1
|
Thangaraj SV, Bellingham M, Lea R, Evans N, Sinclair K, Padmanabhan V. Developmental programming: Sex-specific effects of prenatal exposure to a real-life mixture of environmental chemicals on liver function and transcriptome in sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125630. [PMID: 39756566 PMCID: PMC11813678 DOI: 10.1016/j.envpol.2025.125630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Humans are chronically exposed to a mixture of environmental chemicals (ECs), many with metabolic and endocrine disrupting potential, contributing to non-communicable disease burden. Understanding the effects of chronic exposure to low-level mixtures of ECs requires an animal model that reflects real-world conditions, lags behind studies on single ECs. Biosolids, from wastewater treatment, offers a real-life model to investigate the developmental health risks from EC mixtures. Prenatal biosolids exposure studies have documented metabolic perturbations including heavier thyroid glands in male fetuses and reduced bodyweight in prepubertal male lambs followed by catchup growth. We hypothesized that maternal preconceptional and gestational exposure of sheep to biosolids programs sex-specific transcriptional and functional changes in the offspring liver. Ewes (F0) were grazed on either inorganic fertilizer (C) or biosolids-treated pastures (BTP) preconception till parturition. All lambs (n = 15/group with male n = 7/group and females n = 8/group) were raised on Control pastures until euthanasia at 9.5 weeks. Next generation sequencing of liver RNA and DESeq2 was used to identify exposure-specific differentially expressed genes (DEG) and sex-differentially expressed genes (SDG). Liver function was assessed with markers of oxidative stress, triglyceride and fibrosis markers. Control lambs exhibited 647 SDGs confirming the inherent sexual dimorphism in hepatic gene expression. A sex-stratified analysis identified 10 DEG, mostly affecting metabolism, in male and none in female lambs. Biosolids exposure diminished the sexual dimorphism in hepatic gene expression barring 41 genes, potentially due to the increase in androgenic steroids found in F0 maternal circulation. Additionally, BTP male lambs showed elevated plasma triglyceride and a trend towards increased liver triglyceride concentrations. The identified effects of prenatal exposure to low-dose mixture of ECs via biosolids, in a precocial species paralleling human developmental patterns holds translational importance for understanding the sexually dimorphic origin of non-communicable diseases.
Collapse
Affiliation(s)
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
2
|
Zheng J, Desrosiers M, Benjannet R, Bayen S. Simultaneous targeted and non-targeted analysis of contaminants in fertilizers in Quebec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177970. [PMID: 39675280 DOI: 10.1016/j.scitotenv.2024.177970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
In this study, an LC-MS based analytical method was developed and validated for the simultaneous targeted analysis (14 bisphenols and 14 plasticizers) and suspect screening of other plastic-related contaminants in various types of fertilizers. The ultrasound-assisted extraction method showed overall satisfactory performances, achieving a median absolute recovery of 85 % for the target compounds in different types of fertilizers. The method was applied to sixteen different types of fertilizers, including fertilizing residual materials (n = 8 types), one cattle manure, and seven mineral fertilizers collected in Quebec, Canada in 2022 and 2023. Relatively higher levels of the targeted bisphenols and plasticizers were detected in some fertilizing residual materials, such as municipal biosolids and deinking residues. 4-Hydroxyphenyl 4-isoprooxyphenylsulfone (D-8) and bis(2-ethylhexyl) phthalate (DEHP) were dominant contaminants in these matrixes, with concentrations up to 35.6 and 64.7 μg g-1 dw, respectively. A non-targeted workflow was successfully applied to municipal biosolids and deinking residues, and >30 contaminants were identified across multiple chemical families at level 1 identification confidence, with most of them previously unreported in various types of fertilizers. For example, new color developers, N-(2-((Phenylcarbamoyl)amino)phenyl)benzenesulfonamide (NKK-1304) and 2,4-bis(phenylsulfonyl)phenol (DBSP), were reported in deinking residues. This work illustrates the complexity of the contaminant mixtures in fertilizers such as municipal biosolids and deinking residues.
Collapse
Affiliation(s)
- Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Canada
| | - Rim Benjannet
- Département des sols et de génie agroalimentaire, Université Laval, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Canada.
| |
Collapse
|
3
|
Ji X, Li J, Wang W, Li P, Wu H, Shen L, Su L, Jiang P, Li Y, Wu X, Tian Y, Liu Y, Yue H. Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure. ENVIRONMENTAL RESEARCH 2025; 264:120371. [PMID: 39549911 DOI: 10.1016/j.envres.2024.120371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including Pgr, Gata3, Egfr and Areg were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure in utero and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| | - Jiande Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Peilin Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Haoyang Wu
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Linzhuo Shen
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lihong Su
- Department of Pathology, Shanxi Provincial People's Hospital, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yu Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
4
|
Lu X, Wang X, He H, Liu Q, Li J, Zhao Z, Yang P, Pan Z, Wang Z. Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137013. [PMID: 39736254 DOI: 10.1016/j.jhazmat.2024.137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO2 ≫ γ-MnOOH > Mn3O4. Adding pyrophosphate (PP) significantly enhanced BPA degradation by promoting the formation of Mn(III)-PP complexes and exposing more reactive sites, achieved through destabilizing the crystal structure and mitigating of Mn(II) readsorption, particularly in γ-MnOOH and Mn3O4. Our kinetic model revealed that heterogeneous degradation by Mn oxides is the predominant reaction pathway, accounting for 61.4 %, 87.8 %, and 73.8 % of the total degraded BPA for δ-MnO2, γ-MnOOH, and Mn3O4, respectively, even in the presence of significant amount of dissolved Mn(III) intermediates due to high PP concentrations. These results offer mechanistic details on BPA degradation by Mn oxides and the influence of ligand concentration, providing helpful insights for optimizing degradation strategies of organic pollutants.
Collapse
Affiliation(s)
- Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ziyi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wu Y, Yang T, Wu Y, Liang Y, Zeng X, Yu Z, Peng P. Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22799-22807. [PMID: 39665776 DOI: 10.1021/acs.est.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF3- fragment and were found to accumulate during BPAF degradation. Sphingopyxis was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as Pandoraea, which may play a supporting role in the community.
Collapse
Affiliation(s)
- Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyue Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511457, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Cheng S, Huang M, Liu S, Yang M. Bisphenol F and bisphenol S induce metabolic perturbations in human ovarian granulosa cells. ARAB J CHEM 2024; 17:105904. [DOI: 10.1016/j.arabjc.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024] Open
|
7
|
Wang P, Su Y, Wu D, Xie B. Plasticizers inhibit food waste anaerobic digestion performance by affecting microbial succession and metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134554. [PMID: 38759407 DOI: 10.1016/j.jhazmat.2024.134554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Newmeyer MN, Lyu Q, Sobus JR, Williams AJ, Nachman KE, Prasse C. Combining Nontargeted Analysis with Computer-Based Hazard Comparison Approaches to Support Prioritization of Unregulated Organic Contaminants in Biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12135-12146. [PMID: 38916220 PMCID: PMC11381038 DOI: 10.1021/acs.est.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Liao M, Gan Z, Sun W, Su S, Li Z, Zhang Y. Spatial distribution, source identification, and potential risks of 14 bisphenol analogues in soil under different land uses in the megacity of Chengdu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124064. [PMID: 38701965 DOI: 10.1016/j.envpol.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17β-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yunqian Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, Beijing, China
| |
Collapse
|
10
|
Fan Y, Li S, Yang X, Bai S, Tang M, Zhang X, Lu C, Ji C, Du G, Qin Y. Multi-omics approach characterizes the role of Bisphenol F in disrupting hepatic lipid metabolism. ENVIRONMENT INTERNATIONAL 2024; 187:108690. [PMID: 38685157 DOI: 10.1016/j.envint.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.
Collapse
Affiliation(s)
- Yun Fan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiancheng Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Tang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
12
|
Li B, Huang Y, Pi D, Li X, Guo Y, Liang Z, Song X, Wang J, Wang X. Effects of Acute and Developmental Exposure to Bisphenol S on Chinese Medaka ( Oryzias sinensis). J Xenobiot 2024; 14:452-466. [PMID: 38525695 PMCID: PMC10961820 DOI: 10.3390/jox14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Bisphenol S (BPS), one of the substitutes for bisphenol A (BPA), is widely used in various commodities. The BPS concentrations in surface water have gradually increased in recent years, making it a predominant bisphenol analogue in the aquatic environment and raising concerns about its health and ecological effects on aquatic organisms. For this study, we conducted a 96 h acute toxicity test and a 15-day developmental exposure test to assess the adverse effects of BPS exposure in Chinese medaka (Oryzias sinensis), a new local aquatic animal model. The results indicate that the acute exposure of Chinese medaka embryos to BPS led to relatively low toxicity. However, developmental exposure to BPS was found to cause developmental abnormalities, such as decreased hatching rate and body length, at 15 dpf. A transcriptome analysis showed that exposure to different concentrations of bisphenol S often induced different reactions. In summary, environmental concentrations of BPS can have adverse effects on the hatching and physical development of Chinese medaka, and further attention needs to be paid to the potential toxicity of environmental BPS.
Collapse
Affiliation(s)
- Bingying Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Yongsi Huang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Duan Pi
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xiang Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Yafen Guo
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Zhiying Liang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xiaohong Song
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China;
| | - Junjie Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| |
Collapse
|
13
|
Zhu X, Cao L, Liu Y, Tang X, Miao Y, Zhang J, Zhang L, Jia Z, Chen J. Genotoxicity of bisphenol AF in rats: Detrimental to male reproductive system and probable stronger micronucleus induction potency than BPA. J Appl Toxicol 2024; 44:428-444. [PMID: 37837293 DOI: 10.1002/jat.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Bisphenol AF (BPAF), as one of structural analogs of BPA, has been increasingly used in recent years. However, limited studies have suggested its adverse effects similar to or higher than BPA. In order to explore the general toxicity and genotoxicity of subacute exposure to BPAF, the novel 28-day multi-endpoint (Pig-a assay + micronucleus [MN] test + comet assay) genotoxicity evaluation platform was applied. Male rats were randomly distributed into seven main experimental groups and four satellite groups. The main experimental groups included BPAF-treated groups (0.5, 5, and 50 μg/kg·bw/d), BPA group (10 μg/kg·bw/d), two solvent control groups (PBS and 0.1% ethanol/99.9% oil), and one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw). The satellite groups included BPAF high-dose recovery group (BPAF-HR), oil recovery group (oil-R), ENU recovery group (ENU-R), and PBS recovery group (PBS-R). All groups received the agents orally via gavage for 28 consecutive days, and satellite groups were given a recovery period of 35 days. Among all histopathologically examined organs, testis and epididymis damage was noticed, which was further manifested as blood-testis barrier (BTB) junction protein (Connexin 43 and Occludin) destruction. BPAF can induce micronucleus production and DNA damage, but the genotoxic injury can be repaired after the recovery period. The expression of DNA repair gene OGG1 was downregulated by BPAF. To summarize, under the design of this experiment, male reproductive toxicity of BPAF was noticed, which is similar to that of BPA, but its ability to induce micronucleus production may be stronger than that of BPA.
Collapse
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Second People's Hospital of Yibin City, Yibin, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital of Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
14
|
Pan Y, Xie R, Wei X, Li AJ, Zeng L. Bisphenol and analogues in indoor dust from E-waste recycling sites, neighboring residential homes, and urban residential homes: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168012. [PMID: 37871824 DOI: 10.1016/j.scitotenv.2023.168012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The compound 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) has recently emerged as a novel alternative to bisphenol A (BPA) and has been found in various paper products. However, there is limited information available regarding the identification of BPSIP as a novel contaminant in the e-waste dismantling area. In our research, we conducted a comprehensive analysis of 16 bisphenol analogues (BPs), including BPSIP, within indoor dust samples obtained from a representative e-waste recycling facility, neighboring rural communities, and control urban communities. Out of the 16 target BPs, ten were found in both e-waste and local household dust, while only six BPs were identified in the control urban household dust. Bisphenol A (BPA) remained the predominant compound, followed by bisphenol F (BPF), bisphenol S (BPS), BPSIP and bisphenol AF (BPAF). The total concentrations of BPs in e-waste dust were notably higher compared to both local and urban household dust (p < 0.01), with BPA and BPF, in particular, exhibiting significantly elevated levels. Importantly, BPSIP was first identified in e-waste dust, and its concentration significantly exceeded that of the commonly used BPA alternative, BPAF, which justifiably merits increasing concern. Correlation analysis indicated that BPs were commonly used in the production of electronic products, and e-waste dismantling activities contributed significantly to their widespread emission. The daily intakes of BP through dust ingestion for these three population groups exceeded the recently established tolerable daily intake for BPA, especially among e-waste dismantling workers. This represents the first report indicating that e-waste recycling is causing substantial emissions of multiple bisphenol analogues, including a novel contaminant.
Collapse
Affiliation(s)
- Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Agricultural Science and Engineering, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Ruiman Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
15
|
Yang X, Zhou Q, Wang Q, Wu J, Zhu H, Zhang A, Sun J. Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122552. [PMID: 37714399 DOI: 10.1016/j.envpol.2023.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinghua Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qianwen Wang
- Research and Teaching Center of Agriculture, Zhejiang Open University, Hangzhou, 310012, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haofeng Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
16
|
Neighmond H, Quinn A, Schmandt B, Ettinger K, Hill A, Williams L. Developmental bisphenol S toxicity in two freshwater animal models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104311. [PMID: 37939749 PMCID: PMC11178287 DOI: 10.1016/j.etap.2023.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Freshwater animals are exposed to anthropogenic contaminants and are biomonitors of water quality and models of the deleterious impacts of exposure. Sponges, such as Ephydatia muelleri, constantly pump water and are effective indicators of water-soluble contaminants. Zebrafish (Danio rerio), native to Southeast Asia, live in the water column and feed at the water-sediment interface and are exposed to both water-soluble and insoluble contaminants. While sponges and zebrafish diverged ∼700 million years ago, they share common genetic elements, and their response to contaminants can be predictive to a wide-range of animals. An emerging contaminant, bisphenol S, was tested to evaluate its toxicity during development. The toxicity and mechanism(s) of action of BPS is not well known. Water-borne exposures to BPS caused differing hatching rates, morphological changes, and shared gene expression changes of toxicologically-relevant genes. This study shows that BPS causes similarly adverse developmental impacts pointing to some overlapping mechanisms of action.
Collapse
Affiliation(s)
- Hayley Neighmond
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Abigail Quinn
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Benjamin Schmandt
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Kerry Ettinger
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - April Hill
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Larissa Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| |
Collapse
|
17
|
Peng X, Zhou J, Chen G, Tan J, Zhu Z. Profile, Tissue Distribution, and Time Trend of Bisphenol Plastic Additives in Freshwater Wildlife of the Pearl River Ecosystem, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2130-2142. [PMID: 37431940 DOI: 10.1002/etc.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%-100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130-2142. © 2023 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Vighi M, Borrell A, Sahyoun W, Net S, Aguilar A, Ouddane B, Garcia-Garin O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). CHEMOSPHERE 2023; 339:139686. [PMID: 37544523 DOI: 10.1016/j.chemosphere.2023.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are important compounds for the plastics industry, also called "everywhere chemicals" due to their ubiquity in daily use products. Both chemical groups are well-known environmental contaminants, whose presence has been reported in all environmental compartments, and whose effects, mainly associated to endocrine disruption, are detrimental to living organisms. Cetaceans, due to their long life-span, low reproduction rate and high position in the trophic web, are especially vulnerable to the effects of contaminants. However, little is known about BP and PAE concentrations in cetacean tissues, their potential relation to individual biological variables, or their trends over time. Here, the concentration of 10 BPs and 13 PAEs was assessed in the muscle of 30 striped dolphins (Stenella coeruleoalba) stranded along the Spanish Catalan coast (NW Mediterranean) between 1990 and 2018. Six BP and 6 PAE compounds were detected, of which only 4,4'-(cyclohexane-1,1-diyl)diphenol (BPZ) was detected in all the samples, at the highest concentration (mean 16.06 μg g-1 lipid weight). Sex or reproductive condition were largely uninfluential on concentrations: only dimethylphthalate (DMP) concentrations were significantly higher in immature individuals than in adults, and the overall PAE concentrations were significantly higher in males than in females. Temporal variations were only detected in bis(4-hydroxyphenyl)ethane (BPE), diethylphthalate (DEP) and dimethylphthalate (DMP), whose concentrations were lower, and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL), which were higher, respectively, in samples taken between 2014 and 2018, probably reflecting shifts in the production and use of these chemicals. These results provide the first assessment of concentrations of several BP and PAE compounds in the muscle of an odontocete cetacean.
Collapse
Affiliation(s)
- Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Wissam Sahyoun
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Sopheak Net
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
20
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
21
|
Zhao X, Zhang Y, Yu T, Cai L, Liang J, Chen Z, Pan C, Yang M. Transcriptomics-based analysis of sex-differentiated mechanisms of hepatotoxicity in zebrafish after long-term exposure to bisphenol AF. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115324. [PMID: 37556959 DOI: 10.1016/j.ecoenv.2023.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Bisphenol AF (BPAF) is an emerging endocrine-disrupting chemical (EDC) prevalent in the environment as one of the main substitutes for bisphenol A. Sex-specific effects of EDCs have been commonly reported and closely linked to sexually dimorphic patterns of hormone metabolism and related gene expression during different exposure windows, but our understanding of these mechanisms is still limited. Here, following 28-day exposure of adult zebrafish to an environmentally relevant concentration of BPAF at 10 μg/L, the global transcriptional networks applying RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) were respectively investigated in the male and female fish liver, connecting the sex-dependent toxicity of the long-term exposure of BPAF to molecular responses. As a result, more differentially expressed genes (DEGs) were detected in males (811) than in females (195), and spermatogenesis was the most enriched Gene Ontology (GO) functional classification in males, while circadian regulation of gene expression was the most enriched GO term in females. The expression levels of selected DEGs were routinely verified using qRT-PCR, which showed consistent alterations with the transcriptional changes in RNA-seq data. The causal network analysis by IPA suggested that the adverse outcomes of BPAF in males including liver damage, apoptosis, inflammation of organ, and liver carcinoma, associated with the regulation of several key DEGs detected in RNA-seq, could be linked to the activation of upstream regulatory molecules ifnα, yap1, and ptger2; while, the inhibition of upstream regulators hif1α, ifng, and igf1, leading to the down-regulated expression of several key DEGs, might be involved in BPAF's effects in females. Furthermore, BPAF exposure altered hepatic histological structure and inhibited antioxidant capability in both male and female livers. Overall, this study revealed different regulation networks involved in the sex-dependent effects of BPAF on the fish liver, and these detected DEGs upon BPAF exposure might be used as potential biomarkers for further assessing sex-specific hepatotoxicity following environmental EDC exposure.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China.
| | - Junlang Liang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian 362200, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
22
|
Jenzri M, Gharred C, Bouraoui Z, Guerbej H, Jebali J, Gharred T. Assessment of single and combined effects of bisphenol-A and its analogue bisphenol-S on biochemical and histopathological responses of sea cucumber Holothuria poli. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106032. [PMID: 37267666 DOI: 10.1016/j.marenvres.2023.106032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bisphenols (BPs) are among emerging pollutants that have been frequently detected in different compartments of marine ecosystems and elicited great concern due to their potential toxicity to marine organisms. This work aimed to investigate the toxicity of bisphenol A (BPA) and bisphenol S (BPS) on oxidative stress markers, neurotoxicity and histopathological alterations in sea cucumbers (Holothuria poli). The results showed that exposure to 200 μg/L of BPA and BPS produced oxidative stress, neurotoxicity in the digestive tract and respiratory tree, and several types of histopathological lesions in tissues of the respiratory tree of the sea cucumber, posing a health hazard to this aquatic organism. In addition, BPA has greater effects than BPS on the generation of oxidative stress marked by the inductions of catalase (CAT), glutathione S-transferase (GST) and malondialdehyde (MDA) levels and neurotoxicity shown by the decrease in acetylcholinesterase activity (AChE). The respiratory tree of sea cucumbers might be an appropriate tissue for assessing CAT, MDA and AChE activity levels, which are reliable biomarkers that may be useful in marine biomonitoring studies. Evaluation of histopathological lesions of the respiratory tree suggests that BPA and BPS and their mixture cause various tissue alterations that may be associated with oxidative stress damage and neurotoxicity. In conclusion, this study showed that oxidative stress (CAT and MDA) and neurotoxicity (AChE) markers, as well as respiratory tree lesions, are sensitive biomarkers for the assessment of BPA and BPS toxicity in sea cucumbers.
Collapse
Affiliation(s)
- Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia.
| | - Chayma Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| | - Zied Bouraoui
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, BP 59, 5000, Monastir, Tunisia
| | - Hamadi Guerbej
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, BP 59, 5000, Monastir, Tunisia
| | - Jamel Jebali
- Research Laboratory of Genetics, Biodiversity and Valorization of Bioresources (LR11ES41), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000, Monastir, Tunisia
| | - Tahar Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| |
Collapse
|
23
|
Jia S, Marques Dos Santos M, Li C, Fang M, Sureshkumar M, Snyder SA. Analogy or fallacy, unsafe chemical alternatives: Mechanistic insights into energy metabolism dysfunction induced by Bisphenol analogs in HepG2 cells. ENVIRONMENT INTERNATIONAL 2023; 175:107942. [PMID: 37094511 DOI: 10.1016/j.envint.2023.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Bisphenol analogs (BPs) are widely used as industrial alternatives for Bisphenol A (BPA). Their toxicity assessment in humans has mainly focused on estrogenic activity, while other toxicity effects and mechanisms resulting from BPs exposure remain unclear. In this study, we investigated the effects of three BPs (Bisphenol AF (BPAF), Bisphenol G (BPG) and Bisphenol PH (BPPH)) on metabolic pathways of HepG2 cells. Results from comprehensive cellular bioenergetics analysis and nontarget metabolomics indicated that the most important process affected by BPs exposure was energy metabolism, as evidenced by reduced mitochondrial function and enhanced glycolysis. Compared to the control group, BPG and BPPH exhibited a consistent pattern of metabolic dysregulation, while BPAF differed from both, such as an increased ATP: ADP ratio (1.29-fold, p < 0.05) observed in BPAF and significantly decreased ATP: ADP ratio for BPG (0.28-fold, p < 0.001) and BPPH (0.45-fold, p < 0.001). Bioassay endpoint analysis revealed BPG/BPPH induced alterations in mitochondrial membrane potential and overproductions of reactive oxygen species. Taken together these data suggested that BPG/BPPH induced oxidative stress and mitochondrial damage in cells results in energy metabolism dysregulation. By contrast, BPAF had no effect on mitochondrial health, but induced a proliferation promoting effect on cells, which might contribute to the energy metabolism dysfunction. Interestingly, BPPH induced the greatest mitochondrial damage among the three BPs but did not exhibit Estrogen receptor alpha (ERα) activating effects. This study characterized the distinct metabolic mechanisms underlying energy metabolism dysregulation induced by different BPs in target human cells, providing new insight into the evaluation of the emerging BPA substitutes.
Collapse
Affiliation(s)
- Shenglan Jia
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Mauricius Marques Dos Santos
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Caixia Li
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Mingliang Fang
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Department of Environmental Science and Engineering, Fudan University, 220 Handan Rd., Shanghai 200433, PR China
| | - Mithusha Sureshkumar
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
24
|
Ma N, Ma D, Liu X, Zhao L, Ma L, Ma D, Dong S. Bisphenol P exposure in C57BL/6 mice caused gut microbiota dysbiosis and induced intestinal barrier disruption via LPS/TLR4/NF-κB signaling pathway. ENVIRONMENT INTERNATIONAL 2023; 175:107949. [PMID: 37126915 DOI: 10.1016/j.envint.2023.107949] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Despite being one of the most world's widely used and mass-produced compounds, bisphenol A (BPA) has a wide range of toxic effects. Bisphenol P (BPP), an alternative to BPA, has been detected in many foods. The effects of BPP dietary exposure on gut microbiota and the intestinal barrier were unclear. We designed three batches of animal experiments: The first studied mice were exposed to BPP (30 µg/kg BW/day) for nine weeks and found that they gained weight and developed dysbiosis of the gut microbiota. The second, using typical human exposure levels (L, 0.3 µg/kg BW/day BPP) and higher concentrations (M, 30 µg/kg BW/day BPP; H, 3000 µg/kg BW/day BPP), caused gut microbiota dysbiosis in mice, activated the Lipopolysaccharide (LPS) /TLR4/NF-κB signaling pathway, triggered an inflammatory response, increased intestinal permeability, and promoted bacterial translocation leading to intestinal barrier disruption. The third treatment used a combination of antibiotics and alleviated intestinal inflammation and injury. This study demonstrated the mechanism of injury and concentration effects of intestinal damage caused by BPP exposure, providing reference data for BPP use and control and yielding new insights for human disease prevention.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Diao Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Xia Liu
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lining Zhao
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lei Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Dan Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Sijun Dong
- College of Life Science, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
25
|
Qian Y, Ye Z, Wu Y, Wang D, Xie X, Ding T, Zhang L, Li J. Bioaccumulation, internal distribution and toxicity of bisphenol S in the earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161169. [PMID: 36581266 DOI: 10.1016/j.scitotenv.2022.161169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Due to the strict rules and restrictions on the utilization of bisphenol A (BPA) around the world, an emerging endocrine disrupting chemical, bisphenol S (BPS) has been widely utilized as a substitute and frequently detected in the environment, even in the human body. Although it has been widely studied in the aquatic systems, the fate and toxicological effect of BPS in soil invertebrates are poorly known. This study presented a comprehensive exploration into the attenuation, bioaccumulation, and physiological distribution of BPS in an ecologically significant soil invertebrate, as well as its subsequent ecotoxicological effect to earthworm for the first time. The E. fetida could promote the BPS attenuation in soil, with degradation rates of 92.8 ± 1.6 % and 98.6 ± 1.1 % at dosage of 1.0 mg/kg dry weight soil (DWS) and 0.1 mg/kg DWS, respectively. The bioaccumulation of BPS in the earthworm was up to 111.6 ± 6.0 mg/kg lipid and 12.9 ± 2.9 mg/kg lipid with the initial dosage of 1.0 mg/kg DWS and 0.1 mg/kg DWS, respectively. Furthermore, BPS could induce oxidative stress and the process of antioxidant defense in earthworm cells at relatively high dose (1.0 mg/kg DWS and 10.0 mg/kg DWS), suggesting potential risks of BPS to the soil environment. This study could contribute to a more in-depth understanding of the fate of BPS in soil-earthworm system, and indicate a necessity for better understanding the environmental fate and ecological risks of BPA substitutes in the future.
Collapse
Affiliation(s)
- Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhiwei Ye
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yueyue Wu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingxin Wang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xintong Xie
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
26
|
Mazzeo DEC, Dombrowski A, Oliveira FA, Levy CE, Oehlmann J, Marchi MRR. Endocrine disrupting activity in sewage sludge: Screening method, microbial succession and cost-effective strategy for detoxification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117207. [PMID: 36621316 DOI: 10.1016/j.jenvman.2022.117207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) presents a high agronomic potential due to high concentrations of organic matter and nutrients, encouraging its recycling as a soil conditioner. However, the presence of toxic substances can preclude this use. To enable the safe disposal of this waste in agriculture, SS requires additional detoxification to decrease the environmental risks of this practice. Although some alternatives have been proposed in this sense, little attention is provided to eliminating endocrine-disrupting chemicals (EDCs). To fill this gap, this study aimed to develop effective and low-cost technology to eliminate EDCs from SS. For this, a detoxification process combining microorganisms and biostimulating agents (soil, sugarcane bagasse, and coffee grounds) was performed for 2, 4, and 6 months with aerobic and anaerobic SSs. The (anti-)estrogenic, (anti-)androgenic, retinoic-like, and dioxin-like activities of SSs samples were verified using yeast-based reporter-gene assays to prove the effectiveness of the treatments. A fractionation procedure of samples, dividing the target sample extract into several fractions according to their polarity, was conducted to decrease the matrix complexity and facilitate the identification of EDCs. A decrease in the abundance and microbial diversity of the SS samples was noted along the biostimulation with the predominance of filamentous fungal species over yeasts and gram-positive bacteria and non-fermenting rods over enterobacteria. Among the 9 EDCs quantified by LC-ESI-MS/MS, triclosan and alkylphenols presented the highest concentrations in both SS. Before detoxification, the studied SSs induced significant agonistic activity, especially at the human estrogen receptor α (hERα) and the human aryl hydrocarbon receptor (AhR). The raw anaerobic sludge also activated the androgen (hAR), retinoic acid (RARα), and retinoid X (RXRα) receptors. However, no significant endocrine-disrupting activities were observed after the SS detoxification, showing that the technology applied here efficiently eliminates receptor-mediated toxicity.
Collapse
Affiliation(s)
- Dânia Elisa C Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos - UFSCAR, Araras, Brazil.
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Flávio Andrade Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Mary Rosa R Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
27
|
Yang X, Wu J, Zhou Q, Zhu H, Zhang A, Sun J, Gan J. Congener-Specific Uptake and Metabolism of Bisphenols in Carrot Cells: Dissipation Kinetics, Biotransformation, and Enzyme Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1896-1906. [PMID: 36649116 DOI: 10.1021/acs.jafc.2c08197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Food consumption has been considered a key pathway of bisphenol compound (BP) exposure for humans. However, there is a lack of evidence concerning their congener-specific behavior and metabolism in plants. Herein, we examined the uptake and metabolism of five BPs in plants using carrot cells. Bisphenol S (BPS) and bisphenol AF (BPAF) exhibited substantially lower dissipation rates in the cells than the other BPs, indicating a strong selectivity in the uptake and metabolism among bisphenol congeners. For a total of 23 metabolites of BPs, the predominant biotransformation pathways were found to be glycosylation, methoxylation, and conjugation, while hydroxylation, methylation, and glutathionylation were only observed for some BPs. The changes in the mRNA expression of cytochrome P450 (P450) and the activities of glycosyltransferase and glutathione S-transferase were remarkably higher in cells exposed to bisphenol F, bisphenol A, and bisphenol B than in cells exposed to BPS and BPAF, indicating congener specificity in their effects on enzymes and the associated biotransformation processes. Consequently, the potential congener-specific differences in plant uptake, metabolism, and accumulation must be considered when assessing the environmental risks posed by these commonly used plasticizers.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Qinghua Zhou
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Haofeng Zhu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California92521, United States
| |
Collapse
|
28
|
Ren T, Perdana MC, Kříženecká S, Sochacki A, Vymazal J. Constructed wetlands for the treatment of household organic micropollutants with contrasting degradation behaviour: Partially-saturated systems as a performance all-rounder. CHEMOSPHERE 2023; 314:137645. [PMID: 36572365 DOI: 10.1016/j.chemosphere.2022.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The degradability of specific organic micropollutants in constructed wetlands (CWs) may differ depending on the prevalence of oxic or anoxic conditions. These conditions are governed, among other factors, by the water saturation level in the system. This study investigated the removal of three environmentally-relevant organic micropollutants: bisphenol-group plasticizer bisphenol S (BPS), household-use insecticide fipronil (FPN) and non-steroidal anti-inflammatory drug ketoprofen (KTP) in the model CWs set up in an outdoor column system. BPS and KTP, in contrast to FPN, exhibit higher biodegradability potential under oxic conditions. The experimental CWs were operated under various saturation conditions: unsaturated, partially saturated and saturated, and mimicked the conditions occurring in unsaturated, partially-saturated intermittent vertical-flow CWs and in horizontal-flow CWs, respectively. The CWs were fed with synthetic household wastewater with the concentration of the micropollutants at the level of 30-45 μg/L. BPS and KTP exhibited contrasting behaviour against FPN in the CWs in the present experiment. Namely, BPS and KTP were almost completely removed in the unsaturated CWs without a considerable effect of plants, but their removal in saturated CWs was only moderate (approx. 50%). The plants had only a pronounced effect on the removal of BPS in saturated systems, in which they enhanced the removal by 46%. The removal of FPN (approx. 90%) was the highest in the saturated and partially-saturated CWs, with moderate removal (66.7%) in unsaturated systems. Noteworthy, partially-saturated CWs provided high or very high removal of all three studied substances despite their contrasting degradability under saturated and unsaturated conditions. Namely, their removal efficiencies in planted CWs were 95.9%, 94.5% and 81.6%, for BPS, KTP and FPN, respectively. The removal of the micropollutants in partially-saturated CWs was comparable or only slightly lower than in the best treatment option making it the performance all-rounder for the compounds with contrasting biodegradability properties.
Collapse
Affiliation(s)
- Tongxin Ren
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Mayang Christy Perdana
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Sylvie Kříženecká
- J.E. Purkyně University in Ústí nad Labem, Faculty of the Environment, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic.
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| |
Collapse
|
29
|
Sun J, Zhang R, Xing L, Wu Q, Huang Y, Lou Y, Zhang R. Occurrence and removal of conventional pollutants, estrogenicities, and fecal coliform in village sewage treatment plants along the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18014-18025. [PMID: 36207631 DOI: 10.1007/s11356-022-23467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the occurrence and removal efficiency of some conventional pollutants, estrogenic effects, and fecal coliform in influents and/or effluents of village sewage treatment plants (STPs) in the upper, middle, and lower reaches of the Yangtze River Basin. The water quality of sewage from the village STPs showed significant seasonal and spatial variability. The removal rates of conventional pollutants by the village STPs were mostly lower than urban STPs, thereby resulting in that the water quality compliance rate of the effluents was only 33.3%. In addition, the average removal rate of estrogenic compounds was only 22.2%, which caused the estrogenicity of effluent to exceed the safety threshold. And E2 was determined to be the main estrogenic component. Moreover, ultraviolet (UV) disinfection, as the main disinfection treatment process of sewage along the Yangtze River Basin, was unable to meet the discharge standard of fecal coliform. The sequential chlorine (10 mg L-1)-UV (20 mJ cm-2) disinfection was found to both achieve up-to-standard discharge of fecal coliform and increase the removal rate of estrogenic effect from 3.78 to 9.86%. Overall, the present study provides valuable information on the conventional pollutants, estrogenic effects, and fecal coliform in sewage from village STPs along the Yangtze River Basin, and practical suggestions for basin-wide pollution control.
Collapse
Affiliation(s)
- Jie Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Rutao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Liqun Xing
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, 224000, China
| | - Qiuxuan Wu
- School of Water Conservancy and Environment, University of Jinan, 336 Nanxinzhuang West Road, Jinan, 250022, China
| | - Yu Huang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210023, China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, 336 Nanxinzhuang West Road, Jinan, 250022, China.
| |
Collapse
|
30
|
Tuzimski T, Szubartowski S, Stupak A, Kwaśniewski W, Szultka-Młyńska M, Kwaśniewska A, Buszewski B. The Association between the Bisphenols Residues in Amniotic Fluid and Fetal Abnormalities in Polish Pregnant Women-Its Potential Clinical Application. Int J Mol Sci 2023; 24:ijms24010730. [PMID: 36614173 PMCID: PMC9821541 DOI: 10.3390/ijms24010730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the relationship between the concentrations of bisphenols residues in the amniotic fluid (AF) samples collected during amniocentesis and fetal chromosomal abnormalities in pregnant women. A total of 33 pregnant Polish women aged between 24 and 44 years, and screened to detect high risk for chromosomal defects in the first trimester, were included in this study. Samples were collected from these patients during routine diagnostic and treatment procedures at mid-gestation. The concentrations of various bisphenols residues in the samples were determined by liquid chromatography coupled with triple quadrupole tandem mass spectrometry (LC-ESI-QqQ-MS/MS). Residues of eight analytes (BPS, BPF, BPA, BPAF, BADGE, BADGE•2H2O, BADGE•H2O•HCl and BADGE•2HCl) were detected in amniotic fluid samples in the range 0.69 ng/mL to 3.38 ng/mL. Fetuses with chromosomal abnormalities showed a slightly higher frequency of occurrence of selected bisphenols residues in the AF samples collected between 15-26 weeks of pregnancies. Finally, the proposed method was applied in the simultaneous determination of several endocrine-disrupting chemicals from bisphenol group in 33 human AF samples. BADGE•H2O•HCl has been identified in the AF samples taken from women older than average in the examined group. The number of detected compounds has been significant for the following analytes: BPS, BPAF, BADGE•H2O•HCl and BADGE. The proposed method may be an attractive alternative for application in large-scale human biomonitoring studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-(81)-4487213
| | - Szymon Szubartowski
- Department of Physical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Doctoral School of Medical University of Lublin, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Stupak
- Chair and Department of Obstetrics and Pathology of Pregnancy, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynaecology and Oncology Gynaecology, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Anna Kwaśniewska
- Chair and Department of Obstetrics and Pathology of Pregnancy, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
31
|
Rao C, Cao X, Li L, Zhou J, Sun D, Li B, Guo S, Yuan R, Cui H, Chen J. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106345. [PMID: 36351319 DOI: 10.1016/j.aquatox.2022.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
As common environmental endocrine-disrupting chemicals (EDCs), bisphenol AF (BPAF) raises potential concerns for aquatic organisms due to its widespread presence and continued release in the aquatic environment. This research aimed to use zebrafish embryos and adult fish to explore the effects of environmentally relevant concentrations (5 μg/L), 50 μg/L and 500 μg/L of BPAF on zebrafish embryonic development, behavioral alterations, and the potential mechanisms driving these effects. The results showed that 500 μg/L of BPAF severely affected the growth and development of embryos. In behavioral experiments, all concentrations of BPAF significantly inhibited the locomotor activity of larvae, 50 and 500 μg/L BPAF significantly altered the anxiety-like and aggressive behavior of adult zebrafish. Furthermore, environmentally relevant concentrations and higher concentrations of BPAF induced varying degrees of oxidative stress in both embryonic and adult fish. The most significant histopathological changes and decreased acetylcholinesterase (AChE) activity were observed in the brain at 50 and 500 μg/L of BPAF. We hypothesized that oxidative stress is an important cause of behavioral disturbances in larvae and adult fish. To our best knowledge, the present experiment is a pioneer in studying the effects of BPAF on a variety of complex behaviors (swimming performance, anxiety-like, social behavior, aggression) in zebrafish, which emphasizes the potential health risk of higher concentrations of BPAF in terms of induced neurotoxicity.
Collapse
Affiliation(s)
- Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Baohua Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
32
|
Chen Y, Chen X, Li X, Liu Y, Guo Y, Wang Z, Dong Z. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 308:136424. [PMID: 36116629 DOI: 10.1016/j.chemosphere.2022.136424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 μg/L, 73.4 μg/L, and 367.0 μg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 μg/L) significantly increased body weight and condition factors in females. BPAF (73.4 μg/L and 367.0 μg/L) significantly delayed oocyte maturation. Exposure to 367.0 μg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 μg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 μg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor β (erβ), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 μg/L BPAF group showed a downward trend. In addition, exposure to 367.0 μg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
33
|
Dueñas-Moreno J, Mora A, Cervantes-Avilés P, Mahlknecht J. Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate - A review. ENVIRONMENT INTERNATIONAL 2022; 170:107550. [PMID: 36219908 DOI: 10.1016/j.envint.2022.107550] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) or phthalates and bisphenol A (BPA) are emerging organic contaminants (EOCs) that may harm biota and human health. Humans can be exposed to these contaminants by drinking water consumption from water sources such as groundwater. Before their presence in aquifer systems, phthalates and BPA can be found in many matrices due to anthropogenic activities, which result in long-term transport to groundwater reservoirs by different mechanisms and reaction processes. The worldwide occurrence of phthalates and BPA concentrations in groundwater have ranged from 0.1 × 10-3 to 3 203.33 µg L-1 and from 0.09 × 10-3 to 228.04 µg L-1, respectively. Therefore, the aim of this review is to describe the groundwater contamination pathways of phthalates and BPA from the main environmental sources to groundwater. Overall, this article provides an overview that integrates phthalate and BPA environmental cycling, from their origin to human reception via groundwater consumption. Additionally, in this review, the readers can use the information provided as a principal basis for existing policy ratification and for governments to develop legislation that may incorporate these endocrine disrupting compounds (EDCs) as priority contaminants. Indeed, this may trigger the enactment of regulatory guidelines and public policies that help to reduce the exposure of these EDCs in humans by drinking water consumption.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64149, Nuevo León, Mexico.
| |
Collapse
|
34
|
Parra-Arroyo L, Martinez-Ruiz M, Lucero S, Oyervides-Muñoz MA, Wilkinson M, Melchor-Martínez EM, Araújo RG, Coronado-Apodaca KG, Velasco Bedran H, Buitrón G, Noyola A, Barceló D, Iqbal HM, Sosa-Hernández JE, Parra-Saldívar R. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Karim S, Hao R, Pinto C, Gustafsson JÅ, Grimaldi M, Balaguer P, Bondesson M. Bisphenol A analogues induce a feed-forward estrogenic response in zebrafish. Toxicol Appl Pharmacol 2022; 455:116263. [DOI: 10.1016/j.taap.2022.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
36
|
Synthesis of Ce0.1La0.9MnO3 Perovskite for Degradation of Endocrine-Disrupting Chemicals under Visible Photons. Catalysts 2022. [DOI: 10.3390/catal12101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The UN Environmental Protection Agency has recognized 4-n-Nonylphenol (NP) and bisphenol A (BPA) as among the most hazardous chemicals, and it is essential to minimize their concentrations in the wastewater stream. These industrial chemicals have been witnessed to cause endocrine disruption. This report describes the straightforward hydrothermal approach adopted to produce Ce0.1La0.9MnO3 (CLMO) perovskite’s structure. Several physiochemical characterization approaches were performed to understand the Ce0.1La0.9MnO3 (CLMO) perovskite crystalline phase, element composition, optical properties, microscopic topography, and molecular oxidation state. Here, applying visible photon irradiation, the photocatalytic capability of these CLMO nanostructures was evaluated for the elimination of NP and BPA contaminants. To optimize the reaction kinetics, the photodegradation of NP and BPA pollutants on CLMO, perovskite was studied as a specification of pH, catalyst dosage, and initial pollutant concentration. Correspondingly, 92% and 94% of NP and BPA pollutants are degraded over CLMO surfaces within 120 and 240 min, respectively. Since NP and BPA pollutants have apparent rate constants of 0.0226 min−1 and 0.0278 min−1, respectively, they can be satisfactorily fitted by pseudo-first-order kinetics. The decomposition of NP and BPA contaminants is further evidenced by performing FT-IR analysis. Owing to its outstanding photocatalytic execution and simplistic separation, these outcomes suggest that CLMO is an intriguing catalyst for the efficacious removal of NP and BPA toxicants from the aqueous phase. This is pertinent for the treatment of endocrine-disrupting substances in bioremediation.
Collapse
|
37
|
Multi-residue determination of bisphenol analogues in organism tissues by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463489. [PMID: 36130425 DOI: 10.1016/j.chroma.2022.463489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
A reliable and sensitive analyzing method was developed and validated for determination of 13 novel bisphenol analogues (BPs) along with bisphenol A (BPA) in organism tissues. The complex organism tissues were treated by ultrasonic-assisted extraction using acetonitrile/formic acid (99:1, v/v), followed by successive purification using enhanced matrix removal-lipid sorbents and primary secondary amine sorbents. The BPs were finally determined by ultra-high performance liquid chromatography-tandem mass spectrometry after derivatization using pyridine-3-sulfonyl chloride. Satisfactory recoveries of 75 - 118% were obtained for the BPs, with good repeatability (RSD < 20%). Matrix interferences were efficiently diminished. The method quantification limits (MQLs) reached 0.003 - 0.1 ng g-1 dry weight (dw). The validated method was successfully applied to a preliminary investigation of the BPs in wild marine organisms collected from the nearshore waters along the coast of Guangdong, China. Besides BPA, novel BPs such as bisphenol F, bisphenol AF, and tetrabromobisphenol A were also detected at < MDL - 15.5 ng g-1 dw. This work laid a strong basis for further in-depth research on bioaccumulation of the novel BPs in the environment.
Collapse
|
38
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
39
|
Rezg R, Oral R, Tez S, Mornagui B, Pagano G, Trifuoggi M. Cytogenetic and developmental toxicity of bisphenol A and bisphenol S in Arbacia lixula sea urchin embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1087-1095. [PMID: 35838932 PMCID: PMC9458557 DOI: 10.1007/s10646-022-02568-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 06/02/2023]
Abstract
Bisphenol S (BP-S) is one of the most important substitutes of bisphenol A (BP-A), and its environmental occurrence is predicted to intensify in the future. Both BP-A and BP-S were tested for adverse effects on early life stages of Arbacia lixula sea urchins at 0.1 up to 100 µM test concentrations, by evaluating cytogenetic and developmental toxicity endpoints. Embryonic malformations and/or mortality were scored to determine embryotoxicity (72 h post-fertilization). It has been reported in academic dataset that bisphenols concentration reached μg/L in aquatic environment of heavily polluted areas. We have chosen concentrations ranging from 0.1-100 μM in order to highlight, in particular, BP-S effects. Attention should be paid to this range of concentrations in the context of the evaluation of the toxicity and the ecological risk of BP-S as emerging pollutant. Cytogenetic toxicity was measured, using mitotic activity and chromosome aberrations score in embryos (6 h post-fertilization). Both BP-A and BP-S exposures induced embryotoxic effects from 2.5 to 100 µM test concentrations as compared to controls. Malformed embryo percentages following BP-A exposure were significantly higher than in BP-S-exposed embryos from 0.25 to 100 µM (with a ~5-fold difference). BP-A, not BP-S exhibited cytogenetic toxicity at 25 and 100 µM. Our results indicate an embryotoxic potential of bisphenols during critical periods of development with a potent rank order to BP-A vs. BP-S. Thus, we show that BP-A alternative induce similar toxic effects to BP-A with lower severity.
Collapse
Affiliation(s)
- Raja Rezg
- University of Monastir, ISBM, Biolival LR-14ES06, TN-5000, Monastir, Tunisia
| | - Rahime Oral
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Serkan Tez
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Bessem Mornagui
- Faculty of Sciences of Gabes, LR-18ES36, University of Gabes, TN-6072, Zrig, Gabes, Tunisia
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
40
|
Frost H, Bond T, Sizmur T, Felipe-Sotelo M. A review of microplastic fibres: generation, transport, and vectors for metal(loid)s in terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:504-524. [PMID: 35348562 DOI: 10.1039/d1em00541c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The laundering of synthetic fabrics has been identified as an important and diffuse source of microplastic (<5 mm) fibre contamination to wastewater systems. Home laundering can release up to 13 million fibres per kg of fabric, which end up in wastewater treatment plants. During treatment, 72-99% of microplastics are retained in the residual sewage sludge, which can contain upwards of 56 000 microplastics per kg. Sewage sludge is commonly disposed of by application to agricultural land as a soil amendment. In some European countries, application rates are up to 91%, representing an important pathway for microplastics to enter the terrestrial environment, which urgently requires quantification. Sewage sludge also often contains elevated concentrations of metals and metalloids, and some studies have quantified metal(loid) sorption onto various microplastics. The sorption of metals and metalloids is strongly influenced by the chemical properties of the sorbate, the solution chemistry, and the physicochemical properties of the microplastics themselves. Plastic-water partition coefficients for the sorption of cadmium, mercury and lead onto microplastics are up to 8, 32, and 217 mL g-1 respectively. Sorptive capacities of microplastics may increase over time, due to environmental degradation processes increasing the specific surface area and surface density of oxygen-containing functional groups. A range of metal(loid)s, including cadmium, chromium, and zinc, have been shown to readily desorb from microplastics under acidic conditions. Sorbed metal(loid)s may therefore become more bioavailable to soil organisms when the microplastics are ingested, due to the acidic gut conditions facilitating desorption. Polyester (polyethylene terephthalate) should be of particular focus for future research, as few quantitative sorption studies currently exist, it is potentially overlooked from density separation studies due to its high density, and it is by far the most widely used fibre in apparel textiles production.
Collapse
Affiliation(s)
- H Frost
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - T Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - T Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - M Felipe-Sotelo
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
41
|
Toxic Effects of Bisphenol A and Bisphenol S on Chlorella Pyrenoidosa under Single and Combined Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074245. [PMID: 35409929 PMCID: PMC8998786 DOI: 10.3390/ijerph19074245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is an important industrial chemical; bisphenol S (BPS) is a substitute for BPA. Both are frequently detected in rivers, sewage, and surface water, and have a great impact on the water environment. The effects of BPA and BPS on cell growth, chlorophyll a content, and oxidative stress of Chlorella pyrenoidosa (C. pyrenoidosa) were studied. When BPA and BPS acted alone or in combination, compared with the blank control group, the growth of C. pyrenoidosa in the experimental group showed a pattern of “low promotion and high inhibition”, and the inhibition rate reached the maximum on the 6th day. Under the combined action, the reactive oxygen species (ROS) level of C. pyrenoidosa first increased, and then decreased. In addition, the activity of superoxide dismutase (SOD) and peroxidase (POD) increased with the increase in combined concentration. In the 0.5 P treatment group, SOD and POD activity reached peak values of 29.59 U/mg∙prot and 1.35 U/mg∙prot, respectively. The combined toxicity of BPA and BPS to C. pyrenoidosa was evaluated as a synergistic effect by using toxicity unit and additive index methods. This study evaluated the effects of BPA and BPS on algae in the aquatic environment, providing some data support for their potential ecological risks.
Collapse
|
42
|
Fan D, Liang M, Guo M, Gu W, Gu J, Liu M, Shi L, Ji G. Exposure of preschool-aged children to highly-concerned bisphenol analogues in Nanjing, East China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113397. [PMID: 35286960 DOI: 10.1016/j.ecoenv.2022.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol analogues (BPs) have already attracted wide concern owing to the environmental and health risks they pose. The exposure pathways and health risk of preschool-aged children to BPs, however, are still poorly understood. In this study, we choose population survey with 184 preschool-age children from a suburb of Nanjing, eastern China, further reveal the internal and external exposures concentrations, distribution profiles, potential sources and eventually assess health risk of preschool-age children to eight kinds of BPs. The results verify that the 95th percentile (P95) concentrations of Ʃ8BPs ranged from 0.27 to 41.6 ng/mL, with a median concentration of 7.83 ng/mL in the urine samples. BPA, and BPF were the predominant BPs in urine, accounting for 67.3%, and 18.0% of Ʃ8BPs. The urine-based estimated daily intake (EDI) of Ʃ8BPs was 187 ng/kg body weight/day. Similarly, BPA, and BPF were the main BPs in the environmental exposure sources, accounting for 80.8%, and 11.7% of the total BPs. Moreover, the total external exposure dose of Ʃ8BPs via the environmental sources was 68.1 ng/kg body weight/day, including BPA (56 ng/kg body weight/day), BPF (7.68 ng/kg body weight/day) and BPB (2.62 ng/kg body weight/day). The oral intake of drinking water and food (vegetables and rice) was the main exposure pathways of BPs in preschool-age children. Furthermore, the hazard quotient (HQ) of BPs have been evaluated and the results show no occurrence of high risk. Additionally, the urine-based EDI was significantly higher than the total external exposure dose, suggesting the existence of other pathways of BP exposure to be further explored. To the best of our knowledge, this is the first study to conduct both an internal and external exposure assessment of BPs.
Collapse
Affiliation(s)
- Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Min Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Mingqing Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Lili Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| |
Collapse
|
43
|
Pandit S, Singh P, Parthasarathi R. Computational risk assessment framework for the hazard analysis of bisphenols and quinone metabolites. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128031. [PMID: 34933259 DOI: 10.1016/j.jhazmat.2021.128031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a widely used chemical in plastics but its proven harmful effects has led to the replacement and production of its analogs that might also induce hazard as well as associated risks. To elucidate the adverse impact of the BPA analogs, a comprehensive computational framework is developed which applies toxicogenomics aligned with Density Functional Theory (DFT) and Molecular Dynamics (MD) based approaches to understand the toxic potential of quinone metabolites of Bisphenol F (BPF) and 3,3'-dimethylbisphenol A (DMBPA). The obtained results indicate a similar chemical reactivity profile for these metabolites of bisphenols to BPA metabolite. MD simulation revealed that the quinone metabolites tend to interact with the DNA comprising hydrogen bonding, van der Waals forces, and electrostatic interactions as an onset for covalent binding to adduct formation. Structural analysis suggests that interactions with DC9, DG10, DG16, DA17, DA18, and DT19 play a crucial role in stabilizing the quinone metabolite in the interactive pocket of DNA. These observations are demonstrating that BPF and DMBPA have the potential to impose genotoxicity via forming the quinone metabolite adducts. Combination of DFT and MD-based computational approaches providing a structure-activity-toxicity spectrum of chemicals can serve for the purpose of risk assessment.
Collapse
Affiliation(s)
- Shraddha Pandit
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prakrity Singh
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
44
|
Černá T, Ezechiáš M, Semerád J, Grasserová A, Cajthaml T. Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127108. [PMID: 34523467 DOI: 10.1016/j.jhazmat.2021.127108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixture toxicity, including agonistic and antagonistic effects, is an unrevealed environmental problem. Estrogenic endocrine disruptors are known to cause adverse effects for aquatic biota, but causative chemicals and their contributions to the total activity in sewage sludge remain unknown. Therefore, advanced analytical methods, a yeast bioassay and mixture toxicity models were concurrently applied for the characterization of 8 selected sludges with delectable estrogenic activity (and 3 sludges with no activity as blanks) out of 25 samples from wastewater treatment plants (WWTPs). The first applied full logistic model adequately explained total activity by considering the concentrations of the monitored compounds. The results showed that the activity was primarily caused by natural estrogens in municipal WWTP sludge. Nevertheless, activity in a sample originating from a car-wash facility was dominantly caused by partial agonists - nonylphenols - and only a model enabling prediction of all dose-response curve parameters of the final mixture curve explained these results. Antiestrogenic effects were negligible, and effect-directed analysis identified the causative chemicals.
Collapse
Affiliation(s)
- Tereza Černá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic.
| |
Collapse
|
45
|
Gu J, Guo M, Yin X, Huang C, Qian L, Zhou L, Wang Z, Wang L, Shi L, Ji G. A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150210. [PMID: 34534871 DOI: 10.1016/j.scitotenv.2021.150210] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
As more and more countries have prohibited the manufacture and sale of plastic products with bisphenol A (BPA), a number of bisphenol analogues (BPs), including BPS, BPF and BPAF, have gradually been used as its primary substitutes. Ideally, substitutes used to replace chemicals with environmental risks should be inert, so it makes sense that the risk of the similar chemical substitutes (BPS, BPF, and BPAF) should be assessed before they used. Therefore, in the present study, the neurotoxicity of four BPs at environmentally relevant concentration (200 μg/L) were systematically compared using zebrafish as a model. Our results showed that the four BPs (BPA, BPS, BPF and BPAF) exhibited no obvious effect on the hatchability, survival rate and body length of zebrafish larvae, noteworthily a significant inhibitory effect on spontaneous movement at 24 hpf was observed in the BPA, BPF and BPAF treatment groups. Behavioral tests showed that BPAF, BPF and BPA exposure significantly reduced the locomotor activity of the larvae. Additionally, BPAF treatment adversely affected motor neuron axon length in transgenic lines hb9-GFP zebrafish and decreased central nervous system (CNS) neurogenesis in transgenic lines HuC-GFP zebrafish. Intriguingly, BPAF displayed the strongest effects on the levels and metabolism of neurotransmitters, followed by BPF and BPA, while BPS showed the weakest effects on neurotransmitters. In conclusion, our study deciphered that environmentally relevant concentrations of BPs exposure exhibited differential degrees of neurotoxicity, which ranked as below: BPAF > BPF ≈ BPA > BPS. The possible mechanisms can be partially ascribed to the dramatical changes of multiple neurotransmitters and the inhibitory effects on neuronal development. These results suggest that BPAF and BPF should be carefully considered as alternatives to BPA.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
46
|
Ticiani E, Pu Y, Gingrich J, Veiga-Lopez A. Bisphenol S Impairs Invasion and Proliferation of Extravillous Trophoblasts Cells by Interfering with Epidermal Growth Factor Receptor Signaling. Int J Mol Sci 2022; 23:671. [PMID: 35054855 PMCID: PMC8776214 DOI: 10.3390/ijms23020671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
The placenta supports fetal growth and is vulnerable to exogenous chemical exposures. We have previously demonstrated that exposure to the emerging chemical bisphenol S (BPS) can alter placental endocrine function. Mechanistically, we have demonstrated that BPS interferes with epidermal growth factor receptor (EGFR) signaling, reducing placenta cell fusion. Extravillous trophoblasts (EVTs), a placenta cell type that aids with vascular remodeling, require EGF to invade into the maternal endometrium. We hypothesized that BPS would impair EGF-mediated invasion and proliferation in EVTs. Using human EVTs (HTR-8/SVneo cells), we tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional endpoints of EGFR signaling, including EGF endocytosis, cell invasion and proliferation, and endovascular differentiation. We demonstrated that BPS blocked EGF-induced phosphorylation of EGFR by acting as a competitive antagonist to EGFR. Transwell assay and a three-dimensional microfluidic chip invasion assay revealed that BPS exposure can block EGF-mediated cell invasion. BPS also blocked EGF-mediated proliferation and endovascular differentiation. In conclusion, BPS can prevent EGF-mediated EVT proliferation and invasion through EGFR antagonism. Given the role of EGFR in trophoblast proliferation and differentiation during placental development, our findings suggest that maternal exposure to BPS may contribute to placental dysfunction via EGFR-mediated mechanisms.
Collapse
Affiliation(s)
- Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
| | - Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
- The Chicago Center for Health and the Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
47
|
Chen Y, Zhang Y, Zhang Z. Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117568. [PMID: 34153611 DOI: 10.1016/j.envpol.2021.117568] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The retention of microplastics, a complex blend of polymers and plastic additives (PAs), in municipal sludge has been reported. The inevitable release of PAs from microplastics might affect the subsequent biological disposal of sludge, and their final fate are of great public concern. Therefore, this review describes the current knowledge in the occurrence of PAs in sludge and significant advances in their effects on sludge anaerobic digestion (AD) and their biodegradation performance. Specifically, the compositions and contents of plasticizers, stabilizers, and flame retardants in sludge worldwide are systematically summarized. The discrepant impacts of PAs on hydrolysis, acidification, and methanogenesis processes are analyzed and compared, with corresponding trends deduced. Furthermore, the biodegradation performances of PAs during sludge AD are also discussed. For most of the PAs detected in sludge, available data for their fate and effects on AD is yet limited. Moreover, the potential role of AD microbes in the release of PAs from microplastics was still unknown. Especially, the potential effects of PAs released from biodegradable microplastics on sludge AD and their fate should be of concern. The obtained knowledge would update our understanding of the risk assessment and control of PAs in sludge AD. Recommendations for future investigation are made.
Collapse
Affiliation(s)
- Yinguang Chen
- College of Resources and Environment Science, Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, 830046, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
48
|
Yang F, Zhao Z, Zhang H, Zhou L, Tao L, Wang Q. Concentration-dependent transcriptome of zebrafish larvae for environmental bisphenol S assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112574. [PMID: 34358928 DOI: 10.1016/j.ecoenv.2021.112574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of bisphenol S (BPS) as an alternative to bisphenol A has captured attention due to its potential toxicity to aquatic organisms. In the present study, the zebrafish was used as a model to evaluate the toxicity of BPS and determine the underlying mechanisms. The environmental concentration-dependent (0, 0.1, 1, 10, 100, and 1000 μg/L BPS) transcriptome approach was employed in combination with toxicity assays to address the problem. Based on a weighted correlation network analysis, we speculated that excess reactive oxygen species (ROS) may initiate cellular events in BPS-exposed zebrafish, leading to multiple toxic effects. Furthermore, we used pathway enrichment analysis to identify key pathways (MAPK signalling pathway and metabolic pathways) that link the molecular mechanisms with different toxic effects. In addition, we performed protein-protein network and shortest path analyses to identify six hub genes (erbb2, rrm2, rps27a, his2h3c, cdk1, and mcm5) and their interactions. Moreover, we suggest that BPS may interact with erbb2 by molecular docking. Thus, the BPS-erbb2 interaction may activate the MAPK signalling and metabolic pathways, resulting in ROS production and then caused multiple toxic effects in zebrafish. This study provides information for characterising the mechanisms of BPS exposure in aquatic environments.
Collapse
Affiliation(s)
- Feng Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China
| | - Ziyu Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China
| | - Haiji Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China
| | - Liping Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China.
| | - Qin Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Second Road, Guangzhou 510080, China.
| |
Collapse
|
49
|
Zhang C, Wu XC, Li S, Dou LJ, Zhou L, Wang FH, Ma K, Huang D, Pan Y, Gu JJ, Cao JY, Wang H, Hao JH. Perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147918. [PMID: 34134381 DOI: 10.1016/j.scitotenv.2021.147918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol AF (BPAF), a kind of the ideal substitutes of Bisphenol A (BPA), has frequently been detected in environmental media and biological samples. Numerous studies have focused on the reproductive toxicity, cardiotoxicity and endocrine disrupting toxicity of BPAF. However, little evidence is available on neurodevelopmental toxicity of BPAF. Here, our study is to evaluate the effect of perinatal BPAF exposure (0, 0.34, 3.4 and 34 mg/kg body weight/day, correspond to Ctrl, low-, medium- and high-dose groups) on the cognitive function of adult mouse offspring. This study firstly found that perinatal BPAF exposure caused cognitive impairments of mouse offspring, in which male offspring was more sensitive than female offspring in low- and medium-dose BPAF groups. Furthermore, the dendritic arborization and complexity of hippocampal CA1 and DG neurons in male offspring were impaired in all BPAF groups, and these effects were only found in high-dose BPAF group for female offspring. The damage of BPAF to dendritic spines, and the structural basis of learning and memory, was found in male offspring but not in females. Correspondingly, perinatal BPAF exposure significantly downregulated the expressions of hippocampal PSD-95 and Synapsin-1 proteins, and male offspring was more vulnerable than female offspring. Meanwhile, we explored the alteration of hippocampal estrogen receptors (ERs) to explain the sex specific impairment of cognitive function in low- and medium-dose BPAF groups. The results showed that perinatal BPAF exposure significantly decreased the expression of ERα in male offspring in a dose-dependent manner, but not in female offspring. In addition, we found that perinatal BPAF exposure can disordered the balance of oxidation and antioxidation in hippocampus of male offspring. In summary, perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. The present results provide a pierce of potential mechanism of BPAF-caused neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lian-Jie Dou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Feng-Hui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kai Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Pan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Jun Gu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
50
|
Rahman MS, Adegoke EO, Pang MG. Drivers of owning more BPA. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126076. [PMID: 34004580 DOI: 10.1016/j.jhazmat.2021.126076] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin worldwide. Despite the many studies documenting the toxicity of this substance, it remains a popular choice for consumer products. The internet, magazine articles, and newspaper reports are replete with tips on how to avoid BPA exposure, which mostly spread contradictory and often unscientific information. Therefore, based on a comprehensive search of the available biomedical literature, we summarized several confounding factors that may be directly or indirectly related to human BPA exposure. We found that the unique properties of BPA materials (i.e. low cost, light-weight, resistance to corrosion, and water/air-tightness), lack of personal health and hygiene education, fear of BPA-substitutes (with yet unknown risks), inappropriate production, processing, and marketing of materials containing BPA, as well as the state of regulatory guidance are influencing the increased exposure to BPA. Besides, we detailed the disparities between scientifically derived safe dosages of BPA and those designated as "safe" by government regulatory agencies. Therefore, in addition to providing a current assessment of the states of academic research, government policies, and consumer behaviors, we make several reasonable and actionable recommendations for limiting human exposure to BPA through improved labeling, science-based dosage limits, and public awareness campaigns.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|