1
|
Wang Z, Huang M, Zhang Y, Zhou F, Yu J, Chi R, Xiao C. Enhanced Pb immobilization by CaO/MgO-modified soybean residue (okara) in phosphate mining wasteland soil: Mechanism and microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123779. [PMID: 39700920 DOI: 10.1016/j.jenvman.2024.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Lead (Pb) contamination is an inevitable consequence of phosphate mining, necessitating the development of effective remediation strategies. This study investigated the use of CaO/MgO-modified okara (CMS) as an eco-friendly approach to remediate Pb-contaminated soils from phosphate mining wastelands. In the present study, following 30 d of CMS application, the exchangeable Pb content was significantly decreased to 10.46%, with the majority of Pb transforming into more stable forms: carbonate-bound Pb (56.44%), Fe/Mn oxide-bound Pb (11.03%), and organic-bound Pb (19.58%). Additionally, the treatment led to a substantial enhancement in total phosphorus, available phosphorus, ammonium, and soil organic matter, thereby improving soil fertility. The microbial community structure was also significantly influenced by CMS, with a notable increase in Firmicutes to 45%. Key genera within the microbial community included Azospirillum, Pseudoxanthomonas, Sphingomonas, and Microvirga, with Pseudoxanthomonas and Massilia being the main differential species. These genera were significantly positively correlated, contributing to the maintenance of microbial community homeostasis and promoting the production of CO32- and PO43-, which further accelerated Pb immobilization. The results indicate that CMS is an effective amendment for Pb immobilization in contaminated soils, enhancing soil fertility and modulating the microbial community to promote Pb stabilization. This provides valuable insights into the ecological remediation of Pb-contaminated soils and water bodies, highlighting the potential of waste reuse in environmental management.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Mengting Huang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuxin Zhang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| |
Collapse
|
2
|
Yang M, Lu C, Zhang S, Wang Y, Xu R, Zhang M, Wen J, Li Z. Concurrent removal of Fe(II), Cu(II), and Zn(II) cations from acid mine drainage by an industrial solid waste - Steel slag: Behaviors and mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120105. [PMID: 39368598 DOI: 10.1016/j.envres.2024.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Acid mine drainage (AMD) contamination poses a severe environmental threat and is a significant risk to human health. There is an urgent need to develop environmentally sustainable and technically viable solutions for water contamination caused by heavy metals. In this study, steel slag (SS) was used as a secondary resource to concurrently remove Fe(II), Cu(II), and Zn(II) from AMD. Because of the loose and porous structure, abundant functional groups, fast sedimentation velocity, and excellent solid-liquid separation, SS showed exceptional removal performance for heavy metal ions. The adsorption kinetic data of Fe(II),Cu(II), and Zn(II) showed good regression with the pseudo-second-order model. Besides, the adsorption of Fe(II) by SS conformed to the Freundlich model, whereas the adsorption of Cu(II) and Zn(II) followed the Langmuir model, with the maximum adsorption amounts of Cu(II) and Zn(II) being 170.69 mg/g and 155.98 mg/g. Furthermore, competitive adsorption was observed among Fe(II), Cu(II), and Zn(II) in a multi-component system, with the adsorption priority being Fe(II)>Cu(II)>Zn(II). The removal mechanism of Fe(II), Cu(II), and Zn(II) in AMD by SS mainly includes electrostatic attraction, chemical precipitation, and surface complexation. Interestingly, the leached concentrations of Fe(II), Cu(II), and Zn(II) from the spent slag after calcination were all within the detection limit of the Chinese emission standard, demonstrating excellent environmental stability. Theoretically, this renders it a viable candidate for use as an additive in construction materials. Meaningfully, the work offers a practical approach for energy-efficient and eco-friendly heavy metal ions adsorption, and the secondary utilization of SS also contributes to the sustainable development of the steel industry. It is beneficial to implement the development concepts of clean production and efficient utilization of industrial solid waste.
Collapse
Affiliation(s)
- Mingyuan Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Cunfang Lu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Shuo Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Yelei Wang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Juan Wen
- Department of Quality Management and Inspection, Yibin University, Yibin, Sichuan, 644000, PR China
| | - Zilong Li
- State Power Investment Corporation Yuanda Environmental Protection Engineering Co., Ltd., Chongqing, 400044, PR China
| |
Collapse
|
3
|
Wu W, Tang H, Bi S, Xu X, Yang S, Wang Y. Shopping around: Comparing Cd(II) sorption performance of disparate functional groups-modified microcrystalline cellulose composites. Carbohydr Polym 2024; 346:122602. [PMID: 39245489 DOI: 10.1016/j.carbpol.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The structure-function relationship of functionalized microcrystalline cellulose (MCC) composites as adsorbents remains unclear. Herein, the orange peel-derived MCC (i.e., OP-OH-H-25) was treated by different functional agents to prepare adsorbents for cadmium (Cd(II)) removal. Mercaptoacetic acid and orthophosphoric acid did not apparently impact MCC's surface site types and contents. Alternatively, they efficiently purified OP-OH-H-25 and generated OP-OH-SH and OP-OH-P samples with increased cellulose amounts. In contrast, the glycine modification produced OP-OH-NH2 with fewer sulfhydryl/carboxyl functional groups and more amide/amino sites. The pH-dependent Cd(II) removal trends by the MCC-related materials showed three successive stages with disparate sorption modes. The Cd(II) sorption kinetics processes on OP-OH-SH, OP-OH-P, and OP-OH-NH2 reached equilibrium after 0.25 h, faster than 0.5 h on OP-OH-H-25. The maximum Cd(II) sorption capacities of MCC-related adsorbents were OP-OH-P (151.81 mg/g) > OP-OH-SH (150.80 mg/g) > OP-OH-H-25 (124.90 mg/g) > > OP-OH-NH2 (55.23 mg/g). OP-OH-P exhibited the strongest Cd(II) sorption ability under the interference of mixed aquatic components. The intrinsic Cd(II) sorption mechanisms were identified as inner-sphere complexation and cation-π bond interaction. Overall, the select priority of modifying agents is orthophosphoric acid > mercaptoacetic acid > > glycine when preparing functionalized MCC adsorbents for purifying Cd(II)-polluted water systems.
Collapse
Affiliation(s)
- Wenyu Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haoyue Tang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shiying Bi
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xinghua Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shitong Yang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yongsheng Wang
- State key laboratory of electrical insulation and power equipment, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
4
|
Zhou Y, Xiong J, Wang L, Li F, Bai H, Wang S, Yang X. Multi-ligand strategy for enhanced removal of heavy metal ions by thiol-functionalized defective Zr-MOFs. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135723. [PMID: 39243545 DOI: 10.1016/j.jhazmat.2024.135723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Given the significant global concern about heavy metal pollution, the development of effective adsorbents to capture pollutants has become an urgent issue. In this work, thiol-functionalized defective Zr-MSA-DMSA was designed by mixing 2,3-dimercaptosuccinic acid and mercaptosuccinic acid, which was applied for the rapid and efficient removal of M(II) (i.e., Pb(II), Hg(II), Cd(II)) from wastewater. Zr-MSA-DMSA exhibited excellent adsorption performance, and the maximum adsorption capacities for Pb(II), Hg(II), and Cd(II) were 715.2 mg g-1, 862.7 mg g-1, and 450.5 mg g-1. In actual wastewater, Zr-DMSA-MSA exhibited up to 97 % M(II) removal efficiency and excellent anti-interference ability. It also maintained good structural stability after five adsorption/regeneration cycles. Thus, the abundant oxygen vacancies and unsaturated adsorption sites on Zr-MSA-DMSA significantly improved the adsorption performance of M(II). Spectral analysis and DFT calculations confirmed that Zr-MSA-DMSA mainly relied on the coordination of sulfur and oxygen atoms, electrostatic attraction and a large number of defective sites to achieve the adsorption of M(II). Fixed bed experiments showed that Zr-MSA-DMSA exhibited a depletion time of 10500 min and a volume of 7.0 L. In summary, Zr-MSA-DMSA holds significant potential for treating heavy metal wastewater and provides potential applications for defect engineering.
Collapse
Affiliation(s)
- Yu Zhou
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Jiaxing Xiong
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Li Wang
- The Unconventional Oil and Gas Institute, China University of Petroleum-Beijing, Beijing 102200, China
| | - Feng Li
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Huiping Bai
- School of Materials and Energy, Key Laboratory of Micro/Nano Materials and Technology, Yunnan University, Kunming 650091, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China.
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China.
| |
Collapse
|
5
|
Aminsharei F, Lahijanian A, Shiehbeigi A, Beiki SS, Ghashang M. Dual magnetization and amination of cellulosic chains for the efficient adsorption of heavy metals. Int J Biol Macromol 2024; 276:134004. [PMID: 39032894 DOI: 10.1016/j.ijbiomac.2024.134004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Compounds functionalized with hydroxyl and amino groups were found to have good potential for the adsorption of different ions. In this work, a new system of cellulosic chains was amended with amine substitutions and bonded to a magnetic core of NiFe2O4@SiO2 to form NiFe2O4@SiO2-cellulose-NH2 system. The prepared sample showed suitable magnetic separation and was characterized via XRD, FT-IR, SEM, EDS, and TGA-DTA analyses. The adsorption potential of NiFe2O4@SiO2-cellulose-NH2 system has been investigated on the heavy metals (Cd, Ni, and Pb) removal from a synthetic wastewater environment. The results show that the magnetic property created by the magnetic core increased the recycling potential of the adsorbent and the magnetic core has a positive effect on the absorption potential of the polymer. The adsorption removal of Cd(II), Ni(II), and Pb(II) ions was studied using NiFe2O4@SiO2-cellulose-NH2 systems in different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of single heavy metal ions were obtained as 406.44 mg/g (for Cd(II) ions), 411.63 mg/g (for Ni(II) ions), and 414.68 mg/g (for Pb(II) ions) under optimized conditions as pH = 6.5, ion concentration: 500 mg/L, adsorbent dosage: 1.2 g/L and room temperature.
Collapse
Affiliation(s)
- Farham Aminsharei
- Department of Safety, Health and Environment, Najafabad Branch, Islamic Azad University, Najafabad 85141-43131, Iran.
| | - Akramolmolok Lahijanian
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Andisheh Shiehbeigi
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Shieh Beiki
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Ghashang
- Department of Chemistry, Najafabad Branch, Islamic Azad University, P.O. Box: 517; Najafabad, Iran.
| |
Collapse
|
6
|
Ren P, Wang L, Ma T, Zhao Y, Guo B, Luo C, Li S, Ji P. A thorough investigation into the adsorption behavior of sophorolipid-modified fly ash towards compound pollution of lead and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174679. [PMID: 38992370 DOI: 10.1016/j.scitotenv.2024.174679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal ions and antibiotics were simultaneously detected in authentic water systems. This research, for the first time, employed synthesized sophorolipid-modified fly ash(SFA) to eliminate tetracycline(TC) and lead(Pb2+) from wastewater. Various characterization techniques, including SEM-EDS, FTIR, XPS, BET, and Zeta, were employed to investigate the properties of the SFA. The results showed that the sophorolipid modification significantly improved the fly ash's adsorption capacities for the target pollutants. The static adsorption experiments elucidated the adsorption behaviors of SFA towards TC and Pb2+ in single and binary systems, highlighting the effects of different Environmental factors on the adsorption behavior in both types of systems. In single systems, SFA exhibited a maximum adsorption capacity of 128.96 mg/g for Pb2+ and 55.57 mg/g for TC. The adsorption of Pb2+ and TC followed pseudo-second-order kinetics and Freundlich isotherm models. The adsorption reactions are endothermic and occur spontaneously. SFA demonstrates varying adsorption mechanisms for two different types of pollutants. In the case of Pb2+, the primary mechanisms include ion exchange, electrostatic interaction, cation-π interaction, and complexation, while TC primarily engages in hydrogen bonding, π-π interaction, and complexation. The interaction between Pb2+ and TC has been shown to improve adsorption efficiency at low concentrations. Additionally, adsorption-desorption experiments confirm the reliable cycling performance of modified fly ash, highlighting its potential as a cost-effective and efficient adsorbent for antibiotics and heavy metals.
Collapse
Affiliation(s)
- Pengyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhai Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Verma C, Singh V, AlFantazi A. Cellulose, cellulose derivatives and cellulose composites in sustainable corrosion protection: challenges and opportunities. Phys Chem Chem Phys 2024; 26:11217-11242. [PMID: 38587831 DOI: 10.1039/d3cp06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The use of cellulose-based compounds in coating and aqueous phase corrosion prevention is becoming more popular because they provide excellent protection and satisfy the requirements of green chemistry and sustainable development. Cellulose derivatives, primarily carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC), are widely employed in corrosion prevention. They function as efficient inhibitors by adhering to the metal's surface and creating a corrosion-inhibitive barrier by binding using their -OH groups. Their inhibition efficiency (%IE) depends upon various factors, including their concentration, temperature, chemical composition, the nature of the metal/electrolyte and availability of synergists (X-, Zn2+, surfactants and polymers). Cellulose derivatives also possess potential applications in anticorrosive coatings as they prevent corrosive species from penetrating and encourage adhesion and cohesion, guaranteeing the metal substrate underneath long-term protection. The current review article outlines the developments made in the past and present to prevent corrosion in both the coating phase and solution by using cellulose derivatives. Together with examining the difficulties of the present and the prospects for the future, the corrosion inhibition mechanism of cellulose derivatives in the solution and coating phases has also been investigated.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Vidusha Singh
- Department of Chemistry, Udai Pratap (U.P.) Autonomous College, Varanasi 221002, India
| | - Akram AlFantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Yuan B, Lin L, Hong H, Li H, Liu S, Tang S, Lu H, Liu J, Yan C. Enhanced Cr(VI) stabilization by terrestrial-derived soil protein: Photoelectrochemical properties and reduction mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133153. [PMID: 38056268 DOI: 10.1016/j.jhazmat.2023.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shanle Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
9
|
Peng X, Yan J, He C, Liu R, Liu Y. Sustainable triethylenetetramine modified sulfonated graphene oxide/chitosan composite for enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions. Int J Biol Macromol 2024; 261:129741. [PMID: 38281533 DOI: 10.1016/j.ijbiomac.2024.129741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A novel sulfonated group and triethylenetetramine modified GO/chitosan (GO-CS) adsorbent (T-SGO-CS) was successfully prepared and utilized for the adsorption of heavy metal ions from single-metal, binary-metal, and ternary-metal solutions. In a single system, the adsorption capacity was 312.28 mg/g for Pb2+, 260.52 mg/g for Cd2+, and 84.61 mg/g for Ni2+, whereas, Adsorption of Pb(II), Cd(II), and Ni(II) in binary and ternary systems was systematically studied. In tertiary systems, the effect of competitive adsorption was more pronounced. In addition, T-SGO-CS exhibited a high adsorption capacity and was recyclable for Pb2+, Cd2+, and Ni2+. T-SGO-CS is a novel and highly efficient adsorbent for omnidirectionally enhancing the adsorption of Pb2+, Cd2+, and Ni2+, as demonstrated by these results. Therefore, T-SGO-CS could be investigated as a potential new material for future applications in heavy metal removal.
Collapse
Affiliation(s)
- Xiongyi Peng
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Junlong Yan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Rong Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Yangshuo Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, 430200, China; School of Chemistry and Chemical Engineering, Wuhan Textile University, China.
| |
Collapse
|
10
|
Wu G, Wang B, Xiao C, Huang F, Long Q, Tu W, Chen S. Effect of montmorillonite modified straw biochar on transfer behavior of lead and copper in the historical mining areas of dry-hot valleys. CHEMOSPHERE 2024; 352:141344. [PMID: 38309600 DOI: 10.1016/j.chemosphere.2024.141344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Due to the rapid development of human beings, heavy metals are occurred in the Yunnan-Guizhou Plateau and Panxi Plateau, the special dry and hot climate areas. Pb and Cu can be quickly transferred through water-plant-animal, further harm to human health by food chain. Therefore, the study of heavy metal treatment is imminent. In this study, Biochar-montmorillonite composites were prepared by co-pyrolysis and characterized, and their ability to remove lead and copper from water-soil process were tracked. And their effectiveness in remediating soil contaminated by lead and copper was documented. The composite material has the rich pore structure, large specific surface area (81.5 m2/g) and a variety of surface functional groups such as C-C, CO, ester-metal and metal-oxygen bonds. Pb and Cu can be effectively adsorbed and fixed to the level of no harm to human health. The adsorption reaction of lead and copper on the Biochar-montmorillonite composites is more suitable to be described by Langmuir adsorption and pseudo-second-order kinetics models. The saturation adsorption capacity of the composite for Pb was measured as 212.5 mg/g. For Cu, it was 136.5 mg/g. The data were fitted by a two-compartment first-order kinetic model. ffast for Pb and Cu is estimated to be 0.81 and 0.78, respective. Fast adsorption is dominant and belongs to typical chemical adsorption, which is consistent with the second-order kinetic results. With 5 % of the composite, approximately 80 % of exchangeable heavy metals in those soils collected from the Yunnan-Guizhou Plateau and Panxi Plateau were reduced. The biochar-montmorillonite composites made Pb and Cu change to stable residual state, up to 35 %. Besides, it effectively restored the activity of urease and sucrase in soils. Results indicated that biochar-montmorillonite composites can be effectively used as an environment-friendly adsorbent or passivator to purify heavy metals in soils.
Collapse
Affiliation(s)
- Guangwei Wu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China.
| | - Chang Xiao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Quan Long
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Sichuan Academy of Ecological and Environmental Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Weiguo Tu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
11
|
Ma W, Han R, Zhang W, Zhang H, Chen L, Zhu L. Magnetic biochar enhanced copper immobilization in agricultural lands: Insights from adsorption precipitation and redox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120058. [PMID: 38219671 DOI: 10.1016/j.jenvman.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Biochar has exceeded expectations for heavy metal immobilization and has been prepared from widely available sources and inexpensive materials. In this research, coconut shell biochar (CSB), bamboo biochar (BC), magnetic coconut shell charcoal (MCSB), and magnetic bamboo biochar (MBC) were manufactured via co-pyrolysis, and their adsorption properties were tested. The pseudo-secondary (R2 = 0.980-0.985) adsorption kinetic fittings for the four biochas were superior to the pseudo-primary kinetics (R2 = 0.969-0.982). Unmodified biochar adsorption isotherms were more consistent with the Freundlich model, while magnetic biochar fitted Langmuir models better. The maximum adsorption capacity of MCSB for Cu(Ⅱ) reached 371.50 mg g-1. The adsorption mechanisms quantitatively analysis of the biochar indicated that chemical precipitation and ion exchange contributed to the adsorption, in which the magnetic biochar metal-π complexation also enhanced the adsorption. The pot experiment revealed that MCSB (2.0 %DW) significantly enhanced the biomass of lettuce, and facilitated the immobilization of DTPA-Cu (p < 0.05). SEM-EDS, XPS, and FTIR were utilized for morphological characterization and functional group identification, and the increased active adsorption sites (-OH, -COOH, CO, and Fe-O) of MCSB enhanced chemisorption and π-π EDA complexation with Cu(Ⅱ). EEM-PARAFAC and RDA analysis further elucidated that magnetic biochar immobilized copper and reduced biotoxicity (efficiency: 76.12%) by adjusting soil pH, phosphate, and SOM release (negative correlation). The presence of iron oxides (FeOx) promoted in situ adsorption of metallic copper and offered new insights into soil remediation.
Collapse
Affiliation(s)
- Wucheng Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Rui Han
- CSD Water Service Co., Ltd. Jiangsu Branch, Nanjing, 210000, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
12
|
Wang H, Miao D, Yu Y, Zhang Z, Zhu Y, Wang Q. PVA/PAA/DMTD electrospun nanofibrous membrane for the selective adsorption of Pb(II) ions in liquid foods. iScience 2024; 27:108737. [PMID: 38269099 PMCID: PMC10805650 DOI: 10.1016/j.isci.2023.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Lead (Pb(II)) contamination is common in liquid foods and can result from Pb(II) being present in the raw materials or during handling processes. However, due to the complexity of food matrices, there is limited data available concerning Pb(II) ion removal from food sources. This study focused on fabricating a PVA/PAA/DMTD electrospun nanofibrous membrane (ENFM) to efficiently and selectively remove Pb(II) ions from liquid foods. The PVA/PAA/DMTD ENFM had a maximum adsorption capacity of 138.3 mg/g for Pb(II) ions and demonstrated high selectivity toward the removal of Pb(II) ions. Negative values of the Gibbs free energy (ΔG°) showed that the spontaneous nature of the adsorption process was feasible at different temperatures. Moreover, it successfully removed Pb(II) ions from selected samples of commercially available drinks. Therefore, this adsorbent exhibits significant potential for removing Pb(II) ions from liquid food products, thereby reducing daily dietary exposure to Pb(II).
Collapse
Affiliation(s)
- Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Youlong Zhu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
13
|
Saravanan R, Sathish T, Sharma K, Rao AV, Sathyamurthy R, Panchal H, Abdul Zahra MM. Sustainable wastewater treatment by RO and hybrid organic polyamide membrane nanofiltration system for clean environment. CHEMOSPHERE 2023; 337:139336. [PMID: 37379991 DOI: 10.1016/j.chemosphere.2023.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
One of the environmental pollution is happened by the discharge of industrial wastewater that needs to be adequately filtered. Given that the effluent from the leather industry contains high levels of chromium, heavy metals, lipids, and Sulphur, it is one of the wastewater disposals that are most damaging. This experimental study focuses on reverse osmosis and hybrid organic polyimide membrane for nanofiltration for sustainable wastewater treatment. In the RO and organic polyamide Nano-porous membranes, a thin film of polyamide membrane was used for efficient filtration. Taguchi analysis optimized process parameters such as pressure, temperature, pH, and volume reduction factor. The outcome shows an 89% reduction in total wastewater hardness, an 88% reduction in sulfate, and an 89% efficiency reduction in COD. As a result, the proposed technology significantly increased filtration efficiency.
Collapse
Affiliation(s)
- R Saravanan
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - T Sathish
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India.
| | - Kamal Sharma
- Department of Mechanical Engineering, GLA University, Mathura, India.
| | - A Venkateswara Rao
- Advanced Functional Materials Research Centre, Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India.
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Hitesh Panchal
- Mechanical Engineering Department, Government Engineering College Patan, Gujarat, India.
| | - Musaddak Maher Abdul Zahra
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq; Electrical Engineering Department, College of Engineering, University of Babylon, Hillah, Babil, Iraq.
| |
Collapse
|
14
|
Wang C, Sun X, Chen Y, Zhang Y, Li M. Comparative metabolomic analysis reveals Ni(II) stress response mechanism of Comamonas testosteroni ZG2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115244. [PMID: 37441950 DOI: 10.1016/j.ecoenv.2023.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The focus on the toxicity of nickel (Ni(II)) in animal and human cells has increased recently. Ni(II) contamination hazards to animals and humans can be reduced by bioremediation methods. However, one of the limitation of bioremediation bacteria in soil remediation is that they cannot survive in moderate and heavy contamination Ni(II)-contaminated environments. Therefore, the Ni(II) response mechanism of Comamonas testosteroni ZG2 which has soil remediation ability in high-concentration Ni(II) environment must be elucidated. The results demonstrated that the ZG2 strain can survive at 350 mg/L concentration of Ni(II), but the growth of ZG2 was completely inhibited under the concentration of 400 mg/L Ni(II) with significant alterations in the membrane morphology, adhesion behavior, and functional groups and serious membrane damage. Furthermore, the metabolic analysis showed that Ni(II) may affect the adhesion behavior and biofilm formation of the ZG2 strain by affecting the abundance of metabolites in amino acid biosynthesis, aminoacyl-tRNA biosynthesis, ABC transporter, and cofactor biosynthesis pathways, and inhibiting its growth. This study provides new evidence clarifying the response mechanism of Ni(II) stress in the ZG2 strain, thus playing a significant role in designing the strategies of bioremediation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yuanhui Chen
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
15
|
Wang F, Zheng Y, Zhu H, Wu T. Screening of MnO 2 with desired facet and its behavior in highly selective adsorption of aqueous Pb (II): Theoretical and experimental studies. CHEMOSPHERE 2023:139239. [PMID: 37379975 DOI: 10.1016/j.chemosphere.2023.139239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this study, Density Functional Theory (DFT) calculations and experimental methods were used to evaluate MnO2 with 5 different facets for their selective adsorption of Pb (II) from wastewater containing Cd (II), Cu (II), Pb (II), and Zn (II). The DFT calculations were used to screen the selective adsorption capability of the facets and demonstrated that the MnO2 (3 1 0) facet has an excellent performance in selective adsorption of Pb (II) among all facets. The validity of DFT calculations was verified by comparing with the experimental results. MnO2 with different facets was prepared in a controlled manner and the characterizations confirmed that the lattice indices of the fabricated MnO2 have the desired facets. Adsorption performance experiments illustrated a high adsorption capacity (320.0 mg/g) on the (3 1 0) facet MnO2. The selectivity of adsorption of Pb (II) was 3-32 times greater than that of the other coexisting ions, i.e., Cd (II), Cu (II), and Zn (II)), which is consistent with results of the DFT calculations. Furthermore, DFT calculations of the adsorption energy, charge density difference, and projected density of states (PDOS) showed that the adsorption of Pb (II) on the MnO2 (3 1 0) facet is non-activated chemisorption. This study shows that it is feasible to use DFT calculations to quickly screen suitable adsorbents for environmental applications.
Collapse
Affiliation(s)
- Fan Wang
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yueying Zheng
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Ningbo 315100, China.
| |
Collapse
|
16
|
Abdel-Hady EE, Mohamed HFM, Hafez SHM, Fahmy AMM, Magdy A, Mohamed AS, Ali EO, Abdelhamed HR, Mahmoud OM. Textural properties and adsorption behavior of Zn-Mg-Al layered double hydroxide upon crystal violet dye removal as a low cost, effective, and recyclable adsorbent. Sci Rep 2023; 13:6435. [PMID: 37081088 PMCID: PMC10119303 DOI: 10.1038/s41598-023-33142-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
The preparation of adsorbents plays a vital role in the adsorption method. In particular, many adsorbents with high specific surface areas and unique shapes are essential for the adsorption strategy. A Zn-Mg-Al/layer double hydroxide (LDH) was designed in this study using a simple co-precipitation process. Adsorbent based on Zn-Mg-Al/LDH was used to remove crystal violet (CV) from the wastewater. The impacts of the initial dye concentration, pH, and temperature on CV adsorption performance were systematically examined. The adsorbents were analyzed both before and after adsorption using FTIR, XRD, and SEM. The roughness parameters and surface morphologies of the produced LDH were estimated using 3D SEM images. Under the best conditions (dose of adsorbent = 0.07 g and pH = 9), the maximum adsorption capacity has been achieved. Adsorption kinetics studies revealed that the reaction that led to the adsorption of CV dye onto Zn-Mg-Al/LDH was a pseudo-second-order model. Additionally, intraparticle diffusion suggests that Zn-Mg-Al/LDH has a fast diffusion constant for CV molecules (0.251 mg/(g min1/2)). Furthermore, as predicted by the Langmuir model, the maximal Zn-Mg-Al/LDH adsorption capacity of CV was 64.80 mg/g. The CV dimensionless separation factor (RL) onto Zn-Mg-Al/LDH was 0.769, indicating that adsorption was favorable. The effect of temperature was performed at 25, 35, and 45 °C in order to establish the thermodynamic parameters ∆Ho, ∆So, and ∆Go. The computed values indicated exothermic and spontaneous adsorption processes. The study presented here might be used to develop new adsorbents with enhanced adsorption capabilities for the purpose of protecting the water environment.
Collapse
Affiliation(s)
- E E Abdel-Hady
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Hamdy F M Mohamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt.
| | - Sarah H M Hafez
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Abdalla M M Fahmy
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Abdelhamed Magdy
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Aya S Mohamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Eman O Ali
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Hager R Abdelhamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Osama M Mahmoud
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| |
Collapse
|
17
|
Hu J, Lim FY, Hu J. Characteristics and behaviors of microplastics undergoing photoaging and Advanced Oxidation Processes (AOPs) initiated aging. WATER RESEARCH 2023; 232:119628. [PMID: 36774752 DOI: 10.1016/j.watres.2023.119628] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The fact that 94% of microplastics (MPs) ubiquitous in the environment are subject to natural weathering makes the aging study currently a research hotspot. This review summarized the physicochemical characteristics of MPs undergoing natural and artificial aging and evaluated current analytical methods used in aging studies. Besides, the differences in photoaging and aging induced by advanced oxidation processes (AOPs) were discussed, leading to a conclusion that AOPs composed of oxidant and ultraviolet (UV) irradiation can better facilitate the alteration of MPs compared to UV irradiation alone. In addition, the environmental behavior of aged MPs was outlined and their adsorption properties for organics and metals were highlighted as a result of combined effects of hydrophobic, π-π, diffusion, and hydrogen bond interaction. Furthermore, the mechanisms of photoaging and AOPs-initiated aging were analyzed, mainly the role of reactive oxygen species (ROS) and environmentally persistent free radicals (EPFRs). Finally, the applications of two-dimensional correlation spectroscopy (2D-COS) and three-dimensional fluorescence spectra using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were discussed for the aging process analysis. This overview plays an important role in explaining the aging characteristics of MPs and provides a theoretical foundation for further investigations into their toxicity and removal.
Collapse
Affiliation(s)
- Jinyuan Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Fang Yee Lim
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
18
|
Zhao P, Wang A, Wang P, Huang Z, Fu Z, Huang Z. Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. CHEMOSPHERE 2023; 318:137963. [PMID: 36708780 DOI: 10.1016/j.chemosphere.2023.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.
Collapse
Affiliation(s)
- Peng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Ping Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhen Huang
- China Quality Certification Center, Beijing , 100070, China
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
19
|
Cost-efficient collagen fibrous aerogel cross-linked by Fe (III) /silver nanoparticle complexes for simultaneously degrading antibiotics, eliminating antibiotic-resistant bacteria, and adsorbing heavy metal ions from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Rajoria S, Vashishtha M, Sangal VK. Treatment of electroplating industry wastewater: a review on the various techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72196-72246. [PMID: 35084684 DOI: 10.1007/s11356-022-18643-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Water pollution by recalcitrant compounds is an increasingly important problem due to the continuous introduction of new chemicals into the environment. Choosing appropriate measures and developing successful strategies for eliminating hazardous wastewater contaminants from industrial processes is currently a primary goal. Electroplating industry wastewater involves highly toxic cyanide (CN), heavy metal ions, oils and greases, organic solvents, and the complicated composition of effluents and may also contain biological oxygen demand (BOD), chemical oxygen demand (COD), SS, DS, TS, and turbidity. The availability of these metal ions in electroplating industry wastewater makes the water so toxic and corrosive. Because these heavy metals are harmful to living things, they must be removed to prevent them from being absorbed by plants, animals, and humans. As a result, exposure to electroplating wastewater can induce necrosis and nephritis in humans and lung cancer, digestive system cancer, anemia, hepatitis, and maxillary sinus cancer with prolonged exposure. For the safe discharge of electroplating industry effluents, appropriate wastewater treatment has to be provided. This article examines and assesses new approaches such as coagulation and flocculation, chemical precipitation, ion exchange, membrane filtration, adsorption, electrochemical treatment, and advanced oxidation process (AOP) for treating the electroplating industry wastewater. On the other hand, these physicochemical approaches have significant drawbacks, including a high initial investment and operating cost due to costly chemical reagents, the production of metal complexes sludge that needs additional treatment, and a long recovery process. At the same time, advanced techniques such as electrochemical treatment can remove various kinds of organic and inorganic contaminants such as BOD, COD, and heavy metals. The electrochemical treatment process has several advantages over traditional technologies, including complete removal of persistent organic pollutants, environmental friendliness, ease of integration with other conventional technologies, less sludge production, high separation, and shorter residence time. The effectiveness of the electrochemical treatment process depends on various parameters, including pH, electrode material, operation time, electrode gap, and current density. This review mainly emphasizes the removal of heavy metals and another pollutant such as CN from electroplating discharge. This paper will be helpful in the selection of efficient techniques for treatment based on the quantity and characteristics of the effluent produced.
Collapse
Affiliation(s)
- Sonal Rajoria
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India
| | - Manish Vashishtha
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| | - Vikas K Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| |
Collapse
|
22
|
Wu K, Wu Y, Wang B, Liu Y, Xu W, Wang A, Niu Y. Adsorption behavior and mechanism for Pb(II) and Cd(II) by silica anchored salicylaldehyde modified polyamidoamine dendrimers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Hierarchical Nanoflowers of MgFe2O4, Bentonite and B-,P- Co-Doped Graphene Oxide as Adsorbent and Photocatalyst: Optimization of Parameters by Box–Behnken Methodology. Int J Mol Sci 2022; 23:ijms23179678. [PMID: 36077079 PMCID: PMC9455985 DOI: 10.3390/ijms23179678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, nanocomposites having hierarchical nanoflowers (HNFs) -like morphology were synthesized by ultra-sonication approach. HNFs were ternary composite of MgFe2O4 and bentonite with boron-, phosphorous- co-doped graphene oxide (BPGO). The HNFs were fully characterized using different analytical tools viz. X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectroscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry and Mössbauer analysis. Transmission electron micrographs showed that chiffon-like BPGO nanosheets were wrapped on the MgFe2O4-bentonite surface, resulting in a porous flower-like morphology. The red-shift in XPS binding energies of HNFs as compared to MgFe2O4-bentoniteand BPGO revealed the presence of strong interactions between the two materials. Box–Behnken statistical methodology was employed to optimize adsorptive and photocatalytic parameters using Pb(II) and malathion as model pollutants, respectively. HNFs exhibited excellent adsorption ability for Pb(II) ions, with the Langmuir adsorption capacity of 654 mg g−1 at optimized pH 6.0 and 96% photocatalytic degradation of malathion at pH 9.0 as compared to MgFe2O4-bentonite and BPGO. Results obtained in this study clearly indicate that HNFs are promising nanocomposite for the removal of inorganic and organic contaminants from the aqueous solutions.
Collapse
|
24
|
Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu (II). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04433-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Xu C, Wang H, Shang Y, Li B, Yu D, Wang Y. Highly efficient Cd(Ⅱ) removal using 3D N-doped carbon derived from MOFs: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129149. [PMID: 35594671 DOI: 10.1016/j.jhazmat.2022.129149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) removal is imperative to ensure the safety of aquatic-ecosystem, yet its effective removal technology has remained elusive by far. To address this concern, three-dimensional N-doped carbon (NC) polyhedrons affording ample porosity is fabricated based upon the thermal carbonization and KOH activation of zeolitic imidazolate framework-8 (ZIF-8) precursor. Thus-derived activated NC (a-NC) adsorbent not only overcomes the inherent instability of ZIF-8 but also harvests a maximum Cd(Ⅱ) adsorption capacity of 370.2 mg g-1, which evidently surpasses those of bare NC counterpart as well as previously reported adsorbents. Impressively, a-NC achieves ca. 100% removal of aqueous Cd(Ⅱ) in a broad working pH range (5-9), and particularly attains stable performances (81-92%) in various realistic water. Theoretical calculations in combination with experimental characterizations further offer mechanistic insight into the enhanced removal exerted by a-NC. Notably, owing to the increased specific surface area (3041 vs. 389 m2 g-1) and enhanced sp2 carbon content (91.7 vs. 68.8%) of a-NC as compared to NC, advanced Cd(Ⅱ) adsorption via a-NC can be exhibited. Our designed a-NC material harnessing favorable recycling capability would be in particular attractive in the realm of practical Cd(Ⅱ) remediation.
Collapse
Affiliation(s)
- Conglei Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yaxin Shang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Beibei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Danning Yu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
26
|
Yan Y, Peng Y, Wang J, Xiang Z, Li Y, Yang J, Yin J, Xiao H, Wang W. Simultaneous oxidation of As(III) and reduction of Cr(VI) by NiS-CdS@biochar through efficient oxalate activation: The key role of enhanced generation of reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128993. [PMID: 35483260 DOI: 10.1016/j.jhazmat.2022.128993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The reutilization of exhausted biochar is attracting extensive interest among researchers. In this study, the biochar generated from Chinese fir with natural regular porous structure that adsorbed Cd2+/Ni2+ at different concentration levels was used as the precursor, and then combined with simple hydrothermal vulcanization and ion deposition to generate the p-n heterojunction between NiS and CdS compounds (NiS-CdS@C) in situ. The hybrids with 3 cycles of NiS deposition reduced the interfacial transmission resistance from 80 Ω to 40 Ω, and increased photocurrent density by 5 times, thus effectively promoting the separation of photogenerated electrons and holes. The simultaneous removal of As(III) and Cr(VI) was selected to evaluate the oxidation and reduction capacity of the visible light/NiS-CdS@C/oxalate system. The results indicated that 10 mg/L As(III) and Cr(VI) were completely and simultaneously removed with 0.75 mM oxalate addition within 40 min in the system, and the NiS-CdS@C presented good durability and stability for oxalate activation. Electron paramagnetic resonance (EPR) and quenching experiments demonstrated that oxalate was activated by holes under light to produce •CO2- and enhanced the generation of additional •OH and •O2-, further contributing to the oxidation of As(III) and reduction of Cr(VI).
Collapse
Affiliation(s)
- Ying Yan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziyang Xiang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yanmei Li
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junhui Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongbo Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
27
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
28
|
Gao G, Xie S, Zheng S, Xu Y, Sun Y. Two-step modification (sodium dodecylbenzene sulfonate composites acid-base) of sepiolite (SDBS/ABsep) and its performance for remediation of Cd contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128760. [PMID: 35358811 DOI: 10.1016/j.jhazmat.2022.128760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
To enhance the remediation capability of cadmium (Cd) polluted water and soil, our approach involved two-step modification of sepiolite (Sep) through acid-base compound treatment and sodium dodecylbenzene sulfonate (referring as SDBS/ABsep), and then the batch adsorption and soil culture experiments were conducted to investigate its immobilization potential and mechanisms of Cd. The findings revealed that the SDBS/ABsep had a rougher surface and higher porosity, and the maximum adsorption capacity of Cd2+ onto SDBS/ABsep was 241.39 mg g-1, which was 5.32 times higher than that on Sep. It conformed to the pseudo-second-order kinetic and Redlich-Paterson isotherm models. SDBS/ABsep exhibited a high efficiency for immobilization-induced remediation of Cd polluted soils. Upon the addition of different concentrations of SDBS/ABsep, DTPA-Cd content decreased by 17.41-47.33% compared with the control groups, and the ratio of residual fraction-Cd increased from 4.67% in unamended soil to 14.05% in the presence of 4% SDBS/ABsep. SEM-EDS, TEM, FTIR, XRD, and XPS analyses indicated that the interaction mechanisms between SDBS/ABsep and Cd included the electrostatic force, precipitation, ion exchange, and complexation of sulfonic acid groups. Therefore, SDBS/ABsep can be used as a promising effective passivation agent for remediation of Cd contaminated soil and water.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sha Xie
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
29
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
30
|
Jain P, De A, Singh NB. Cellulose‐Based Materials for Water Purification. ChemistrySelect 2022. [DOI: 10.1002/slct.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Preeti Jain
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| | - Anindita De
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| | - Nakshatra Bahadur Singh
- Department of Chemistry and Biochemistry School of Basic Sciences and Research Sharda University Greater Noida India
| |
Collapse
|
31
|
Liu J, Zhou J, Wu Z, Tian X, An X, Zhang Y, Zhang G, Deng F, Meng X, Qu J. Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β-cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128758. [PMID: 35395706 DOI: 10.1016/j.jhazmat.2022.128758] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Coexistence of heavy metals and endocrine disrupting compounds in polluted water with competitive adsorption behavior necessitates design of tailored adsorbents. In this work, β-cyclodextrin modified magnetic rice husk-derived cellulose (β-CD@MRHC) which can provide independent functional sites for effectively binding the above two types of contaminants was synthesized and used for Pb(II) and BPA elimination in both unit and multivariate systems. Characterizations results confirmed successful β-CD grafting and Fe3O4 loading, and the β-CD@MRHC had excellent magnetic property for its effectively recovery from water, which was not affected by the adsorption of pollutants. The β-CD@MRHC possessed superior adsorption performance with maximal Pb(II)/BPA uptake of 266.2 or 412.8 mg/g, severally, and the adsorption equilibrium was fleetly reached in 30 and 7.5 min. Moreover, the β-CD@MRHC could accomplish synergetic Pb(II) and BPA elimination through averting their competitive behaviors owing to diverse capture mechanisms for Pb(II) (ion exchange, complexation and electrostatic attraction) and BPA (hydrogen bonding and host-guest inclusion). Furthermore, after three cycles of step-wise desorption, the binding of Pb(II) as well as BPA byβ-CD@MRHC dropped slightly in dualistic condition. In summary, β-CD@MRHC was a promising tailored adsorbent to practical application for simultaneously removing heavy metals and organic matters from wastewater with high-performance magnetic recovery.
Collapse
Affiliation(s)
- Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianlin Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianhua Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
32
|
Sulfhydryl Functionalized Magnetic Chitosan as an Efficient Adsorbent for High-Performance Removal of Cd(II) from Water: Adsorption Isotherms, Kinetic, and Reusability Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/2248249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, dimercaptosuccinic acid-functionalized magnetic chitosan (Fe3O4@CS@DMSA) was synthesized via in situ coprecipitation process and amidation reaction, aiming to eliminate cadmium (Cd(II)) ions from an aqueous environment. The structure, morphology, and particle size of the Fe3O4@CS@DMSA adsorbent were investigated using FTIR, TEM, EDX, TGA, zeta potential, and XRD techniques, and the obtained results approved the successful synthesis of the Fe3O4@CS@DMSA nanocomposite. The influence of external adsorption conditions such as pH solution, adsorbent mass, initial Cd(II) concentration, temperature, and contact time on the adsorption process was successfully achieved. Accordingly, pH: 7.6, contact time: 210 min, and adsorbent mass:10 mg were found to be the optimal conditions for best removal. The adsorption was analyzed using nonlinear isotherm and kinetic models. The outcomes revealed that the adsorption process obeyed the Langmuir and the pseudo-first-order models. The maximum adsorption capacity of Fe3O4@CS@DMSA toward Cd(II) ion was 314.12 mg/g. The adsorption mechanism of Cd(II) on Fe3O4@CS@DMSA nanocomposite is the electrostatic interaction. The reusability test of Fe3O4@CS@DMSA nanocomposite exhibited that the adsorption efficiency was 72% after the 5th cycle. Finally, this research indicates that the Fe3O4@CS@DMSA exhibited excellent characteristics such as high adsorption capacity, effective adsorption-desorption results, and easy magnetic separation and thus could be an effective adsorbent for removing Cd(II) ions from aqueous solutions.
Collapse
|
33
|
Tsui TH, Zhang L, Zhang J, Dai Y, Tong YW. Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153616. [PMID: 35124054 DOI: 10.1016/j.scitotenv.2022.153616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
With emerging decarbonization to deploy more integrated waste management, there is a burgeoning need for re-managing waste-related infrastructures in urban environments. Wastewater treatment plants are key contributors to expanded environmental services, but relevant technological decisions and economic tradeoffs have to be assessed from a systems perspective. This study provides a methodological framework that consolidates the multiple technological and economic aspects of system retrofitting for such an evaluation purpose. Complex leachate from refuse transfer stations has been recently identified as the decarbonization roadblock of urban waste management, and it was chosen for investigations by this new methodological approach. The system impacts by complex leachate on the existing facilities were validated by experimental trials. To derive the financial outlooks for decision making, the evaluation matrix includes the quantitative impacts of bioenergy profiles, energy balance analysis of biogas utilization methods, needs of system retrofitting, economic factors, and their uncertainties. Due to the detected inefficiency of bioenergy recovery, bioinformatic analysis was proceeded for understanding the underlying mechanism to propose a mitigation solution. Overall, the methodological framework can provide a quantitative assessment of the centralized capability of wastewater treatment plants for systems planning in the new policy agenda of urban decarbonization, where the methodological potentials of expanded framework applications are also highlighted.
Collapse
Affiliation(s)
- To-Hung Tsui
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Le Zhang
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiaotong University, 3 Yinlian Road, Shanghai 201306, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
34
|
High potential of amine rice husk magnetic biocomposites for Cu(II) ion adsorption and heterogeneous degradation of contaminants in aqueous solution. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Wang C, Hao L, Sun X, Yang Y, Yin Q, Li M. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128363. [PMID: 35183050 DOI: 10.1016/j.jhazmat.2022.128363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The toxic effect of Nickel (Ni (II)) on humans and animals has been previously addressed. Owing to the important application of psychrotolerant bacteria in Ni (II) damage remediation in contamination sites at low temperatures, the response mechanism of psychrotolerant bacteria to Ni (II) toxicity must be elucidated. Therefore, the effect of Ni (II) toxicity on a psychrotolerant Bacillus cereus D2 was studied, showing a way to alleviate the Ni (II) toxicity in strain D2. The results showed that strain D2 growth was completely inhibited at a concentration of 100 mg/L of Ni (II). The main effects of Ni (II) toxicity on strain D2 were membrane damage and reactive oxygen species-dependent oxidative stress. Additionally, Ni (II) toxicity resulted in dysregulation of the cell cycle in strain D2. Furthermore, metabolomic analysis showed that the biosynthesis of amino acids and ABC transporters were significantly affected, and the relative abundance of seven important amino acids changed in a concentration-dependent manner. Addition of 20 mM or 5 mM amino acids to 100 mg/L Ni (II)-treated strain D2 restored its growth. This study provides insights into the way to alleviate the Ni (II) toxicity in strain D2, thus contributing to the development of bioremediation strategies.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yi Yang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Qiuxia Yin
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
36
|
Microwave-assisted pyrolysis of phosphoric acid-activated Goldenberry peel powder biochar for enhancing the adsorption of trace beta-lactamase inhibitors. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Shi RJ, Wang T, Lang JQ, Zhou N, Ma MG. Multifunctional Cellulose and Cellulose-Based (Nano) Composite Adsorbents. Front Bioeng Biotechnol 2022; 10:891034. [PMID: 35497333 PMCID: PMC9046606 DOI: 10.3389/fbioe.2022.891034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, faced with the improvement of environmental quality problems, cellulose and cellulose-based (nano) composites have attracted great attention as adsorbents. In this review article, we first report the recent progress of modification and functionalization of cellulose adsorbents. In addition, the adsorbents produced by the modification and functionalization of carboxymehyl cellulose are also introduced. Moreover, the cellulose-based (nano) composites as adsorbents are reviewed in detail. Finally, the development prospect of cellulose and cellulose-based (nano) composites is studied in the field of the environment. In this review article, a critical comment is given based on our knowledge. It is believed that these biomass adsorbents will play an increasingly important role in the field of the environment.
Collapse
Affiliation(s)
- Ru-Jie Shi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| | - Tian Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jia-Qi Lang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ming-Guo Ma
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Ru-Jie Shi, ; Ming-Guo Ma,
| |
Collapse
|
38
|
Kim Y, Park J, Bang J, Kim J, Jin HJ, Kwak HW. Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128078. [PMID: 34952494 DOI: 10.1016/j.jhazmat.2021.128078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Applications of nanocellulose as a water treatment material are being actively pursued based on its interesting properties, such as renewability, large specific surface area, hydrophilic surface chemistry, and biodegradability. This study used carboxymethyl cellulose nanofibrils (CMCNFs) to prepare a typical bead-type adsorbent with improved structural stability as an actual water treatment restoration material. In addition, a cationized nanocellulose adsorbent was prepared by introducing polyethyleneimine (PEI) on the surface of the CMCNF (P/CMCNF), the removal efficiency of Cr(VI) was evaluated, and its mechanism was elucidated. As a result, the P/CMCNF beads showed an excellent Cr(VI) removal capacity of 1302.3 mg/g, the best result among cellulose-based adsorption materials. Cr(VI) was effectively removed by electrostatic attractions combined with chemical reduction and chelation mechanisms. Furthermore, the macrobead fabrication and PEI surface modification process improved the underwater stability of the P/CMCNF, and it showed excellent reuse efficiency.
Collapse
Affiliation(s)
- YunJin Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinseok Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyoung-Joon Jin
- Department of Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Namgu, Incheon 22212, South Korea.
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
39
|
Zhang Y, Abass OK, Qin J, Yi Y. The role of freshwater sludge and its carbonaceous derivatives in the removal of lead, phosphorus and antibiotic enrofloxacin: Sorption characteristics and performance. CHEMOSPHERE 2022; 290:133298. [PMID: 34922973 DOI: 10.1016/j.chemosphere.2021.133298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Freshwater sludge (FS) produced from drinking water treatment plants is generally filter pressed and disposed in the landfill. However, FS could be potentially reused. In this study, FS were processed into biochar and hydrochar via pyrolysis and hydrothermal carbonization, respectively. The sorption characteristics/mechanisms of FS and its derivatives (biochar-B300, B500 and B700 and hydrochar-H140, H160, H180 and H200) for the removal of three typical pollutants (i.e., lead (Pb), phosphorus (P) and enrofloxacin (ENR)) found in swine wastewater were investigated using batch adsorption tests and microstructural analyses. It was found that Pb sorption was relatively enhanced due to the increased electrostatic attraction and surface precipitation of Pb(OH)2 while the anionic phosphate adsorption relatively decreased as a result of enhanced electrostatic repulsion at higher solution pHs. Comparatively, ENR adsorption was less affected by solution pH probably due to dominance of physical adsorption evidenced by the good fitting of the BET isotherm model (R2 = 0.95). The maximum sorption capacities of Pb were in the order of B700≈B500 (71 mg/g)>B300 ~ FS(37 mg/g)>H140 ~ H160 (13 mg/g)>H180 ~ H200 (6 mg/g). The adsorption capacities for P were relatively lower: FS (47 mg/g)>B300 (38 mg/g)>H140 (27 mg/g)>B700 (37 mg/g)≈B500 (24 mg/g)≈H160 (23 mg/g)>H180 (16 mg/g)>H200 (14 mg/g). This study provides an understanding of the sorption characteristics and mechanisms of FS and its carbonaceous products for common cationic, anionic and organic pollutants and elucidates new insights into the reuse of FS for pollutant removal to achieve the waste-to-resource concept and enhance water quality, soil health and food safety.
Collapse
Affiliation(s)
- Yunhui Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Olusegun K Abass
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Junde Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yaolin Yi
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
40
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Vikrant K, Kim KH, Brown RJC. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127454. [PMID: 34655876 DOI: 10.1016/j.jhazmat.2021.127454] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorptive performance of a starch-magnesium/aluminum layered double hydroxide (S-Mg/Al LDH) composite was investigated for different organic dyes in single-component systems by conducting a series of batch mode experiments. S-Mg/Al LDH composite showed preferential adsorption of anionic dyes than cationic dyes. The marked impact of key process variables (e.g., contact time, adsorbent dosage, pH, and temperature) on its adsorption was investigated. Multiple isotherms, kinetics, and thermodynamic models were applied to describe adsorption behavior, diffusion, and uptake rates of the organic dyes over S-Mg/Al LDH composite. A better fitting of the non-linear Langmuir model reflects the predominance of monolayered adsorption of dye molecules on the composite surface. Partition coefficients (mg g-1 μM-1) for S-Mg/Al LDH were observed in the following descending order: Amaranth (665) > Tartrazine (186) > Sunset yellow (71) > Eosin yellow (65). Furthermore, comparative evaluation of the adsorption enthalpy, entropy, and Gibbs free energy values indicates that the adsorption process is spontaneous and exothermic. S-Mg/Al LDH composite maintained a stable adsorption/desorption recycling process over six consecutive cycles with the advantages of low cost, chemical/mechanical stability, and easy recovery. The results of this study are expected to expand the application of modified LDHs toward wastewater treatment.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
41
|
Qu J, Wei S, Liu Y, Zhang X, Jiang Z, Tao Y, Zhang G, Zhang B, Wang L, Zhang Y. Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127043. [PMID: 34479084 DOI: 10.1016/j.jhazmat.2021.127043] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation by phosphate-solubilizing bacteria (PSB) has attracted extensive attentions due to its economical and eco-friendly properties for lead (Pb) passivation in soil. Herein, bone char (BC) supported biochemical composite (CFB1-P) carrying advantages of BC, PSB, iron sulfide (FeS) and carboxymethyl cellulose (CMC) was designed and applied to Pb passivation. The composite at a mass ratio of BC:CMC:FeS = 1:1:1 possessed high passivation efficiency (65.47%), and has been demonstrated to offer appropriate habitat environment for PSB to defend against Pb(II) toxicity, thus enhancing the phosphate-solubilizing amount of PSB to 140.72 mg/L for passivating Pb(II). Batch experiments showed that the CFB1-P possessed excellent adsorption properties with maximal monolayer Pb(II) uptake of 452.99 mg/g during an extensive pH range of 2.0-6.0. Furthermore, by applying CFB1-P dosage of 3% into Pb-contaminated soil, the labile Pb fractions were reduced from 29.05% to 6.47% after simulated remediation of 10 days, and converted into steady fractions. The CFB1-P was demonstrated to achieve high Pb(II) passivation through combined functions of chemical precipitation, complexation, electrostatic attraction and biomineralization, accompanied by the formation of more stable crystal structures, for instance, Pb5(PO4)3OH, Pb3(PO4)2 and PbS. These results suggested CFB1-P as a potential alternative for efficient remediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
Yu H, Zhu Y, Hui A, Wang A. Novel eco-friendly spherical porous adsorbent fabricated from Pickering middle internal phase emulsions for removal of Pb(II) and Cd (II). J Environ Sci (China) 2022; 112:320-330. [PMID: 34955215 DOI: 10.1016/j.jes.2021.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/14/2023]
Abstract
Spherical porous materials prepared from the emulsion template used in the water treatment have displayed a vast prospect, as the high surface area, abundant porous structure, convenient operation and excellent adsorption performance. But the tedious fabrication process, high consumption of organic solvent and surfactant limited the application widely. Herein, a facile and eco-friendly spherical porous adsorbent (SPA) is fabricated from the green surfactant-free (corn oil)-in-water Pickering medium internal phase emulsions (Pickering MIPEs) via the convenient ion crosslinking procedure. The Pickering MIPEs synergistically stabilized with the semi-coke (SC), which is the natural particle produced from the shale oil distillation, and sodium alginate (SA) has excellent storage and anti-coalescence stability. The as-prepared porous adsorbent possessed the abundant pore structure, which provided favorable conditions for effective mass transfer in adsorption, and could be tuned by varying the SA dosage. The saturation adsorption capacities of Pb(II) and Cd(II) can be achieved with 460.54 and 278.77 mg/g within 45 min at 25°C, respectively. Overall, this study supplied a viable and eco-friendly route for fabricating the spherical porous adsorbent with a tunable porous structure for heavy metal ion wastewater.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
43
|
Zheng Z, Duan X. Mitigating the Health Effects of Aqueous Cr(VI) with Iron-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1481. [PMID: 35162503 PMCID: PMC8835030 DOI: 10.3390/ijerph19031481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
A large amount of chromium (Cr) has entered the natural environment from the wastewater and waste residues, and the hexavalent (Cr(VI)) is highly poisonous, threatening the ecological environment and human health directly. In this study, iron-modified biochar was prepared using honeysuckle residue as raw material and the ferric chloride impregnation method. Batch Cr(VI) adsorption experiments were carried out using the modified honeysuckle-derived biochar (MHDB) as an adsorbent. The results indicate that a pH of 2 was best for the adsorption removal of Cr(VI) in the initial pH range of 2-10. The adsorption kinetic data fitted the pseudo-second-order model best out of the two models, and the Langmuir model was better than the Freundlich model to describe the adsorption process. Thermodynamic analysis indicated that the adsorption process of Cr(VI) on MHDB had an endothermic and spontaneous nature, and the increasing temperature was conducive to the adsorption. The main mechanisms of Cr(VI) adsorption might be the physical adsorption (electrostatic interactions) and chemical adsorption (ion exchange, the reduction of Cr(VI) to Cr(III)). The efficient adsorption of Cr(VI) makes MHDB a potential material for Cr(VI)-containing wastewater treatment. This study provides a feasible adsorption material for mitigating the environmental hazards of chromium, which has a certain reference value for protecting environmental health.
Collapse
Affiliation(s)
- Zhihong Zheng
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
- Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | - Xiaohan Duan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
| |
Collapse
|
44
|
Cheng M, Zhou Q, Wang L, Jiao Y, Liu Y, Tan L, Zhu H, Nagawa S, Wei H, Yang Z, Yang Q, Huang X. A new mechanism by which environmental hazardous substances enhance their toxicities to plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126802. [PMID: 34396977 DOI: 10.1016/j.jhazmat.2021.126802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of hazardous substances enhances their toxicities to plants, but its mechanism is still unclear due to the unknown cytochemical behavior of hazardous substance in plants. In this study, by using interdisciplinary methods, we observed the cytochemical behavior of coexisting hazardous substances {terbium [Tb(III)], benzo(a)pyrene (BaP) and cadmium [Cd(II)] in environments} in plants and thus identified a new mechanism by which coexisting hazardous substances in environments enhance their toxicities to plants. First, Tb(III) at environmental exposure level (1.70 × 10-10 g/L) breaks the inert rule of clathrin-mediated endocytosis (CME) in leaf cells. Specifically, Tb(III) binds to its receptor [FASCICLIN-like arabinogalactan protein 17 (FLA17)] on the plasma membrane of leaf cells and then docks to an intracellular adaptor protein [adaptor protein 2 (AP2)] to form ternary complex [Tb(III)-FLA17-AP2], which finally initiates CME pathway in leaf cells. Second, coexisting Tb(III), BaP and Cd(II) in environments are simultaneously transported into leaf cells via Tb(III)-initiated CME pathway, leading to the accumulation of them in leaf cells. Finally, these accumulated hazardous substances simultaneously poison plant leaf cells. These results provide theoretical and experimental bases for elucidating the mechanisms of hazardous substances in environments poisoning plants, evaluating their risks, and protecting ecosystems.
Collapse
Affiliation(s)
- Mengzhu Cheng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Hong Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002
| | - Haiyan Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Zhenbiao Yang
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002; Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| |
Collapse
|
45
|
Yao G, Shao X, Qiu Z, Qiu F, Li Z, Zhang T. Construction of lignin-based nano-adsorbents for efficient and selective recovery of tellurium (IV) from wastewater. CHEMOSPHERE 2022; 287:132058. [PMID: 34474381 DOI: 10.1016/j.chemosphere.2021.132058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Tellurium is massively used as the main light-absorbing layer component in the manufacturing of CdTe thin-film solar cells, a critical component in the photovoltaic industry. However, the process of manufacturing and renewing components has produced large amounts of tellurium-containing wastewater that is difficult to degrade and poses a serious threat to the aquatic ecosystem and human health. Hence, to achieve the recovery of tellurium resources for reducing their damages, a win-win approach was employed to utilize waste lignin to construct functional copper-doped activated lignin (CAL) adsorbents for selective separation and recovery of tellurium from wastewater. CAL exhibited superior adsorption properties towards tellurium (248.45 mg/g), mainly attributed to the adsorption mechanism of coordination interactions. Kinetic and isotherm results elucidated that monolayer chemisorption dominated CAL adsorption process. Besides, CAL had a satisfactory regeneration capability with minimal loss adsorption capacity after six consecutive cycles, which also exhibited high antifouling properties. Meanwhile, CAL achieved high selectivity for tellurium adsorption under the simulated wastewater, revealing the potential of CAL for practical application in wastewater. Therefore, this work provides a promising environmental strategy for exploring the application of lignin-based materials for tellurium recovery from wastewater.
Collapse
Affiliation(s)
- Guanglei Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiwei Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Green Chemistry and Chemical Technology, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
46
|
Qu J, Lin X, Liu Z, Liu Y, Wang Z, Liu S, Meng Q, Tao Y, Hu Q, Zhang Y. One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb(Ⅱ) and tetracycline from water. BIORESOURCE TECHNOLOGY 2022; 343:126046. [PMID: 34592449 DOI: 10.1016/j.biortech.2021.126046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Ca-based magnetic bamboo-derived hydrochar described as Ca-MBHC was synthesized by one-pot pyrolysis, and was applied to remediation of lead (Pb) and tetracycline (TC) polluted water. Characterizations not only attested the loading of CaCO3 and Fe0 onto the hydrochar, but also demonstrated the magnetism of Ca-MBHC. Adsorption kinetic experiments showed that the Ca-MBHC could eliminate Pb(II) and TC during a wide range of pH, and appeared rapid uptake equilibrium within 240 and 60 min for Pb(II) and TC, severally. Adsorption isotherm experiments showed that the Ca-MBHC possessed highest adsorption of 475.58 mg/g concerning Pb(II), and heterogeneous uptake of 142.44 mg/g for TC. Furthermore, the Ca-MBHC could achieve Pb(II) binding owing to complexation, reduction, ion exchange and electrostatic attraction, whereas the TC uptake might be related to π-π stacking reciprocities, pore filling and hydrogen bonding. Overall, the Ca-MBHC could be viewed as an excellent adsorbent for scavenging Pb(II) and tetracycline from water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiufeng Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziyang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
47
|
Motaghi H, Arabkhani P, Parvinnia M, Javadian H, Asfaram A. Synthesis of highly porous three-dimensional PVA/GO/ZIF-67 cryogel for the simultaneous treatment of waters contaminated with cadmium (II) and lead (II) heavy metal ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05418j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, PVA/GO/ZIF-67 cryogel as a highly porous three-dimensional polymeric adsorbent was synthesized by freeze-drying method and applied for the simultaneous removal of Cd2+ and Pb2+ ions from contaminated...
Collapse
|
48
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149500. [PMID: 34388884 DOI: 10.1016/j.scitotenv.2021.149500] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The rapid growth of population and industrialization results in pollution of freshwater sources which leads to the water stress conditions on the world in future. Adsorption is a low cost and popular technique for the removal of contaminants from water bodies. Most of the reports till date are on removal of a single component from aqueous solutions using this technique, but the real-world effluent contains multiple contaminants such as dyes, heavy metals, pesticides, antibiotics and many more. Therefore, a study on simultaneous removal of contaminants is highly needed to obtain a suitable adsorbent that can be used commercially. This critical review provides a detailed study on the removal of contaminants in the presence of other contaminant/s i.e., from a multi-component system (MCS). The different possible interaction mechanisms in MCS like synergism, antagonism and non-interaction are discussed. The MCS containing the mixture of conventional contaminants such as heavy metals and dyes, and other emerging contaminants such as antibiotics, organic contaminants, pesticides and personal care products are explained in depth. This review article will be helpful for researchers working in the field of simultaneous removal of contaminants from MCSs for wastewater remediation.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana 131039, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India.
| |
Collapse
|
49
|
Mu Y, He W, Ma H. Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity. BIORESOURCE TECHNOLOGY 2021; 342:126001. [PMID: 34592612 DOI: 10.1016/j.biortech.2021.126001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
A tea residue-based biochar, Fe-BCK0.5-VB6, was obtained by pyrolysis with KOH activation and alkalization with vitamin B6, to develop the mesopore structure and functionalized surface to improve the adsorption performance on tetracycline (TC). An increased specific surface area of 455 m2·g-1 and expanded mesopore volume of 0.138 cm3·g-1 for Fe-BCK0.5-VB6, were observed. The Avrami-fractional order kinetics and Langmuir isotherm models best fitted the experimental data, indicating the characteristics of multiple kinetic stages and monolayer of TC adsorption process. Several possible interactions, including acid-base reaction, pore filling, electrostatic interactions, π-π interactions, and hydrogen bonding forces, were participated in the attachment of TC. This novel mesoporous biochar with enhanced surface alkalinity is expected with a viable future role as an efficient adsorbent in the remedies of acidic antibiotics wastewater pollution.
Collapse
Affiliation(s)
- Yongkang Mu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China
| | - Wenyan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China.
| |
Collapse
|
50
|
Qu J, Wang S, Jin L, Liu Y, Yin R, Jiang Z, Tao Y, Huang J, Zhang Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(Ⅵ) and tetracycline adsorption from water. BIORESOURCE TECHNOLOGY 2021; 340:125692. [PMID: 34358982 DOI: 10.1016/j.biortech.2021.125692] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
Magnetic porous water hyacinth-derived biochar (MPBCMW3) was synthesized via two-step Microwave (MW)-assisted processes. Characterization results not only testified high specific surface area (2097.50 m2/g) of the MPBCMW3 assisted by MW-assisted pyrolysis, but also revealed its favorable magnetism derived from MW-assisted hydrothermal process. The MPBCMW3 possessed pH-dependent monolayer adsorption capacities of 202.61 and 202.62 mg/g for Cr(VI) and TC with quick attainments of uptake equilibrium within 150 and 200 min. Moreover, the Cr(VI) and TC uptake were substantially steady under the interference from multifarious co-existing ions with slight decline after three adsorption-desorption cycles. Furthermore, the MPBCMW3 was demonstrated to achieve excellent Cr(VI) binding primarily through complexation, electrostatic interaction, reduction and ion exchange, while presenting outstanding TC removal via pore filling, π-π stacking, hydrogen bonding force, electrostatic interaction and complexation. All these findings suggested the MPBCMW3 synthesized by MW-assisted processes as an excellent adsorbent for purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Laiyu Jin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Junjian Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|