1
|
Li W, Zhao D, Chen H, Guo L, Wei Y, Weng H, Cheng L, Zhu H, Guo Q, Shen S. Chiral Herbicide Fluorochloridone: Absolute Configuration, Stereoselective Bioactivity, Toxicity, and Degradation in the Potatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17880-17889. [PMID: 39083674 DOI: 10.1021/acs.jafc.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorochloridone (FLC) is a chiral herbicide that has four stereoisomers. This study systematically assessed the stereoselectivity of FLC to reveal the selective environmental behavior of its four isomers. Absolute configuration confirmation, evaluation of stereoselective bioactivity toward monocotyledonous and dicotyledonous weeds, toxicity to Danio rerio, and the stereoselective degradation in the potato system under field conditions of FLC were conducted. The four FLC stereoisomers were effectively separated on a superchiral S-AD column. The absolute configurations of the four stereoisomers of FLC were confirmed as (-)-(3S, 4S), (+)-(3S, 4R), (-)-(3R, 4S), and (+)-(3R, 4R)-FLC using single-crystal X-ray diffraction. The activities of the four stereoisomers were in the order of (-)-(3S, 4S)-FLC > (+)-(3R, 4R)-FLC > (+)-(3S, 4R)-FLC > (-)-(3R, 4S)-FLC, and the rate of selective degradation were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4R)-FLC > (+)-(3S, 4S)-FLC. The toxicity of the isomers were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4S)-FLC > (+)-(3S, 4R). Based on the results of bioactivity, toxicity, and degradation behavior assessments, the stereoisomer mixture containing (3R,4R)-FLC and (3S,4S)-FLC was concluded to be a better option than racemic FLC for increasing bioactivity and reducing usage.
Collapse
Affiliation(s)
- Wei Li
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Dong Zhao
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Liangzhi Guo
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Youhai Wei
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Hua Weng
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Liang Cheng
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Haixia Zhu
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Qingyun Guo
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Shuo Shen
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| |
Collapse
|
2
|
Zhai Z, Meng M, Zhang Z, Kim J, Zhu Y. Metabolism of a fungicide propiconazole by Cunninghamella elegans ATCC36112. Arch Microbiol 2024; 206:356. [PMID: 39026110 DOI: 10.1007/s00203-024-04062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
The metabolic breakdown of propiconazole by fungi was examined, and it was found that the microbial model (Cunninghamella elegans ATCC36112) efficiently degrades the triazole fungicide propiconazole through the action of cytochrome P450. This enzyme primarily facilitates the oxidation and hydrolysis processes involved in phase I metabolism. We observed major metabolites indicating hydroxylation/oxidation of propyl groups of propiconazole. Around 98% of propiconazole underwent degradation within a span of 3 days post-treatment, leading to the accumulation of five metabolites (M1-M5). The experiments started with a preliminary identification of propiconazole and its metabolites using GC-MS. The identified metabolites were then separated and identified by in-depth analysis using preparative UHPLC and MS/MS. The metabolites of propiconazole are M1 (CGA-118245), M2(CGA-118244), M3(CGA-136735), M4(GB-XLIII-42-1), and M5(SYN-542636). To further investigate the role of key enzymes in potential fungi, we treated the culture medium with piperonyl butoxide (PB) and methimazole (MZ), and then examined the kinetic responses of propiconazole and its metabolites. The results indicated a significant reduction in the metabolism rate of propiconazole in the medium treated with PB, while methimazole showed weaker inhibitory effects on the metabolism of propiconazole in the fungus C. elegans.
Collapse
Grants
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
Collapse
Affiliation(s)
- Zhaochi Zhai
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Min Meng
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Zhenxing Zhang
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | | | - Yongzhe Zhu
- Qingdao Agricultural University, Chengyang, Qingdao City, China.
| |
Collapse
|
3
|
Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NFY, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. WATER RESEARCH 2024; 256:121568. [PMID: 38593607 DOI: 10.1016/j.watres.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yanqin Peng
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ruomei Liao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Longzhen Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
4
|
Tong Z, Meng D, Zhang W, Jin L, Yi X, Dong X, Sun M, Chu Y, Duan J. Mechanism Insights into the Enantioselective Bioactivity and Fumonisin Biosynthesis of Mefentrifluconazole to Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38607803 DOI: 10.1021/acs.jafc.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - WenYu Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Lei Jin
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
- Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| |
Collapse
|
5
|
Yang C, Li H, Liang H, Huang B, Sun Y, Yang W, Wu Y, Cui Y, Hai J, Dong Z. Stereoselectivity of paclobutrazol enantiomers to oxidative stress in wheat. Chirality 2024; 36:e23638. [PMID: 38384151 DOI: 10.1002/chir.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.
Collapse
Affiliation(s)
- Chao Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Hao Li
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Huajun Liang
- Maanshan Agricultural and Rural Bureau, Xianyang, Shaanxi Province, People's Republic of China
| | - Bo Huang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yitao Sun
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yilun Wu
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Youhe Cui
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Zhoujia Dong
- Qinghai Tongren City Agriculture and Animal Husbandry Comprehensive Service Center, Xianyang, Shaanxi Province, People's Republic of China
| |
Collapse
|
6
|
Xu XB. Chiral analysis and semi-preparative separation of metconazole stereoisomers by supercritical fluid chromatography and cytotoxicity assessment in vitro. J Sep Sci 2024; 47:e2300655. [PMID: 38014608 DOI: 10.1002/jssc.202300655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Metconazole is one of the widely-used chiral triazole fungicides in controlling wheat leaf rust, powdery mildew, Fusarium head blight with high efficacy, and so forth. In the current work, the effects of chiral stationary phases, alcoholic modifiers, and column temperature on the chiral separation of metconazole were discussed in detail. Amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phase exhibited much stronger chiral recognition ability toward metconazole stereoisomers in the CO2 /ethanol mixture as compared to the others. Then, a two-step semi-preparative separation of metconazole was performed through supercritical fluid chromatography and high-performance liquid chromatography, and the enantiomeric excess values of four stereoisomers were achieved over 98%. Moreover, the enantioselective cytotoxicity of cis-metconazole against HepG2 cells has been investigated, and the order of the cell proliferation toxicity against HepG2 cells was (1R, 5S)-metconazole > (1S, 5R)-metconazole > the mixture. Briefly, this study would provide valuable information in the preparative separation of optically pure metconazole products through chromatographic techniques and their environmental risk assessment.
Collapse
Affiliation(s)
- Xiang-Bing Xu
- Research and Design Institute, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
7
|
Ma S, Xin H, Zhao P, Feng S, Chen J, Yin S, Wei Y, Shi Y, Jin G, Di X, Zhang H. Comprehensive Stereoselectivity Assessment of Toxicokinetics, Tissue Distribution, Cytotoxicity, and Environmental Fate of Chiral Pesticide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19760-19771. [PMID: 38036940 DOI: 10.1021/acs.jafc.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Propiconazole (PRO) has been widely used in the treatment of fungal infection in fruits, vegetables, cereals, and seeds. In this study, a newly established chiral liquid chromatography tandem mass spectrometry method was applied to the systemic stereoselectivity evaluation of PRO enantiomers, including toxicokinetics, tissue distributions, cytotoxicity, accumulation, and degradation. Our results showed that both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO had lower Cmax and AUC0-∞ and higher CLz/F values in plasma and lower accumulation concentrations in the liver, heart, and brain. In cytotoxic assays, cis (-)-2S,4R-PRO exhibited the lowest cytotoxicity in PC12 neuronal, N9 microglia, SH-SY5Y neuroblastoma, and MRC5 lung fibroblast cell lines. Moreover, the Eisenia fetida incubation experiment revealed that the accumulations of both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO were higher than those of their antipodes in E. fetida. In summary, our findings first suggested that the application of cis (-)-2S,4R-PRO for agriculture would hugely reduce the environmental risk.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang 261031, People's Republic of China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jialin Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Yanan Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Jaklová Dytrtová J, Bělonožníková K, Jakl M, Chmelík J, Kovač I, Ryšlavá H. Non-target biotransformation enzymes as a target for triazole-zinc mixtures. Chem Biol Interact 2023; 382:110625. [PMID: 37422065 DOI: 10.1016/j.cbi.2023.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Triazoles inhibit lanosterol 14α-demethylase and block ergosterol biosynthesis in fungal pathogens. However, they also interact with other cytochrome P450 enzymes and influence non-target metabolic pathways. Disturbingly, triazoles may interact with essential elements. The interaction of penconazole (Pen), cyproconazole (Cyp) and tebuconazole (Teb) with Zn2+ results in the formation of deprotonated ligands in their complexes or in the creation of complexes with Cl- as a counterion or doubly charged complexes. Triazoles, as well as their equimolar cocktails with Zn2+ (10-6 mol/L), decreased the activities of the non-target enzymes CYP19A1 and CYP3A4. Pen most decreased CYP19A1 activity and was best bound to its active centre to block the catalytic cycle in computational analysis. For CYP3A4, Teb was found to be the most effective inhibitor by both, activity assay and interaction with the active centre. Teb/Cyp/Zn2+ and Teb/Pen/Cyp/Zn2+ cocktails also decreased the CYP19A1 activity, which was in correlation with the formation of numerous triazole-Zn2+ complexes.
Collapse
Affiliation(s)
- Jana Jaklová Dytrtová
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, José Martího 269/31, 162 52, Prague 6, Czech Republic.
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroenvironmental Chemistry and Plant Nutrition, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Josef Chmelík
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ishak Kovač
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, José Martího 269/31, 162 52, Prague 6, Czech Republic; Charles University, Faculty of Science, Department of Analytical Chemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| |
Collapse
|
9
|
Deng P, Mou L, Ou G, Luo X, Hu D, Zhang Y. Degradation Dynamics and Residue Analysis of Four Propiconazole Stereoisomers in "Fengtang" Plum during Storage by LC-MS/MS. Foods 2023; 12:foods12112200. [PMID: 37297445 DOI: 10.3390/foods12112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Herein, an accurate and sensitive method was developed for detecting four stereoisomers of propiconazole in "Fengtang" plum by LC-MS/MS. The mean recovery of four propiconazole stereoisomers ranged from 79.42 to 104.10% at three adding levels with reasonable RSD of 1.54-11.68%, and the LOD and LOQ of the four stereoisomers was 0.0005 mg/kg and 0.004 mg/kg, respectively. In addition, the residue and selective degradation of propiconazole stereoisomers in plums were investigated by storage at 20 °C and 4 °C. The half-lives of propiconazole stereoisomeric during storage were 9.49-15.40 d at 20 °C, and 21.00-28.88 d at 4 °C. The degradation of (2R,4R)-propiconazole and (2R,4S)-propiconazole in stored plums was slightly slower than that of the corresponding enantiomers (2S,4S)-propiconazole and (2S,4R)-propiconazole. The total residues of propiconazole were 0.026-0.487 mg/kg in the plum storage period, and the water washing could remove 49.35% to 54.65% of the propiconazole residue in plum. The hardness of plums treated with propiconazole was generally higher than that of control in the middle and late stages of storage. The effects of propiconazole on the total soluble solid content of plums were different at 20 °C and 4 °C. This study provides a scientific reference for the food safety evaluation of the "Fengtang" plum after the application of propiconazole during the storage period.
Collapse
Affiliation(s)
- Pengyu Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Lianhong Mou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guipeng Ou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Zhu M, Pang X, Wang K, Sun L, Wang Y, Hua R, Shi C, Yang X. Enantioselective effect of chiral prothioconazole on the conformation of bovine serum albumin. Int J Biol Macromol 2023; 240:124541. [PMID: 37086758 DOI: 10.1016/j.ijbiomac.2023.124541] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
As a typical chiral triazole fungicide, the enantioselective toxicity of prothioconazole to environmental organisms is of increasing concern. Herein, the binding mechanism of chiral PTCs to BSA was investigated by multi-spectral technique and molecular docking. Fluorescence titration and fluorescence lifetime experiments fully established that quenching BSA fluorescence by chiral PTCs is static quenching and could spontaneously bind to BSA. Hydrophobic interactions dominate the binding process of chiral PTCs to BSA. Differently, although both chiral PTCs and BSA have a primary binding site, the difference in chiral isomerism leads to a stronger binding ability of S-PTC than R-PTC. Both configurations of PTC can change the conformation of BSA and induce changes in the microenvironment around its amino acid residues, and the effect of S-PTC is more significant. Overall, S-PTC exhibited a more substantial effect on BSA structure relative to R-PTC. That is, S-PTC may lead to more potent potential toxicological effects on environmental organisms. This study provides a comprehensive assessment of the environmental behavior of chiral pesticides and their potential toxicity to environmental organisms at the molecular level and provides a theoretical basis for the screening of highly effective and biologically less toxic enantiomers of chiral pesticides.
Collapse
Affiliation(s)
- Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Kangquan Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Ce Shi
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
11
|
Mu S, Dou L, Ye Y, Zhang H, Shi J, Zhang K. Insights on the isolation, identification, and degradation characteristics of three bacterial strains against mandipropamid and their application potential for polluted soil remediation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105376. [PMID: 36963922 DOI: 10.1016/j.pestbp.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Bacteria-induced biodegradation techniques have become an effective approach for removing pesticide residues from polluted soils. However, their effect on chiral fungicides must be systematically evaluated and the efficiency and risk of each chiral enantiomer must be better understood. In this study, we isolated and enriched seven bacterial strains that are able to degrade mandipropamid from contaminated soil samples. Three bacterial strains with high degradation efficiency (63.6%-73.4%) were screened and identified as Pseudomonas sp. (M01), Mycolicibacterium parafortuitum (MW05), and Stenotrophomonas maltophilia (MW09) by morphological and 16S rRNA gene sequencing analyses. The degradation characteristics of three strains (M01, MW05, and MW09) was investigated and it was revealed that pH, temperature, and initial concentration of mandipropamid significantly impacted their degradation efficiency. The optimal conditions for degradation were a nutrient source of mandipropamid and an inoculation amount of 5%. We used a Box-Behnken model experiment and an analysis of variance to determine the most suitable conditions for degrading mandipropamid at various pH, temperature, and initial concentration levels. A response surface methodology analysis showed that the three strains had the highest mandipropamid degradation efficiency (> 96%) under various conditions (pH: 7.15-7.71, temperature: 28.61-30.76 °C, initial concentration: 5.524-5.934 mg/L). Mycelial, intracellular, and extracellular enzymes also had an impact on the degradation of mandipropamid enantiomers by the three strains. In soil remediation trials, the three bacterial strains could effectively enantioselectively degrade rac-mandipropamid residues in polluted sterilized and natural soil samples (R-enantiomer was degraded faster) and influence the activity of urease and β-glucosidase in the soil. The results revealed several candidate bacterial strains for mandipropamid biodegradation and provide information on mandipropamid biological detoxification in soil environments.
Collapse
Affiliation(s)
- Shiyin Mu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Dou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Ye
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jing Shi
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D of Guizhou Medical University, Guiyang 550004, China.
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
12
|
Huang FL, Liu M, Qin LT, Mo LY, Liang YP, Zeng HH, Deng ZG. Toxicity interactions of azole fungicide mixtures on Chlorella pyrenoidosa. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947457 DOI: 10.1002/tox.23782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
It is acknowledged that azole fungicides may release into the environment and pose potential toxic risks. The combined toxicity interactions of azole fungicide mixtures, however, are still not fully understood. The combined toxicities and its toxic interactions of 225 binary mixtures and 126 multi-component mixtures on Chlorella pyrenoidosa were performed in this study. The results demonstrated that the negative logarithm 50% effect concentration (pEC50 ) of 10 azole fungicides to Chlorella pyrenoidosa at 96 h ranged from 4.23 (triadimefon) to 7.22 (ketoconazole), while the pEC50 values of the 351 mixtures ranged from 3.91 to 7.44. The high toxicities were found for the mixtures containing epoxiconazole. According to the results of the model deviation ratio (MDR) calculated from the concentration addition (MDRCA ), 243 out of 351 (69.23%) mixtures presented additive effect at the 10% effect, while the 23.08% and 7.69% of mixtures presented synergistic and antagonistic effects, respectively. At the 30% effect, 47.29%, 29.34%, and 23.36% of mixtures presented additive effects, synergism, and antagonism, respectively. At the 50% effect, 44.16%, 34.76%, and 21.08% of mixtures presented additive effects, synergism, and antagonism, respectively. Thus, the toxicity interactions at low concentration (10% effect) were dominated by additive effect (69.23%), whereas 55.84% of mixtures induced synergism and antagonism at high concentration (50% effect). Climbazole and imazalil were the most frequency of components presented in the additive mixtures. Epoxiconazole was the key component induced the synergistic effects, while clotrimazole was the key component in the antagonistic mixtures.
Collapse
Affiliation(s)
- Feng-Ling Huang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, China
| | - Min Liu
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, China
| | - Li-Tang Qin
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanjing, China
| | - Yan-Peng Liang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hong-Hu Zeng
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Zhen-Gui Deng
- Hengsheng Water Environment Treatment Co., LTD., Guilin, China
| |
Collapse
|
13
|
Cao N, Ji J, Li C, Yuan M, Guo X, Zong X, Li L, Ma Y, Wang C, Pang S. Rapid and efficient removal of multiple aqueous pesticides by one-step construction boric acid modified biochar. RSC Adv 2023; 13:8765-8778. [PMID: 36936844 PMCID: PMC10018371 DOI: 10.1039/d2ra07684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m2 g-1, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g-1, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to Daphnia magna. This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| |
Collapse
|
14
|
Ji C, Song Z, Tian Z, Feng Z, Fan L, Shou C, Zhao M. Enantioselectivity in the toxicological effects of chiral pesticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159656. [PMID: 36280076 DOI: 10.1016/j.scitotenv.2022.159656] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
As a special category of pesticides, chiral pesticides have increased the difficulty in investigating pesticide toxicity. Based on their usage, chiral pesticides can be divided into insecticides, herbicides, and fungicides. Over the past decades, great efforts have been made on elucidating their toxicological effects. However, no literature has reviewed the enantioselective toxicity of chiral pesticides since 2014. In recent years, more chiral pesticides have been registered for application. As such, huge research progresses have been achieved in enantioselective toxicity of chiral pesticides. Generally, more researches have remedied the knowledge gap in toxicological effects of old and new chiral pesticides. And the toxicological endpoints being evaluated have become more specific rather than centering on basic toxicity and target organisms. Besides, the underlying mechanisms accounting for the enantioselectivity in toxicological effects of chiral pesticides have been discussed as well. All in all, this review provides the critical knowledge for risk assessments, and help to drive the green-technology of single- or enriched-enantiomer pesticides and formulation of relevant laws and regulations.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zixuan Feng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lele Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenfei Shou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
He Z, Zhou L, Tan Y, Wang Z, Shi H, Wang M. Stereoselective toxicity, bioaccumulation, and metabolic pathways of triazole fungicide cyproconazole in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106330. [PMID: 36279691 DOI: 10.1016/j.aquatox.2022.106330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Cyproconazole (CPZ) is a broad-spectrum fungicide that is widely used around the world. CPZ can persist in water which raised concerns about its potential adverse effects on aquatic life. In this study, the stereoselective toxicity, bioaccumulation, elimination, and kinetic biotransformation in zebrafish were investigated. The LC50 of 96 h acute toxicity was 15.88, 19.68, 26.99, and 17.10 mg/L for SR-, SS-, RS-, and RR-CPZ, respectively. The uptake and elimination experiment showed the bioconcentration factor in order of SR- > RR- > SS- > RS-CPZ at the exposure concentration of 0.1 and 1 mg/L. In the depuration stage, CPZ isomers were rapidly eliminated by 99% within 24 h. Moreover, the oxidative stress responses (POD, SOD, and CAT) were stereoselectively induced by CPZ stereoisomers, the activity of POD was significantly increased in all CPZ treatment groups compared to the control while the activity of CAT exhibited a concentration-dependent decrease in the CPZ treatment group. Multiple metabolic pathways of CPZ in zebrafish were proposed for the first time and 7 phase I metabolites and 25 phase II conjugates were found. This study determined the potential toxicity of CPZ to zebrafish and provided a strategy for the risk evaluation of CPZ stereoisomers in aquatic ecosystems.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
16
|
Ji C, Guo D, He R, Zhao M, Fan J. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75978-75988. [PMID: 35665887 DOI: 10.1007/s11356-022-21137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The management of Fusarium head blight relies heavily on triazole fungicides. Most of triazole fungicides are chiral, and their enantioselective effects on metabolic phenotypes are poorly understood. Herein, we analyzed the bioactivity of triticonazole against Fusarium graminearum, and 1H-nuclear magnetic resonance-based metabolomics was used to assess the metabolic disturbances of triticonazole enantiomers in Fusarium graminearum and human hepatocarcinoma cells. Results indicated that the bioactivity of R-triticonazole was 4.28-fold higher than its antipode since it bound stronger with fungal CYP51B and induced more abnormal metabolic processes of Fusarium graminearum, including lipid metabolism, glycolysis, and amino acid metabolism. In human hepatocarcinoma cells, pathways of "alanine, aspartic acid and glutamate metabolism" and "pyruvate metabolism" were disturbed significantly by R-triticonazole; "phenylalanine metabolism" and "taurine-hypotaurine metabolism" were abnormal in the exposure of S-triticonazole. These results suggested that R- and S-triticonazole could affect different metabolic pathways of human hepatocarcinoma cells, and the massively use of inefficient S-triticonazole should be avoided. Our data will help to better understand the enantioselectivity of chiral pesticides and provide a reference for the development of green pesticides.
Collapse
Affiliation(s)
- Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dong Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Rujian He
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Fan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Teng M, Zhao W, Chen X, Wang C, Zhou L, Wang C, Xu Y. Parental exposure to propiconazole at environmentally relevant concentrations induces thyroid and metabolism disruption in zebrafish (Danio rerio) offspring: An in vivo, in silico and in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113865. [PMID: 35870346 DOI: 10.1016/j.ecoenv.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole is used against fungal growth in agriculture and is released into the environment, but is a potential health threat to aquatic organisms. Propiconazole induces a generational effect on zebrafish, although the toxic mechanisms involved have not been described. The aim of this study was to investigate the potential mechanisms of abnormal offspring development after propiconazole exposure in zebrafish parents. Zebrafish were exposed to propiconazole at environmentally realistic concentrations (0.1, 5, and 250 μg/L) for 100 days and their offspring were grown in control solution for further study. Heart rate, hatching rate, and body length of hatched offspring were reduced. An increase in triiodothyronine (T3) content and the T3/T4 (tetraiodothyronine) ratio was observed, indicating disruption of thyroid hormones. Increased protein level of transthyretin (TTR) in vivo was consistent with the in silico molecular docking results and T4 competitive binding in vitro assay, suggests higher binding affinity between propiconazole and TTR, more than with T4. Increased expression of genes related to the hypothalamus-pituitary-thyroid (HPT) axis and altered metabolite levels may have affected offspring development. These findings emphasizes that propiconazole, even on indirect exposure, represents health and environmental risk that should not be ignored.
Collapse
Affiliation(s)
- Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Di S, Zhao H, Liu Z, Wang Z, Qi P, Xu H, Wang X. Evaluation of Chiral Fungicide Penflufen in Legume Vegetables: Enantioseparation and Its Mechanism, Enantioselective Behaviors, and Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9319-9326. [PMID: 35877982 DOI: 10.1021/acs.jafc.2c02238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Illustrating the enantioselective behaviors of the novel chiral fungicide penflufen was extremely important for ecological safety and human health. For penflufen enantiomers, an excellent separation method including a short analysis time (4 min), a high sensitivity (2 ng/g), and lesser consumption of an organic solvent was first established through supercritical fluid chromatography-tandem mass spectrometry. The enantioseparation mechanism was explained by computational chemistry, and the stronger binding ability of S-(+)-penflufen with cellulose tris-(3-chloro-4-methylphenylcarbamate) (the chiral stationary phase OZ-3 column) contributed to the posterior elution. In legume vegetables, penflufen dissipation was the fastest in Pisum sativum Linn plants (half-life, 1 day) and the slowest in Glycine max plants (half-lives, 11.3-12.9 days). After 30, 50, and 40 days, the rac-penflufen residues were lower than the maximum residue level value in the Electronic Code of Federal Regulations (10 ng/g) in G. max, P. sativum Linn, and Vigna unguiculata, respectively. Abundant S-(+)-penflufen was found in these plants with stereoisomeric excess (se) changes being >10% in the initial stage, so the risk assessment might be driven by S-(+)-penflufen. However, the se changes were <10% in V. unguiculata plants, and the risk assessment might be calculated based on rac-penflufen. Moreover, penflufen enantiomers could be transferred from legume vegetables to soils, and the concentrations increased with time. The high persistence and medium mobility of penflufen in soils might lead to potential groundwater contamination, which was noteworthy. These results could contribute to a more accurate risk assessment of penflufen in legume vegetables.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
19
|
Li J, Han J, Lan T, Mu S, Hu D, Zhang K. Enantioselective hydrolysis and photolysis of mandipropamid in different aquatic environments - evaluation of influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60244-60258. [PMID: 35419689 DOI: 10.1007/s11356-022-20202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The hydrolysis and photolysis of the chiral fungicide mandipropamid were investigated, and the potential enantioselectivity of mandipropamid in solutions was further assessed. The aqueous solutions were filtered and directly injected into the liquid chromatography with tandem mass spectrometry. In the hydrolysis experiments, mandipropamid enantiomers hydrolyzed slowly in aquatic solutions with half-lives > 200 days; nevertheless, rise of the pH and incubation temperature could increase the hydrolysis rates more than 1.1 times (half-lives decreased from 495.1 to 216.6 days). Compared with the hydrolysis results, photolysis was found to be the main degradation pathway for mandipropamid in different solutions (half-lives < 14 h, except in pH = 5.05 buffer solution). Organic solvents were able to accelerate the photolysis of mandipropamid, but acidic solutions and the addition of flavonoids or inorganic salts significantly inhibited the photolysis of mandipropamid. During the hydrolysis and photolysis processes, the configuration of mandipropamid enantiomers was stable and five possible transformation products were identified by high resolution mass spectrometry. Due to the enantiomeric fraction values > 0.5, the hydrolysis and photolysis of mandipropamid were enantioselective, and S-( +)-mandipropamid preferentially disspated in certain aqueous solutions. The systematic evaluation of the hydrolysis and photolysis of mandipropamid enantiomers may provide more accurate data for better assessment of environmental and ecological risks in aquatic ecosystems.
Collapse
Affiliation(s)
- Jianmin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jiahua Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Tingting Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Shiyin Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Tong Z, Chu Y, Wen H, Li B, Dong X, Sun M, Meng D, Wang M, Gao T, Duan J. Stereoselective bioactivity, toxicity and degradation of novel fungicide sedaxane with four enantiomers under rice-wheat rotation mode. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113784. [PMID: 35738101 DOI: 10.1016/j.ecoenv.2022.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Sedaxane was a novel chiral fungicide that contains four enantiomers. Unfortunately, the stereoselective bioactivity, toxicity and degradation of sedaxane have not been clarified. In this study, we identified the absolute configuration of the four sedaxane enantiomers at first time. The stereoselective bioactivity toward three wheat and rice pathogens, stereoselective acute toxicity to aquatic organisms (Selenastrum capricornutum and Daphnia magna), and stereoselective degradation of sedaxane were studied. The 1 S,2S-(+)-sedaxane possessed 5.4-7.3 times greater bioactivity than 1 R,2R-(-)-sedaxane to Rhizoctonia solani and Rhizoctonia cerealis. Contrarily, the 1 R,2S-(+)-sedaxane had 4.2 times greater activity than 1 S,2S-(+)-sedaxane against Fusarium graminearum. The 1 R,2R-(-)-sedaxane had 2.8 times greater toxicity than 1 S,2S-(+)-sedaxane to S. capricornutum. The chiral determination method used ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The recovery of sedaxane stereoisomers ranged from 83.1 % to 98.2 %, with RSDs (Relative standard deviations) of 1.2 %- 8.4 %. The trans-sedaxane existed stereoselective degradation phenomenon in the rice-wheat rotation mode, and 1 S,2S-(+)-sedaxane was preferentially degraded. Our results would provide scientific importance and practical guidance to the safety evaluation of chiral pesticides.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongwei Wen
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Benkun Li
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mei Wang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
21
|
Wang F, Yang YY, Wan DB, Li JD, Liang YF, Li ZF, Shen YD, Xu ZL, Yang JY, Wang H, Gettemans J, Hammock BD, Sun YM. Nanobodies for accurate recognition of iso-tenuazonic acid and development of sensitive immunoassay for contaminant detection in foods. Food Control 2022; 136. [DOI: 10.1016/j.foodcont.2022.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin immobilized on porous silica for enantioseparation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
24
|
Li Y, Nie J, Zhang J, Xu G, Zhang H, Liu M, Gao X, Shah BSA, Yin N. Chiral fungicide penconazole: Absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152061. [PMID: 34861299 DOI: 10.1016/j.scitotenv.2021.152061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Traditional evaluation of chiral pesticides can lead to inaccurate results, as their enantiomers may show different properties. Penconazole, a chiral triazole fungicide with two enantiomers, is widely applied to protect against phytopathogens. In this study, its absolute configuration, bioactivity, ecotoxicity, and stereoselective degradation were investigated at the enantiomeric level in detail. The absolute configuration of the two enantiomers (R-(+)-penconazole and S-(-)-penconazole) was first confirmed by electronic circular dichroism (ECD), and their enantioseparation method was developed and optimized using UPLC-MS/MS. S-(-)-penconazole showed high bioactivity, as its fungicidal activity against four target phytopathogens (Alternaria alternate f. sp. mali, Botryosphaeria berengeriana f. sp. piricola, Colletotrichum gloeosporioides, and Fusarium oxysporum) was 1.8-4.4 times higher than that of R-(+)-penconazole. The results of an acute toxicity test showed that the LC50 values of S-(-)-penconazole against Daphnia magna were 32.5 times higher than those of R-(+)-penconazole at 24 h during the test period. Stereoselective degradation behaviors were found in nonbagging and bagging Fuji apples collected from three major apple-producing regions in China, with half-lives of 23.5-51.6 d (nonbagging treatment) and 23.0-57.5 d (bagging treatment) for R-(+)-penconazole and 41.1-60.9 d (nonbagging treatment) and 52.5-91.2 d (bagging treatment) for S-(+)-penconazole, respectively. This study provided new insights into the bioactivity, ecotoxicity, and stereoselective degradation of penconazole enantiomers. The above results also emphasized the importance of risk assessments of chiral pesticides at the enantiomeric level.
Collapse
Affiliation(s)
- Ye Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao 266109, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao 266109, China; Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Jia Zhang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, 221000, China.
| | - Guofeng Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Hui Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Mingyu Liu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Xiaoqin Gao
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Bacha Syde Asim Shah
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Ning Yin
- Center for Modern Agricultural Development Service, 033000, China
| |
Collapse
|
25
|
Liu L, Liu W, Yu L, Dong J, Han F, Hu D, Chen Z, Ge H, Jiang B, Wang H, Cui Y, Zhang W, Zou X, Zhang Y. Optimizing anaerobic technology by using electrochemistry and membrane module for treating pesticide wastewater: Chemical oxygen demand components and fractions distribution, membrane fouling, effluent toxicity and economic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126608. [PMID: 34954355 DOI: 10.1016/j.biortech.2021.126608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Optimization in performance and membrane fouling of an electrochemical anaerobic membrane bioreactor (R1) for treating pesticide wastewater was investigated and compared with a conventional anaerobic membrane bioreactor (R2). The maximum COD removal efficiency of R2 was 80.1%, 80.0%, 67.4%, 61.1% with HRT of 96, 72, 48 and 24 h, which of R1 was enhanced to 84.7%, 84.3%, 82.0% and 66.3%. These results demonstrated that the optimum HRT of R1 was shortened to 48 h, which of R2 required 72 h. R1 reduced the contents of particulate and colloidal COD, and the fraction of COD converted to sludge was 5.0-8.2% lower than that of R2. The fouling rate was 0.99-1.44 kPa/d and reduced by 31.0%-38.5% compared with R2. Detoxification was enhanced by 7.8-47.7% with the assistance of bio-electrochemistry. Ultimately, ensuring similar performance, R1 achieved a 65.6% improvement in environmental benefit, a 26.3% and 38.9% reduction in unit capital and operating costs.
Collapse
Affiliation(s)
- Lixue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Liqiang Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China.
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| |
Collapse
|
26
|
Tang S, Meng X, Wang F, Lin Q, Feng T, Hu D, Zhang Y. Four Propiconazole Stereoisomers: Stereoselective Bioactivity, Separation via Liquid Chromatography-Tandem Mass Spectrometry, and Dissipation in Banana Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:877-886. [PMID: 35029107 DOI: 10.1021/acs.jafc.1c06253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated the stereoselective bioactivity of four propiconazole stereoisomers against the causal agents of the banana leaf spot disease (Curvularia lunata and Colletotrichum musae). We also evaluated the stereoselective degradation of the stereoisomers in banana leaves under field test conditions. The Superchiral S-OX column successfully separated the four propiconazole stereoisomers. X-ray single-crystal diffraction confirmed that the absolute configuration of the cis-stereoisomer-(+)-A of propiconazole was (2R,4S)-propiconazole and that of the cis-stereoisomer-(-)-A of propiconazole was (2S,4R)-propiconazole. In vitro antibacterial results revealed that (2R,4S)-(+)-propiconazole had the highest activity against the two target plant fungi. In this study, a new and efficient high-performance liquid chromatography tandem mass spectrometry method was developed for the determination of the four stereoisomeric residues of propiconazole in banana leaves. The mean recoveries of the method for the stereoisomers were 76.3-103% with relative standard deviations of 1.25-11.4%. The four propiconazole stereoisomers had a detection limit of 0.002-0.006 mg/kg and a limit of quantification of 0.02-0.03 mg/kg in banana leaves. Propiconazole-(-)-B and propiconazole-(-)-A degraded slightly faster than their corresponding enantiomers propiconazole-(+)-B and propiconazole-(+)-A in banana leaves collected from three typical banana production areas.
Collapse
Affiliation(s)
- Shouying Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xiurou Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Qiao Lin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Tianyou Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
27
|
Moo-Muñoz AJ, Azorín-Vega EP, Ramírez-Durán N, Moreno-Pérez PA. Evaluation of the cytotoxic and genotoxic potential of the captan-based fungicides, chlorothalonil-based fungicides and methyl thiophanate-based fungicides in human fibroblasts BJ. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:877-883. [PMID: 34486949 DOI: 10.1080/03601234.2021.1972721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objectives of this study were to examine cytotoxic and genotoxic damage in human BJ fibroblasts caused by three pesticides used worldwide by trypan blue dye exclusion assays and to measure the relative level of phosphorylated histone H2A.X by flow cytometry at different concentrations. Captan-based fungicide and methyl thiophanate-based fungicide (100 and 1000 µΜ) showed immediate cytotoxic effects; furthermore, after 24 h, captan-based fungicide, chlorothalonil-based fungicide and methyl thiophanate-based fungicide caused cytotoxic effects in the concentration ranges of 40-100 µM, 30-100 µM and 150-1000 µM, respectively. All fungicides generated DNA damage in the treated cells by activating ATM and H2A.X sensor proteins. The three fungicides tested generated DNA double-stranded breaks and showed cytotoxicity at concentrations 33, 34, and 5 times lower (captan, chlorothalonil and thiophanate-methyl respectively) than those used in the field, as recommended by the manufacturers.
Collapse
Affiliation(s)
- Andy J Moo-Muñoz
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Erika P Azorín-Vega
- National Radiopharmaceutical Research and Development Laboratory, National Institute for Nuclear Research, La Marquesa-Ocoyoacac, State of Mexico
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Pablo Antonio Moreno-Pérez
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| |
Collapse
|
28
|
You X, Suo F, Yin S, Wang X, Zheng H, Fang S, Zhang C, Li F, Li Y. Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126047. [PMID: 33992003 DOI: 10.1016/j.jhazmat.2021.126047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
A 35-day microcosmic experiment was conducted with lettuce (Lactuca sativa L.) and two metalaxyl (MET) enantiomers (R-MET and S-MET) to understand the roles of biochar in the enantioselective fate of chiral pesticides in soil-plant ecosystems. Wood waste-derived biochar (WBC) amendment effectively decreased the shoot concentrations of R-MET/S-MET and their metabolites R-MET/S-MET acid by 57.7-86.3% and 13.3-32.5%, respectively. The reduced uptake was mainly attributed to the decreased bioavailability of R-MET and S-MET. A lower fraction of R-MET was accumulated by the lettuce in the WBC-amended soils relative to the control, suggesting a decrease in the enantioselective uptake of the chiral pesticide MET in the presence of biochar. Regardless of the WBC amendment, no enantiomerization of MET or MET acid occurred. The application of WBC stimulated soil bacterial diversity, shifted the bacterial community, and enhanced the abundance of pesticide degrading bacteria (e.g., Luteimonas, Methylophilus, and Hydrogenophaga), which were responsible for the enantioselective degradation of MET in the soil. This work expands our understanding of the enantioselective fate of chiral pesticides in the biochar-amended soil ecosystems. These findings can be used to develop biochar-based technologies to remediate soils contaminated with these chiral pesticides to ensure food safety.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China
| | - Hao Zheng
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China.
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengmin Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
29
|
He R, Guo D, Huang Z, Kong Y, Ji C, Gu J, Zhang ZB, Diao J, Zhou Z, Zhao M, Fan J, Zhang W. Systematic investigation of stereochemistry, stereoselective bioactivity, and antifungal mechanism of chiral triazole fungicide metconazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147194. [PMID: 33901949 DOI: 10.1016/j.scitotenv.2021.147194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In this study, the stereochemistry, stereoselective fungicidal bioactivity, and antifungal mechanism of chiral triazole fungicide metconazole were investigated. The configurations of metconazole stereoisomers were determined to be (1R, 5R)-metconazole, (1R, 5S)-metconazole, (1S, 5S)-metconazole, and (1S, 5R)-metconazole through using electronic circular dichroism spectroscopy. The bioactivities of four stereoisomers and their stereoisomer mixture toward Fusarium graminearum Schw and Alternaria triticina were found to be in the following order: (1S, 5R)-metconazole > the stereoisomer mixture > (1S, 5S)-metconazole > (1R, 5R)-metconazole > (1R, 5S)-metconazole. In addition, the fungicidal activities of (1S, 5R)-metconazole against two tested pathogens was 13.9-23.4 times higher than those of (1R, 5S)-metconazole. Molecular docking methodology was applied to characterize the docking energy and distances between Cytochrome P450 CYP51B and the metconazole stereoisomers, and (1S, 5R)-metconazole showed the strongest binding energy and the shortest distance binding to CYP51B than the other three stereoisomers. Moreover, enantioselective metabolisms of (1S, 5R)-metconazole and (1R, 5S)-metconazole by Fusarium graminearum Schw were investigated through NMR-based metabolomics. The amounts of alanine, arginine, acetate, ethanol, and dimethylamine produced in the presence of (1R, 5S)-metconazole were significantly higher than corresponding amounts in the presence of (1S, 5R)-metconazole, whereas the amounts of glucose, glycerol, glutamate, methionine, and trimethylamine formed in the presence of (1R, 5S)-metconazole were much less than those in the presence of (1S, 5R)-metconazole. This systematic investigation of metconazole stereoisomers would provide a new perception of metconazole in stereoisomeric level, including bioactivities, metabolic behaviors and antifungal mechanism.
Collapse
Affiliation(s)
- Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou 510663, China
| | - Zhan Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen-Bin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
30
|
Pan X, Dong F, Liu N, Xu J, Liu X, Wu X, Zheng Y. Development of RS-pyrisoxazole for reduction of pesticide inputs: A new insight from systemic evaluation of pyrisoxazole at the stereoisomeric level. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124359. [PMID: 33158653 DOI: 10.1016/j.jhazmat.2020.124359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pyrisoxazole is a chiral fungicide that is routinely applied to agricultural plant protection, but the potential environmental risk may be under- or over-estimated because the risk induced by stereoisomers have never been evaluated individually. Thus, we carried out a systemic evaluation of pyrisoxazole at the stereoisomeric level, including absolute configuration, stereoselective bioactivity, acute toxicity, and stereoselective dissipation behavior. There were 99.0-3545.3 fold difference in bioactivity toward six target pathogens (e.g., Alternaria solani) and 1.3-4.0 times difference in toxicity against aquatic organisms (Selenastrum capricornutum and Daphnia magna) between the best and worst stereoisomer. There appeared to be no significant stereoselective dissipation in all three kinds of soil under aerobic and anaerobic conditions. Stereoselective dissipation in buffer solution and river water only observed between diastereomers rather than between enantiomers. In addition, photolysis played a central role in the dissipation of pyrisoxazole in river water. RS-pyrisoxazole was 2.2- to 6.9-times more bioactive and 1.2- to 2.1-times more toxic than Rac-pyrisoxazole, and what is more, RS-pyrisoxazole degraded faster than other stereoisomers in river water. The result implicated that developing pure RS-pyrisoxazole as commercial product could reduce the input of inactive isomer on the basis of guaranteeing the efficacy against the target pathogens.
Collapse
Affiliation(s)
- Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
31
|
Wang M, Ji Z, Xu J, Zhang C, Yang Y, Liang X, Zhang Y. Study on stereoselective bioactivity, acute toxicity, and degradation in cucurbits and soil of chiral fungicide famoxadone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15947-15953. [PMID: 33245543 DOI: 10.1007/s11356-020-11810-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
The chiral pesticide famoxadone is mainly applied to control fungal diseases on fruiting vegetables. The fungicidal activity, ecotoxicological effects, and degradation behavior of famoxadone enantiomers are less well known. In this study, a systemic assessment of the stereoselectivity of famoxadone was performed in cucurbits and soil. Famoxadone enantiomers presented distinct inhibitory activities among different fungal species. The bioactivities of R-(-)-famoxadone were 2.7-178 times higher than S-(+)-famoxadone toward five phytopathogens. Based on the obtained LC50 values, famoxadone was super toxic to Eisenia foetida (E. foetida). Moreover, the acute toxicity of R-(-)-famoxadone presented 167 times greater to E. foetida than that of S-(+)-famoxadone, indicating that R-(-)-famoxadone showed higher bioactivity toward target organisms and non-target organisms than S-(+)-famoxadone. In addition, a simple high-performance liquid chromatography (HPLC) method was established to determine the stereoselective degradation of famoxadone in two species of cucurbits (cucumber and chieh-qua) and in field soil. The half-life values of famoxadone degradation were from 5.4 to 14.1 days, indicating that famoxadone was easily degraded. Additionally, no stereoselective degradation was found in cucurbits and soil. The results may provide promising implications for comprehensive environmental and ecological risk assessments of famoxadone.
Collapse
Affiliation(s)
- Meng Wang
- College of Plant Protection, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China
| | - Zerong Ji
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Jiabin Xu
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Chenghui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China
- College of Food science and Engineering, Hainan University, Haikou, 570228, China
| | - Ye Yang
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xiaoyu Liang
- College of Plant Protection, Hainan University, Haikou, 570228, China.
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China.
| | - Yu Zhang
- College of Plant Protection, Hainan University, Haikou, 570228, China.
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China.
| |
Collapse
|
32
|
Bielská L, Hale SE, Škulcová L. A review on the stereospecific fate and effects of chiral conazole fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141600. [PMID: 33182213 DOI: 10.1016/j.scitotenv.2020.141600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The production and use of chiral pesticides are triggered by the need for more complex molecules capable of effectively combating a greater spectrum of pests and crop diseases, while sustaining high production yields. Currently, chiral pesticides comprise about 30% of all pesticides in use; however, some pesticide groups such as conazole fungicides (CFs) consist almost exclusively of chiral compounds. CFs are produced and field-applied as racemic (1:1) mixtures of two enantiomers (one chiral center in the molecule) or four diastereoisomers, i.e., two pairs of enantiomers (two chiral centers in the molecule). Research on the stereoselective environmental behavior and effects of chiral pesticides such as CFs has become increasingly important within the fields of environmental chemistry and ecotoxicology. This is motivated by the fact that currently, the fate and effects of chiral pesticides such as CFs that arise due to their stereoselectivity are not fully understood and integrated into risk assessment and regulatory decisions. In order to fill this gap, a summary of the state-of-the-art literature related to the stereospecific fate and effects of CFs is needed. This will also benefit the agrochemistry industry as they enhance their understanding of the environmental implications of CFs which will aid future research and development of chiral products. This review provides a collection of >80 stereoselective studies for CFs related to chiral analytical methods, fungicidal activity, non-target toxicity, and behavior of this broadly used pesticide class in the soil environment. In addition, the review sheds more light on mechanisms behind stereoselectivity, considers possible agricultural and environmental implications, and suggests future directions for the safe use of chiral CFs and the reduction of their environmental footprint.
Collapse
Affiliation(s)
- Lucie Bielská
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Lucia Škulcová
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
33
|
Nong QY, Liu YA, Qin LT, Liu M, Mo LY, Liang YP, Zeng HH. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. CHEMOSPHERE 2021; 262:127793. [PMID: 32799142 DOI: 10.1016/j.chemosphere.2020.127793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Currently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes. Results showed that three azole fungicides and ternary mixture presented obvious time-dependent toxicities at high concentrations. MYC induced a hormetic effect on algal growth, whereas PRO and TCZ inhibit algal growth in the entire range of the tested concentrations. The toxicities of the three azole fungicides at 7 days followed the order PRO > TCZ > MYC. Three azole fungicides and their ternary mixture induced different levels of SOD and CAT activities in algae at high concentrations. The ternary mixture showed additive effects after 4 and 7 days exposure, but no effect was observed at actual environmental concentrations. The toxic mechanisms may be related to the continuous accumulation of reactive oxygen species, which not only affected protein structures and compositions but also damaged thylakoid membranes, hindered the synthesis of proteins and chlorophyll a, and eventually inhibited algal growth. These findings increase the understanding of the ecotoxicity of azole fungicides and use of azole fungicides in agricultural production.
Collapse
Affiliation(s)
- Qiong-Yuan Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yong-An Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Min Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ling-Yun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
34
|
Ju C, Li X, He S, Shi L, Yu S, Wang F, Xu S, Cao D, Fang H, Yu Y. Root Uptake of Imidacloprid and Propiconazole Is Affected by Root Composition and Soil Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15381-15389. [PMID: 33320669 DOI: 10.1021/acs.jafc.0c02170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Residual pesticides in soil may be taken up by crops and negatively affect food safety. The uptake mechanism of imidacloprid and propiconazole was studied using wheat roots. The factors affecting root uptake were also studied with different crops and in different soils. Imidacloprid and propiconazole were taken up by wheat roots mainly through the symplastic and apoplastic pathways, respectively. Root protein and lipid contents were the main factors affecting the uptake and accumulation of imidacloprid and propiconazole by different crop roots, respectively. The uptake of imidacloprid and propiconazole in soil by wheat plants was linearly correlated with their concentrations in soil pore water, which were governed by soil characteristics. These results are helpful for understanding and estimating crop uptake of residual pesticides in soils.
Collapse
|
35
|
Zhang Z, Zhang J, Zhao X, Gao B, He Z, Li L, Shi H, Wang M. Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122756. [PMID: 32353726 DOI: 10.1016/j.jhazmat.2020.122756] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Prothioconazole (PTA) is a novel, broad-spectrum, chiral triazole fungicide that is mainly used to prevent and control the disease of cereal crops. However, the adverse effects of PTA and its major metabolite on nontarget organisms have aroused wide concern. In the present work, the acute toxic of the metabolite prothioconazole-desthio (PTA-desthio), with an LC50 of 1.31 mg L-1, was 3.5-fold more toxic than the parent compound, indicating that the metabolism of PTA in zebrafish was toxic. The stereoselective uptake and metabolism of PTA and PTA-desthio in zebrafish was firstly investigated using LC-MS/MS. Remarkable enantioselectivity was observed: S-PTA and S-PTA-desthio were preferentially uptake with the uptake rate constants of 8.22 and 8.15 d-1 at exposure concentration of 0.5 mg L-1, respectively, and the R-PTA-desthio were preferentially metabolized. PTA-desthio was rapidly formed during the uptake processes. The antioxidant enzyme activities in the zebrafish changed significantly, and these effects were reversible. A metabolic pathway including 13 phase I metabolites and 2 phase II metabolites was firstly proposed. A glucuronic acid conjugate and sulfate conjugate were observed in zebrafish. The results of this work provide information that highlights and can help mitigate the potential toxicity of PTA to the ecological environment and humans health.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China.
| |
Collapse
|
36
|
Pan X, Wu X, Liu N, Xu J, Liu X, Wu X, Feng Y, Li R, Dong F, Zheng Y. A systematic evaluation of zoxamide at enantiomeric level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139069. [PMID: 32446056 DOI: 10.1016/j.scitotenv.2020.139069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Zoxamide is a recently discovered chiral fungicide that applied to agricultural production, but the potential environmental risk may be underestimated because the risk posed by either enantiomer has not been adequately assessed. Therefore, systemic evaluation of zoxamide was first carried out at the enantiomeric level. Enantioselective bioactivity against target pathogens (Phytophthora capsici Leonian, Alternaria solani, Botryis cinerea, Colletotrichum gloeosprioides Penz, Phytophthora sojae Kaufmann & Gerdemann) was explored, and the order of the bioactivity was R-zoxamide >Rac-zoxamide >S-zoxamide, with a 9.9- to 140.0-times difference between two enantiomers. Molecular docking simulation was utilized to clarify the mechanism underlying the observed differences in enantioselective bioactivity, and the result indicated that a difference of Van der waals force between R/S-zoxamide and the specific receptor gave rise to the different antifungal activity. The enantioselective toxicity result demonstrated that R-zoxamide had 4.9- to 10.8- times greater acute toxicity to Selenastrum capricornutum and Daphnia magna than S-zoxamide. S-zoxamide degraded faster under aerobic condition in all three types of soils, giving rise to an enrichment of high-risk R-enantiomer. Under anaerobic condition, however, no significant difference in dissipation rate was observed between two enantiomers. R-zoxamide was 1.5- to 3.5-times more bioactive and 1.1- to 1.5-times more toxic than Rac-zoxamide, which means developing R-zoxamide instead of racemate is a potential way to reduce pesticide dosage without loss of efficacy against target organisms and that an inactive isomer would no more be released to the environment. This study may have implications for better practical application and environmental risk assessment of zoxamide enantiomers.
Collapse
Affiliation(s)
- Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaomao Wu
- Department of Plant Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | | | - Runan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
37
|
Liang X, Xu J, Huang X, Zheng Z, Zhang C, Yang Y, Wang M, Zhang Y. Systemic stereoselectivity study of bromothalonil: stereoselective bioactivity, toxicity, and degradation in vegetables and soil. PEST MANAGEMENT SCIENCE 2020; 76:1823-1830. [PMID: 31828964 DOI: 10.1002/ps.5711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The chiral pesticide bromothalonil is widely used to control anthracnose disease on fruits and vegetables in China. The pesticidal activity, ecotoxicological effects and environmental behavior of bromothalonil and its enantiomers are still unclear. RESULTS Bromothalonil presented effective biocidal activities against the tested fungi, its enantiomers showed distinct inhibitory activities against different fungal species. The bioactivities of (+)-bromothalonil was 1.29-10.77 times higher than (-)-bromothalonil toward Rhizoctonia solani, Botrytis cinerea, Curvularia lunata, Corynespora cassiicola, Colletotrichum siamense, and Colletotrichum musae, while the effect pattern was opposite for Colletotrichum cliviicola. Based on the acute toxicity test, bromothalonil was very toxic to Eisenia foetida (E. foetida). Bromothalonil also damaged the lysosomal membrane and exhibited potential genotoxicity toward E. foetida. Moreover, (+)-bromothalonil presented lower toxicity than (-)-bromothalonil. Stereoselective degradation was investigated in tomato, cucumber, chieh-qua, and soil. The half-life values of bromothalonil degradation ranged from 7.14 to 24.75 days, indicating that bromothalonil was easily degraded. Additionally, (+)-bromothalonil degraded 1.2-1.75 times faster than (-)-bromothalonil in the four matrices. CONCLUSION This is the first systemic assessment of the stereoselectivity of bromothalonil. Based on the obtained half-life, EC50 and LC50 values, bromothalonil is an easily degraded, broad-spectrum biocidal but very toxic pesticide. (+)-Bromothalonil was more degradable in vegetables and soil and showed clearly higher bioactivity toward target organisms and lower toxicity to E. foetida than (-)-bromothalonil. Therefore, the stereoselectivity of bromothalonil enantiomers should be fully considered in comprehensive environmental and ecological risk assessments in future work. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Hainan University, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| | - Jiabin Xu
- College of Plant Protection, Hainan University, Haikou, China
| | - Xize Huang
- College of Plant Protection, Hainan University, Haikou, China
| | - Zhao Zheng
- College of Plant Protection, Hainan University, Haikou, China
| | - Chenghui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
- College of Food science and Engineering, Hainan University, Haikou, China
| | - Ye Yang
- College of Plant Protection, Hainan University, Haikou, China
| | - Meng Wang
- College of Plant Protection, Hainan University, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| | - Yu Zhang
- College of Plant Protection, Hainan University, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, China
| |
Collapse
|
38
|
Qi P, Di S, Cang T, Yang X, Wang X, Wang Z, Xu H, Zhao H, Wang X. Enantioselective behaviors of cis-epoxiconazole in vegetables-soil-earthworms system by liquid chromatography-quadrupole-time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136039. [PMID: 31846872 DOI: 10.1016/j.scitotenv.2019.136039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Cis-epoxiconazole is a widely used triazole fungicide for control and prevention of a series of fungal diseases in fruits, vegetables, teas and grains. The present work aimed at exploring enantioselective behavior of cis-epoxiconazole in the vegetable-soil-earthworm system. Firstly, the absolute configuration of cis-epoxiconazole enantiomers was ascertained. Secondly, enantioselective degradation of cis-epoxiconazole in cabbage, pakchoi and pepper were performed under field trials, which has not been previously reported. Enantioselective degradation occurred in cabbage and pepper samples. 2R, 3S-(+)-cis-epoxiconazole was degraded faster than 2S, 3R-(-)-cis-epoxiconazole in cabbage, while the reversed results were obtained in pepper. No enantioselective degradation was observed in pakchoi. Finally, soil is the principal reservoir of environmental pesticides, so the enantioselective behaviors of cis-epoxiconazole in soil and soil organism (earthworm, Eisenia fetida) were evaluated. Similar bioaccumulation curves in earthworms and degradation curves in soil were observed under the exposure levels of 1 and 10 mg/kg. Accumulation factors (AFs) indicated earthworms had weak bioaccumulation potential to cis-epoxiconazole in the contaminated soil, and no obvious enantioselectivity was observed. The different enantioselectivities in different vegetables illuminated that preferentially enriched enantiomer might impose higher risk on human health than the other one, and the high risk enantiomer required further assessment. These results may reduce the uncertainty of cis-epoxiconazole to the environmental risk assessment.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xuewei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
39
|
Yin J, Xu H, Wang B, Tian W, Yin J, Jiang J, Wu P. Highly selective 1-pentene epoxidation over Ti-MWW with modified microenvironment of Ti active sites. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00478b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hexa-coordinated Ti active sites with the piperidine molecules as ligand significantly accelerate H2O2 activation, which effectively improve the catalytic performance of Ti-MWW in the 1-pentene epoxidation reaction.
Collapse
Affiliation(s)
- Jinpeng Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Bowen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Wenwen Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jianyong Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
40
|
Ge H, Zhou M, Lv D, Wang M, Dong C, Wan Y, Zhang Z, Wang S. New Insight Regarding the Relationship Between Enantioselective Toxicity Difference and Enantiomeric Toxicity Interaction from Chiral Ionic Liquids. Int J Mol Sci 2019; 20:ijms20246163. [PMID: 31817689 PMCID: PMC6941021 DOI: 10.3390/ijms20246163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Chirality is an important property of molecules. The study of biological activity and toxicity of chiral molecules has important theoretical and practical significance for toxicology, pharmacology, and environmental science. The toxicological significance of chiral ionic liquids (ILs) has not been well revealed. In the present study, the enantiomeric joint toxicities of four pairs of chiral ILs 1-alkyl-3-methylimidazolium lactate to Allivibrio fischeri were systematically investigated by using a comprehensive approach including the co-toxicity coefficient (CTC) integrated with confidence interval (CI) method (CTCICI), concentration-response curve (CRC), and isobole analysis. The direct equipartition ray (EquRay) design was used to design five binary mixtures of enantiomers according to molar ratios of 1:5, 2:4, 3:3, 4:2, and 5:1. The toxicities of chiral ILs and their mixtures were determined using the microplate toxicity analysis (MTA) method. Concentration addition (CA) and independent action (IA) were used as the additive reference models to construct the predicted CRC and isobole of mixtures. On the whole, there was an enantioselective toxicity difference between [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac, while no enantioselective toxicity difference was observed for [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac. Thereinto, the enantiomer mixtures of [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac presented antagonistic action, and the enantiomer mixtures of [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac overall presented additive action. Moreover, the greatest antagonistic toxicity interaction occurred at the equimolar ratio of enantiomers. Based on these results, we proposed two hypotheses, (1) chiral molecules with enantioselective toxicity difference tended to produce toxicity interactions, (2) the highest or lowest toxicity was usually at the equimolar ratio and its adjacent ratio for the enantiomer mixture. These hypotheses will need to be further validated by other enantiomer mixtures.
Collapse
Affiliation(s)
- Huilin Ge
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
- Correspondence: (H.G.); (M.W.); Tel.: +86-898-6689-5011 (H.G.); +86-898-6689-5002 (M.W.)
| | - Min Zhou
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Daizhu Lv
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Mingyue Wang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- Correspondence: (H.G.); (M.W.); Tel.: +86-898-6689-5011 (H.G.); +86-898-6689-5002 (M.W.)
| | - Cunzhu Dong
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Yao Wan
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Zhenshan Zhang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Suru Wang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| |
Collapse
|
41
|
Wang X, Liu Y, Xue M, Wang Z, Yu J, Guo X. Enantioselective degradation of chiral fungicides triticonazole and prothioconazole in soils and their enantioselective accumulation in earthworms Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109491. [PMID: 31377517 DOI: 10.1016/j.ecoenv.2019.109491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Triticonazole and prothioconazole are widely used systemic agricultural triazole fungicides both with a chiral center. In this work, the enantioselective degradation of triticonazole and prothioconazole in three types of soils were investigated under native conditions using reversed phase liquid chromatography-tandem mass spectrometry with a Chiralcel OD-RH column. The results indicated that the enantioselective degradation was observed with S-triticonazole and R-prothioconazole preferentially degraded and the degradation rate was fast with a half-life within 6 days. It was also found that the presence of earthworms can accelerate the degradation and further enhance degradation enantioselectivity of triticonazole and prothioconazole in soils. Moreover, the enantioselective of triticonazole and prothioconazole in earthworms were studied. The results showed that the bioaccumulation was enantioselective with R-triticonazole and S-prothioconazole preferentially accumulated, which was similar to the soil. Our findings suggest that the enantioselective toxicity and potential effects of the metabolites should be considered for more accurate assessment of ecological risks of triticonazole and prothioconazole to target and non-target species.
Collapse
Affiliation(s)
- Xia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Yanru Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Mengyao Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zhaokun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
42
|
Wen Y, Wang Z, Gao Y, Zhao X, Gao B, Zhang Z, Li L, He Z, Wang M. Novel Liquid Chromatography-Tandem Mass Spectrometry Method for Enantioseparation of Tefluthrin via a Box-Behnken Design and Its Stereoselective Degradation in Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11591-11597. [PMID: 31557017 DOI: 10.1021/acs.jafc.9b04888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple and eco-friendly dispersive solid-phase extraction method coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of the chiral pesticide tefluthrin in food and environmental samples. The response surface methodology was applied to optimize separation conditions. The elution order of tefluthrin enantiomers was Z-cis-(1S,3S)-(-)-tefluthrin and Z-cis-(1R,3R)-(+)-tefluthrin on a Lux Cellulose-1 chiral column was identified via a polarimeter and vibrating circular dichroism. The average recoveries in five matrices ranged from 76.9 to 107.6%, with intraday relative standard deviations (RSDs) less than 15.6% and interday RSDs less than 12.5% for two enantiomers. The enantioselective degradation was investigated via laboratory incubation experiments. Slightly enantioselective degradation was observed under aerobic conditions; (1S,3S)-tefluthrin degraded preferentially with the enantiomer fraction value of 0.57 at 120 days of incubation. No remarkable enantioselective degradation was observed under anaerobic and sterile conditions. It was the first time that pyrethroid pesticides were determined at the enantiomer levels via UPLC-MS/MS. This novel method was successfully applied for the enantioselective analysis of tefluthrin enantiomers in authentic samples, indicating its efficacy in investigating the environmental stereochemistry of tefluthrin in the food web and environment. It is of crucial importance to improve risk assessment and regulation of chiral pesticides in an agricultural system.
Collapse
Affiliation(s)
- Yong Wen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
43
|
Li R, Pan X, Tao Y, Jiang D, Chen Z, Dong F, Xu J, Liu X, Wu X, Zheng Y. Systematic Evaluation of Chiral Fungicide Imazalil and Its Major Metabolite R14821 (Imazalil-M): Stability of Enantiomers, Enantioselective Bioactivity, Aquatic Toxicity, and Dissipation in Greenhouse Vegetables and Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11331-11339. [PMID: 31529945 DOI: 10.1021/acs.jafc.9b03848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral pesticides are often produced and applied without distinguishing the difference of enantiomers, which sometimes leads to overuse and inaccurate risk assessment. Imazalil is a widely used chiral fungicide; its parent and major metabolite R14821 (imazalil-M) are usually detected in environmental and plant samples. The enantioselective bioactivity of imazalil enantiomers to seven typical pathogens (e.g., Fulvia fulva) was explored. S-(+)-Imazalil showed 3.00-6.59 times higher bioactivity than its antipode for selected pathogens. Molecular docking partly explained the mechanism of enantioselectivity in bioactivity. S-(+)-Imazalil had a stronger hydrophobic interaction and lower energy conformation with binding sites than R-(-)-imazalil. The acute toxicity of S-(+)-imazalil was 1.23-fold and 2.25-fold more than R-(-)-imazalil to P. subcapitata and D. magna, respectively. And, S-(+)-imazalil-M had 2.21-fold and 1.70-fold higher toxicity than R-(-)-imazalil-M to P. subcapitata and D. magna, respectively. However, R-(-)-imazalil was 1.21 times more toxic than S-(+)-imazalil to D. rerio. The enantioselective dissipation of imazalil and imazalil-M was explored under greenhouse conditions. High-effective S-(+)-imazalil preferentially enriched in leaf and fruit of tomato and cucumber, and no enantioselective degradation was found in soil. Imazalil-M enantiomers formed in cucumber, leaf of cucumber, and tomato, and the EF values fluctuated between 0.332 and 0.499. The results could provide information for more accurate assessment of imazalil; they implicated that using S-(+)-imazalil could reduce pesticide input and the risk to D. rerio.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Yan Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Duoduo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| |
Collapse
|
44
|
He R, Mai B, Fan J, Jiang Y, Chen G, Guo D, Chen G, Yao X, Gao H, Zhang W. Identification, Quantification, and Stereoselective Degradation of Triazole Fungicide Cyproconazole in Two Matrixes through Chiral Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10782-10790. [PMID: 31490683 DOI: 10.1021/acs.jafc.9b03632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Systematic investigation of cyproconazole, including absolute stereochemistry, fungicidal activity, quantification in two matrixes, and stereoselective degradation in cucumber, are conducted in this study. By virtue of vibrational circular dichroism (VCD) spectroscopy, absolute configurations of four stereoisomers were identified to be (2R,3R)-(+)-, (2R,3S)-(+)-, (2S,3S)-(-)-, and (2S,3R)-(-)-cyproconazoles. Then four stereoisomers exhibited stereoselective fungicidal activities against Fusarium graminearum Schw and Magnaporthe oryzae, and the order of fungicidal activity was (2S,3S)-(-)-stereoisomer > the stereoisomer mixture > (2S,3R)-(-)-stereoisomer > (2R,3R)-(+)-stereoisomer > (2R,3S)-(+)-stereoisomer. Moreover, chiral liquid chromatography-tandem mass spectrometry was used to identify and quantify cyproconazole stereoisomers in soil and cucumber matrixes. Good linearity (R2 ≥ 0.99) and recoveries (86.79-92.47%, RSD ≤ 3.94%) for them were achieved, individually. Furthermore, stereoselective degradation of four cyproconazole stereoisomers was observed in cucumber and the order of degradation rate was (2R,3R)-(+)-cyproconazole > (2S,3S)-(-)-cyproconazole > (2R,3S)-(+)-cyproconazole > (2S,3R)-(-)-cyproconazole. We envision that such systematic assessments of chiral fungicides at an enantiomeric level would provide valuable information in future studies involving enantioselective physiological, metabolic, and toxicological activities.
Collapse
Affiliation(s)
- Rujian He
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| | - Binliang Mai
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| | - Jun Fan
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| | - Ying Jiang
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| | - Gui Chen
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| | - Dong Guo
- Guangzhou Research & Creativity Biotechnology Co. Ltd. , Guangzhou 510663 , P.R. China
| | - Guodong Chen
- College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Xinsheng Yao
- College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Hao Gao
- College of Pharmacy , Jinan University , Guangzhou 510632 , P.R. China
| | - Weiguang Zhang
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , P.R. China
| |
Collapse
|
45
|
Mai B, Fan J, Jiang Y, He R, Lai Y, Zhang W. Fast enantioselective determination of triadimefon in different matrices by supercritical fluid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121740. [DOI: 10.1016/j.jchromb.2019.121740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
46
|
Zhang X, Wang X, Luo F, Sheng H, Zhou L, Zhong Q, Lou Z, Sun H, Yang M, Cui X, Chen Z. Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:530-537. [PMID: 30743169 DOI: 10.1016/j.ecoenv.2019.01.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Penconazole is a typical triazole fungicide with wide use on fruits, vegetables, and tea plants to control powdery mildew. In the present study, an efficient graphite carbon black solid phase extraction (GCB-SPE) purification combined with chiral ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for determination of penconazole enantiomers in different complex matrices, including grape, tea, soil, lotus root, lotus leaf, lotus seed and hulls. The method was then applied to investigate the enantioselective dissipation of penconazole enantiomers in a real field experiment of grape and soil. As a result, a satisfactory separation of penconazole enantiomers on a chiral Lux Cellulose-2 column (150 mm × 2 mm i.d., 3 µm) was obtained with 0.1% formic acid in methanol and 10 mmol L-1 ammonium acetate in water (75/25, v/v) as mobile phase at 0.25 mL min-1. The enantiomer (+)-penconazole was firstly eluted, and (-)-penconazole was then eluted. The method showed reliable performances in linearity, recovery and precision, the recoveries of (+)-penconazole and (-)-penconazole in all of six matrices were between 70.5% and 121.0% with the relative standard deviations (RSDs) ranging from 0.8% to 23.6% at the low, medium and high spiked levels. The limits of quantitation (LOQs) of this method were lower than 0.0025 mg kg-1 in grape, soil and lotus root, 0.005 mg kg-1 in lotus leaf, lotus seed meat and lotus seed shell, and 0.0125 mg kg-1 in tea. Results of field trials indicated that (-)-penconazole degraded faster than its (+)-isomer in grape. While only a moderate stereoselectivity was observed in soil, with (-)-penconazole preferential degraded. The proposed method could be used to investigate enantioselective environmental behavior of penconazole enantiomers in complex matrices. And results in this study could provide useful information on realistic risk assessment of penconazole in grape.
Collapse
Affiliation(s)
- Xinzhong Zhang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xinru Wang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Fengjian Luo
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Huishan Sheng
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China.
| | - Li Zhou
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Qing Zhong
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhengyun Lou
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hezhi Sun
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Mei Yang
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xuan Cui
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China.
| | - Zongmao Chen
- Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|