1
|
Lone SA, Jeelani G, Mukherjee A. Hydrogeochemical controls on contrasting co-occurrence of geogenic Arsenic (As) and Fluoride (F -) in complex aquifer system of Upper Indus Basin, (UIB) western Himalaya. ENVIRONMENTAL RESEARCH 2024; 260:119675. [PMID: 39059621 DOI: 10.1016/j.envres.2024.119675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Arsenicosis and fluorosis have become severe health hazards associated with the drinking of Arsenic (As) and Fluoride (F-) contaminated groundwater across south-east Asia. Although, significant As and F- concentration is reported from major Himalayan river basins but, the hydrogeochemical processes and mechanisms controlling their contrasting co-occurrence in groundwater is still poorly explored and understood. In the present study, groundwater samples were collected from phreatic and confined aquifers of Upper Indus Basin (UIB), India to understand the hydrogeochemical processes controlling the distribution and co-occurrence of geogenic As and F- in this complex aquifer system. Generally, the groundwater is circum-neutral to alkaline with Na+-HCO3-, Ca2+-Na+-HCO3- and Ca2+-Mg2+-HCO3- water facies signifying the dominance of silicate and carbonate dissolution. The poor correlation of As and F- in groundwater depicted that these geogenic elements have discrete sources of origin with distinct mechanisms controlling their distribution. As enrichment in groundwater is associated with high pH, Fe, Mn and NH4-N suggesting dominance of metal oxide/hydroxide reduction with organic matter degradation. However, F- enrichment in groundwater is associated with high pH, HCO3- and Na+, which is assisted by the incessant dissolution of fluorinated minerals. The study also revealed that high HCO3- facilitates the exchange of hydroxides (OH-) with As and F- on sediment surfaces that contribute to As and F- enrichment in groundwater through desorption. 70% groundwater samples have As and F- concentration above the permissible limit given by WHO. Therefore, continuous exposure to these contaminants may pose severe health hazard of arsenicosis and fluorosis to people living in the region and downstream. The study provides insights into geological sources, hydrogeochemical processes and mechanisms controlling distribution of As and F- in groundwater that will help in developing the appropriate measures to mitigate the impact these contaminants on human health.
Collapse
Affiliation(s)
- Suhail A Lone
- Department of Earth Sciences, University of Kashmir Srinagar, 190006, India
| | - Gh Jeelani
- Department of Earth Sciences, University of Kashmir Srinagar, 190006, India.
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Zhang Y, Xie X, Sun S, Wang Y. Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173776. [PMID: 38862046 DOI: 10.1016/j.scitotenv.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
High‑arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur‑iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high‑sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Shutang Sun
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
3
|
Zheng Y, Li H, Li M, Zhang C, Su S, Xiao H. A review of groundwater iodine mobilization, and application of isotopes in high iodine groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:388. [PMID: 39167236 DOI: 10.1007/s10653-024-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Excessive intake of iodine will do harm to human health. In recent years, high iodine groundwater has become a global concern after high arsenic and high fluorine groundwater. A deep understanding of the environmental factors affecting iodine accumulation in groundwater and the mechanism of migration and transformation is the scientific prerequisite for effective prevention and control of iodine pollution in groundwater. The paper comprehensively investigated the relevant literature on iodine pollution of groundwater and summarized the present spatial distribution and hydrochemical characteristics of iodine-enriched groundwater. Environmental factors and hydrogeological conditions affecting iodine enrichment in aquifers are systematically summarized. An in-depth analysis of the hydrologic geochemistry, physical chemistry, biogeochemistry and human impacts of iodine transport and transformation in the surface environment was conducted, the results and conclusions in the field of high iodine groundwater research are summarized comprehensively and systematically. Stable isotope can be used as a powerful tool to track the sources of hydrochemical components, biogeochemistry processes, recharge sources and flow paths of groundwater in hydrogeological systems, to provide effective research methods and means for the study of high iodine groundwater system, and deepen the understanding of the formation mechanism of high iodine groundwater, the application of isotopic technique in high iodine groundwater is also systematically summarized, which enriches the method and theory of high iodine groundwater research. This paper provides more scientific basis for the prevention and control of groundwater iodine pollution and the management of groundwater resources in water-scarce areas.
Collapse
Affiliation(s)
- Yulu Zheng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
- Laboratory of Coastal Groundwater Utilization & Protection, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haiming Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
- Laboratory of Coastal Groundwater Utilization & Protection, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mengdi Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Laboratory of Coastal Groundwater Utilization & Protection, Tianjin University of Science and Technology, Tianjin, 300457, China.
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Cuixia Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
- Laboratory of Coastal Groundwater Utilization & Protection, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Sihui Su
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
- Laboratory of Coastal Groundwater Utilization & Protection, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Han Xiao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Zhou F, Xu Q, Chen Y, Zhang W, Qiu R. Iodine enrichment in the groundwater in South China and its hydrogeochemical control. J Environ Sci (China) 2024; 142:226-235. [PMID: 38527888 DOI: 10.1016/j.jes.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 03/27/2024]
Abstract
In North China, iodine-rich groundwater has been extensively studied, but few in South China. This study aimed to investigate the characteristics of iodine-rich groundwater in South China and identify potential contamination sources. The results revealed that the average concentration of iodine in groundwater was 890 µg/L, with a maximum concentration of 6350 µg/L, exceeding the permitted levels recommended by the World Health Organization (5-300 µg/L). Notably, the enrichment of iodide occurred in acidic conditions (pH = 6.6) and a relatively low Eh environment (Eh = 198.4 mV). Pearson correlation and cluster analyses suggested that the enrichment of iodide could be attributed to the intensified redox process involving Mn(II), iodine (I2), or iodate (IO3-) in the soil. The strong affinity between Mn(II) and I2/IO3- facilitated their interaction, resulting in the formation and mobilization of I- from the soil to the groundwater. Leaching experiments further confirmed that reducing substances (such as sodium sulfides, ascorbic acids, and fulvic acids) in the soil with low dissolved oxygen (DO) levels (< 1.0 mg/L) enhanced the dissolution of iodine species. Conversely, higher DO content (> 3.8 mg/L) promoted the oxidation of I- into I2 or IO3-, leading to its stabilization. This research provides new insights into the characteristics and mechanisms of I- enrichment in groundwater in South China, and emphasizes the significance of the redox reactions involving Mn(II) and I2/IO3-, as well as the influence of soil properties in regulating the occurrence and transportation of iodine species within groundwater systems.
Collapse
Affiliation(s)
- Fengping Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qianting Xu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuyun Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute, Sun Yat-sen University, Shenzhen 518057, China.
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, School of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Yan YN, Zhang JW, Wu N, Xia ZH, Liu L, Zhao ZQ. Co-occurrence of elevated arsenic and fluoride concentrations in Wuliangsu Lake: Implications for the genesis of poor-quality groundwater in the (paleo-)Huanghe (Yellow River) catchment, China. WATER RESEARCH 2024; 258:121767. [PMID: 38754296 DOI: 10.1016/j.watres.2024.121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The co-occurrence of high As and F concentrations in saline groundwater in arid and semi-arid regions has attracted considerable attention. However, the factors determining the elevated concentrations of the two elements in surface water in these regions have not been sufficiently studied, and their implications for the poor-quality of local groundwater (high levels of As, F, and salinity) are unknown. A total of 18 water samples were collected from Wuliangsu Lake, irrigation/drainage channels, and the Huanghe (i.e., Yellow River) in the Hetao Basin, China. The pH, concentrations of As and F as well as those of other major elements, and stable isotope (H and O) compositions were analyzed. The water samples had a high pH (7.85-9.01, mean 8.25) and high TDS (402-9778 mg/L, mean 1920 mg/L) values. In six of the 10 lake samples, As concentration was above 10 μg/L (maximum 69.1 μg/L) and, in one of them, F concentration was above 1.5 mg/L. Interestingly, the high As, F, and TDS values simultaneously detected in the lake water were similar to those previously reported in local groundwater, and all water samples showed a significant positive correlation between As and F concentrations (R2 = 0.96, p < 0.01), except for two samples with abnormally high Ca2+ levels. The results of stable isotope analysis and Cl/Br ratios suggested that the lake experienced strong evaporation, which is consistent with the high TDS values. Evaporative concentration is suggested as the main factor contributing to the elevated As and F concentrations in the lake water. In addition, the major ions (e.g., Na+, Cl-, HCO3-, and OH-) and pH in the lake water increased during evaporation, leading to desorption of As and F. Thus, the evaporation process, including evaporative concentration and desorption, was considered primarily responsible for the elevated As and F in the lake water. Based on the results of this study, we presume that the paleolakes in the study area have experienced intense evaporation process. As a result, As, F, and major elements accumulated in sediments (or residual lake water) and were buried in the fluvial basins; then, they were released into the groundwater through multiple (bio)hydrogeochemical processes. By combining the results of this study with those obtained from previous groundwater analyses, we propose a new hypothesis explaining the origin of elevated As and F concentrations in saline groundwater in arid and semi-arid regions.
Collapse
Affiliation(s)
- Ya-Ni Yan
- School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
| | - Jun-Wen Zhang
- School of Earth Science and Resources, Chang'an University, Xi'an 710054, China.
| | - Na Wu
- School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
| | - Zi-Han Xia
- School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
| | - Lin Liu
- Chinese Academy of Geological Sciences, Beijing 10037 & Nanjing Center, China Geological Survey, Nanjing 210016, China
| | - Zhi-Qi Zhao
- School of Earth Science and Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
6
|
Wang Z, Guo H, Adimalla N, Pei J, Zhang Z, Liu H. Co-occurrence of arsenic and fluoride in groundwater of Guide basin in China: Genesis, mobility and enrichment mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117920. [PMID: 38109955 DOI: 10.1016/j.envres.2023.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Endemic arsenic poisoning and fluorosis caused by primary high arsenic (As) and high fluoride (F-) groundwater have become one of the most serious environmental geological problems faced by the international society. High As and high F- groundwater exists in Neogene confined aquifers in Guide basin, with concentrations of 355 μg/L and 5.67 mg/L, respectively, and showing a co-occurrence phenomenon of As and F- in the groundwater. This poses a double threat to the health of tens of thousands of local residents. In this study, based on the systematic collection of groundwater and borehole sediment samples, analysis of hydrochemistry and isotope indexes, combined with laboratory tests, purpose of this study is to reveal the migration rule and co-enrichment mechanism of As and F- in aquifers, and finally establish a hydrogeochemical conceptual model of the enrichment process of As and F-. The main conclusions are as follows: hydrochemical type of unconfined and confined groundwater in Guide basin is Ca-Na-HCO3 and Na-Cl-HCO3 type, respectively. Main minerals in sediments are quartz and plagioclase. Concentrations of As and F- are lower in unconfined groundwater, but higher in confined groundwater, and which show a gradual increasing trend along the groundwater flow path. The mineralization of natural organic matter in confined aquifer causes iron and manganese oxide minerals containing As to dissolve gradually, which leads to the gradual release of As into groundwater. Large amount of HCO3- produced by mineralization of organic matter precipitate with Ca2+ in groundwater, resulting in reduction of Ca2+ content, promoting the dissolution of fluoride-containing minerals such as fluorite (CaF2), and continuously releasing F- into groundwater. Meanwhile, competitive adsorption reactions in confined aquifers causes more As and F- to be released from mineral surface into groundwater, which gradually migrate and accumulate along groundwater flow. Finally, it is established that a conceptual model for the formation of high As and F- groundwater in the confined aquifer of Guide basin. The research results not only help to improve our understanding of the formation and evolution of groundwater with high As and F- with similar geological background, but also provide scientific basis for rational development and utilization of groundwater, and prevention and control of chronic As and F- poisoning in local and similar areas.
Collapse
Affiliation(s)
- Zhen Wang
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Narsimha Adimalla
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Junling Pei
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| | - Zhuo Zhang
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
| | - Haiyan Liu
- School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi, 330032, China
| |
Collapse
|
7
|
Xie X, Yan L, Sun S, Pi K, Shi J, Wang Y. Arsenic biogeochemical cycling association with basin-scale dynamics of microbial functionality and organic matter molecular composition. WATER RESEARCH 2024; 251:121117. [PMID: 38219691 DOI: 10.1016/j.watres.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.
Collapse
Affiliation(s)
- Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Lu Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Shige Sun
- Central Southern China Electric Power Design Institute Co, LTD. of China Power Engineering Consulting Group, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
8
|
Chi Z, Xie X, Wang Y. Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120112. [PMID: 38244408 DOI: 10.1016/j.jenvman.2024.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The spatial heterogeneity of arsenic (As) concentration exceeding the 10 μg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 μg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.
Collapse
Affiliation(s)
- Zeyong Chi
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
9
|
Wu S, Zhong G, Su Q, Hu T, Rao G, Li T, Wu Y, Ruan Z, Zhang H, Tang Z, Hu L. Arsenic induced neurotoxicity in the brain of ducks: The potential involvement of the gut-brain axis. J Trace Elem Med Biol 2024; 81:127336. [PMID: 37976960 DOI: 10.1016/j.jtemb.2023.127336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Arsenic is a widely distributed ecotoxic pollutant that has been found to cause neurotoxicity in a variety of species. Gut-brain axis is a two-way information network between the gut microbiome and the brain, which is closely related to organismal health. However, the role of the gut-brain axis in arsenic-induced neurotoxicity remains largely unknown. METHODS In order to explore whether there is a relationship between brain and gut microbiota of meat ducks, we performed molecular biological detection including RT-qPCR and Western blot, as well as morphological detection including, HE staining and immunohistochemistry. Meanwhile, intestinal contents were analyzed using 16 S ribosomal RNA gene sequencing and analysis RESULTS: In this study, we investigated whether arsenic trioxide (ATO) can activate the gut microbiome-brain axis to induce intestinal and brain injury. The results showed that ATO-exposure disrupted the diversity balance of intestinal microbiota and integrity and injured the intestinal structure. ATO-exposure also reduced the number of glycogen and goblet cells in the duodenum. In addition, exposure to ATO caused intestinal inflammatory injury by activating NF-κB signaling pathway and promoting the expression of its target genes. Meanwhile, the tight junction-related proteins (ZO-1, occludin) of gut and brain were reduced by ATO exposure. Furthermore, results also revealed that ATO-exposure induced brain injury, including neuronal cell vacuolization and reduced numbers of neuronal cells in the cortex and hippocampus. Remarkably, ATO-exposure also disrupted neurotransmitter levels. Additionally, our further molecular mechanism study revealed that ATO-exposure increased the expression of autophagy and apoptosis related mRNA and proteins levels in the brain tissues. CONCLUSION Altogether, these findings provide a new insight into that ATO-exposure induced intestinal injury and aggravated neurotoxicity via the gut-brain axis.
Collapse
Affiliation(s)
- Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ting Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Tong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321Longdong North Road, Tianhe District, Guangzhou 510520 Guangdong Province, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
10
|
Su Q, Li M, Yang L, Fan L, Liu P, Ying X, Zhao Y, Tian X, Tian F, Zhao Q, Li B, Gao Y, Qiu Y, Song G, Yan X. ASC/Caspase-1-activated endothelial cells pyroptosis is involved in vascular injury induced by arsenic combined with high-fat diet. Toxicology 2023; 500:153691. [PMID: 38042275 DOI: 10.1016/j.tox.2023.153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1β), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.
Collapse
Affiliation(s)
- Qiang Su
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Changzhi Maternal and Child Health Hospital, Changzhi, Shanxi 046000, China
| | - Lingling Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linhua Fan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
11
|
Zhang J, Zhou JX, Ji YP, Bi WL, Liu FW. Effects of Fe(II) concentration on the biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and the As(III) removal capacity of schwertmannite. ENVIRONMENTAL TECHNOLOGY 2023; 44:4147-4156. [PMID: 35634972 DOI: 10.1080/09593330.2022.2082323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The effect of Fe(II) concentrations on schwertmannite bio-synthesis and the As(III) removal capacity of schwertmannite were investigated in this study. Acidithiobalillus ferrooxidans (A. ferrooxidans) were inoculated into five FeSO4 systems with initial concentrations of 50, 100, 200, 300, and 400 mmol/L, respectively, to bio-synthesize schwertmannite. The Fe(II) of the systems were almost completely oxidised at 48, 72, 120, 168, and 192 h, respectively, and the bio-schwertmannite yield was 1.99, 3.81, 9.36, 12.42, and 21.60 g/L. The results of this study indicate that all minerals harvested from the different systems are schwertmannite. As the initial Fe(II) concentration increases, the effect of the minerals removing As(III) decreases; moreover, the structure and extracellular polymeric substance (EPS) of schwertmannite may regulate the As(III) removal process. The EPS generated by the A. ferrooxidans can absorb As(III). The outcomes of this study provide fresh insights into the bio-synthetic regulation of schwertmannite and play a significant role in treating As-containing groundwater.
Collapse
Affiliation(s)
- Jian Zhang
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jia Xing Zhou
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Yan Peng Ji
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Wen Long Bi
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Fen Wu Liu
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| |
Collapse
|
12
|
Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol Trace Elem Res 2023; 201:4870-4881. [PMID: 36692655 DOI: 10.1007/s12011-023-03568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Co-contamination of arsenic (As) and fluoride (F) is widely distributed in groundwater, which are known risk factors for the nephrotoxicity. Emerging evidence has linked environmentally associated nephrotoxicity with the disturbance of gut microbiota and blood metabolites. In this study, we generated gut microbiota and blood metabolomic profile and identified multiple serum metabolites and gut bacteria species, which were associated with kidney injury on rat model exposed to As and F alone or combined. Combined As and F exposure significantly increased creatinine level. Abnormal autophagosomes and lysosome were observed, and the autophagic genes were enhanced in kidney tissue after single and combined As and F exposure. The metabolome data showed that single and combined As and F exposure remarkably altered the serum metabolites associated with the proximal tubule reabsorption function pathway, with glutamine and alpha-ketoglutarate level decreased in all exposed group. Furthermore, phosphatidylethanolamine (PE), the key contributor of autophagosomes, was decreased significantly in As and F + As exposed groups during the screen of autophagy-animal pathway. Multiple altered gut bacterial microbiota at phylum and species levels post As and F exposure were associated with targeted kidney injury, including p_Bacteroidetes, s_Chromohalobacter_unclassified, s_Halomonas_unclassified, s_Ignatzschineria_unclassified, s_Bacillus_subtilis, and s_Brevundimonas_sp._NA6. Meanwhile, our analysis indicated that As and F co-exposure possessed an interactive influence on gut microbiota. In conclusion, single or combined As and F exposure leads to the disruption of serum metabolic and gut microbiota profiles. Multiple metabolites and bacterial species are identified and associated with nephrotoxicity, which have potential to be developed as biomarkers of As and/or F-induced kidney damage.
Collapse
Affiliation(s)
- Xiaolin Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
13
|
Liu W, Qian K, Xie X, Xiao Z, Xue X, Wang Y. Co-occurrence of arsenic and iodine in the middle-deep groundwater of the Datong Basin: From the perspective of optical properties and isotopic characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121686. [PMID: 37105462 DOI: 10.1016/j.envpol.2023.121686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Redox processes can induce arsenic (As) and iodine (I) transformation and thus change As and I co-occurrence, yet there is no evidence that Fe-C-S coupled redox processes have such an impact on the co-occurrence of As and I. To fill this gap, middle-deep groundwater from the Datong Basin were samples for the purpose of exploring how dissolved organic matter (DOM) reactivity affects As and I enrichment and how iron reduction and sulfate reduction processes influence As and I co-occurrence. We identified three DOM components: reduced and oxidized quinone compounds (C1 and C3) and a labile DOM from terrestrial inputs (C2). Two pathways of DOM processing take place in the aquifer, including the degradation of labile DOM to HCO3- and the transformation of oxidized quinone compounds to reduced quinone compounds. Electrons transfer drives the reduction of the terminal electron acceptors. The supply of electrons promotes the reduction of iron and sulfate by microbes, enhancing As and I co-enrichment in groundwater. Thus, the reduction processes of iron and sulfate triggered by the dual roles of DOM affect dissolved As and I co-enrichment. As and I biogeochemical cycling interacts with C, Fe, and S cycling. These results provide isotopic and fluorescence evidence that explains the co-occurrence of arsenic and iodine in middle-deep aquifers.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Kun Qian
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China.
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Ziyi Xiao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Xiaobin Xue
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jingzhou, Hubei, 434020, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| |
Collapse
|
14
|
Shi Q, Gao Z, Guo H, Zeng X, Sandanayake S, Vithanage M. Hydrogeochemical factors controlling the occurrence of chronic kidney disease of unknown etiology (CKDu). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2611-2627. [PMID: 36063240 DOI: 10.1007/s10653-022-01379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) has posed a serious threat to human health around the world. The link between the prevalence of CKDu and groundwater geochemistry is not well understood. To identify the potential geogenic risk factors, we collected 52 groundwater samples related to CKDu (CKDu groundwater) and 18 groundwater samples related to non-CKDu (non-CKDu groundwater) from the typical CKDu prevailing areas in Sri Lanka. Results demonstrated that CKDu groundwater had significantly higher Si (average 30.1 mg/L, p < 0.05) and F- (average 0.80 mg/L, p < 0.05) concentrations than those of non-CKDu groundwater (average 21.0 and 0.45 mg/L, respectively), indicating that Si and F- were the potential risk factors causing CKDu. The principal hydrogeochemical process controlling local groundwater chemistry was chemical weathering of silicates in Precambrian metamorphic rocks. Groundwater samples were mostly undersaturated with respect to amorphous silica and clay minerals such as talc and sepiolite, which was conducive to silicate weathering and elevated Si concentrations in groundwater. Decreased Ca2+ being facilitated by calcite precipitation and cation exchange between Ca2+ and Na+ favored fluorite dissolution and thus led to high groundwater F- concentrations. Competitive adsorption between [Formula: see text] and F- also enhanced the release of F- from solid surfaces. This study highlights the CKDu potential risk factors regarding groundwater geochemistry and their enrichment factors, which helps in preventing the prevalence of CKDu.
Collapse
Affiliation(s)
- Qiutong Shi
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Zhipeng Gao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China.
| | - Xianjiang Zeng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Sandun Sandanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Molecular Microbiology and Human Diseases, National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
15
|
Nafouanti MB, Li J, Nyakilla EE, Mwakipunda GC, Mulashani A. A novel hybrid random forest linear model approach for forecasting groundwater fluoride contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50661-50674. [PMID: 36800089 DOI: 10.1007/s11356-023-25886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper proposes a hybrid random forest linear model (HRFLM) as a novel approach for estimating groundwater fluoride contamination. Light gradient boosting (LightGBM), random forest (RF), and extreme gradient boosting (Xgboost) were also employed in comparison with HRFLM for predicting fluoride contamination in groundwater. 202 groundwater samples were collected to draw up the performance capability of several models in forecasting subsurface water fluoride contamination. The performance of the models was assessed utilizing the receiver operating characteristic (ROC) area under the curve (AUC) and the confusion matrix (CM). The CM results reveal that with nine predictor variables, the hybrid HRFLM achieved an accuracy of 95%, outperforming the Xgboost, LightGBM, and RF models, which attained 88%, 88%, and 85%, respectively. Likewise, the AUC results of the hybrid HRFLM show high performance with an AUC of 0.98 compared to Xgboost, LightGBM, and RF, which achieved an AUC of 0.95, 0.90, and 0.88, respectively. The study demonstrates that the HRFLM can be applied as an advanced approach for groundwater fluoride contamination prediction in the Datong basin and could be adopted in various areas facing a similar challenge.
Collapse
Affiliation(s)
- Mouigni Baraka Nafouanti
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Junxia Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.,China Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan, 430074, China
| | - Edwin E Nyakilla
- Department of Petroleum Engineering, Faculty of Earth Resources, China University of Geosciences, Wuhan, 430074, China
| | - Grant Charles Mwakipunda
- Department of Petroleum Engineering, Faculty of Earth Resources, China University of Geosciences, Wuhan, 430074, China
| | - Alvin Mulashani
- Department of Geosciences and Mining Technology, College of Engineering and Technology, Mbeya University of Science and Technology, Box 131, Mbeya, Tanzania
| |
Collapse
|
16
|
Qiao W, Cao W, Gao Z, Pan D, Ren Y, Li Z, Zhang Z. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158134. [PMID: 35987243 DOI: 10.1016/j.scitotenv.2022.158134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 05/27/2023]
Abstract
Genesis of the contrasting distributions of high arsenic (>10 μg/L) and fluoride (>1 mg/L) groundwater and their negative correlations remain poorly understood. We investigated spatial distributions of groundwater arsenic and fluoride concentrations in the lower reaches of the Yellow River basin, Henan Province, China, using bivariate statistical analyses and geochemical simulations. Results suggest that high arsenic and fluoride groundwater showed contrasting distributions with few overlapped area. Groundwater arsenic concentrations were significantly negatively correlated with oxidation-reduction potential (ORP) values and positively with NH4+ and Fe(II) concentrations, while the opposites were true for groundwater fluoride concentrations. These may suggest that high arsenic groundwater is related to stronger organic matter degradation and Fe(III) oxide reduction, while groundwater fluoride enrichment occurs with less extent of organic matter degradation. Geochemical calculations supported that groundwater fluoride enrichment was governed by extent of fluorite dissolution, which was constrained by varied saturation indices of fluorite in groundwater. However, groundwater arsenic mobility may be explained by different solubility of Fe(III) oxides. Higher Fe(III) oxide solubility corresponding to goethite and lepidocrocite was related to higher arsenic concentrations, while hematite was too low in solubility to produce high arsenic groundwater. The study presented both geochemical and modeling evidences for the contrasting behaviors of groundwater arsenic and fluoride concentrations in anoxic aquifers.
Collapse
Affiliation(s)
- Wen Qiao
- Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, PR China
| | - Wengeng Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang 050061, PR China.
| | - Zhipeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Deng Pan
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou 450016, PR China
| | - Yu Ren
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang 050061, PR China
| | - Zeyan Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, PR China; National Observation and Research Station on Groundwater and Land Subsidence in Beijing-Tianjin-Hebei Plain, Shijiazhuang 050061, PR China
| | - Zhuo Zhang
- Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, PR China
| |
Collapse
|
17
|
Xu P, Bian J, Li Y, Wu J, Sun X, Wang Y. Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120208. [PMID: 36162561 DOI: 10.1016/j.envpol.2022.120208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excessive enrichment of fluoride threatens ecological stability and human health. The high-fluoride groundwater in the Chagan Lake area has existed for a long time. With the land consolidation and irrigation area construction, the distribution and migration process of fluoride have changed. It is urgent to explore the evolution of fluoride under the dual effects of nature and human. Based on 107 groundwater samples collected in different land use periods, hydrogeochemistry and isotope methods were combined to explore the evolution characteristics and hydrogeochemical processes of fluoride in typical high-fluoride background area and elucidate the impact of anthropogenic activities on fluoride migration. The results indicate that large areas of paddy fields are developed from saline-alkali land, and its area has increased by nearly 30%. The proportion of high-fluoride groundwater (>2 mg/L) has increased by nearly 10%, mainly distributed in the new irrigation area. Hydrogeochemical processes such as dissolution of fluorine-containing minerals, precipitation of carbonate minerals and exchange of Na+, Ca2+ on the water-soil interface control the enrichment of fluoride. The groundwater d-excess has no obvious change with the increase of TDS, and human activities are one of the reasons for the increase of fluoride. The concentration of fluoride is diluted due to years of diversion irrigation in old irrigation area, whereas the enrichment of δ2H, δ18O and Cl- in new irrigation area indicates that the vertical infiltration of washing alkali and irrigation water brought fluoride and other salts to groundwater. Fertilizer and wastewater discharges also contribute to the accumulation of fluoride, manifesting as co-increasing nitrate and chloride salts. The results of this study provide a new insight into fluoride migration under anthropogenic disturbance in high-fluoride background areas.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Jianmin Bian
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yihan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Juanjuan Wu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xiaoqing Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yu Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
18
|
Zhou JX, Zhou YJ, Zhang J, Dong Y, Liu FW, Wu ZH, Bi WL, Qin JM. Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability. ENVIRONMENTAL TECHNOLOGY 2022; 43:3706-3718. [PMID: 34018903 DOI: 10.1080/09593330.2021.1933200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
The effect of pH regulation on schwertmannite bio-synthesis and its As removal ability were investigated in this study. The total Fe precipitation efficiency in a conventional schwertmannite bio-synthesis system (CK) reached 26.5%, with a mineral weight of 5.21 g/L and a mineral specific surface area of 3.18 m2/g. The total Fe precipitation efficiency increased to 88.4-95.8%, the mineral weight increased to 17.10-18.62 g/L, and the specific surface area increased to 3.61-90.67 m2/g of five different treatments in which the system pH was continually adjusted to 2.50, 2.70, 2.90, 3.10, and 3.30 every 3 h, respectively. The very small amounts of schwertmannite were transformed to goethite when the system pH was periodically adjusted to 2.90, 3.10 and 3.30. The increased specific surface area of bio-schwertmannite was due to the contribution of mesopores, with most pores having a diameter of 2-20 nm. For actual As-containing groundwater (27.4 μg/L), the As removal rate was 52.9% for bio-schwertmannite collected from the CK system. However, the removal rate of As increased to 92.7-97.8% for minerals which were collected after five adjusted pH treatments. The outcomes of this study provide a fresh insight into the bio-synthesis regulation of schwertmannite, and have great significance for the treatment of As-containing groundwater.
Collapse
Affiliation(s)
- Jia-Xing Zhou
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Yu-Jun Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Zhang
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Yan Dong
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Fen-Wu Liu
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Zhi-Hui Wu
- Sanshui Experimental Testing Center, Jinzhong, People's Republic of China
| | - Wen-Long Bi
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jun-Mei Qin
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu, People's Republic of China
| |
Collapse
|
19
|
Li Z, Cao W, Ren Y, Pan D, Wang S, Zhi C. Enrichment mechanisms for the co-occurrence of arsenic-fluoride-iodine in the groundwater in different sedimentary environments of the Hetao Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156184. [PMID: 35623526 DOI: 10.1016/j.scitotenv.2022.156184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Abnormal levels of co-occurring arsenic (As), fluoride (F-) and iodine (I) in groundwater at the Hetao Basin are geochemically unique. The abnormal distribution of As, F- and I is obviously related to the sedimentary environment. It is necessary to study the enrichment mechanisms for the co-occurrence of As, F- and I in groundwater under the influence of the sedimentary environment in Hetao Basin. In this study, 499 groundwater samples were collected. Sedimentary environments, hydrogeochemical process, isotopes were analyzed to elucidate their enrichment mechanisms. The environment of groundwater is weakly alkaline. The hydrochemical types of groundwater are mainly Na-Cl-HCO3. The distribution of isotope δ18O demonstrates that irrigation from the Yellow River is the main recharge source. The main drainage channel is the discharge area in the Hetao basin. Based on the clay-sand ratio (R), the number of clay layers (N) and terrain slope (S), Hetao Basin was divided into four sedimentary environmental zones. The distribution of As (0-916.70 μg/L), F- (0.05-8.60 mg/L) and I (0.01-3.00 mg/L) was featured by a clear zonation of the sedimentary environment. The high As and high I groundwater were mainly distributed in the paleochannel zone of the Yellow River, with exceedance rates of 80.28% and 52.58%, and the median values of 73.91 μg/L and 0.11 mg/L, respectively. In the reducing environment, the release of As initially adsorbed on iron hydrogen and iron oxide, the reductive of iron hydroxide itself, rock weathering and evaporation are the key factors affecting the enrichment of As in groundwater. In this area, large amounts of aquatic organisms and plankton deposited in the sediment and channel filling deposits abundant with organic matter is the premise of high-I groundwater. The reduction of iodate and nitrate directly leads to the high concentration of I in groundwater. The high F- groundwater was mainly distributed in the piedmont alluvial-pluvial fan and the north margin of Ordos Plateau, with exceedance rates of 58.62% and 43.30%, and the median values of 1.10 mg/L and 0.86 mg/L, respectively. High F- groundwater in the two zones is affected by the abundant biotite and hornblende in Langshan Mountain and Ordos Plateau. Under evaporation, the precipitation rate of CaF2 and pH plays key roles in the enrichment of F- in groundwater. In the Hetao Basin, sedimentary environment is the main controlling factor for the co-mobilization of As, F- and I in groundwater.
Collapse
Affiliation(s)
- Zeyan Li
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China; Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China; Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China.
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China; Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China
| | - Deng Pan
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou 450016, China
| | - Shuai Wang
- Institute of Natural Resource Monitoring of Henan Province, Zhengzhou 450016, China
| | - Chuanshun Zhi
- School of Water Conservancy and Environment, University of Jinan, 250022, China
| |
Collapse
|
20
|
Nordstrom DK. Fluoride in thermal and non-thermal groundwater: Insights from geochemical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153606. [PMID: 35149071 DOI: 10.1016/j.scitotenv.2022.153606] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
High fluoride (F) groundwaters (>1 mg/L) have been recognized as a water quality problem for nearly a century and occur in many countries worldwide. The affected aquifers can be sedimentary, metamorphic or igneous rocks, but the process giving rise to high-F concentrations has been studied with geochemical modeling and an examination of the rock sources. The association of high-F with silicic igneous rocks such as granites and rhyolites results from magmatic differentiation (fractional crystallization, fractional melting, and crustal assimilation) wherein F is enriched in the liquid phase because of its incompatibility in the mafic minerals that crystallize early during cooling. Further development of F-rich groundwaters occurs during the evolution of Na-HCO3 waters because of removal of Ca through ion-exchange and calcite precipitation, thereby raising the F concentration from minerals like fluorite and fluorapatite to maintain solubility equilibrium. Increasing temperatures enhance this effect because of the retrograde solubility of calcite. From geochemical modeling using the PhreeqcI code, the primary variables controlling F concentrations are DIC (dissolved inorganic carbon), salinity (ionic strength), PCO2, and temperature. Complexing is also important but plays a more secondary role. Considering these variables, an improved set of plotting parameters, F/Cl vs. HCO3/Cl, are shown to be effective in interpreting groundwater analyses. This approach is demonstrated by examining case studies from the Black Creek aquifer, South Carolina, USA, the Madison regional aquifer, midwestern USA, the Mizunami Underground Research Laboratory, Japan, New Zealand thermal waters, the San Luis Valley groundwaters, Colorado, USA, and the Aquia aquifer, Maryland, USA.
Collapse
Affiliation(s)
- D Kirk Nordstrom
- U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, USA.
| |
Collapse
|
21
|
Tracing geochemical sources and health risk assessment of uranium in groundwater of arid zone of India. Sci Rep 2022; 12:2286. [PMID: 35650242 PMCID: PMC9160070 DOI: 10.1038/s41598-022-05770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Water quality degradation and metal contamination in groundwater are serious concerns in an arid region with scanty water resources. This study aimed at evaluating the source of uranium (U) and potential health risk assessment in groundwater of the arid region of western Rajasthan and northern Gujarat. The probable source of vanadium (V) and fluorine (F) was also identified. U and trace metal concentration, along with physicochemical characteristics were determined for 265 groundwater samples collected from groundwater of duricrusts and palaeochannels of western Rajasthan and northern Gujarat. The U concentration ranged between 0.6 and 260 μg L−1 with a mean value of 24 μg L−1, and 30% of samples surpassed the World Health Organization’s limit for U (30 μg L−1). Speciation results suggested that dissolution of primary U mineral, carnotite [K2(UO2)2(VO4)2·3H2O] governs the enrichment. Water–rock interaction and evaporation are found the major hydrogeochemical processes controlling U mineralization. Groundwater zones having high U concentrations are characterized by Na–Cl hydrogeochemical facies and high total dissolved solids. It is inferred from geochemical modelling and principal component analysis that silicate weathering, bicarbonate complexation, carnotite dissolution, and ion exchange are principal factors controlling major solute ion chemistry. The annual ingestion doses of U for all the age groups are found to be safe and below the permissible limit in all samples. The health risk assessment with trace elements manifested high carcinogenic risks for children.
Collapse
|
22
|
Hao C, Sun X, Xie B, Hou S. Increase in fluoride concentration in mine water in Shendong mining area, Northwest China: Insights from isotopic and geochemical signatures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113496. [PMID: 35427878 DOI: 10.1016/j.ecoenv.2022.113496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Mine water poses severe threats to the quality of the water supply and ecological environment of the Shendong mining areas owing to its excessive fluoride (F-) content. However, the geochemical behaviours and enrichment mechanisms responsible for F⁻ enrichment during mining activities are not fully understood. In total, 18 Yanan groundwater and 45 mine water samples were collected to analyse the spatial distribution, hydrogeochemical behaviours, and formation mechanisms related to elevated F- levels by analysing the stable isotopes and water-rock interactions. In this study, F- concentrations in mine water samples varied from 0.16 to 12.75 mg/L, with a mean value of 6.10 mg/L, and 77.78% of the mine water samples had a concentration that exceeded China's national standards (1.00 mg/L) for drinking water. The F- concentration was markedly high in the mine water samples, with the mean F- concentration being 1.58 times of that in the Yanan groundwater samples. The results of stable isotopes (18OH2O, D, 34SSO4, and 18OSO4) and water-rock interaction analyses suggested that cation exchange and competitive effects were the dominant factors responsible for elevated F- concentration in mine water during mining activities. Thus, the weathering of F-bearing minerals, agriculture, and domestic activities do not play a significant role in the secondary enrichment of F- concentration.
Collapse
Affiliation(s)
- Chunming Hao
- North China Institute of Science and Technology, Hebei 065201, PR China; State Key Laboratory of Groundwater Protection and Utilization by Coal Mining, Beijing 100011, PR China.
| | - Ximeng Sun
- North China Institute of Science and Technology, Hebei 065201, PR China.
| | - Bing Xie
- North China Institute of Science and Technology, Hebei 065201, PR China.
| | - Shuanglin Hou
- Hebei Key Laboratory of geological resources and environment monitoring and protection, Hebei 050011, PR China; Hebei Geo-Environment Monitoring, Hebei 050011, PR China.
| |
Collapse
|
23
|
Durrani TS, Farooqi A. Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:644. [PMID: 34514527 DOI: 10.1007/s10661-021-09365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Litho-geochemical characteristics of low and high fluoride (F-) groundwater along with hydrological processes were investigated to delineate its genesis and enrichment mechanism in a watershed sedimentary basin. In this study, groundwater F- concentration ranged from 0 to 20 mg/L with a mean and standard deviation of 2.8 and ± 3.7 mg/L, respectively. Out of N = 87, 63% of samples exceeded the World Health Organization (WHO) limit of 1.5 mg/L. The order of cationic and anionic dominance in groundwater samples with mean was found in decreasing order as Na+ > Mg2+ > Ca2+ > K+ and HCO3- > SO42- > Cl- > PO43- > NO3- measured in milligrams per liter. Groundwater chemistry changed from Ca-HCO3 to Na-HCO3 type and low to high fluoride as we moved from mountain foot towards the synclinal basin. Low fluoride groundwater reflected weathering, recharge, and reverse ion exchange processes with Ca-HCO3- and Ca-Mg-Cl-type water while high fluoride groundwater revealed base ion exchange, mixing, and desorption as dominant hydrological processes with Na-HCO3 and Na-Cl types of water. Gibb's diagram showed rock weathering and mineral dissolution as the major geochemical processes controlling water chemistry with an insignificant role of evaporation in the semi-arid area. Fluoride was undersaturated with mineral fluorite, indicating fluoride in groundwater is released by secondary minerals. However, due to complex geological features, groundwater fluoride enrichment was affected by a broad-scale process across a wide area such as depth, residence time, and most important geomorphological units hosting the aquifer.
Collapse
Affiliation(s)
- Taimoor Shah Durrani
- Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
- Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Pakistan.
| | - Abida Farooqi
- Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
24
|
Su H, Kang W, Kang N, Liu J, Li Z. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. ENVIRONMENTAL RESEARCH 2021; 200:111476. [PMID: 34116016 DOI: 10.1016/j.envres.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Fluoride (F-) enrichment reduces the availability of groundwater resources in the arid region, and it is thus important to investigate the hydrogeochemistry and health hazards of fluoride-enriched groundwater. Seventy-two groundwater samples (20 unconfined samples from the piedmont plain, 22 unconfined samples and 30 shallow confined samples from the alluvial plain) were collected in the Tarim Basin of China to illustrate the geochemical processes driving the F- enrichment and the incidence of dental fluorosis. The patterns of average ions contents in groundwater are Na+ > Ca2+ > Mg2+ > K+ and SO42- > Cl- > HCO3- > NO3- > F-. The highest F- concentration (average 2.16 mg/L) is observed in unconfined groundwater in the alluvial plain, while the lowest (average 0.63 mg/L) is recorded in unconfined groundwater in the piedmont plain. Approximately 5.0% of unconfined groundwater in the piedmont plain, 90.9% of unconfined groundwater and 33.3% of shallow confined groundwater in the alluvial plain contain F- concentrations exceeding 1.0 mg/L (Chinese drinking water standard). Mineral dissolution, cation exchange, and evaporation play a significant role in the formation of solutes in groundwater. High-F- groundwater is mostly associated with SO4·Cl-Na·Ca, SO4·Cl-Na·Mg, and SO4·Cl-Na types water. Thermodynamic simulations reveal that the dissolution of F-bearing minerals (e.g., fluorite) significantly controls the F- contents in groundwater. High concentrations of F- are closely related to high HCO3-, high Na+, high salinity, cation exchange, and evaporation. This demonstrates that high F- concentrations are caused by the increase in fluorite solubility due to high ionic strength, Ca2+ consumption and the desorption of F- from solid surfaces under alkaline conditions. Mixing with the upper unconfined groundwater plays a vital role in the enrichment of F- in shallow confined groundwater in the alluvial plain. The health risk assessment based on Dean's classification indicates that the percentage prevalence of fluorosis for boys aged 6 to 18 is 15.5% for Yecheng (YC), 18.4% for Zepu (ZP), 33.3% for Shache (SC), 29.8% for Maigaiti (MG), and 44.9% for Bachu (BC), while that for girls of the same age is 14.3% for YC, 24.3% for ZP, 42.2% for SC, 41.4% for MG, and 45.3% for BC. For male and female adults aged between 19 and 68, the percentage prevalence of fluorosis is: YC (11.5%, 12.0%), ZP (18.3%, 20.0%), SC (35.4%, 35.0%), MG (32.5%, 39.7%), and BC (42.4%, 44.3%). It is obvious that younger generation, especially girls, suffers from more severe dental fluorosis. This study has implications for the effective management of high-F- groundwater in arid regions.
Collapse
Affiliation(s)
- He Su
- Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weidong Kang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Ning Kang
- Development Research Center of China Geological Survey, Beijing, 100037, China.
| | - Jingtao Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Zhi Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Tsai CL, Tsai CW, Chang WS, Lin JC, Hsia TC, Bau DAT. Protective Effects of Baicalin on Arsenic Trioxide-induced Oxidative Damage and Apoptosis in Human Umbilical Vein Endothelial Cells. In Vivo 2021; 35:155-162. [PMID: 33402461 DOI: 10.21873/invivo.12243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Arsenic trioxide (As2O3) is an environmental pollutant. However, the detailed mechanisms about As2O3-induced loss of endothelial integrity are unknown. This study aimed at investigating how As2O3 causes endothelial dysfunction and whether baicalin can reverse such dysfunction. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were used to examine As2O3-induced oxidative stress, and apoptosis. The influence of baicalin on As2O3-induced endothelial dysfunction were investigated. RESULTS The viability of HUVECs was inhibited by As2O3 and cells underwent apoptosis. As2O3 treatment increased NADPH oxidase activity, and elevated the level of reactive oxygen species (ROS). Formamidopyrimidine DNA-glycosylase- and endonuclease III-digestible adducts were accumulated. Baicalin reversed As2O3-induced apoptosis and As2O3-suppressed cell viability. Baicalin caused a decrease in NADPH oxidase activity, and re-balanced the ROS level. As2O3-induced formamidopyrimidine DNA-glycosylase- and endonuclease III-digestible adducts were down-regulated. CONCLUSION Baicalin was found to have the potential capacity to protect endothelial cells from As2O3-induced cytotoxicity.
Collapse
Affiliation(s)
- Chung-Lin Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.,Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jiunn-Cherng Lin
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital Chiayi Branch, Chiayi, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.; .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
26
|
Battistel M, Stolze L, Muniruzzaman M, Rolle M. Arsenic release and transport during oxidative dissolution of spatially-distributed sulfide minerals. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124651. [PMID: 33450514 DOI: 10.1016/j.jhazmat.2020.124651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The oxidative dissolution of sulfide minerals, naturally present in the subsurface, is one of the major pathways of arsenic mobilization. This study investigates the release and fate of arsenic from arsenopyrite and löllingite oxidation under dynamic redox conditions. We performed multidimensional flow-through experiments focusing on the impact of chemical heterogeneity on arsenic mobilization and reactive transport. In the experimental setups the As-bearing sulfide minerals were embedded, with different concentrations and spatial distributions, into a sandy matrix under anoxic conditions. Oxic water flushed in the flow-through setups triggered the oxidative dissolution of the reactive minerals, the release of arsenic, as well as changes in pore water chemistry, surface-solution interactions and mineral precipitation. We developed a reactive transport model to quantitatively interpret the experimental results. The simulation outcomes showed that 40% of the arsenic released was reincorporated into a freshly precipitated iron-arsenate phase that created a coating on the mineral surface limiting the dissolution reactions. The faster dissolution rate of löllingite compared to arsenopyrite was responsible for sustaining the continuous release of As-contaminated plumes. The model also allowed shedding light on the spatial distribution, on the temporal dynamics, and on the interactions between arsenic sources (As-bearing minerals) and sinks (freshly formed secondary phases) in flow-through systems.
Collapse
Affiliation(s)
- Maria Battistel
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lucien Stolze
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
27
|
Xiao C, Ma T, Du Y, Liu Y, Liu R, Zhang D, Chen J. Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1091-1107. [PMID: 32839956 DOI: 10.1007/s10653-020-00541-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
The clayey aquitard has the potential to release geogenic poisonous chemicals such as arsenic (As) to the adjacent aquifer owing to complex hydrologic or biogeochemical processes. However, it remains unclear whether the aquitard has effect on As enrichment in the underlying aquifer in regions without extensive groundwater pumping, and the related processes have been poorly known. Based on piezometer water chemistry, stable water isotopes, sediment chemistry and reactive-transport model, this study aims to reveal the impact process of the aquitard to As accumulation of underlying aquifer from central Yangtze River Basin, a As-affected area without extensive groundwater pumping. On the whole, As migrated from top to bottom of the aquitard (especially the depth over 10 m) and significantly influenced the As accumulation in the underlying aquifer. Nonetheless, the results of three topical boreholes showed two different hydrogeological conditions affected As release in the aquitard and enrichment in the underlying aquifer. Different hydrogeological conditions could result in the input of different species organic carbon and then impact As concentrations in the aquifer. When the aquitard was near surface water bodies, the reductive dissolution of iron oxides was the main driver for As release and the aquitard had a significant influence on the enrichment of arsenic in the aquifer. At areas without surface water bodies nearby, the desorption of As(V) from minerals was the main source of As and the concentrations of As in pore water were quite low; this pattern had little effect on the enrichment of arsenic in the aquifer.
Collapse
Affiliation(s)
- Cong Xiao
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanjun Liu
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Rui Liu
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Dongtao Zhang
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Juan Chen
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
28
|
Study on Environmental Factors of Fluorine in Chagan Lake Catchment, Northeast China. WATER 2021. [DOI: 10.3390/w13050629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Chagan Lake Catchment is located in the midwest of Songnen Plain, which is a typical high fluoride groundwater area. High fluoride water has an important impact on the economic development and ecosystem stability of Chagan Lake. In this study, the spatial distribution characteristics and influencing factors of fluorine in Chagan Lake Catchment are discussed by using hydrochemistry and mathematical statistical analysis. The groundwater in the study area was characterized as Na+-rich and Ca2+-poor, with a high pH value and high HCO3– content. The average concentration of F– was 3.02 mg/L, which was the highest in Qian’an County. The dissolution of fluorine-containing minerals and the desorption of F– in soil provided the source of F– in groundwater, while calcite and dolomite precipitation, cation exchange, and evaporation concentration provided favorable conditions for F– dissolving, migration, and enrichment in water. In addition, the concentration of F– in surface water was 4.56 mg/L, and the highest concentration was found in Hongzi Pool and Hua’ao Pool. The elevated concentrations of F– in both surface water and groundwater in the study were affected by human factors, such as rice planting and water conservancy project construction.
Collapse
|
29
|
He X, Li P, Wu J, Wei M, Ren X, Wang D. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: research from published data. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:791-812. [PMID: 32100242 DOI: 10.1007/s10653-020-00520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/18/2020] [Indexed: 05/12/2023]
Abstract
Datong Basin in China is a typical arid-semiarid inland basin, with high levels and wide distributions of arsenic (As), fluoride (F-), and iodine (I). To better understand the presence of low-quality groundwater in Datong Basin and assess the health risks for local residents, groundwater samples were collected from the shallow aquifer and in medium-deep groundwater and analyzed for As, F-, I, and nitrate (NO3-). Maxima of 1932 μg/L for As, 80.89 mg/L for F-, 2300 μg/L for I, and 3854.74 mg/L for NO3- were detected in shallow groundwater, which greatly exceeded the WHO limits for drinking purpose. High-As groundwater was present in both shallow and medium-deep aquifers. High-F- and high-NO3- groundwater was widely distributed in the shallow aquifer, and high-I groundwater was mainly present in the medium-deep aquifers. Poor-quality groundwater in the Datong Basin is mainly caused by local geological and climatic conditions, which are characterized by strong evaporation, active water-rock interactions, thick lacustrine sediment, low groundwater flow rate, and reducing and weak alkaline environments. However, groundwater quality was further impacted by agricultural activities in some areas, as shallow groundwater was also polluted by nitrate. Datong Basin inhabitants face high health risk caused by high concentrations of As, F-, I, and NO3-. The mean noncarcinogenic risk values (HQtotal) were 18.40 for children, 10.94 for adult females, and 9.47 for adult males due to exposure to contaminants in shallow groundwater; and 13.76 for children, 8.18 for adult females, and 7.08 for adult males because of exposure to medium-deep groundwater. Further, the carcinogenic risks (CR) caused by exposure to As were very high for local inhabitants, with the mean and median CR values of 4.20×10-3 and 4.13×10-4 in shallow groundwater and 3.44×10-3 and 1.71×10-4 in medium-deep groundwater, respectively.
Collapse
Affiliation(s)
- Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, Hebei, China.
| | - Jianhua Wu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Miaojun Wei
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Xiaofei Ren
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
30
|
Gao Y, Qian H, Wang H, Chen J, Ren W, Yang F. Assessment of background levels and pollution sources for arsenic and fluoride in the phreatic and confined groundwater of Xi'an city, Shaanxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34702-34714. [PMID: 31776905 DOI: 10.1007/s11356-019-06791-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The presence of arsenic and fluoride in groundwater and their impacts on human health have been reported in many countries worldwide, but little information is available on As or F- contamination in Xi'an city. This study highlights the distribution and sources of As and F- anomalies in different aquifers of Xi'an city, based on the assessment of natural background levels (NBLs) and threshold values (TVs). Groundwater samples collected from phreatic and confined aquifers were analyzed to evaluate NBLs and TVs, using median + 2MAD, Tukey inner fence (TIF), and percentile-based methods. Results showed that NBLs and TVs of As and F- in the phreatic aquifer were lower than those in the confined aquifer, indicating importance of the geological effects on the enrichment of arsenic and fluoride in the confined aquifer. Combined with hydrogeochemical methods, the distributions of As and F- anomalies show that high concentrations of As in both aquifers and F- in the confined aquifer can be attributed to the upward flow of geothermal water through faults and ground fissures, while high concentrations of F- in the phreatic aquifer may be greatly influenced by contaminated rivers. Although geological structures such as faults and ground fissures contribute to the high concentrations of potentially toxic elements, anthropogenic activities cannot be ignored because over exploitation of groundwater accelerates the development of ground fissures and results in the upward flow and mixing of geothermal water with groundwater in the upper aquifers.
Collapse
Affiliation(s)
- Yanyan Gao
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Hui Qian
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China.
| | - Haike Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Jie Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Wenhao Ren
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Faxuan Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
31
|
Kumar M, Goswami R, Patel AK, Srivastava M, Das N. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. CHEMOSPHERE 2020; 249:126126. [PMID: 32142984 DOI: 10.1016/j.chemosphere.2020.126126] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 05/21/2023]
Abstract
Arsenic (As) and fluoride (F-) are the two most conspicuous contaminants, in terms of distribution and menace, in aquifers around the world. While the majority of studies focus on the individual accounts of their hydro-geochemistry, the current work is an effort to bring together the past and contemporary works on As and F- co-occurrence. Co-occurrence in the context of As and F- is a broad umbrella term and necessarily does not imply a positive correlation between the two contaminants. In arid oxidized aquifers, healthy relationships between As and F- is reported owing desorption based release from the positively charged (hydr)oxides of metals like iron (Fe) under alkaline pH. In many instances, multiple pathways of release led to little or no correlation between the two, yet there were high concentrations of both at the same time. The key influencer of the strength of the co-occurrence is seasonality, environment, and climatic conditions. Besides, the existing primary ion and dissolved organic matter also affect the release and enrichment of As-F- in the aquifer system. Anthropogenic forcing in the form of mining, irrigation return flow, extraction, recharge, and agrochemicals remains the most significant contributing factor in the co-occurrence. The epidemiological indicate that the interface of these two interacting elements concerning public health is considerably complicated and can be affected by some uncertain factors. The existing explanations of interactions between As-F are indecisive, especially their antagonistic interactions that need further investigation. "Multi-contamination perspectives of groundwater" is an essential consideration for the overarching question of freshwater sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, 382355, Gujarat, India.
| | - Ritusmita Goswami
- Department of Environmental Science, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Arbind Kumar Patel
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, 382355, Gujarat, India
| | - Medhavi Srivastava
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, 382355, Gujarat, India
| | - Nilotpal Das
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| |
Collapse
|
32
|
Huq ME, Fahad S, Shao Z, Sarven MS, Khan IA, Alam M, Saeed M, Ullah H, Adnan M, Saud S, Cheng Q, Ali S, Wahid F, Zamin M, Raza MA, Saeed B, Riaz M, Khan WU. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110318. [PMID: 32250801 DOI: 10.1016/j.jenvman.2020.110318] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/16/2019] [Accepted: 02/20/2020] [Indexed: 05/24/2023]
Abstract
Groundwater with an excessive level of Arsenic (As) is a threat to human health. In Bangladesh, out of 64 districts, the groundwater of 50 and 59 districts contains As exceeding the Bangladesh (50 μg/L) and WHO (10 μg/L) standards for potable water. This review focuses on the occurrence, origin, plausible sources, and mobilization mechanisms of As in the groundwater of Bangladesh to better understand its environmental as well as public health consequences. High As concentrations mainly was mainly occur from the natural origin of the Himalayan orogenic tract. Consequently, sedimentary processes transport the As-loaded sediments from the orogenic tract to the marginal foreland of Bangladesh, and under the favorable biogeochemical circumstances, As is discharged from the sediment to the groundwater. Rock weathering, regular floods, volcanic movement, deposition of hydrochemical ore, and leaching of geological formations in the Himalayan range cause As occurrence in the groundwater of Bangladesh. Redox and desorption processes along with microbe-related reduction are the key geochemical processes for As enrichment. Under reducing conditions, both reductive dissolution of Fe-oxides and desorption of As are the root causes of As mobilization. A medium alkaline and reductive environment, resulting from biochemical reactions, is the major factor mobilizing As in groundwater. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As. The As mobilization process is related to the reductive solution of metal oxides as well as hydroxides that exists in sporadic sediments in Bangladesh. Other mechanisms, such as pyrite oxidation, redox cycling, and competitive ion exchange processes, are also postulated as probable mechanisms of As mobilization. The reductive dissolution of MnOOH adds dissolved As and redox-sensitive components such as SO42- and oxidized pyrite, which act as the major mechanisms to mobilize As. The reductive suspension of Mn(IV)-oxyhydroxides has also accelerated the As mobilization process in the groundwater of Bangladesh. Infiltration from the irrigation return flow and surface-wash water are also potential factors to remobilize As. Over-exploitation of groundwater and the competitive ion exchange process are also responsible for releasing As into the aquifers of Bangladesh.
Collapse
Affiliation(s)
- Md Enamul Huq
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Zhenfeng Shao
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China.
| | - Most Sinthia Sarven
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China
| | - Imtiaz Ali Khan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mukhtar Alam
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muahmmad Adnan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shah Saud
- Department of Horticulture, Northeast Agriculture University, Harbin, China
| | - Qimin Cheng
- Huazhong University of Science and Technology, School of Electronics Information and Communications, 1037 Luoyu Road, Wuhan, 430074, China
| | - Shaukat Ali
- Global Change Impact Studies Centre (GCISC), Ministry of Climate Change, Pakistan; Environmental Monitoring and Science Division, Alberta Environment and Parks, Canada
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zamin
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Beena Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, Pakistan
| | - Wasif Ullah Khan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
33
|
Zhang H. The migration dynamics and the speciation of arsenic in the Hetao area, Inner Mongolia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:332. [PMID: 32378004 DOI: 10.1007/s10661-020-08327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic contamination of the groundwater in the Hetao area in Inner Mongolia, China, has been a serious problem since the 1980s. In this study, the behavioral mechanics of arsenic in soil in the Hetao area, in relation to arsenic concentrations in groundwater, were studied using elemental speciation analysis. It is for probing the possible mechanisms of correlation and interaction within water and soil of the area, which is little work on it not only in the Hetao area but also worldwide. Associated with our previous work on water in this area, soil samples were collected along transects through areas strongly affected by arsenic poisoning. Sequential extractions were used to determine the speciation in soil of arsenic and other elements (Cd, Cu, Mo, Pb, Sb, Sn, and Zn) which are with similar geochemical behaviors to arsenic in natural systems. The results show that the arsenic concentration in soil is correlated with arsenic concentration in groundwater. This implies that arsenic transformation as a main factor of the resident poisoning of the area could be related with groundwater and soil. These results suggest that arsenic poisoning in the Hetao area is related with water and soil. The tracers moving through water are retained in the shallow stratum including soil and persist in the water affected by the movement of arsenic through the shallow stratum and soil. Graphical abstract.
Collapse
Affiliation(s)
- Hui Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| |
Collapse
|
34
|
Rashid A, Farooqi A, Gao X, Zahir S, Noor S, Khattak JA. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. CHEMOSPHERE 2020; 243:125409. [PMID: 31778919 DOI: 10.1016/j.chemosphere.2019.125409] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 05/16/2023]
Abstract
The present study examined the hydrogeochemical profile of higher fluoride (F─) in groundwater of mixed industrial and mining areas of Dargai, northern Pakistan. Groundwater samples (n = 75) were collected from three hydrogeochemical environments. The mean concentrations of pH, EC, TDS, Depth and Temperature were (7.6, 1081 μS/cm, 590 mg/L, 75 m, 28.03 °C), for chemical ions viz. NO3, PO4, SO4, Cl, HCO3, Na, K, Ca and Mg were (18.5, 2.7, 161, 107, 330, 150, 9.76, 33, 52) mg/L respectively. Whereas, the mean concentration of F─ was 2.0 mg/L. Therefore, 51% groundwater samples exceeded the WHO guideline of F─ 1.5 mg/L. Additionally, we measured the mean F─ concentration in rocks, coal and wastewater, which were (670, 98) mg/Kg and 2.3 mg/L respectively. The principal component analysis multilinear regression (PCA─MLR) extracted five significant factors which shows natural, mixed and anthropogenic pollution. Thus, fluorite is the primary source of F─ contamination in groundwater. While apatite, biotite and muscovite minerals are the secondary sources which occurs in association with quartzite, granite rocks. Under alkaline conditions, F─ contamination is supported by higher Na+, HCO3─ and lower Ca++ concentrations. The accuracy and reproducibility of the measurement of fluoride was assessed by adopting a standard method of water. The percentage recovery of F─ was 97% and reproducibility was within ±5% error limit. Lastly, a health risk community fluorosis index (CFI) was calculated through Dean's formula which shows unsuitability of groundwater sources conceiving community fluorosis in the entire study area.
Collapse
Affiliation(s)
- Abdur Rashid
- Hydrogeochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Abida Farooqi
- Hydrogeochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan.
| | - Xubo Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Salman Zahir
- Hydrogeochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan
| | - Sifat Noor
- Hydrogeochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan
| | - Junaid Ali Khattak
- Hydrogeochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan
| |
Collapse
|
35
|
Feng Y, Liu P, Wang Y, Finfrock YZ, Xie X, Su C, Liu N, Yang Y, Xu Y. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121342. [PMID: 31610349 DOI: 10.1016/j.jhazmat.2019.121342] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Characterization of the spatial distribution and speciation of iron (Fe) in Fe-modified biochars is critical for understanding the mechanisms of contaminant removal. Here, synchrotron-based techniques were applied to characterize the spatial distribution and speciation of Fe in biochars modified by FeCl3 or FeSO4 and pyrolyzed at 300, 600, and 900 °C, respectively. Confocal micro-X-ray fluorescence imaging (CMXRFI) results indicated Fe, sulfur (S), and chlorine (Cl) diffused into the basic porous structure of the biochars and aggregated to the surface as pyrolysis temperature increased. Fe K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra revealed maghemite (γ-Fe2O3) as the primary Fe species in the modified biochars and Fe(0) was observed when pyrolyzed at 600 or 900 °C. Unmodified and FeCl3-modified biochars pyrolyzed at 900 °C were evaluated in the removal of arsenate (As(V)), arsenite (As(III)), hexavalent chromium (Cr(VI)) and Hg(II) from aqueous solution and Fe-modification enhanced the removal efficiency from 42.0%, 62.5%, 19.6%, and 97.0%, respectively, to all 99.9%. X-ray absorption spectroscopy results indicate both adsorption and redox reaction contributed to the removal mechanisms. The present study provides a prospective and sustainable material and offers information relevant to tailoring Fe-modified biochars to specific environmental applications.
Collapse
Affiliation(s)
- Yu Feng
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Y Zou Finfrock
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; Science Division, Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chunli Su
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanyuan Yang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yong Xu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
36
|
Guo Q, Sun Z, Niu R, Manthari RK, Yuan M, Yang K, Cheng M, Gong Z, Wang J. Effect of arsenic and/or fluoride gestational exposure on renal autophagy in offspring mice. CHEMOSPHERE 2020; 241:124861. [PMID: 31605998 DOI: 10.1016/j.chemosphere.2019.124861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Both arsenic (As) and fluorine (F) are toxic substances widely found in the environment, which threaten to various organs of both human and animals, especially the kidney. In this study, to investigate the individual and combined effects of arsenic (15 mg/L As2O3(III)) and fluoride (100 mg/L NaF), arsenic (15 mg/L As2O3(III)) and fluoride-arsenic (15 mg/L As2O3(III)+100 mg/L NaF) on the renal autophagy during early life, a mouse model of gestationally exposed to As and/or F was established. The results showed that the mRNA expression levels of LC3, LC3I, LC3II, Beclin-1, ULK1, Atg13 and Atg14 were significantly increased with a concomitant decrease in mTOR and Bcl-2 up on individual exposure to As and F rather than in combined (As + F) exposure. In addition, the protein expression levels of LC3-II/LC3-I, Beclin-1, and LAMP1 were significantly increased with a concomitant decrease in mTOR and Bcl-2 in the mice subjected to individual exposure than the combined exposure. Based on the results, it was observed that renal tissue of mice was highly sensitive to F than As. Moreover, the toxicity of the combined (As + F) exposure was significantly lower than that of the individual exposure, which could be attributed due to the antagonism between As and F.
Collapse
Affiliation(s)
- Qiang Guo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mengke Yuan
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Min Cheng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zeen Gong
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
37
|
Huq ME, Fahad S, Shao Z, Sarven MS, Al-Huqail AA, Siddiqui MH, Habib Ur Rahman M, Khan IA, Alam M, Saeed M, Rauf A, Basir A, Jamal Y, Khan SU. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:199-209. [PMID: 31039529 DOI: 10.1016/j.jenvman.2019.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Drinking water with excessive concentration levels of arsenic (As) is a great threat to human health. A hydrochemical approach was employed in 50 drinking water samples (collected from Kushtia district, Bangladesh) to examine the occurrence of geogenic As and the presence of trace metals (TMs), as well as the factors controlling As release in aquifers. The results reveal that the drinking water of shallow aquifers is highly contaminated by As (6.05-590.7 μg/L); 82% of samples were found to exceed the WHO recommended limit (10 μg/L) for potable water, but the concentrations of Si, B, Mn, Sr, Se, Ba, Fe, Cd, Pb, F, U, Ni, Li, and Cr were within safe limits. The Ca-HCO3-type drinking water was identified as having high contents of As, pH and HCO3-, a medium-high content EC, and low concentrations of NO3-, SO42-, K+, and Cl-. The significant correlation between As and NO3- indicates that NO3- might be attributed to the use of phosphate fertilizers and a factor responsible for enhancing As in aquifers. The study also reports that the occurrence of high As and the presence of TMs in drinking water may be a result of local anthropogenic activities, such as irrigation, intensive land use and the application of agrochemicals. The insignificant correlation between As and SO42- demonstrated that As is released from SO42- minerals under reducing conditions. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As to aquifer systems. Moreover, the positive relationship between As and Si indicated that As is transported in the biogeochemical environment. The reductive suspension of Mn(IV)-oxyhydroxides also accelerated the As mobilization process. Over exploitation of tube-well water and the competitive ion exchange process are also responsible for the release of As in aquifers.
Collapse
Affiliation(s)
- Md Enamul Huq
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan; College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, Hubei, China.
| | - Zhenfeng Shao
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Most Sinthia Sarven
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, Hubei, China
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Habib Ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Imtiaz Ali Khan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mukhtar Alam
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rauf
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Basir
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yousaf Jamal
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Abid R, Manzoor M, De Oliveira LM, da Silva E, Rathinasabapathi B, Rensing C, Mahmood S, Liu X, Ma LQ. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:756-762. [PMID: 30851585 DOI: 10.1016/j.envpol.2019.02.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 μM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg-1 As, 164 mg kg-1 Cd and 327 mg kg-1 Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 μM As, 75 μM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg-1 compared to 50 μM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H2O2 content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.
Collapse
Affiliation(s)
- Rafia Abid
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA; Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Maria Manzoor
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA; Institute of Environmental Sciences and Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Letuzia M De Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Evandro da Silva
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher Rensing
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seema Mahmood
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China.
| | - Lena Q Ma
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
39
|
Kanagaraj G, Elango L. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: Implications from stable isotopic ratio δ 53Cr/δ 52Cr, geochemical and geostatistical modelling. CHEMOSPHERE 2019; 220:943-953. [PMID: 33395816 DOI: 10.1016/j.chemosphere.2018.12.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 05/13/2023]
Abstract
This study investigates the contamination of groundwater by chromium and fluoride around leather tanning industries. Major ions, chromium, δ53Cr/δ52Cr and fluoride were analyzed by advanced analytical methods. High degree of variation was observed in the concentration of chloride in groundwater, which ranged between 205 and 3310 mg/L, around 56% of the samples were recorded above the acceptable limit indicating the quality of groundwater is fresh to saline and it could be due to mixing of tannery effluents with freshwater aquifers. The chromium in the groundwater around 40% of the sampling wells exceeds the permissible limit whereas, 37% of wells were with fluoride above the accepted limit. Geochemical modelling using Phreeqc suggest that the saturation index of minerals such as calcite, dolomite, fluoride, gypsum and anorthite is affected by precipitation, dissolution and ion exchange processes. Concentration of chromium isotopes δ53Cr and δ52Cr reveals the source of Cr in the groundwater is more likely from tannery effluents. Accumulation of fluoride in groundwater is contributed by bedrock, charnockite, granite, epidote hornblende gneiss, fissile hornblende biotite gneiss in the study area. Groundwater contamination in this area is caused by both natural as well as anthropogenic sources. Around 37% of the samples exceeds HQI limit (HQI>1), which indicates possible health problems to the public upon prolonged use of untreated groundwater for drinking. To overcome this situation, it's essential to improve the performance of the effluent treatment plants and recharge structure to recover the quality of groundwater.
Collapse
Affiliation(s)
- G Kanagaraj
- Department of Geology, Anna University, Chennai, 600025, India.
| | - L Elango
- Department of Geology, Anna University, Chennai, 600025, India.
| |
Collapse
|
40
|
Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z, Xing M. Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 2018; 8:40327-40344. [PMID: 28454103 PMCID: PMC5522337 DOI: 10.18632/oncotarget.16960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022] Open
Abstract
In many organ dysfunctions, arsenic and its compounds are well known to induce apoptosis by the mitochondria and death receptor apoptotic pathways in liver and airway. However, it is less reported that which signaling pathways contribute to excessive apoptosis of chicken immune organs, a major target of toxic metals biotransformation, which suffer from subchronic arsenism. In this study, we investigated whether the mitochondria or death receptor apoptotic pathways activated in the immune organs (spleen, thymus and bursa of Fabricius) of one-day-old male Hy-line chickens exposed to arsenic trioxide (As2O3), which were fed on diets supplemented with 0, 0.625, 1.25 and 2.5 mg/kg BW of As2O3 for 30, 60 and 90 days. We found that (1) Oxidative damage and inflammatory response were confirmed in the immune organs of chickens fed on As2O3 diet. (2) Subchronic arsenism induced typical apoptotic changes in ultrastructure. (3) TdT-mediated dUTP Nick-End Labeling (TUNEL) showed that the number of apoptotic cells significantly increased under subchronic arsenism. (4) As2O3-induced apoptosis of immune organs involved in mitochondrial pathway (decrease of B-cell lymphoma-2 (Bcl-2) and increase of protein 53 (p53), Bcl-2 Associated X Protein (Bax), caspase-9, caspase-3) and death receptor pathway (increase of factor associated suicide (Fas) and caspase-8). In conclusion, this work is the first to demonstrate that the activation of mitochondria and death receptor apoptosis pathways can lead to excessive apoptosis in immune organs of chickens, which suffer from subchronic arsenism, meanwhile, oxidative stress as well as subsequent inflammatory is a crucial driver of apoptosis.
Collapse
Affiliation(s)
- Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiao Sun
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Zhijun Hou
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
41
|
Shao Y, Zhao H, Wang Y, Liu J, Li J, Chai H, Xing M. Arsenic and/or copper caused inflammatory response via activation of inducible nitric oxide synthase pathway and triggered heat shock protein responses in testis tissues of chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7719-7729. [PMID: 29288301 DOI: 10.1007/s11356-017-1042-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to investigate the effects of arsenic (As) and copper (Cu) on the inflammatory response, and the protective roles of heat shock proteins (Hsps) in chicken testes. Seventy-two 1-day-old male Hy-line chickens were treated with 30 mg/kg feed of arsenic trioxide (As2O3) and/or 300 mg/kg feed of copper sulfate (CuSO4) for 4, 8, and 12 weeks. The histological changes, inducible nitric oxide synthase (iNOS) activity, and the expressions of Hsps and inflammatory cytokines were detected. The results showed that slight histology changes were obvious in the testis tissue exposure to treatment groups. The activity and the protein level of iNOS were increased compared to the control group. The mRNA levels of proinflammatory cytokines and inflammatory factors were increased as a whole. However, anti-inflammatory cytokines were inhibited. The mRNA and protein levels of Hsp60, Hsp70, and Hsp90 were upregulated. These results suggested that sub-chronic exposure to As and/or Cu induced testicular poisoning in chickens. Increased Hsps tried to protect chicken testis tissues from tissues damage caused by inflammation. In conclusion, testicular poisoning induced by As and/or Cu caused inflammatory response and heat shock protein response in chicken testis tissues.
Collapse
Affiliation(s)
- Yizhi Shao
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Yu Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Jinglun Li
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Hongliang Chai
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China.
| | - Mingwei Xing
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
42
|
Das S, de Oliveira LM, da Silva E, Liu Y, Ma LQ. Fluoride concentrations in traditional and herbal teas: Health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:779-784. [PMID: 28865383 DOI: 10.1016/j.envpol.2017.08.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Traditional tea (Camellia sinensis) and herbal tea are being consumed across the world. However, long term consumption of tea can increase the chances of fluorosis owing to the presence of fluoride (F) in teas. Therefore, it is imperative to assess the health risk associated with tea consumption. The main objectives of this study were to: 1) estimate total F in 47 popular teas, including traditional and herbal teas and F concentrations in 1% (w/v) infusion of 5 min, and 2) assess the exposure risks of F from tea consumption in children and adults. The data showed that total F was the least in herbal teas (33-102 mg/kg) and their infusions (0.06-0.69 mg/L) compared to traditional teas (296-1112 mg/kg) and their infusions (1.47-6.9 mg/L). During tea infusion, 6-96% and 18-99% of the F was released into the water from herbal and traditional teas, respectively. Ten samples of traditional teas, including five green teas had chronic daily intake (CDI) values of F > 0.05 mg/d/kg bw, the stipulated permissible limits of F intake from all sources. Although the F from teas posed no immediate health hazards with hazard quotient <1, some tea samples could potentially contribute >4 mg F/d, thereby adding to the overall F burden. Therefore, together with F from food and water sources, daily F consumptions from teas might increase its health risks to humans. So, caution should be excised when drinking teas containing high F.
Collapse
Affiliation(s)
- Suchismita Das
- Soil and Water Science, University of Florida, Gainesville, USA; Life Science and Bioinformatics, Assam University, Silchar, India
| | | | | | - Yungen Liu
- Faculty of Environmental Science and Engineering, Southwest Forestry University, Yunnan 650224, China
| | - Lena Q Ma
- Soil and Water Science, University of Florida, Gainesville, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
43
|
Qian K, Li J, Xie X, Wang Y. Organic and inorganic colloids impacting total iodine behavior in groundwater from the Datong Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:380-390. [PMID: 28575821 DOI: 10.1016/j.scitotenv.2017.05.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/13/2017] [Accepted: 05/14/2017] [Indexed: 05/19/2023]
Abstract
The geochemical behaviors of colloids in aquifers played an important role in determining the fate of iodine in groundwater system. To decipher the impact of colloids on iodine mobilization in aquifers, three successive pore-sized colloids filtration (0.45μm, 30kDa and 5kDa) were conducted on in-situ during groundwater sampling. The results showed that the distribution ratios (f) of total iodine (IT) and iron in the dissolved solution (i.e., 5kDa ultrafiltered) were from 0.78 to 0.99 and from 0.56 to 0.94, respectively. Natural organic matter (NOM) in the colloidal fractions obtained the f values ranging from 0.14 to 1.00. The decreased Eh values from recharge area to discharge area indicated redox potential of groundwater system changed from oxidizing to reducing along groundwater flowpath, and interestingly, the corresponding iodine fractions in groundwater were decreasing in dissolved solution and increasing in colloidal fractions. Inverse correlation between Fe and DOC and positive correlation between iodine and DOC suggested the occurrence of reductive dissolution of iron oxyhydroxides and degradation of organic iodine in groundwater system. Iodine distribution increased in dissolved solution and decreased in colloids with pH increase. Moreover, as pH increased, f (Fe) and f (DOC) decreased in dissolved solution and increased in colloids. Relatively weak correlation of f (IT) with f (Fe) and strong relationship between f (IT) and f (DOC) in the large grain size fractions suggested the Fe-OM complexes controlled iodine distribution in groundwater, which depends on the presence of Fe bridges. Negligible association of iodine with Fe and NOM in the small grain size fractions might be attributed to the effects of abundant OH- content in groundwater.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Junxia Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
44
|
Das S, de Oliveira LM, da Silva E, Ma LQ. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis. CHEMOSPHERE 2017; 180:448-454. [PMID: 28419958 DOI: 10.1016/j.chemosphere.2017.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
We investigated the effects of arsenate (AsV) and fluoride (F) on each other's uptake in an As-sensitive plant Pteris ensiformis. Plants were exposed to 1) 0.1 × Hoagland solution control, 2) 3.75 mg L-1 As and 1.9, 3.8, or 7.6 mg L-1 F, or 3) 1 mg L-1 F and 3.75 mg L-1 or 7.5 mg L-1 As for 7 d in hydroponics. P. ensiformis accumulated 14.7-32.6 mg kg-1 As at 3.75 mg L-1 AsV, and 99-145 mg kg-1 F at 1 mg L-1 F. Our study revealed that AsV and F increased each other's uptake when co-present. At 1.9 mg L-1, F increased frond As uptake from 14.7 to 40.3 mg kg-1, while 7.5 mg L-1 As increased frond F uptake from 99 to 371 mg kg-1. Although, AsV was the predominant As species in all tissues, F enhanced AsIII levels in the rhizomes and fronds, while the reverse was observed in the roots. Increasing As concentrations also enhanced TBARS and H2O2 in tissues, indicating oxidative stress. However, F alleviated As stress by lowering their levels in the fronds. Frond and root membrane leakage were also evident due to As or F exposure. The results may facilitate better understanding of the mechanisms underlying the co-uptake of As and F in plants. However, the mechanisms of how they enhance each other's uptake in P. ensiformis need further investigation.
Collapse
Affiliation(s)
- Suchismita Das
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States; Life Science and Bioinformatics, Assam University, Silchar, India
| | - Letuzia M de Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States
| | - Evandro da Silva
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States
| | - Lena Q Ma
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
45
|
Ma Y, Ma Z, Yin S, Yan X, Wang J. Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells. CHEMOSPHERE 2017; 167:454-461. [PMID: 27750169 DOI: 10.1016/j.chemosphere.2016.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Excessive amount of inorganic arsenic (iAs) and fluoride (F) coexist in drinking water in many regions, which is associated with high risk of vascular diseases. However, the underlying mechanisms are not well studied. The present study was to evaluate the effects of iAs and F individual or combined exposure on endothelial activation and apoptosis in vitro. Primary human umbilical vein endothelial cells (HUVECs) were exposed to 5 μM As2O3 and/or 1 mM NaF. Changes in endothelial cell apoptosis, inflammation, oxidative stress and nitric oxide (NO) production were analyzed. The results showed that iAs and/or F induced significant increase in endothelial cell apoptosis and inflammation as indicated by the increase of mRNA and protein expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and pentraxin 3. Furthermore, iAs and/or F exposure induced intracellular reactive oxygen species and malondialdehyde generation. Results showed iAs and/or F exposure increased the activity of NADPH oxidase (NOX) and up-regulated the mRNA expression of NOX subunits p22phox. The results indicated that activation of NOX was related to oxidative stress induced by iAs and/or F. Also, iAs and/or F reduced NO production in HUVECs. The up-regulation of inflammation genes expression and oxidative stress in iAs and F co-exposed ECs were less pronounced as compared to single F-exposed cells, which showed an antagonistic effect between iAs and F. In conclusion, endothelial activation and apoptosis induced by iAs and/or F are potential mechanisms in their vascular toxicity. Oxidative stress and impaired NO production are involved in their pro-inflammatory and pro-apoptotic effects.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhenhua Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuqin Yin
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaoyan Yan
- Health Toxicology Department, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
46
|
Yang Y, Deng Y, Wang Y. Major geogenic factors controlling geographical clustering of urolithiasis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1164-1171. [PMID: 27496076 DOI: 10.1016/j.scitotenv.2016.07.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
The prevalence of urolithiasis is increasing across the world and exhibits a distinctive characteristic of geographical distribution. Geographical clustering and major geogenic factors for urolithiasis prevalence in China were investigated. High risks of urolithiasis are found in southern China clustered in coastal provinces such as Fujian and Zhejiang and karst regions such as Sichuan, Chongqing, Guizhou, Guangxi, Guangdong, Hunan, and Hubei. The predominant urinary stone composition is a mixture of calcium oxalate and phosphate. We found that the spatial distribution of phosphate-type stones is closely related to that of phosphate ore deposits and carbonate rocks. Hot or warm climate and seasons increase the risk of lithogenesis through high average air temperature. Water and soil environment influence the quality and composition of drinking water and food, thus affecting stone formation in the urinary system. In particular, the increase of Ca(2+)/Mg(2+) ratio (in meq) in drinking water might be the main factor. Besides, the high content of calcium in local plants grown on karst soils and the intake of high oxalate food might contribute to the high prevalence in South China. This study indicates that urolithiasis could be endemic, with geogenic factors playing critical roles in urolithiasis etiology.
Collapse
Affiliation(s)
- Yijun Yang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, PR China
| | - Yamin Deng
- Geological Survey, China University of Geosciences, 430074 Wuhan, PR China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, PR China.
| |
Collapse
|
47
|
Xiao C, Ma T, Du Y, Yu H, Shen S. Arsenic releasing characteristics during the compaction of muddy sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1297-1304. [PMID: 27711833 DOI: 10.1039/c6em00343e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Muddy sediments are abundant in pore water and capable of preserving a large amount of chemicals, such as arsenic. Muddy sediments would transform into aquicludes or aquitards during long-term compaction and burial. It remains unclear whether the release of arsenic from muddy sediments poses a potential contamination risk to groundwater in the adjacent aquifer. An indoor compaction simulation experiment was conducted, coupled with an investigation on vertical geochemical profiles of muddy sediments in one actual borehole. In this experiment, aqueous arsenic in released pore water ranged from 17.5 to 21.3 μg L-1 and the accumulated content of the released arsenic was 17.576 μg during the compaction. As(iii) was the main As species in released pore water and had good correlations with Fe2+ and Mn. The analysis of the solid phase showed a remarkable depletion of Fe-Mn oxide bound arsenic during the compaction. In the profiles of the actual borehole, the contents of Fe-Mn oxide bound arsenic also exhibited a gradual decreasing trend from shallow to deep. Based on both the indoor experiment and the field profile, it can be concluded that the reductive dissolution of Fe-Mn oxides took place in arsenic-rich muddy sediments and Fe-Mn oxide-bound arsenic transformed into soluble arsenic, then soluble arsenic was released into the adjacent aquifer along with the pore water in the long-term compaction and burial.
Collapse
Affiliation(s)
- Cong Xiao
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China. and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China. and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China. and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Haotian Yu
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China. and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuai Shen
- School of Environmental Studies, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China. and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|