 27998676 DOI: 10.1016/j.wasman.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
A field study and theoretical calculations on the profile and formation mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from two cement kilns co-incinerating municipal solid waste and sewage sludge were performed, and the PCDFs were mainly focused. The back-end areas of the cement kilns were identified to be the major sites of PCDD/F formation according to their distributions in particulate samples from different process stages. The proportions of tetra- to hexa-chlorinated dibenzofurans (∑Cl4-6CDFs) at the kiln back-end areas were in the range of 50-80% of the total PCDD/Fs in mass concentrations and 62-87% in toxic equivalent concentrations. These results indicated that ∑Cl4-6CDFs are the dominant homologs that should be the focus for reducing PCDD/F emissions in cement kilns that co-incinerate municipal solid waste and sewage sludge. It is speculated that the low contents of oxygen and copper compounds, as well as the alkaline conditions, may contribute to the dominance of ∑Cl4-6CDFs in the PCDD/Fs formed. Chlorination was assumed to be the mechanism of formation of PCDFs. The results from model predictions and thermodynamic calculations used to test this assumption were consistent with the PCDF profiles observed from the field study.
Collapse
Affiliation(s)
- Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiyuan Ren
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Congener specific determination of polychlorinated naphthalenes in sediment and biota by gas chromatography high resolution mass spectrometry. J Chromatogr A 2017; 1479:169-176. [DOI: 10.1016/j.chroma.2016.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
|
33
|
Liu G, Yang L, Zhan J, Zheng M, Li L, Jin R, Zhao Y, Wang M. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 58:280-286. [PMID: 27637942 DOI: 10.1016/j.wasman.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑3-10PCB) concentration in the stack gas samples was 10.15ngm-3. The ∑3-10PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg-1 for cement kiln 1and0.13-1.69ngg-1 for cement kiln 2. The ∑3-10PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Jin R, Zhan J, Liu G, Zhao Y, Zheng M. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste. JOURNAL OF HAZARDOUS MATERIALS 2016; 315:117-125. [PMID: 27187059 DOI: 10.1016/j.jhazmat.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Liu G, Zhan J, Zhao Y, Li L, Jiang X, Fu J, Li C, Zheng M. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash. CHEMOSPHERE 2016; 155:348-357. [PMID: 27135696 DOI: 10.1016/j.chemosphere.2016.04.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Li Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Chunping Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
36
|
Wang M, Liu W, Hou M, Li Q, Han Y, Liu G, Li H, Liao X, Chen X, Zheng M. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant. Sci Rep 2016; 6:26444. [PMID: 27197591 PMCID: PMC4873742 DOI: 10.1038/srep26444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888-153672 pg m(-3) and 11988-42245 pg m(-3),respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600-29720 pg g(-1)) and fly ash samples (4946-64172 pg g(-1)). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples.
Collapse
Affiliation(s)
- Mengjing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qianqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Haifeng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiao Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuebin Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
37
|
Wang M, Liu W, Hou M, Li Q, Han Y, Li H, Yan N, Zheng M. Mono- to Octachlorinated Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Emissions from Sintering Plants Synergistically Controlled by the Desulfurization Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5207-5215. [PMID: 27124088 DOI: 10.1021/acs.est.5b06095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of desulfurization systems in sintering plants on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) concentrations, profiles, and emission factors was studied. Mono- to tri-CDD/Fs and tetra- to octa-CDD/F concentrations were 4.4 ± 2.3 and 10.5 ± 8.3 ng m(-3), respectively, at the inlets and 0.87 ± 0.48 and 0.47 ± 0.22 ng m(-3), respectively, after desulfurization. The toxic equivalents (TEQs) were 0.95 ± 0.093 and 0.51 ± 0.040 ng of I-TEQ m(-3) at the inlets and after desulfurization, respectively. The congener profiles and homologue distributions were dominated by 2-MoCDF and MoCDF, respectively. The PCDD/F removal efficiencies achieved by desulfurization increased as the chlorination level increased. The PCDD/Fs became adsorbed to gypsum. Annual mono- to tri-CDD/Fs PCDD/F and TEQ (tetra- to octa-CDD/F) emission factors for flue gas and gypsum between 2003 and 2012 were determined. The total amounts of mono- to tri-CDD/Fs emitted in flue gas and gypsum between 2003 and 2012 were 10.7 and 10.2 kg, respectively. The total TEQs emitted in flue gas and gypsum between 2003 and 2012 were estimated to be 15486 and 1878 g of I-TEQ, respectively. PCDD/Fs adsorbed to gypsum are not effectively eliminated. The PCDD/F concentrations increased as the fly ash surface area increased moving through the electrostatic precipitator stages.
Collapse
Affiliation(s)
- Mengjing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- School of Ecological Technology and Engineering, Shanghai Institute of Technology , Shanghai 201418, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology , Shanghai 201418, China
| | - Qianqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ying Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Haifeng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Nan Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
38
|
Zhang X, Zheng M, Liu G, Zhu Q, Dong S, Zhang H, Wang X, Xiao K, Gao L, Liu W. A comparison of the levels and particle size distribution of lower chlorinated dioxin/furans (mono- to tri-chlorinated homologues) with those of tetra- to octa-chlorinated homologues in atmospheric samples. CHEMOSPHERE 2016; 151:55-8. [PMID: 26923242 DOI: 10.1016/j.chemosphere.2016.02.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 05/06/2023]
Abstract
There is very little information on the levels and particle size distributions of lower chlorinated dibenzo-p-dioxins and dibenzofurans (mono- to tri-CDD/Fs, ΣCl1-3DD/Fs) in the atmosphere, while a number of studies have examined tetra- to octa-chlorinated homologues (ΣCl4-8DD/Fs). In this study, we measured the concentration and particle size distribution of ΣCl1-3DD/Fs in ambient air in suburban Beijing and compared them with that of ΣCl4-8DD/Fs for the first time. The mean concentration of ΣCl1-3DD/Fs was 54.63 pg m(-3), which is about 5.4 times that of ΣCl4-8DD/Fs. The ΣCl1-3DD/Fs accounted for 85% of ΣCl1-8DD/Fs, and MoCDFs made up the largest proportion (43%) of PCDD/F homologues. The ΣCl1-3DD/Fs mainly occurred in the gas phase, while the ΣCl4-8DD/Fs mainly occurred in the particulate phase. The majority of ΣCl1-3DD/Fs (70%) occurred in dae > 1.0 μm particles, which is the reverse of the trend observed for ΣCl4-8DD/Fs, of which 78% occurred in dae < 1.0 μm particles. The observed high concentrations of ΣCl1-3DD/Fs and different distribution patterns demonstrate that it is necessary to consider the lower chlorinated homologues to improve our understanding of the environmental behavior and health risk assessments of PCDD/Fs in the atmosphere.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shujun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongxing Zhang
- Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoke Wang
- Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
39
|
Nguyen TH, Nguyen TTT, Nguyen HT. Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: residue concentrations, profiles and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:399-411. [PMID: 26049895 DOI: 10.1007/s10653-015-9726-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated benzenes (PCBzs) including penta- and hexachlorobenzene can be unintentionally formed from thermal processes in different industrial activities, and very little information is available on the contamination and emission characteristics of these new persistent organic pollutants from industries in Vietnam. In this study, contamination of PCBzs (including penta- and hexachlorobenzene, named PeCBz and HCB, respectively) and PCBs (including CB-28, 52, 101, 153, 138, 180) in fly ash, bottom ash and soil from combustion processes of waste incineration, metallurgy (steel making and zinc production) and cement production from several provinces in the Northern Vietnam, including Hai Duong, Hanoi, Bac Ninh, Hai Phong and Thai Nguyen, was preliminary investigated. The PCBzs concentrations in fly ash, bottom ash and soil ranged from 2.7 to 100 ng g(-1), from 2.7 to 159 ng g(-1) and from 0.28 to 33.9 ng g(-1), respectively. Relatively high residues of PeCBz in fly ash and bottom ash from municipal waste incinerators in some provinces from the Northern Vietnam were encountered. Total PCBs concentrations ranged from 18.0 to 8260 ng g(-1), from 1.0 to 10600 ng g(-1) and from 14.5 to 130 ng g(-1) for the fly ash, bottom ash and soil, respectively. Daily intakes of PeCBz, HCB and PCBs through soil ingestion and dermal exposure estimated for children ranged 0.33-9.93 (mean 3.14), 0.39-21.1 (mean 4.9) and 6.09-1530 ng/kg bw/day (mean 346), respectively; and these intakes were about 4.7-5.4 times higher than those estimated for adult. The intakes of PeCBz and HCB were relatively low, while those for PCBs exceeded WHO TDI for some samples.
Collapse
Affiliation(s)
- Thi Hue Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam.
| | - Thi Thu Thuy Nguyen
- Faculty of Chemistry, Thai Nguyen University of Science, Tan Thinh Ward, Thai Nguyen, Vietnam
| | - Hoang Tung Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
40
|
Liu G, Zhan J, Zheng M, Li L, Li C, Jiang X, Wang M, Zhao Y, Jin R. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:471-478. [PMID: 26241773 DOI: 10.1016/j.jhazmat.2015.07.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Li Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Chunping Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
41
|
Rachwał M, Magiera T, Wawer M. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. CHEMOSPHERE 2015; 138:863-73. [PMID: 25576132 DOI: 10.1016/j.chemosphere.2014.11.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/20/2023]
Abstract
Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution.
Collapse
Affiliation(s)
- Marzena Rachwał
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 Sklodowska-Curie Str., 41-819 Zabrze, Poland.
| | - Tadeusz Magiera
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 Sklodowska-Curie Str., 41-819 Zabrze, Poland.
| | - Małgorzata Wawer
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 Sklodowska-Curie Str., 41-819 Zabrze, Poland.
| |
Collapse
|
42
|
Liu G, Jiang X, Wang M, Dong S, Zheng M. Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. CHEMOSPHERE 2015; 133:68-74. [PMID: 25929759 DOI: 10.1016/j.chemosphere.2015.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/29/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
A comprehensive comparison of the levels and profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in fly ash samples from multiple industrial sources may help to prioritize sources and to understand discrepancies in profiles. In this study, PCDD/F data from 113 fly ash samples from 14 sources reported in previous studies were summarized and compared. The highest PCDD/F levels occurred in samples from secondary copper smelting (SCu). Although PCDD/F levels from secondary zinc smelting (SZn) were slightly lower than those of SCu, the PCDD/F profiles varied widely between the two sources. For SCu, more chlorinated homologs were dominant, with highest degrees of chlorination being 6.6 for PCDF and 7.2 for PCDD. For SZn, less chlorinated homologs were dominant, with lowest degrees of chlorination being 4.4 for PCDF and 4.8 for PCDD. We speculate that copper and zinc might promote PCDD/F formation by catalyzing different pathways of thermal reactions. Diagnostic ratios of specific PCDD/F congeners for different sources were suggested to identify potential sources of PCDD/Fs in the environment. Equations describing correlations between congeners and PCDD/F toxic equivalents were established, which may be useful for rapid and inexpensive screening of the toxic levels of PCDD/Fs in fly ash samples.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Shujun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| |
Collapse
|
43
|
Liu G, Lv P, Jiang X, Nie Z, Liu W, Zheng M. Identification and preliminary evaluation of polychlorinated naphthalene emissions from hot dip galvanizing plants. CHEMOSPHERE 2015; 118:112-116. [PMID: 25083943 DOI: 10.1016/j.chemosphere.2014.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Hot dip galvanizing (HDG) processes are sources of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs). Close correlations have been found between the concentration of PCDD/Fs and polychlorinated naphthalenes (PCNs) that are produced and released during industrial thermal processes. We speculated, therefore, that HDG plants are potential PCN sources. In this preliminary study, PCNs were analyzed in solid residues, ash and precipitate from three HDG plants of different sizes. The total PCN concentrations (∑2-8PCNs) in the residue samples ranged from 60.3 to 226pgg(-1). The PCN emission factors for the combined ash and precipitate residues from the HDG plants ranged from 75 to 178ngt(-1) for the dichlorinated and octachlorinated naphthalenes. The preliminary results suggested that the HDG industry might not currently be a significant source of PCN emissions. The trichloronaphthalenes were the dominant homologs followed by the dichloronaphthalenes and the tetrachloronaphthalenes. The PCN congeners CN37/33/34, CN52/60, CN66/67, and CN73 dominated the tetrachlorinated, pentachlorinated, hexachlorinated, and heptachlorinated naphthalene homologs, respectively. The PCNs emitted from the HDG plants had similar homolog distributions and congener profiles to the PCNs emitted from combustion plants and other metallurgical processes. The identification and preliminary evaluation of PCN emissions from HDG plants presented here will help in the prioritization of measures for controlling PCN emissions from industrial sources.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Pu Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Beijing China Sciences General Energy & Environment Co., Ltd., Beijing 100036, China
| | - Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Zhiqiang Nie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| |
Collapse
|
44
|
Halse AK, Schlabach M, Schuster JK, Jones KC, Steinnes E, Breivik K. Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:21-8. [PMID: 25285612 DOI: 10.1016/j.envpol.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/22/2023]
Abstract
Soils are major reservoirs for many persistent organic pollutants (POPs). In this study, "newly" regulated POPs i.e. Σendosulfans (α-endosulfan, β-endosulfan, endosulfan sulfate), pentachlorobenzene (PeCB), and short-chain chlorinated paraffins (SCCPs) were determined in background samples from woodland (WL) and grassland (GL) surface soil, collected along an existing latitudinal UK-Norway transect. Statistical analysis, complemented with plots showing the predicted equilibrium distribution and mobility potential, was then explored to discuss factors controlling their spatial distribution. SCCPs were detected with the highest average concentrations (35 ± 100 ng/g soil organic matter (SOM)), followed by Σendosulfans (3 ± 3 ng/g SOM) and PeCB (1 ± 1 ng/g SOM). PeCB and Σendosulfans share many similarities in their distribution in these background soils as well as with several legacy POPs. A steep decline in concentrations of SCCPs with increasing latitude indicates that their occurrence is dictated by proximity to source regions, while concentrations of Σendosulfans peaked in regions experiencing elevated precipitation rates.
Collapse
Affiliation(s)
- Anne Karine Halse
- NILU - Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway; Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Martin Schlabach
- NILU - Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway
| | - Jasmin K Schuster
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Eiliv Steinnes
- Norwegian University of Science and Technology, Department of Chemistry, NO-7491 Trondheim, Norway
| | - Knut Breivik
- NILU - Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway; University of Oslo, Department of Chemistry, Box 1033, NO-0315 Oslo, Norway
| |
Collapse
|
45
|
Liu G, Lv P, Jiang X, Nie Z, Zheng M. Identifying iron foundries as a new source of unintentional polychlorinated naphthalenes and characterizing their emission profiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13165-13172. [PMID: 25313855 DOI: 10.1021/es503161v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Iron foundries have been identified as dioxin sources in previous field investigations. Similar formation mechanisms between dioxins and unintentional polychlorinated naphthalenes (PCNs) have led us to speculate that iron foundries are also potential PCN sources. In this study, PCNs in stack gas and fly ash samples representing atmospheric and residue emissions from 13 typical iron foundry plants were analyzed. The average emission factor of ∑(2-8)PCNs to residue was calculated to be 61 μg t(-1), with a range of 10-107 μg t(-1). The emission factors of ∑(2-8)PCNs to air in two case plants were 267 and 1472 μg t(-1). The derived emission factors might be useful for estimating annual emissions and understanding the contribution of PCNs from iron foundries. The possible formation mechanisms of PCNs, based on the PCN profiles, are discussed. Successive reductions in the abundance of homologues were observed to occur with the increase in chlorine substituted numbers. Abundances of congeners containing more β-position chlorines in the naphthalene skeleton were much higher than those of congeners containing more α-position chlorines for penta-, hexa-, and hepta- homologues, which suggests that the β-positions are favored for chlorination. Potential chlorination pathways from tetra- to octa- homologues are proposed.
Collapse
Affiliation(s)
- Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | | | | | | | | |
Collapse
|