1
|
Elyousfi S, Ishak S, Beyrem H, Al-Hoshani N, Abd-Elkader OH, Pacioglu O, Badraoui R, Ali MAM, Hedfi A, Boufahja F, Dellali M. Experimental exposure of bivalves (Ruditapes decussatus) and meiobenthos (Metoncholaimus pristiurus) to 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) assessed by biochemical, computational modeling, and microbial tools. MARINE POLLUTION BULLETIN 2024; 209:117191. [PMID: 39486207 DOI: 10.1016/j.marpolbul.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
PBDE-47, with lipophilic properties, was found in mussels, clams, and fish where it causes developmental issues, and endocrine and immune disruptions. The current study investigated the effects of PBDE-47 (0.1, 1, and 10 μg.l-1) on the clams Ruditapes decussatus and the nematode Metoncholaimus pristiurus. This flame retardant reduced CAT and GST activities in R. decussatus after only 2 days. The AChE activity was similar after 2 days but decreased after 7 days in the digestive gland. In gills, a decrease in AChE activities was observed for both time slots. The clearance rates increased following exposure for 2 days but decreased after one week. The exposure of M. pristiurus to PBDE-47 was accompanied by an increase in CAT and GST activities and a decrease in that of AChE. The microbial descriptors supported the obtained results for this nematode. Finally, the computational analyses supported the ecotoxicity of PBDE-47 for both invertebrate species.
Collapse
Affiliation(s)
- Souhail Elyousfi
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Hamouda Beyrem
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Omar H Abd-Elkader
- Physics & Astronomy Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Department of Bioinformatics, Splaiul Independenței 296, 060031 Bucharest, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Mohamed A M Ali
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mohamed Dellali
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| |
Collapse
|
2
|
Sedrati F, Bouzahouane H, Khaldi F, Menaa M, Bouarroudj T, Gzara L, Zaidi H, Bensalem M, Laouar O, Sleimi N, Nasri H, Ouali K. In vivo assessment of oxidative stress, neurotoxicity and histological alterations induction in the marine gastropod Stramonita haemastoma exposed to Cr 2O 3 and Al 2O 3 nanoparticles. CHEMOSPHERE 2024; 366:143434. [PMID: 39357654 DOI: 10.1016/j.chemosphere.2024.143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The increased use of nanoparticles (NPs) is expected to raise their presence in the marine ecosystem, which is considered as the final destination of released NPs. This study investigated the toxicity of Cr2O3 (42 nm) and Al2O3 (38 nm) NPs (1, 2.5, and 5 mg/L) on the digestive glands of Stramonita haemastoma for 7, 14, and 28 days by oxidative stress biomarkers, neurotoxicity indicator assessment, and histological study. Results revealed an imbalance in antioxidants at all periods. Following 7 days, both NPs caused GSH depletion with marked impacts from Al2O3. GPx, CAT, and AChE were also decreased with the highest changes induced by Cr2O3. Both NPs inducted GSH and GST levels on days 14 and 28, with more effects from Cr2O3 exposure. GPx, AChE, and MDA induction were observed on day 28, while MT varied through NPs and time, with imbalanced levels at all periods noticed, SOD was mostly not affected. Histology revealed alterations including necrosis and interstitial deteriorations; quantitative analysis through the histological condition index revealed dose-dependent impacts, with the highest values attributed to Cr2O3 exposure. While PCA revealed the co-response of GSH, GST, GPx, CAT, and AchE with separated MT responses. This study reported oxidative stress induction through a multi-biomarkers investigation, neurotoxicity, and histological damages in the digestive gland of S. haemastoma following Cr2O3 and Al2O3 NPs exposure.
Collapse
Affiliation(s)
- Fateh Sedrati
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria
| | - Hana Bouzahouane
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria; Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria.
| | - Fadila Khaldi
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria; Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Mohcen Menaa
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Tayeb Bouarroudj
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC), Industrial Zone, PO-Box 384 Bousmail, Tipaza, Algeria
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box: 80200, Jeddah, 21589, Saudi Arabia
| | - Hadjer Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Mounira Bensalem
- University August 20, 1955, Skikda, Bp26 El Hadaik Skikda, Algeria
| | - Omar Laouar
- Central Laboratory of Pathology and Molecular biology, CHU, Annaba, Algeria; Faculty of Medicine, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| | - Noomene Sleimi
- RME-Laboratory of Resources, Materials, and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, 7021, Tunisia
| | - Hichem Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| |
Collapse
|
3
|
Ishak S, Allouche M, Alotaibi GS, Alwthery NS, Al-Subaie RA, Al-Hoshani N, Plavan OA, Selamoglu Z, Özdemir S, Plavan G, Badraoui R, Rudayni HA, Boufahja F. Experimental and computational assessment of Antiparkinson Medication effects on meiofauna: Case study of Benserazide and Trihexyphenidyl. MARINE POLLUTION BULLETIN 2024; 205:116668. [PMID: 38972217 DOI: 10.1016/j.marpolbul.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Two concentrations (6.25 and 1.25 mg/L) were used for two Parkinson's disease medications, Benserazide, and Trihexyphenidyl, to test their effects on the meiobenthic nematofauna. It is predicted that these highly hydrosoluble drugs will end up in marine environments. The results showed that both medications when added alone, induced (i) important changes in the numbers and (ii) taxonomic composition. The impact of Benserazide and Trihexyphenidyl was also reflected in the (iii) functional traits of nematofauna, with the most affected categories following exposure being the trophic group 1B, the clavate tails, the circular amphids, the c-p2 life history, and the body length of 1-2 mm. These results were supported by the molecular interactions of the studied drugs with both GLD-3 and SDP proteins of Caenorhabditis elegans. (iv) The mixtures of both drugs did not show any changes in the nematode communities, suggesting that no synergistic or antagonistic interactions exist between them.
Collapse
Affiliation(s)
- Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Mohamed Allouche
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia; Biology Department, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, BP: 382, Tunisia
| | - Ghadah S Alotaibi
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nada S Alwthery
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Raghad A Al-Subaie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Oana-Alexandra Plavan
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Sadin Özdemir
- Food Processing Programme Technical Science Vocational School Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Bvd. Carol I, No. 20A, 700505, Iasi, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
4
|
Saad M, Selim N, El-Samad LM. A novel treatment approach using vitamin B12-conjugated sericin for mitigating nanodiamond-induced toxicity in darkling beetles. INSECT SCIENCE 2024. [PMID: 39014530 DOI: 10.1111/1744-7917.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
The escalating use of nanodiamonds (NDs) has raised concerns about their ecotoxicological impact, prompting exploration of therapeutic interventions. This paper pioneers the examination of Vitamin B12-conjugated sericin (VB12-SER) as a potential therapeutic approach against ND-induced toxicity in darkling beetles (Blaps polychresta). The study analyzes mortality rates and organ-specific effects, covering the testis, ovary, and midgut, before and after treatments. Following exposure to 10 mg NDs/g body weight, within a subgroup of individuals termed ND2 with a mortality rate below 50%, two therapeutic treatments were administered, including pure sericin (SER) at 10 mg/mL and VB12-SER at 10.12 mg/mL. Consequently, five experimental groups (control, SER, ND2, ND2+SER, ND2+SER+VB12) were considered. Kaplan-Meier survival analysis was performed to assess the lifespan distribution of the insects in these groups over a 30-d period. Analyses revealed increased mortality and significant abnormalities induced by NDs within the examined organs, including cell death, DNA damage, enzyme dysregulation, antioxidant imbalances, protein depletion, lipid peroxidation, and morphological deformities. In contrast, the proposed treatments, especially (ND2+SER+VB12), demonstrated remarkable recovery, highlighting VB12-conjugated SER's potential in mitigating ND-triggered adverse effects. Molecular docking simulations affirmed binding stability and favorable interactions of the VB12-SER complex with target proteins. This research enhances understanding of NDs' effects on B. polychresta, proposing it as an effective bioindicator, and introduces VB12-conjugated SER as a promising therapeutic strategy in nanotoxicological studies.
Collapse
Affiliation(s)
- Marwa Saad
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| | - Nabila Selim
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| | - Lamia M El-Samad
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| |
Collapse
|
5
|
Saad M, Selim N, El-Samad LM. Comprehensive toxicity assessment of nanodiamond on Blaps polychresta: implications and novel findings. INSECT SCIENCE 2024. [PMID: 38531693 DOI: 10.1111/1744-7917.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
With the increasing development of nanomaterials, the use of nanodiamonds (NDs) has been broadly manifested in many applications. However, their high penetration into the ecosystem indubitably poses remarkable toxicological risks. This paper investigates the toxic effects of NDs on the darkling beetle, Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Survival analysis was carried out by monitoring the beetles for 30 d after the injection of four different doses of NDs. A dose of 10.0 mg NDs/g body weight, causing less than 50% mortality effect, was assigned in the analysis of the different organs of studied beetles, including testis, ovary, and midgut. Structural and ultrastructural analyses were followed using light, TEM, and SEM microscopes. In addition, a variety of stress markers and enzyme activities were assessed using spectrophotometric methods. Furthermore, cell viability and DNA damage were evaluated using cytometry and comet assay, respectively. Compared to the control group, the NDs-treated group was exposed to various abnormalities within all the studied organs as follows. Significant disturbances in enzyme activities were accompanied by an apparent dysregulation in the antioxidant system. The flow cytometry results indicated a substantial decrease of viable cells along with a rise of apoptotic and necrotic cells. The comet assay demonstrated a highly increased level of DNA damage. Likewise, histological analyses accentuated the same findings showing remarkable deformities in the studied organs. Prominently, the research findings substantially contribute for the first time to evaluating the critical effects of NDs on B. polychresta, adopted as the bioindicator in this paper.
Collapse
Affiliation(s)
- Marwa Saad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Nabila Selim
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Li F, Xie Y, Yang C, Ye Q, Wang F, Liao Y, Mkuye R, Deng Y. The physiological responses to titanium dioxide nanoparticles exposure in pearl oysters (Pinctada fucata martensii). MARINE ENVIRONMENTAL RESEARCH 2024; 195:106345. [PMID: 38224626 DOI: 10.1016/j.marenvres.2024.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
To evaluate the physiological responses to titanium dioxide nanoparticles exposure in pearl oysters (Pinctada fucata martensii), pearl oysters were exposed for 14 days to different levels (0.05, 0.5, and 5 mg/L) of nano-TiO2 suspensions, while a control group did not undergo any nano-TiO2 treatment. And then recovery experiments were performed for 7 days without nano-TiO2 exposure. At days 1, 3, 7, 14, 17, and 21, hepatopancreatic tissue samples were collected and used to examine the activities of protease, amylase, lipase, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), lysozyme (LYS), alkaline phosphatase (AKP), and acid phosphatase (ACP). The microstructure of the nacreous layer in shell was also analyzed by scanning electron microscopy. Results showed that pearl oysters exposed to 5 mg/L of TiO2 nanoparticles had significantly lower protease, amylase, and lipase activities and significantly higher CAT, SOD, GPx, LYS, ACP, and AKP activities than control pearl oysters did even after 7-day recovery (P-values <0.05). Pearl oysters exposed to 0.5 mg/L or 0.05 mg/L of TiO2 nanoparticles had lower protease, amylase, and lipase activities and higher CAT, SOD, GPx, LYS, ACP, and AKP activities than control pearl oysters did during the exposure period. After 7-day recovery, no significant differences in protease, lipase, SOD, GPx, CAT, ACP, AKP, or LYS activities were observed between pearl oysters exposed to 0.05 mg/L of TiO2 nanoparticles and control pearl oysters (P-values >0.05). In the period from day 7 to day 14, indistinct and irregular nacreous layer crystal structure in shell was observed. This study demonstrates that TiO2 nanoparticles exposure influences the levels of digestion, immune function, oxidative stress, and biomineralization in pearl oysters, which can be partially and weakly alleviated by short-term recovery. These findings contribute to understanding the mechanisms of action of TiO2 nanoparticles in bivalves. However, studies should evaluate whether a longer recovery period can restore to their normal levels in the future.
Collapse
Affiliation(s)
- Fengfeng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yufen Xie
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Qingxia Ye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Feiyu Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
7
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Cid-Samamed A, Correa-Duarte MÁ, Mariño-López A, Diniz MS. Exposure to Oxidized Multi-Walled CNTs Can Lead to Oxidative Stress in the Asian Freshwater Clam Corbicula fluminea (Müller, 1774). Int J Mol Sci 2023; 24:16122. [PMID: 38003314 PMCID: PMC10671163 DOI: 10.3390/ijms242216122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood. In this research work, the toxicity of oxidized multi-walled carbon nanotubes (Ox-MWCNTs) was measured using the freshwater bivalve (Corbicula fluminea) after exposure to different concentrations (0, 0.1, 0.2, and 0.5 mg·L-1 Ox-MWCNTs) for 14 days. The oxidized multi-walled carbon nanotubes were analyzed (pH, Raman microscopy, high-resolution electron microscopy, and dynamic light scattering), showing their properties and behavior (size, aggregation state, and structure) in water media. The antioxidant defenses in the organism's digestive gland and gills were evaluated through measuring oxidative stress enzymes (glutathione-S-transferase, catalase, and superoxide dismutase), lipid peroxidation, and total ubiquitin. The results showed a concentration-dependent response of antioxidant enzymes (CAT and GST) in both tissues (gills and digestive glands) for all exposure periods in bivalves exposed to the different concentrations of oxidized multi-walled carbon nanotubes. Lipid peroxidation (MDA content) showed a variable response with the increase in oxidized multi-walled carbon nanotubes in the gills after 7 and 14 exposure days. Overall, after 14 days, there was an increase in total Ub compared to controls. Overall, the oxidative stress observed after the exposure of Corbicula fluminea to oxidized multi-walled carbon nanotubes indicates that the discharge of these nanomaterials into aquatic ecosystems can affect the biota as well as potentially accumulate in the trophic chain, and may even put human health at risk if they ingest contaminated animals.
Collapse
Affiliation(s)
- Antonio Cid-Samamed
- Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus de As Lagoas S/N, 32004 Ourense, Spain
| | - Miguel Ángel Correa-Duarte
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Andrea Mariño-López
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Mário S. Diniz
- i4HB—Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Vo D, You T, Lin Y, Angela S, Le, T, Hsiao W. Toxicity Assessments of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:73-94. [DOI: 10.1002/9781394202164.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
10
|
Bin-Jumah MN. Do functional traits and biochemical biomarkers of the nematode Oncholaimus campylocercoides De Coninck and Schuurmans Stekhoven, 1933 affected by fluoranthene and polystyrene microplastics? Results from a microcosm bioassay and molecular modeling. MARINE POLLUTION BULLETIN 2023; 194:115294. [PMID: 37506479 DOI: 10.1016/j.marpolbul.2023.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture, on the meiobenthic nematode species Oncholaimus campylocercoides. This Oncholaimid was first experimentally selected from an entire nematode assemblage taken from the Jeddah coasts (Saudi Arabia). Several discernible changes were found in morphometry and functional traits after exposure to single and combined treatments. An increase in the activity of the biochemical biomarkers catalase and glutathione S-transferase was also observed following the exposure of males and gravid females of O. campylocercoides to 37.5 ng fluoranthene·g-1 dry weight (DW) and 62.5 mg polystyrene·kg-1 DW paralleled by a higher vulnerability of females. Moreover, the reproduction and feeding of this species were impaired, starting from 37.5 ng fluoranthene·g-1 and 62.5 mg polystyrene·kg-1, respectively. These results have been confirmed by good binding affinities and molecular interactions of fluoranthene and polystyrene with both GLD-3 and SDP receptors.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
11
|
Helmy ET, Ayyad MA, Ali MA, Mohamedbakr HG, Pan JH. Biochemical, Histological Changes, Protein Electrophoretic Pattern, and Field Application of CuPb-Ferrite/TiO 2 Nanocomposites for Controlling Terrestrial Gastropod Eobania vermiculata (Müller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6626-6634. [PMID: 37070858 DOI: 10.1021/acs.jafc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.
Collapse
Affiliation(s)
- Elsayed T Helmy
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria 12345, Egypt
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - Mona A Ali
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - H G Mohamedbakr
- Faculty of Science, Chemistry Department, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Jia Hong Pan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
12
|
Yang C, Wen J, Xue Z, Yin X, Li Y, Yuan L. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. J Environ Sci (China) 2023; 127:91-101. [PMID: 36522115 DOI: 10.1016/j.jes.2022.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are promising new materials that have been intensively studied and possibly applied to various environmental remediation. However, little is known about the fate and risk of MOFs to living organisms in the water environment. Here, the toxic effects of ZIF-8 nanoparticles (NPs) on benthic organisms were confirmed by sub-chronic toxicity experiments (7 and 14 days) using Corbicula fluminea as the model organism. With exposure doses ranging from 0 to 50 mg/L, ZIF-8 NPs induced oxidative stress behaviors similar to the hormesis effect in the tissues of C. fluminea. The oxidative stress induced by ZIF-8 NPs and the released Zn2+ was the crucial cause of the toxic effects. Besides, we also found that the ZIF-8 NPs and dissolved Zn2+ may result in different mechanisms of toxicity and accumulation depending on the dosages. The Zn2+ release rate of ZIF-8 NPs was high at low dosages, leading to a higher proportion of Zn2+ taken up by C. fluminea than the particulate ZIF-8. Conversely, at high dosages, C. fluminea mainly ingested the ZIF-8 NPs and resulted in increased mortality. The results have important implications for understanding the fate and biological effects of ZIF-8 in natural aquatic environments.
Collapse
Affiliation(s)
- Cuilian Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Zhuangzhuang Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiyan Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yangfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
13
|
Zhao X, Wang Q, Li X, Xu H, Ren C, Yang Y, Xu S, Wei G, Duan Y, Tan Z, Fang Y. Norgestrel causes digestive gland injury in the clam Mactra veneriformis: An integrated histological, transcriptomics, and metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162110. [PMID: 36764532 DOI: 10.1016/j.scitotenv.2023.162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The potential adverse effects of progestins on aquatic organisms, especially non-target species, are of increasing concern worldwide. However, the effect and mechanism of progestin toxicity on aquatic invertebrates remain largely unexplored. In the present study, clams Mactra veneriformis were exposed to norgestrel (NGT, 0, 10, and 1000 ng/L), the dominant progestin detected in the aquatic environment, for 21 days. NGT accumulation, histology, transcriptome, and metabolome were assessed in the digestive gland. The bioconcentration factor (BCF) was 386 and 268 in the 10 ng/L NGT group and 1000 ng/L NGT group, respectively, indicating efficient accumulation of NGT in the clams. Histological analysis showed that NGT led to the swelling of epithelial cells and blurring of the basement membrane in the digestive gland. Differentially-expressed genes and KEGG pathway enrichment analysis using a transcriptomic approach suggested that NGT primarily disturbed the detoxification system, antioxidant defense, carbohydrate and amino acid metabolism, and steroid hormone metabolism, which was consistent with the metabolites analyzed using a metabolomic approach. Furthermore, we speculated that the oxidative stress caused by NGT resulted in histological damage to the digestive gland. This study showed that NGT caused adverse effects in the clams and sheds light on the mechanisms of progestin interference in aquatic invertebrates.
Collapse
Affiliation(s)
- Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiangfei Li
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Hua Xu
- Yantai Ecological Environment Monitoring Center, Shandong Province, Yantai 264010, PR China
| | - Chuanbo Ren
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Shuhao Xu
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Guoxing Wei
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yujun Duan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Zhitao Tan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
14
|
Sturla Lompré J, De Marchi L, Pinto J, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Effects of Carbon Nanoparticles and Chromium Combined Exposure in Native ( Ruditapes decussatus) and Invasive ( Ruditapes philippinarum) Clams. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040690. [PMID: 36839058 PMCID: PMC9963187 DOI: 10.3390/nano13040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 05/23/2023]
Abstract
Studies have described the occurrence of nanoparticles (NPs) in aquatic ecosystems, with particular attention to the widely commercialized carbon nanotubes (CNTs). Their presence in the environment raises concerns, especially regarding their toxicity when co-occurring with other pollutants such as metals. In the present study, changes to the metabolic capacity, oxidative, and neurologic status were evaluated in the presence of carboxylated multi-walled CNTs and chromium (Cr(III)) using two of the most ecologically and economically relevant filter feeder organisms: the clam species Ruditapes decussatus and R. philippinarum. Results indicated that although Cr, either alone or in combination with CNTs, was found in a similar concentration level in both species, a species-specific Cr accumulation was observed, with higher values in R. decussatus in comparison with R. philippinarum. Inhibition of antioxidant defenses and neurotoxic effects were detected only in R. philippinarum. The interaction between contaminants seems to have no effect in terms of antioxidant enzyme activities and neuro status. Nevertheless, synergistic activation of responses to both contaminants may have altered the metabolic capacity of bivalves, particularly evident in R. decussatus. While both clams are tolerant to both contaminants (alone and together), they showed a relevant accumulation capacity, which may represent a possible contaminant transfer to humans.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn 9120, Argentina
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn “G. Bacci”, 57128 Livorno, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Badraoui R, Allouche M, El Ouaer D, Siddiqui AJ, Ishak S, Hedfi A, Beyrem H, Pacioglu O, Rudayni HA, Boufahja F. Ecotoxicity of chrysene and phenanthrene on meiobenthic nematodes with a case study of Terschellingia longicaudata: Taxonomics, toxicokinetics, and molecular interactions modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120459. [PMID: 36273696 DOI: 10.1016/j.envpol.2022.120459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic for humans and marine fauna alike. The current study assessed the impact of PAHs on the migratory behaviour of meiobenthic nematodes collected from the Bizerte lagoon, Tunisia. The experiment lasted for 15 days and was carried in open microcosms, which comprised a lower, contaminated and an upper, uncontaminated compartment. Three treatments were used, for each of them an untreated control was set up: sediment contaminated with chrysene (116 ng g-1 dry weight (DW), with phenanthrene (116 ng g-1 DW) and a mixture of both. The results showed a significant decrease in diversty and abundance in the lower, contaminated compartments compared to the upper zones. The results also highlighted that under an increased stress some species progressively increased in number, these were considered PAH-tolerant species such as Odontophora villoti, some others had an occasionally increased in number were considered as opportunistic species, such as Paracomesoma dubium and the species that showed a progressive decreased in number, such as Metoncholaimus pristiurus and Steineria sp., Terschellingia. longicaudata, and Oncholaimellus sp. were classified as PAH-sensitive. Moreover, an increase in the activity of biochemical biomarkers was observed following the exposure of males and gravid females of T. longicaudata to 29, 58 and 87 ng g-1 DW of chrysene and phenanthrene paralleled by a higher vulnerability of the latter demographic category. Besides, a significant decrease in fertility of females and an increase in pharyngeal sucking power were observed for both types of PAHs considered. The sex ratio was also significantly imbalanced in the favor of males, which suggest that chrysene and phenanthrene affect also the hormone system of T. longicaudata. The high affinities of these PAHs and their molecular interactions with both germ line development protein 3 (GLD-3) and sex-determining protein (SDP) may justify these results and explain the toxicokinetic attributes.
Collapse
Affiliation(s)
- Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il, 81451, Saudi Arabia; Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Dhia El Ouaer
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Arif J Siddiqui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il, 81451, Saudi Arabia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
16
|
Qi P, Qiu L, Feng D, Gu Z, Guo B, Yan X. Distinguish the toxic differentiations between acute exposure of micro- and nano-plastics on bivalves: An integrated study based on transcriptomic sequencing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106367. [PMID: 36436309 DOI: 10.1016/j.aquatox.2022.106367] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution represents one of the most severe marine environmental issues today. In the present study, mussel Mytilus coruscus, was selected as the model organism to probe the toxic effects of acute exposure to different sizes of plastic particles using integrated transcriptomic techniques and histological and biochemical analysis. Nanoplastics (NPs) were efficiently ingested by mussels, thereby inducing a severe inflammatory response. Although no distinct aggregation of microplastics (MPs) was observed, a slight inflammatory response has still occurred. Biochemical analysis revealed a significant up-regulation of biomarkers after exposure to plastic particles. Further, NPs caused more ROS production and higher T-AOC level than MPs. Transcriptomic sequencing was performed, and these differentially expressed genes after MNPs exposure were mostly enriched in pathways involved in stress and immune response. Notably, a contrast expression, substantial upregulation in MPs treatment and downregulation in NPs treatment of specific genes include in these pathways were revealed. Collectively, these results indicated that acute exposure to NPs is more toxic than MPs. Additionally, MPs exposure perhaps caused the impairment of olfactory function and neurotoxicity to mussels. These data provided some new clues for the elucidating of ecotoxicological mechanisms underlying plastic particles exposure.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Dan Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Zhongqi Gu
- Shengsi Institute of Marine Science and Technology in Zhejiang Province, Zhoushan, Zhejiang 202450, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
17
|
Augustyniak M, Babczyńska A, Dziewięcka M, Flasz B, Karpeta-Kaczmarek J, Kędziorski A, Mazur B, Rozpędek K, Seyed Alian R, Skowronek M, Świerczek E, Świętek A, Tarnawska M, Wiśniewska K, Ziętara P. Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. CHEMOSPHERE 2022; 303:135129. [PMID: 35636606 DOI: 10.1016/j.chemosphere.2022.135129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Julia Karpeta-Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agata Świętek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
18
|
Guo X, Feng C, Bi Z, Islam A, Cai Y. Toxicity effects of ciprofloxacin on biochemical parameters, histological characteristics, and behaviors of Corbicula fluminea in different substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23700-23711. [PMID: 34811616 DOI: 10.1007/s11356-021-17509-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic toxicity and antibiotic resistance have become significant challenges to human health. However, the potential ecotoxicity of sediment-associated antibiotics remains unknown. In this study, biochemical responses, histological changes, and behavioral responses of Corbicula fluminea exposed to sediment-associated ciprofloxacin (CIP) were systemically investigated. Special attention was paid to the influence of different substrate types. Biochemical analyses revealed that the balance of the antioxidant system was disrupted, eventually leading to oxidative damage to the gills and digestive gland with increasing CIP concentration. Severe histopathological changes appeared along with the oxidative damage. An enlargement of the tubule lumen and thinning of the epithelium in the digestive gland were observed under exposure to high CIP concentrations (0.5 and 2.5 μg/g CIP). In a behavioral assay, the filtration rate of C. fluminea in high concentration exposure groups was clearly inhibited. Moreover, from the integrated biomarker response (IBR) index, the toxicity response gradients of the digestive gland (no substrate--NOS > Sand > Sand and kaolinite clay-- SKC > Sand, kaolinite clay, and organic matter--SCO) and gills (NOS > SCO > SKC > Sand) were different among substrate exposure groups. The most serious histopathological damage and highest siphoning inhibition were observed in the NOS group. The changes in the morphological structure of digestive gland cells in C. fluminea were similar in the other three substrate groups. The inhibition of the filtration rate in the higher concentration groups decreased in the order Sand > SKC > SCO.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhe Bi
- National Institute of Metrology, Beijing, 100029, China
| | - Akhtar Islam
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
19
|
Hedfi A, Ali MB, Noureldeen A, Almalki M, Rizk R, Mahmoudi E, Plăvan G, Pacioglu O, Boufahja F. Effects of benzo(a)pyrene on meiobenthic assemblage and biochemical biomarkers in an Oncholaimus campylocercoides (Nematoda) microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16529-16548. [PMID: 34651273 DOI: 10.1007/s11356-021-16885-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
A microcosm experiment was carried out to determine how benzo(a)pyrene (BaP) may affect marine meiofauna community, with a main emphasis on nematode structure and functional traits. Three increasing concentrations of BaP (i.e. 100, 200 and 300 ng/l, respectively) were used for 30 days. The results revealed a gradual decrease in the abundance of all meiobenthic groups (i.e. nematodes, copepods, amphipods, polychaetes and oligochaetes), except for isopods. Starting at concentrations of 200 and 300 ng/l BaP, respectively, significant changes were observed at community level. At taxonomic level, the nematode communities were dominated at the start of the experiment and also after being exposed or not to BaP by Odontophora villoti, explicable through its high ecologic ubiquity and the presence of well-developed chemosensory organs (i.e. amphids), which potentially increased the avoidance reaction following exposure to this hydrocarbon. Moreover, changes in the activity of several biochemical biomarkers (i.e. catalase 'CAT', gluthatione S-transferase 'GST', and ethoxyresorufin-O-deethylase 'EROD') were observed in the nematode species Oncholaimus campylocercoides, paralleled by significant decreases in CAT activity for non-gravid females compared to controls at concentrations of 25 ng/l BaP and associated with significant increase in GST and EROD activities for both types of individuals.
Collapse
Affiliation(s)
- Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Almalki
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Roquia Rizk
- Research Centre for Biochemical, Environmental and Chemical Engineering, Sustainability Solutions Research Lab, University of Pannonia, Egyetem str. 10, 8200, Veszprém, Hungary
- Biochemisrty Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ezzeddine Mahmoudi
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Gabriel Plăvan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
20
|
Moradi E, Naserzadeh P, Brouki Millan P, Ashtari B. Selective cytotoxicity mechanisms and biodistribution of diamond nanoparticles on the skin cancer in C57 mouse. Biomed Mater 2021; 17. [PMID: 34826833 DOI: 10.1088/1748-605x/ac3d99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 11/11/2022]
Abstract
The cytotoxicity of diamond nanoparticles (DNs) to various cell lines has been on focus by numerous scientists. The cellular toxicity system of DNs has not been fully understood or explained in skin cancer, at this point. This research was carried out to discover and reveal the potential impacts of DNs on the secluded brain, heart, liver, kidney, and skin in addition to evaluation of their cytotoxicity mechanism under test conditions. Their biological activities, for example cell viability, the level of reactive oxygen species (ROS), lipid peroxidation, cytochrome c release and Apoptosis/Necrosis were evaluated. Additionally, the bio-distribution of these nanomaterials in tissues was examined in the C57 mouse. Relying on the findings of the investigation, DNs were found to increase the ROS level, Malondialdehyde (MDA) content, release of cytochrome c, and cell death in skin significantly compared to other groups. In the C57 mouse, DNs were observed to have accumulated in skin tissue more intensively than they did in other organs. The present study presents for the proof that DNs can completely induce cell death signaling in skin cancer without bringing about a high cytotoxicity in other tissues. Results suggest that DNs can be valuable in recognition of skin cancer.
Collapse
Affiliation(s)
- Elham Moradi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Millan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Impacts of nanoparticles and phosphonates in the behavior and oxidative status of the mediterranean mussels ( Mytilus galloprovincialis). Saudi J Biol Sci 2021; 28:6365-6374. [PMID: 34764754 PMCID: PMC8568998 DOI: 10.1016/j.sjbs.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022] Open
Abstract
The current study investigated the exposure of the Mediterranean mussel (Mytilus galloprovincialis) to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L-1 of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L-1 of both contaminants and Mix. Hydrogen peroxide (H2O2) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on M. galloprovincialis and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.
Collapse
|
22
|
Biochemical and histological alterations induced by nickel oxide nanoparticles in the ground beetle Blaps polychresta (Forskl, 1775) (Coleoptera: Tenebrionidae). PLoS One 2021; 16:e0255623. [PMID: 34559804 PMCID: PMC8462711 DOI: 10.1371/journal.pone.0255623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
The present study evaluates the effect of nickel oxide nanoparticles on some biochemical parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-ray microanalysis. The treated group demonstrated a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities when compared to the untreated group. However, the treated group demonstrated a significant decrease in ascorbate peroxidase (APOX) activity when compared to the untreated group. Histological and ultrastructural changes in the midgut tissues of treated and untreated beetles were also observed. The current findings provide a precedent for describing the physiological and histological changes caused by NiO-NPs in the ground beetle B. polychresta.
Collapse
|
23
|
Zhang C, Chen X, Ho SH. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125959. [PMID: 33990041 DOI: 10.1016/j.jhazmat.2021.125959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanomaterials (CNMs) provide an effective solution and a novel advancement for wastewater treatment. In this review, a total of 3823 bibliographic records derived from recent 10 years are visualized based on scientometric analysis. The results indicate metal-free CNMs-mediated advanced oxidation processes (AOPs) might be a motive force to develop CNMs application for wastewater treatment; however, corresponding evaluations of aquatic toxicity still lack sufficient attention. Therefore, recent breakthroughs and topical innovations related to prevalent wastewater treatment technologies (i.e., adsorption, catalysis and membrane separation) using three typical dimensional CNMs (nanodiamonds, carbon nanotubes, and graphene-based nanomaterials) are comprehensively summarized in-depth, along with a compendious introduction to some novel techniques (e.g., computational simulation) for identifying reaction mechanisms. Then, current research focusing on CNMs-associated aquatic toxicity is discussed thoroughly, mainly demonstrating: (1) the adverse effects on aquatic organisms should not be overlooked prior to large-scale CNMs application; (2) divergent consequences can be further reduced if the ecological niche of aquatic organisms is emphasized; and (3) further investigations on joint toxicity can provide greater beneficial insight into realistic exposure scenarios. Finally, ongoing challenges and developmental directions of CNMs-based wastewater treatment and evaluation of its aquatic toxicity are pinpointed and shaped in terms of future research.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
24
|
Zhang C, Chen X, Chou WC, Ho SH. Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses. CHEMOSPHERE 2021; 270:129473. [PMID: 33401071 DOI: 10.1016/j.chemosphere.2020.129473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The growing diverse applications of nanodiamonds (NDs), especially as adsorbents and catalysts for wastewater treatment, have significantly increased their discharge and potential risk towards aquatic ecosystems. Although NDs have been certified for superior biocompatibility and lower toxicity towards numerous human cell lines, the characteristic response and underlying mechanism of aquatic microalgal response remains unclear. Here, the response of Chlorella pyrenoidosa to five concentrations of NDs was thoroughly investigated by comprehensive phenotypic and transcriptional examinations. Results indicated that higher concentration of NDs (50 mg/L) induced 75.4% growth inhibition, exacerbated oxidative stress and malformed morphology of microalgae after 48 h exposure. Meanwhile, the aggregated microalgae formed several flocs, apparently under 50 mg/L NDs. Noticeably, photosynthesis was susceptible to the NDs exposure. Although, the chlorophyll content and genes involved in photosynthesis were significantly improved by NDs, the results obtained from the photochemical parameters indicated that the excessive electrons during photosynthesis might be a pivotal reason for oxidative stress generation. Additionally, the genes included in amino acids metabolism and protein synthesis were up-regulated to alleviate the oxidative stress. Collectively, this work discloses the explicit molecular mechanisms of aquatic microalgae and provides comprehensive insights of potential aqueous environmental risk of gradually emergent NDs.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xudong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, United States
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
25
|
Dellali M, Khallouli A, Harrath AH, Falodah F, Alwasel S, Beyrem H, Gyedu-Ababio T, Rohal-Lupher M, Boufahja F. Effects of Au/TiO 2 metallic nanoparticles on Unio ravoisieri: assessment through an oxidative stress and toxicity biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18176-18185. [PMID: 33410041 DOI: 10.1007/s11356-020-12305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Several studies have been performed on the effects of nanoparticles on aquatic life. However, most of them investigated marine organisms, not freshwater organisms. This study investigated biomarker responses after exposure for 48 h and 7 days to newly made gold and titanium dioxide (Au/TiO2) metallic nanoparticles (MNPs) (100 and 200 μg·L-1) using the freshwater bivalve mussel Unio ravoisieri. Biochemical analysis of the gills and digestive glands showed induction of oxidative stress following exposure of the bivalve to Au/TiO2 MNPs. After 2 or 7 days of exposure to Au/TiO2 MNPs, both utilized concentrations of Au/TiO2 MNPs induce an overproduction of H2O2. Catalase and glutathione S-transferase activities and the malonedialdehyde content significantly increased in the presence of Au/TiO2 MNPs, depending on the concentration and target organ. In contrast, acetylcholinesterase activity was significantly inhibited, indicating a discernible disturbance of the cholinergic system in the presence of Au/TiO2 MNPs. The behavior of the freshwater mussel was altered by reducing the clearance rate. Therefore, U. ravoisieri can be used as a model species in laboratory studies to mirror the presence of MNPs, and the biomarker approach is important for detecting the effects of Au/TiO2 MNPs. In addition, digestive gland is the target organ of Au/TiO2NPs contamination.
Collapse
Affiliation(s)
- Mohamed Dellali
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Altaf Khallouli
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fawaz Falodah
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | | | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
26
|
Reyna PB, Albá ML, Rodríguez FA, Gonzalez M, Pegoraro C, Hued AC, Tatián M, Ballesteros ML. What does the freshwater clam, Corbicula largillierti, have to tell us about chlorothalonil effects? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111603. [PMID: 33396123 DOI: 10.1016/j.ecoenv.2020.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CLT) is a broad spectrum, and non-systemic fungicide applied in foliar structures to prevent and treat pathogens. This compound reaches to aquatic environments and affects the biota. In this context, the main goal of this study was to assess the effects of CLT at biochemical, tissular, and individual levels of biological organization using the invasive bivalve Corbicula largillierti as a bioindicator species. Clams were exposed to different sublethal concentrations (0, 10, 20 and 50 µg. L-1 CLT) for 96 h. At biochemical level, the enzymatic activity (Glutathione-s-Transferase, Catalase, Acetyl-, Butiryl- and Carboxyl-esterases) and lipid peroxidation were measured in gills and the visceral mass. Also, the digestive gland morphometry through quantitative histological indexes was registered at the tissular level. Finally, filtering activity and burial behavior at the individual level were measured. At the highest CLT concentration, the most significant changes were observed in enzymatic activity (except for butyrylcholinesterase), lipid peroxidation and in digestive gland morphometry. It was also registered increases of the filtering activity and the latency time to burial. Most of the biomarkers assessed showed significant responses under CLT exposure. Therefore, taking into account that C. largillierti was affected by CLT, it can be expected that other species could be in a potential risk if this fungicide is present in freshwater systems.
Collapse
Affiliation(s)
- P B Reyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M L Albá
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - F A Rodríguez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - M Gonzalez
- Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, IIMyC, CONICET, (B7602AYL), Mar del Plata, Argentina
| | - C Pegoraro
- Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, IIMyC, CONICET, (B7602AYL), Mar del Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, (B7602AYL), Mar del Plata, Argentina
| | - A C Hued
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina.
| |
Collapse
|
27
|
Liu Y, Junaid M, Xu P, Zhong W, Pan B, Xu N. Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115671. [PMID: 33254642 DOI: 10.1016/j.envpol.2020.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 05/27/2023]
Abstract
Perfluorooctane sulfonate (PFOS) potentially adsorbs on the surface of suspended sediment (SPS), which can develop a toxic "pool" bioavailable to benthic organisms. In this study, the freshwater clam Corbicula fluminea was employed as a zoobenthos model to study the effects of SPS (collected from the Yellow River) on the bioaccumulation and toxicity (from the molecular level to cellular and physiological levels) caused by PFOS exposure. Besides, the enhanced integrated biomarker response (EIBR) system was applied as an index to evaluate the in-depth toxic effects of PFOS and SPS single and co-exposure at various treatment levels. Our results demonstrated that PFOS-SPS co-exposure (at sub-lethal doses of PFOS) significantly increased the bioaccumulation of PFOS, and induced the elevated levels of reactive oxygen species (ROS), the significantly increased activities of superoxide dismutase (SOD) and catalase (CAT) enzymes, the significantly increased content of malondialdehyde (MDA), and the significantly upregulated expression levels of sod, selenium-dependent glutathione peroxidase (se-gpx), heat shock protein 22 (hsp22), heat shock protein 40 (hsp40) and cytochrome P450 30 (cyp30) genes. Further, the co-exposure induced the significantly higher histopathological alterations in the gonads and digestive glands, and even elevated the inhibition of siphoning behavior in clams. In addition, the EIBR index also revealed the highest values for PFOS and SPS co-exposure, compared to the individual SPS or PFOS exposure. The results indicated that at high levels of PFOS exposure (especially at 1000 μg/L), the presence of SPS might increase the generation of ROS by influencing the bioaccumulation of PFOS, which enhanced the toxicity of PFOS to C. fluminea. These results potentially provide basic information for the comprehensive evaluation of the toxic effects of PFOS on benthos in a multi-sediment river ecosystem.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Peng Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Zhong
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
28
|
De Marchi L, Freitas R, Oliva M, Cuccaro A, Manzini C, Tardelli F, Andrade M, Costa M, Leite C, Morelli A, Chiellini F, Pretti C. Does salinity variation increase synergistic effects of triclosan and carbon nanotubes on Mytilus galloprovincialis? Responses on adult tissues and sperms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138837. [PMID: 32464379 DOI: 10.1016/j.scitotenv.2020.138837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The use of carbon nanotubes (CNTs) is rapidly increasing and several scientific studies have addressed their toxicological properties. However, only a very small number of publications have deal with the interaction between CNTs and other molecules. Triclosan (TCS) is an antibacterial agent used in personal care and household products. Commonly detected in aquatic ecosystems, there is a strong evidence that aquatic biota is sensitive to this compound. Aside from emergent pollutants, aquatic organisms are continuously subjected to abiotic variations including salinities. Therefore, the main goal of the present study was to better understand how physio-chemical interactions of CNTs with TCS under different salinity levels (37, 28 and 19) affect the mussel species Mytilus galloprovincialis through the evaluation of biochemical alterations on gametes (sperms) and adult tissues, providing more ecologically relevant information on organisms' responses. The results showed toxicological effects in terms of sperm metabolic activity and intracellular reactive oxygen species production as well as cellular damage and alteration of metabolic capacity at the adult's stage when exposed to both contaminants acting alone and in combination, under tested salinities. Moreover, when the mussels were exposed to the combination of both contaminants, they showed major toxic impacts on both assessed biological levels (adult tissues and sperms) especially under control salinity. This suggests that toxicity upon mixture exposure compared to single-substance exposure may impair mussels' populations, affecting reproduction success and growth.
Collapse
Affiliation(s)
- Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Alessia Cuccaro
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chiara Manzini
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Federica Tardelli
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Madalena Andrade
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| |
Collapse
|
29
|
Leite C, Coppola F, Monteiro R, Russo T, Polese G, Lourenço MAO, Silva MRF, Ferreira P, Soares AMVM, Freitas R, Pereira E. Biochemical and histopathological impacts of rutile and anatase (TiO 2 forms) in Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134886. [PMID: 31837882 DOI: 10.1016/j.scitotenv.2019.134886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Titanium dioxide (TiO2) particles have been widely used in various industrial applications and consumer products. Due to their large production and use, they will eventually enter into aquatic environments. Once in the aquatic environment TiO2 particles may interact with the organisms and induce toxic effects. Since the most common crystallographic forms of TiO2 are rutile and anatase, the present study evaluated the effect of these two forms of TiO2 particles in Mytilus galloprovincialis. For this, mussels were exposed to different concentrations of rutile and anatase particles (0, 5, 50, 100 µg/L) for twenty-eight days. Ti concentrations, histopathological alterations and biochemical effects were evaluated. Similar Ti concentrations were found in mussels exposed to rutile and anatase, with the highest values in mussels exposed to the highest exposure concentration. Histopathological results demonstrated that both forms of TiO2 induced alterations on gills and digestive glands along the increasing exposure gradient. Biochemical markers showed that mussels exposed to rutile maintained their metabolic capacity (assessed by the activity of the Electron Transport System, ETS), while anatase increased the metabolism of mussels. Mussels exposed to rutile increased their detoxifying defences which, due to the low tested concentrations, were sufficient to avoid cellular damage. On the other hand, mussels exposed to anatase suffered cellular damages despite the increase of the antioxidant defences which may be related to the high ETS activity. Both rutile and anatase particles were toxic to M. galloprovincialis, being the highest oxidative stress exerted by the crystalline form anatase.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química, CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Mirtha A O Lourenço
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, TO, Italy
| | - Mariana R F Silva
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Eduarda Pereira
- Departamento de Química, CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Josende ME, Nunes SM, de Oliveira Lobato R, González-Durruthy M, Kist LW, Bogo MR, Wasielesky W, Sahoo S, Nascimento JP, Furtado CA, Fattorini D, Regoli F, Machado K, Werhli AV, Monserrat JM, Ventura-Lima J. Graphene oxide and GST-omega enzyme: An interaction that affects arsenic metabolism in the shrimp Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136893. [PMID: 32059295 DOI: 10.1016/j.scitotenv.2020.136893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is one of the most widespread contaminants; it is found in almost every environment. Its toxic effects on living organisms have been studied for decades, but the interaction of this metalloid with other contaminants is still relatively unknown, mainly whether this interaction occurs with emerging contaminants such as nanomaterials. To examine this relationship, the marine shrimp Litopenaeus vannamei was exposed for 48 h to As, graphene oxide (GO; two different concentrations) or a combination of both, and gills, hepatopancreas and muscle tissues were sampled. Glutathione S-transferase (GST)-omega gene expression and activity were assessed. As accumulation and speciation (metabolisation capacity) were also examined. Finally, a molecular docking simulation was performed to verify the possible interaction between the nanomaterial and GST-omega. The main finding was that GO modulated the As toxic effect: it decreased GST-omega activity, a consequence related to altered As accumulation and metabolism. Besides, the molecular docking simulation confirmed the capacity of GO to interact with the enzyme structure, which also can be related to the decreased GST-omega activity and subsequently to the altered As accumulation and metabolisation pattern.
Collapse
Affiliation(s)
- Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Roberta de Oliveira Lobato
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Michael González-Durruthy
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Luiza Wilges Kist
- Centro de Biologia Genômica e Molecular - Pontifícia, Universidade Católica do Rio Grande do Sul - PUCRS, RS, Brazil
| | - Maurício Reis Bogo
- Centro de Biologia Genômica e Molecular - Pontifícia, Universidade Católica do Rio Grande do Sul - PUCRS, RS, Brazil
| | - Wilson Wasielesky
- Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Brazil; Programa de Pós-Graduação em Aquicultura - FURG, Brazil
| | - Sangran Sahoo
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Brazil
| | | | | | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Karina Machado
- Centro de Ciências Computacionais - FURG, Brazil; Programa de Pós-Graduação em Computação - FURG, Brazil
| | - Adriano V Werhli
- Centro de Ciências Computacionais - FURG, Brazil; Programa de Pós-Graduação em Computação - FURG, Brazil
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| |
Collapse
|
31
|
Zhang X, Xu Z, Qian X, Lin D, Zeng T, Filser J, Li L, Kah M. Assessing the Impacts of Cu(OH) 2 Nanopesticide and Ionic Copper on the Soil Enzyme Activity and Bacterial Community. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3372-3381. [PMID: 32109358 DOI: 10.1021/acs.jafc.9b06325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanopesticides are being introduced in agriculture, and the associated environmental risks and benefits must be carefully assessed before their widespread agricultural applications. We investigated the impacts of a commercial Cu(OH)2 nanopesticide formulation (NPF) at different agricultural application doses (e.g., 0.5, 5, and 50 mg of Cu kg-1) on enzyme activities and bacterial communities of loamy soil (organic matter content of 3.61%) over 21 days. Results were compared to its ionic analogue (i.e., CuSO4) and nano-Cu(OH)2, including both the commercial unformulated active ingredient of NPF (AI-NPF) and synthesized Cu(OH)2 nanorods (NR). There were negligible changes in the activity of acid phosphatase, regardless of exposure dose, whereas significant (p < 0.05) variations in activities of invertase, urease, and catalase were observed at a dose of 5 mg kg-1 or higher. Invertase activity decreased with an increasing bioavailable Cu concentration in soil under various treatments. In comparison to CuSO4, both Cu(OH)2 nanopesticide (i.e., NPF) and nano-Cu(OH)2 (i.e., AI-NPF and NR) caused a significant (p < 0.05) inhibition of urease activity, wherein a significant (p < 0.05) increase in the activity of catalase was observed, representing serious oxidative stress. Accordingly, NPF, AI-NPF, and NR differently affected soil bacterial abundance, diversity, and community compared to CuSO4, which could have resulted from the changes in the bioavailable Cu concentration as a result of the distinct nature of copper spiked (i.e., nano form versus salt). Moreover, minor differences in the soil enzyme activity and bacterial community were observed between NPF and AI-NPF, reflecting that the impact of the Cu(OH)2 nanopesticide was primarily attributed to the presence of nano-Cu(OH)2. In total, the impacts of nano-Cu(OH)2 on the soil bacterial community and enzyme activity tested in this study differed from CuSO4, shedding light on the environmental risks of the Cu(OH)2 nanopesticide in the long run.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| | - Xiaoting Qian
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Juliane Filser
- Centre for Environmental Research and Sustainable Technology (UFT), Department General and Theoretical Ecology, Faculty 2 (Biology/Chemistry), University of Bremen, 28359 Bremen, Germany
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
32
|
Coppola F, Bessa A, Henriques B, Russo T, Soares AMVM, Figueira E, Marques PAAP, Polese G, Di Cosmo A, Pereira E, Freitas R. Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110674. [PMID: 32058044 DOI: 10.1016/j.cbpa.2020.110674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
The modern technology brought new engineering materials (e.g. nanostructured materials) with advantageous characteristics such as a high capacity to decontaminate water from pollutants (for example metal(loid)s). Among those innovative materials the synthesis of nanostructured materials (NSMs) based on graphene as graphene oxide (GO) functionalized with polyethyleneimine (GO-PEI) had a great success due to their metal removal capacity from water. However, research dedicated to environmental risks related to the application of these materials is still non-existent. To evaluate the impacts of such potential stressors, benthic species can be a good model as they are affected by several environmental constraints. Particularly, the mussel Mytilus galloprovincialis has been identified by several authors as a bioindicator that responds quickly to environmental disturbances, with a wide spatial distribution and economic relevance. Thus, the present study aimed to evaluate the impacts caused in M. galloprovincialis by seawater previously contaminated by Hg and decontaminated using GO-PEI. For this, histopathological and biochemical alterations were examined. This study demonstrated that mussels exposed to the contaminant (Hg), the decontaminant (GO-PEI) and the combination of both (Hg + GO-PEI) presented an increment of histopathological, oxidative stress and metabolic alterations if compared to organisms under remediated seawater and control conditions The present findings highlight the possibility to remediate seawater with nanoparticles for environmental safety purposes.
Collapse
Affiliation(s)
- Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Ana Bessa
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Bruno Henriques
- CESAM & LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | | | - Etelvina Figueira
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Paula A A P Marques
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Eduarda Pereira
- CESAM & LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rosa Freitas
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
33
|
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal 2020; 10:1-12. [PMID: 32123595 PMCID: PMC7037532 DOI: 10.1016/j.jpha.2019.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Nanodiamonds are novel nanosized carbon building blocks possessing varied fascinating mechanical, chemical, optical and biological properties, making them significant active moiety carriers for biomedical application. These are known as the most 'captivating' crystals attributed to their chemical inertness and unique properties posing them useful for variety of applications in biomedical era. Alongside, it becomes increasingly important to find, ascertain and circumvent the negative aspects associated with nanodiamonds. Surface modification or functionalization with biological molecules plays a significant role in managing the toxic behavior since nanodiamonds have tailorable surface chemistry. To take advantage of nanodiamond potential in drug delivery, focus has to be laid on its purity, surface chemistry and other considerations which may directly or indirectly affect drug adsorption on nanodiamond and drug release in biological environment. This review emphasizes on the basic properties, synthesis techniques, surface modification techniques, toxicity issues and biomedical applications of nanodiamonds. For the development of nanodiamonds as an effective dosage form, researchers are still engaged in the in-depth study of nanodiamonds and their effect on life interfaces.
Collapse
Affiliation(s)
| | | | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|
34
|
Reyna PB, Ballesteros ML, Albá ML, Bertrand L, González M, Miglioranza KSB, Tatián M, Hued AC. A multilevel response approach reveals the Asian clam Corbicula largillierti as a mirror of aquatic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:175-187. [PMID: 31344570 DOI: 10.1016/j.scitotenv.2019.07.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The endobenthic bivalves are widely used as a bioindicators since they inhabit the sediment-water interface and are able to accumulate a different kind of contaminants. In the present work, we evaluated wild Corbicula largillierti (Phillippi, 1844) as a bioindicator of water quality in the central region of Argentina. The responses at different levels of the biological organization were used. We measured organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) levels in water and clams tissues. The biomarkers selected were enzymatic activities (Glutathione S-Transferase, Catalase, Acetyl-, Butyryl-cholinesterase, and Carboxylesterase) morphometry of the digestive gland, condition index and morphology of valves. In order to integrate all the responses a multivariate analysis and integrated stress index were applied. Our results showed the presence of contaminants along the studied river and the ability of C. largillierti to bioaccumulate them. All the biomarkers selected varied according to the water quality gradient, although there was no specific correlation with OCPs and PCBs levels. At the most polluted sites, the detoxification and oxidative stress enzymes, the morphometric analysis of the digestive gland and the variation in the morphology of the valves indicated the water quality degradation. The multivariate analyses allowed to discriminate the sites according to the different biomarker responses. The IBR index also showed a variation pattern according to the environmental quality gradient along the basin. According to the responses shown by C. largillierti we suggest this species as an useful bioindicator of aquatic pollution.
Collapse
Affiliation(s)
- P B Reyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Albá
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - L Bertrand
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica e Inmunología, CONICET, Córdoba, Argentina
| | - M González
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - K S B Miglioranza
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - M Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - A C Hued
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
35
|
Coppola F, Tavares DS, Henriques B, Monteiro R, Trindade T, Soares AMVM, Figueira E, Polese G, Pereira E, Freitas R. Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. ENVIRONMENTAL RESEARCH 2019; 175:200-212. [PMID: 31136952 DOI: 10.1016/j.envres.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
In the last decade different approaches have been applied for water remediation purposes, including the use of nanoparticles (NPs) to remove metals and metalloids from water. Although studies have been done on the toxic impacts of such NPs, very scarce information is available on the impacts of water after decontamination when discharged into aquatic environments. As such, in the present study we aimed to evaluate the ecotoxicological safety of seawater previously contaminated with arsenic (As) and remediated by using manganese-ferrite (MnFe2O4-NPs) NPs. For this, mussels Mytilus galloprovincialis were exposed for 28 days to different conditions, including clean seawater (control), As (1000 μg L-1) contaminated and remediated (As 70 μg L-1) seawater, water containing MnFe2O4- NPs (50 mg L-1) with and without the presence of As. At the end of exposure, concentrations of As in mussels tissues were quantified and biomarkers related to mussels' metabolism and oxidative stress status were evaluated. Results revealed that mussels exposed to water contaminated with As and to As + NPs accumulated significantly more As (between 62% and 76% more) than those exposed to remediated seawater. Regarding biomarkers, our findings demonstrated that in comparison to remediated seawater (conditions a, b, c) mussels exposed to contaminated seawater (conditions A, B, C) presented significantly lower metabolic activity, lower expenditure of energy reserves, activation of antioxidant and biotransformation defences, higher lipids and protein damages and greater AChE inhibition. Furthermore, organisms exposed to As, NPs or As + NPs revealed similar biochemical effects, both before and after water decontamination. In conclusion, the present study suggests that seawater previously contaminated with As and remediated by MnFe2O4-NPs presented significantly lower toxicity than As contaminated water, evidencing the potential use of these NPs to remediate seawater contaminated with As and its safety towards marine systems after discharges to these environments.
Collapse
Affiliation(s)
- Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela S Tavares
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Portugal; Departamento de Química & CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Henriques
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rui Monteiro
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Portugal; CIIMAR, Universidade do Porto, 4050-123, Porto, Portugal
| | - Tito Trindade
- Departamento de Química & CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli Studi di Napoli Federico II, 80126, Naples, Italy
| | - Eduarda Pereira
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
Czarniewska E, Nowicki P, Kuczer M, Schroeder G. Impairment of the immune response after transcuticular introduction of the insect gonadoinhibitory and hemocytotoxic peptide Neb-colloostatin: A nanotech approach for pest control. Sci Rep 2019; 9:10330. [PMID: 31316090 PMCID: PMC6637150 DOI: 10.1038/s41598-019-46720-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
This article shows that nanodiamonds can transmigrate through the insect cuticle easily, and the doses used were not hemocytotoxic and did not cause inhibition of cellular and humoral immune responses in larvae, pupae and adults of Tenebrio molitor. The examination of the nanodiamond biodistribution in insect cells demonstrated the presence of nanodiamond aggregates mainly in hemocytes, where nanoparticles were efficiently collected as a result of phagocytosis. To a lesser extent, nanodiamond aggregates were also detected in fat body cells, while they were not observed in Malpighian tubule cells. We functionalized nanodiamonds with Neb-colloostatin, an insect hemocytotoxic and gonadoinhibitory peptide, and we showed that this conjugate passed through the insect cuticle into the hemolymph, where the peptide complexed with the nanodiamonds induced apoptosis of hemocytes, significantly decreased the number of hemocytes circulating in the hemolymph and inhibited cellular and humoral immune responses in all developmental stages of insects. The results indicate that it is possible to introduce a peptide that interferes with the immunity and reproduction of insects to the interior of the insect body by means of a nanocarrier. In the future, the results of these studies may contribute to the development of new pest control agents.
Collapse
Affiliation(s)
- Elżbieta Czarniewska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 6, 61-614, Poznań, Poland.
| | - Patryk Nowicki
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 6, 61-614, Poznań, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University in Wrocław, F. Joliot-Curie str. 14, 50-383, Wrocław, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 8, 61-614, Poznań, Poland
| |
Collapse
|
37
|
Li D, Wang J, Pi J, Yu J, Zhang T. Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14951-14961. [PMID: 30919194 DOI: 10.1007/s11356-019-04931-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, we analyzed the concentrations of metals in sediments and Corbicula fluminea in China's Dongting Lake to assess the suitability of C. fluminea as an effective biomonitor of metal contamination in sediments and food safety. We analyzed the biota-accumulation capacity by calculating the biota-sediment accumulation factor (BSAF) and assessed the potential human health risk of metals exposure via consumption of C. fluminea using the target hazard quotient (THQ) and total target hazard quotient (TTHQ). The results showed that the average concentrations of As (31.93 mg kg-1), Cd (5.54 mg kg-1), Cr (105.50 mg kg-1), Cu (32.53 mg kg-1), and Zn (207.89 mg kg-1) in sediments were higher than their respective standard set by the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. The sediment metals, which were mainly anthropogenic in origin, were at high levels and pose a relatively high ecological risk. Cadium (Cd) showed very high potential ecological risk levels and should be included in the prior pollutants list in the studied area. The mean levels of As (0.81 mg kg-1) in C. fluminea were 1.62-times higher than that set by the National Health Commission of the People's Republic of China. BSAF values of the soft tissues of C. fluminea were between 0.05 and 2.14, with higher values for Cu (2.14), Cd (1.77), Zn (1.60), and Ni (1.27). Soft tissues of C. fluminea were able to reflect spatial differences in Sr within sediments around Dongting Lake. The results indicated that C. fluminea could be an potential biomonitor for sediment metals assessment in biomonitoring programs, especially for Cu, Cd, Zn, Ni, and Sr. The mean values for THQ and TTHQ of all the analyzed metals were below 1.0, indicating that the intake of metals via comsumption of C. fluminea does not result in an appreciable risk to human health.
Collapse
Affiliation(s)
- Deliang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jian Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jie Pi
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jianbo Yu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
38
|
Wang Y, Zhang Y, Li W, Yang L, Guo B. Distribution, metabolism and hepatotoxicity of neonicotinoids in small farmland lizard and their effects on GH/IGF axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:834-841. [PMID: 30795479 DOI: 10.1016/j.scitotenv.2019.01.277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The potential endocrine disruption of neonicotinoids poses a significant threat to the survival of small farmland lizards. We systematically evaluated the distribution, metabolism, and toxicity of three neonicotinoids (dinotefuran, thiamethoxam, and imidacloprid) in the Eremias argus during a 35-day oral administration exposure. Lizards could quickly transfer and store neonicotinoids into the scale and eliminated through molting. Dinotefuran was most prone to accumulation in lizard tissues, followed by thiamethoxam, and imidacloprid was generally present in the form of its terminal metabolite 6-chloropyridinyl acid. Exposure to dinotefuran resulted in hepatic oxidative stress damage, decreased plasma growth hormone concentration, and down-regulation of ghr, igf1 and igfbp2 gene expression. These indicated that dinotefuran might have potential growth inhibition toxicity to lizards. Although imidacloprid caused severe liver oxidative stress damage, the effect of imidacloprid on GH/IGF axis was not obvious. Compared to dinotefuran and imidacloprid, thiamethoxam had the least damage to liver and minimal impact on GH/IGF axis. This study verified the possible damage of neonicotinoids to lizard liver and the interference of GH/IGF axis for the first time.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yang Zhang
- Benxi Institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi 117000, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| |
Collapse
|
39
|
Li L, Su L, Cai H, Rochman CM, Li Q, Kolandhasamy P, Peng J, Shi H. The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. CHEMOSPHERE 2019; 221:107-114. [PMID: 30640001 DOI: 10.1016/j.chemosphere.2019.01.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Microplastic is an umbrella term that covers particles with various physical and chemical properties. However, microplastics with a consistent shape, polymer type and size are generally used in exposure studies (e.g., spherical polyethylene or polystyrene beads 1-100 μm in size). In the present study, we exposed freshwater Asian clams (Corbicula fluminea) to microfibers with different physicochemical properties at concentrations of 100 and 1000 fibers/L. The first experiment in this study exposed clams to microfibers made from six different polymers, demonstrating that Asian clams uptake more polyester (PET) (4.1 items/g) relevant to other polymers. The next experiment exposed clams to PET fibers of different size classes, demonstrating that uptake in the size range 100-250 μm (1.7 items/g) was greater than other size classes. These results suggest that physicochemical properties such as polymer and size play important roles in the uptake of microfibers by organisms. Thus, we strongly suggest that the properties of microplastics used in future laboratory exposure experiments be considered, with the aim of being "environmentally relevant", i.e., similar to what is found in nature.
Collapse
Affiliation(s)
- Lingyun Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Huiwen Cai
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Qipei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Prabhu Kolandhasamy
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Jinping Peng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
40
|
Zhou T, Zhang L, Wang Y, Mu Q, Yin J. Effects of LaCoO3 perovskite nanoparticle on Daphnia magna: accumulation, distribution and biomarker responses. RSC Adv 2019; 9:24617-24626. [PMID: 35527907 PMCID: PMC9069842 DOI: 10.1039/c9ra03513c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
Perovskite nanomaterials (PNMs) have been shown to be promising materials for the effective replacement of conventional energy source materials. With the increasing use of PNMs, they will inevitably enter aquatic environments, giving rise to concerns regarding the environmental impact of PNMs. To fill up the gap in information about the environmental effect of PNMs, Daphnia magna was exposed to a typical PNM LaCoO3 for 48 h, to assess temporal patterns in PNM bioaccumulation and distribution. Synchrotron radiation based micro X-ray fluorescence spectroscopy (μ-XRF) was used to investigate the time dependent spatial distribution of LaCoO3. Reactive oxygen species (ROS), superoxide dismutase (SOD) and Na+/K+-adenosine triphosphatase (ATPase) were measured as key biomarkers. The results showed that oxidative stress was observed at both LaCoO3 concentrations and Na+/K+-ATPase was inhibited by high levels of LaCoO3. The mode of action of LaCoO3 was mainly dependent on the metal forms. At low LaCoO3 levels, food ingestion was the main entry pathway into organisms and LaCoO3 nanoparticle aggregates accumulated in the gut area. At high LaCoO3 levels, both waterborne and dietary uptake was observed and the gut and thoracic limbs were the main target sites for LaCoO3 nanoparticle aggregates and dissolved ions, respectively. LaCoO3 was not found to translocate in daphnids during the 48 h exposure period at either concentration, suggesting that internalization did not occur. These findings help further our understanding of the fate of PNMs in aquatic organisms, as well as the associated biological responses to PNM exposure. The instability of PNMs in water is of environmental concern. This study shows that in daphnids over 48 h, the mode of action of a representative PNM LaCoO3 is dependent on Co species, which results in the differences in uptake, accumulation, distribution and toxicity.![]()
Collapse
Affiliation(s)
- Tingting Zhou
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Lili Zhang
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Ying Wang
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Qian Mu
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Jingyu Yin
- School of Space and Environment
- Beihang University
- Beijing 100191
- PR China
| |
Collapse
|
41
|
Yao K, Lv X, Zheng G, Chen Z, Jiang Y, Zhu X, Wang Z, Cai Z. Effects of Carbon Quantum Dots on Aquatic Environments: Comparison of Toxicity to Organisms at Different Trophic Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14445-14451. [PMID: 30486644 DOI: 10.1021/acs.est.8b04235] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon quantum dots (CQDs) have high hydrophilicity, high cell permeability, and are frequently used in water-based and biorelated applications, yet studies concerning the ecological risks of CQDs in aquatic environments are largely insufficient. In the present study, the toxicity of CQDs to zebrafish ( Danio rerio), zooplankton ( Daphnia magna), and phytoplankton ( Scenedesmus obliquus) were assessed for the first time. The results indicated that CQDs (up to 200 mg/L) could be depurated by D. rerio with negligible toxicity. In comparison, CQDs induced mortality and immobility in D. magna with a 48-h EC50 value and LC50 value of 97.5 and 160.3 mg/L, respectively. In S. obliquus, CQDs inhibited photosynthesis and nutrition absorption in a dose- and time-dependent manner, and the growth of algae was also inhibited with a 96-h EC50 value of 74.8 mg/L, suggesting that S. obliquus, the lowest trophic level in this study, was most sensitive to CQDs exposure. Further investigations revealed that CQDs induced an increase in oxidative stress in algae cells and a decrease in pH value of an algae medium, indicating that oxidative stress and water acidification may be the mechanisms underlying the toxicity of CQDs to S. obliquus.
Collapse
Affiliation(s)
- Kun Yao
- School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou 510000 , P.R. China
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xiaohui Lv
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Guangqiang Zheng
- School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou 510000 , P.R. China
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Zuohong Chen
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Yuelu Jiang
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Zhenyu Wang
- College of Environmental Science and Engineering and Qingdao Collaborative Innovation Center of Marine Science and Technology , Ocean University of China , Qingdao 266100 , China
- Institute of Environmental Processes and Pollution Control and the School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , China
| | - Zhonghua Cai
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| |
Collapse
|
42
|
Wang Y, Han Y, Xu P, Guo B, Li W, Wang X. The metabolism distribution and effect of imidacloprid in chinese lizards (Eremias argus) following oral exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:476-483. [PMID: 30218971 DOI: 10.1016/j.ecoenv.2018.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/20/2023]
Abstract
Systematically evaluation of the metabolism, distribution and effect of imidacloprid in Chinese lizards (Eremias argus) were carried out following oral exposure. Imidacloprid-olefin-guanidine was prone to accumulate in the brain and caused potential neurotoxicity. Percutaneous and excretory excretions were the primary ways for the elimination of imidacloprid and its metabolites. Liver was the main site for hydroxy reduction and nitro-reduction metabolism of imidacloprid. The metabolism of imidacloprid was a complex process in which many metabolic enzymes participated. Aldehyde oxidase and CYP2C9 were the key enzymes in nitro-reduction process. CYP3A4 dominated the process of hydroxylation and desaturation. The increase in Glutathione S-transferase expression may be related to the removal of imidacloprid, but also related to the oxidative stress reaction that imidacloprid may cause in tissues, especially in the kidney. The findings enrich and supplement the knowledge of the environmental fate of imidacloprid in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yongtao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Xiangyun Wang
- Zhejiang Academy of Agricultural Sciences Institute of Agricultural Products Quality Standard, 198 Shiqiao Road, Hangzhou, Zhejiang 310021, PR China
| |
Collapse
|
43
|
Domínguez GA, Torelli MD, Buchman JT, Haynes CL, Hamers RJ, Klaper RD. Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. ENVIRONMENTAL RESEARCH 2018; 167:267-275. [PMID: 30077134 DOI: 10.1016/j.envres.2018.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Nanodiamonds are a type of engineered nanomaterial with high surface area that is highly tunable and are being proposed for use as a material for medical imaging or drug delivery to composites. With their potential for widespread use they may potentially be released into the aquatic environment as are many chemicals used for these purposes. It is generally thought that nanodiamonds are innocuous, but toxicity may occur due to surface functionalization. This study investigated the potential oxidative stress and antioxidant response of enterocytes in a freshwater invertebrate, Daphnia magna, a common aquatic invertebrate for ecotoxicological studies, in response to two types of functionalized nanodiamonds (polyallylamine and oxidized). We also examined how the size of the nanomaterial may influence toxicity by testing two different sizes (5 nm and 15 nm) of nanodiamonds with the same functionalization. Adults of Daphnia magna were exposed to three concentrations of each of the nanodiamonds for 24 h. We found that both 5 and 15 nm polyallylamine nanodiamond and oxidized nanodiamond induced the production of reactive oxygen species in tissues. The smaller 5 nm nanodiamond induced a significant change in the expression of heat shock protein 70 and glutathione-S-transferase. This may suggest that daphnids mounted an antioxidant response to the oxidative effects of 5 nm nanodiamonds but not the comparative 15 nm nanodiamonds with either surface chemistry. Outcomes of this study reveal that functionalized nanodiamond may cause oxidative stress and may potentially initiate lipid peroxidation of enterocyte cell membranes in freshwater organisms, but the impact of the exposure depends on the particle size.
Collapse
Affiliation(s)
- Gustavo A Domínguez
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States
| | - Marco D Torelli
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Joseph T Buchman
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Christy L Haynes
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Robert J Hamers
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States.
| |
Collapse
|
44
|
Wang Y, Han Y, Xie Y, Xu P, Li W. The metabolism distribution and effect of dinotefuran in Chinese lizards (Eremias argus). CHEMOSPHERE 2018; 211:591-599. [PMID: 30096572 DOI: 10.1016/j.chemosphere.2018.07.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The Chinese lizards (Eremias argus) were used to evaluate the metabolism, distribution and effect of dinotefuran following oral exposed. The HPLC equipped with Q Exactive focus was used for metabolite identification and concentration analysis. After single oral administration, the time-concentration curves of dinotefuran and its metabolites were tissue-dependent. The liver and kidney were the major metabolic organs. Percutaneous and urinary excretions were the main ways for lizards to eliminate dinotefuran, and the urine output was the limiting factor. Nitro-reduction was an important process of the metabolism of dinotefuran that was dominated by aldehyde oxidase, and P450 enzymes were involved. The CYP3A4 and CYP2C19 played a crucial role in the other metabolic pathways of dinotefuran. The mRNA expressions of GST family were severely inhibited in liver, which showed dinotefuran might pose a risk of damaging the oxidative stress system in liver. Prolonged residuals of dinotefuran and its demethylation metabolite might enhance the risk of dinotefuran to brain. The results enrich and supplement the knowledge of the environmental fate of dinotefuran in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.
| | - Yongtao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Yun Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| |
Collapse
|
45
|
Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, Dziewięcka M, Augustyniak M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. ENVIRONMENTAL RESEARCH 2018; 166:602-609. [PMID: 29982148 DOI: 10.1016/j.envres.2018.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED The use of nanodiamonds in numerous materials designed for industry and medicine is growing rapidly. Consequently health and environmental risks associated with the exposure of humans and other biota to nanodiamonds-based materials are of the utmost importance. Scarcity of toxicological data for these particles led us to examine the potentially deleterious effects of nanodiamonds in model insect species, Acheta domesticus (Orthoptera) chronically exposed to ND in its diet. Organism-level end-point indices (lifespan, body weight, consumption, caloric value of faeces, reproduction) revealed adverse changes in the treated crickets in comparison with the control. Preliminary studies of oxidative stress level in the offspring of ND-treated crickets suggest toxicity of these particles limited to the exposed individuals. EPR analysis showing increase of radical signal in the faeces of ND-fed crickets led us to propose novel mechanism of nanodiamonds toxicity that is discussed in the light of literature data. CAPSULE Development and reproduction of Acheta domesticus can be disturbed by the chronic exposure to nanodiamonds.
Collapse
Affiliation(s)
- Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Andrzej Kędziorski
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | | | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
46
|
De Marchi L, Neto V, Pretti C, Chiellini F, Morelli A, Soares AMVM, Figueira E, Freitas R. Does the exposure to salinity variations and water dispersible carbon nanotubes induce oxidative stress in Hediste diversicolor? MARINE ENVIRONMENTAL RESEARCH 2018; 141:186-195. [PMID: 30201273 DOI: 10.1016/j.marenvres.2018.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Salinity plays a fundamental role in naturally fluctuating environments such as estuaries influencing physiological and biochemical performance of inhabiting biota. Moreover salinity is considered one of the main factors influencing nanoparticles' stability. Thus, the aim of the present paper was to show the impacts induced by different salinities (control-28 and 21) on the chemical behavior of water dispersible multi-walled carbon nanotube (MWCNTs-COOH) and the consequent toxicity in the common ragworm Hediste diversicolor, after long term exposure. Results showed a concentration-dependent toxicity in terms of energy reserves and metabolism, oxidative status and neurotoxicity. In addition, under low salinity (21), the toxicity of the carbon NMs was similar to the impacts measured under control (28), although under salinity 28 the concentrations of MWCNTs-COOH used generated greater alterations in LPO levels and antioxidant enzymes (SOD and GPx). These results demonstrate that higher salinity caused the formation of large-size aggregates, which increased the chance of physical retention, such as gravitational sedimentation, interception and straining of f-MWCNTs generating higher cell injuries than the impacts induced in polychaetes sensitivity to these contaminates due to low salinity.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
47
|
Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E. The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:484-493. [PMID: 29908840 DOI: 10.1016/j.jhazmat.2018.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Although an increasing number of studies have been published on the effects of emergent pollutants such as carbon nanoparticles, there is still scarce information on the impact of these contaminants on marine organisms when acting in combination with classical pollutants such as meta(loid)s. The present study evaluated the impacts of Arsenic and Multi-Walled Carbon Nanotubes (MWCNTs) in the clam Ruditapes philippinarum, assessing the effects induced when both contaminants were acting individually (As, NP) and as a mixture (As + NP). Metabolic capacity (electron transport system activity), oxidative stress (antioxidant and biotransformation enzymes activity and cellular damage) and neurotoxicity (Acetylcholinesterase activity) biomarkers were evaluated in clams after a 28 days exposure period. The results obtained showed that the accumulation of As was not affected by the presence of the NPs. Our results demonstrated that higher injuries were noticed in clams exposed to NPs, with higher metabolic depression and oxidative stress, regardless of the presence of As. Furthermore, higher neurotoxicity was observed in clams exposed to the combination of both contaminants in comparison to the effects of As and NPs individually.
Collapse
Affiliation(s)
- Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valeria Codella
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Napoli Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
48
|
Fkiri A, Sellami B, Selmi A, Khazri A, Saidani W, Imen B, Sheehan D, Hamouda B, Smiri LS. Gold Octahedra nanoparticles (Au_ 0.03 and Au_ 0.045): Synthesis and impact on marine clams Ruditapes decussatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:97-104. [PMID: 30014987 DOI: 10.1016/j.aquatox.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_0.03 and Au_0.045) in 1.3-propandiol with polyvinyl-pyrrolidone K30 (PVPK30) as capping agent using polyol process. Shape, size and optical properties of the particles could be tuned by changing the molar ratio of PVP K30 to metal salts. The anisotropy in nanoparticles shape shows strong localized surface plasmon resonance (SPR) in the near infrared region of the electromagnetic spectrum. Environmental impact of Oct-AuNPs was determined in the marine bivalve, Ruditapes decussatus exposed to different concentrations of Au_0.03 and Au_0.045. The dynamic light scattering showed the stability and resistance of Au_0.03 and Au_0.045 in the natural seawater. No significant modification in vg-like proteins, MDA level and enzymatic activities were observed in treated clams with Au_0.03 even at high concentration. In contrast, Au_0.045 induced superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, in a concentration dependent manner indicating defense against oxidative stress. Enhanced lipid peroxidation represented by malondialdehyde content confirmed oxidative stress of Au_0.045 at high concentration. These results highlight the importance of the physical form of nanomaterials on their interactions with marine organisms and provide a useful guideline for future use of Oct-AuNPs. In addition, Vitellogenin is shown not to be an appropriate biomarker for Oct-AuNPs contamination even at high concentration. We further show that Oct-AuNPs exhibit an important antioxidant response without inducing estrogenic disruption.
Collapse
Affiliation(s)
- Anis Fkiri
- Unité de Recherche Synthèse et Structure de Nanomatériaux UR11ES30, Université de Carthage. Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisie
| | - Badreddine Sellami
- National Institute of Marine Sciences and Technologies, Tabarka, Tunisia.
| | - Aymen Selmi
- Laboratoire matériaux organisation et propriétés (LMOP), Universite´ de Tunis El Manar, Campus Universitaire, 2092 El Manar, Tunis, Tunisia
| | - Abdelhafidh Khazri
- Faculté des Sciences de Bizerte, Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtiere (GREEC), Zarzouna-Bizerte, Tunisia
| | - Wiem Saidani
- Faculté des Sciences de Bizerte, Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtiere (GREEC), Zarzouna-Bizerte, Tunisia
| | - Bouzidi Imen
- Faculté des Sciences de Bizerte, Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtiere (GREEC), Zarzouna-Bizerte, Tunisia
| | - David Sheehan
- Environmental Research Institute and Department of Biochemistry, University College Cork, Cork, Ireland; Department of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Beyrem Hamouda
- Faculté des Sciences de Bizerte, Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtiere (GREEC), Zarzouna-Bizerte, Tunisia
| | - Leila Samia Smiri
- Unité de Recherche Synthèse et Structure de Nanomatériaux UR11ES30, Université de Carthage. Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisie
| |
Collapse
|
49
|
Guo X, Feng C. Biological toxicity response of Asian Clam (Corbicula fluminea) to pollutants in surface water and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:56-70. [PMID: 29524903 DOI: 10.1016/j.scitotenv.2018.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
As a typical test species, Asian Clam (Corbicula fluminea) is widely used in the identification and evaluation of freshwater toxicity. This study provides a summary of the research published from 1979 to 2018. The focus was on the bioaccumulation, morphological and behavioral changes, and biochemical index alterations of Corbicula fluminea to target pollutants (i.e., ammonia, metal(loid)s, and organic chemicals) in surface water and sediment. The applications on the evaluation of actual aquatic pollution, determination of toxicological mechanisms, prediction of toxicity, and bioremediation are also specifically discussed. The primary purpose is to facilitate the comprehensive understanding and accurate application of Corbicula fluminea in freshwater ecotoxicological studies.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
50
|
Wang Y, Zhang Y, Xu P, Guo B, Li W. Metabolism Distribution and Effect of Thiamethoxam after Oral Exposure in Mongolian Racerunner ( Eremias argus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7376-7383. [PMID: 29923398 DOI: 10.1021/acs.jafc.8b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematic evaluation of the metabolism, distribution, and effect of thiamethoxam in Mongolian racerunner ( Eremias argus) was carried out after oral exposure. HPLC equipped with Q Exactive focus was used for identification and concentration analysis of thiamethoxam and its metabolites. Percutaneous and urine excretions were the primary ways for the elimination of thiamethoxam and its metabolites, and the limiting factor was urine output. Demethylated thiamethoxam and clothianidin were the main metabolites of thiamethoxam in lizards. CYP3A4, CYP3A7, and CYP2C9 played a crucial role in the metabolism process. Aldehyde oxidase only dominated the nitro-reduction process of demethylated thiamethoxam and clothianidin. Glutathione S-transferase might be related to the clearance process of thiamethoxam and its metabolites. The findings indicated that thiamethoxam might pose potential carcinogenic and hepatic injury risk to lizards. The results enrich and supplement the knowledge of the environmental fate of thiamethoxam in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Yang Zhang
- Benxi institute for Drug Control , No. 31 Shengli Road , Mingshan District, Benxi 117000 , P.R. China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Wei Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| |
Collapse
|