1
|
Chen S, Li Z. Understanding the fate of disinfection by-products in swimming pools: current empirical and mechanistic modeling insights. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-36. [PMID: 39210640 DOI: 10.1080/26896583.2024.2396250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Disinfecting swimming pool water plays a crucial role in preventing the spread of harmful bacteria. However, the interaction between disinfectants and precursors can lead to the formation of potentially disinfection by-products (DBPs). Prolonged exposure to these DBPs may pose health risks. This review study investigates recent research advancements concerning the formation, exposure, and regulation of DBPs within swimming pools. It also provides an overview of existing models that predict DBPs generation in pools, highlighting their limitations. The review explores the mechanisms behind DBPs formation under different disinfectant and precursor conditions. It specifically discusses two types of models that simulate the production of these by-products. Compared to drinking water, swimming pool water presents unique challenges for model development due to its complex mix of external substances, human activities, and environmental factors. Existing models can be categorized as empirical or mechanistic. Empirical models focus on water quality parameters and operational practices, while mechanistic models delve deeper into the kinetics of DBPs generation and the dynamic nature of these compounds. By employing these models, it becomes possible to minimize DBPs production, optimize equipment design, enhance operational efficiency, and manage mechanical ventilation systems effectively.
Collapse
Affiliation(s)
- Shaorong Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Peng F, Wang Y, Lu Y, Yang Z, Li H. Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123536. [PMID: 38365079 DOI: 10.1016/j.envpol.2024.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Chen X, Huang S, Chen X, Du L, Wang Z, Liang Y, Zhang W, Feng J. Novel insights into impacts of the "7.20" extreme rainstorm event on water supply security of Henan Province, China: Levels and health risks of tap water disinfection by-products. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131323. [PMID: 37004439 DOI: 10.1016/j.jhazmat.2023.131323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Spatial distributions, levels, and comprehensive assessments of post-flood tap water disinfection by-products (DBPs) were first studied in Henan Province after the "7.20" Extreme Rainstorm Event in 2021. DBPs levels and health risks in tap water were higher in areas flooded (waterlogged) by storm or upstream flood discharge (WA) and rainstorm-affected areas (RA) compared with other areas (OA), suggesting that extreme rainstorm and flooding events may somehow exacerbate DBPs contamination of tap water through disinfection. WA sites were characterized as contamination hotspots. The results revealed high haloacetic acids (HAAs) levels in WA (Avg: 57.79 μg·L-1) and RA (Avg: 32.63 μg·L-1) sites. Compared with normal period, DBPs-caused cancer risk increased by 3 times, exceeding the negligible risk level. Cancer risk came primarily from the ingestion of trihalomethanes (THMs) (>80%), children were the sensitive group. Those between 30 and 69 showed approximately 1.7 times higher disability-adjusted life yearsper person-yearthan other age groups. Apart from regulated DBPs, bromochloracetic acid (BCAA) and dibromoacetonitrile (DBAN) appear to be the main toxicity contributors in these samples. Our results provide a scientific basis for preventing and controlling health risks from tap water DBPs and for assessing the social benefits and burdens of emergency disinfection.
Collapse
Affiliation(s)
- Xing Chen
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Xing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lingnan Du
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Zongwu Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Yingying Liang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Wan Zhang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
4
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
5
|
Hsu HT, Chen MJ, Tsai KC, Huang LJ, Lin CH, Lai CH, Cheng LH. Modelling chloroform in indoor swimming pool air and water: the influences of internal air circulation and occupants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54857-54870. [PMID: 36881228 DOI: 10.1007/s11356-023-25978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The release of chloroform from water to air in an indoor swimming pool (ISP) exhibits complex physicochemical interactions among many variables, including environmental conditions, occupant activities, and geometry of the ISP. By combining the relevant variables, a structured mathematical model, the double-layer air compartment (DLAC) model, was developed to predict the level of chloroform in ISP air. A physical parameter, the indoor airflow recycle ratio (R), was incorporated into the DLAC model due to internal airflow circulation resulting in the ISP structural configuration. The theoretical R-value for a specific indoor airflow rate (vy) can be found by fitting the predicted residence time distribution (RTD) to the simulated RTD from computational fluid dynamics (CFD), showing a positive linear relationship with vy. The mechanical energies induced by occupant activities were converted into a lumped overall mass-transfer coefficient to account for the enhanced mass transfer of chloroform from the water into the air and mixing in ISP air. The DLAC model predicted that chloroform air concentrations were statistically less accurate without considering the influence of R compared with the online open-path Fourier transform infrared measurements. A novel index, the magnitude of emission (MOE) from swimmers, was linked to the level of chloroform in ISP water. The capability of the DLAC model associated with the MOE concept may facilitate upgrading the hygiene management of ISPs, including the ability to administer necessary chlorine additives in pool water and monitor the chloroform in ISP air.
Collapse
Affiliation(s)
- Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Road, Taichung, 406040, Taiwan
| | - Ming-Jen Chen
- Department of Occupational Safety and Hygiene, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao District, Kaohsiung, 83102, Taiwan
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, 2 Juoyue Rd., Nanzih District, Kaohsiung, 81164, Taiwan
| | - Kuang-Chung Tsai
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, 2 Juoyue Rd., Nanzih District, Kaohsiung, 81164, Taiwan
| | - Li-Jen Huang
- Department of Occupational Safety and Hygiene, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao District, Kaohsiung, 83102, Taiwan
| | - Ching-Ho Lin
- Department of Environmental Engineering and Science, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao District, Kaohsiung, 83102, Taiwan
| | - Chin-Hsing Lai
- Department of Environmental Engineering and Science, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao District, Kaohsiung, 83102, Taiwan
| | - Li-Hsin Cheng
- Department of Occupational Safety and Hygiene, Fooyin University, 151 Chin-Hsueh Rd., Ta-Liao District, Kaohsiung, 83102, Taiwan.
| |
Collapse
|
6
|
Zhang D, Dong S, Chen L, Xiao R, Chu W. Disinfection byproducts in indoor swimming pool water: Detection and human lifetime health risk assessment. J Environ Sci (China) 2023; 126:378-386. [PMID: 36503764 DOI: 10.1016/j.jes.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/17/2023]
Abstract
Quantification of regulated and emerging disinfection byproducts (DBPs) in swimming pool water, as well as the assessment of their lifetime health risk are limited in China. In this study, the occurrence of regulated DBPs (e.g., trihalomethanes, haloacetic acids) and emerging DBPs (e.g., haloacetonitriles, haloacetaldehydes) in indoor swimming pool water and the corresponding source water at a city in Eastern China were determined. The concentrations of DBPs in swimming pool water were 1-2 orders of magnitude higher than that in source water. Lifetime cancer and non-cancer risks of DBPs stemming from swimming pool water were also estimated. Inhalation and dermal exposure were the most significant exposure routes related to swimming pool DBP cancer and non-cancer risks. For the first time, buccal and aural exposure were considered, and were proven to be important routes of DBP exposure (accounting for 17.9%-38.9% of total risk). The cancer risks of DBPs for all swimmers were higher than 10-6 of lifetime exposure risk recommended by United States Environmental Protection Agency, and the competitive adult swimmers experienced the highest cancer risk (7.82 × 10-5). These findings provide important information and perspectives for future efforts to lower the health risks associated with exposure to DBPs in swimming pool water.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Zheng X, Xu J, Gao Y, Li W, Chen Y, Geng H, Yue J, Xu M. Within-day variation and health risk assessment of trihalomethanes (THMs) in a chlorinated indoor swimming pool in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18354-18363. [PMID: 36210406 DOI: 10.1007/s11356-022-23498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Trihalomethanes (THMs) are the most common species of disinfection by-products (DBPs) in swimming pools and have received widespread attention due to their risk to public health. However, studies examining within-day variation and the carcinogenic health risks from exposure to THMs in indoor swimming pools are limited. Our study aimed to detect the within-day variation of four THMs categories and carcinogenic health risk in indoor swimming pool water in Taiyuan, China, and to examine the correlations between THMs and environmental parameters. Our results showed chloroform (TCM) was the most abundant component in THMs with median concentrations from 0.038-0.118 μg/m3. TCM and THMs were significantly positively correlated with FCl and significantly negatively correlated with the cumulative number of swimmers (CNS) in the swimming pool. The concentration of total THMs and TCM, lifetime average daily doses (LADD) of TCM, and the total lifetime cancer risks (ELCR) values of THMs declined with time with the highest level occurring at 8:00 am. ELCR values of THMs were in the range of 1.368 × 10-5-1.968 × 10-5, which exceeded the negligible risk level (10-6) defined by US EPA. Our results suggest that THM occurrence and the carcinogenic health risks in pool water varied temporally. Exposure to pool water THMs may pose a carcinogenic risk to human health, especially at the pool's opening time.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Jingchao Xu
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ye Gao
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
- School of Physical Education, Shanxi University, Taiyuan, 030006, China
| | - Wanghong Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
- School of Physical Education, Shanxi University, Taiyuan, 030006, China
| | - Yimei Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Jianwei Yue
- Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan, 030032, China
| | - Min Xu
- Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan, 030032, China
| |
Collapse
|
8
|
Wang J, Zhang M, Hu S, Xian Q, Chen H, Gong T. Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17763-17775. [PMID: 36475631 DOI: 10.1021/acs.est.2c07175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool water are of wide concern for public health. In this study, the occurrence of five categories of aliphatic halogenated DBPs, i.e., trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs), and six categories of aromatic halogenated DBPs, i.e., halophenols (HPs), halonitrophenols (HNPs), halohydroxy-benzaldehydes (HBALs), halohydroxybenzoic acids (HBAs), halobenzoquinones (HBQs), and haloanilines (HAs), was examined in seven indoor swimming pool water and their incoming tap water. The correlations between the DBP concentrations and water quality parameters were explored. Moreover, the cytotoxicity of the aliphatic and aromatic halogenated DBPs was tested with human hepatoma (HepG2) cells, and the concentration-cytotoxicity contributions of different DBP categories were calculated. The results demonstrate that 24 aliphatic (5 THMs, 8 HAAs, 5 HANs, 4 HNMs, and 2 HKs) and 50 aromatic halogenated DBPs (9 HPs, 8 HNPs, 9 HBALs, 8 HBAs, 11 HBQs, and 5 HAs) were present in the swimming pool water, among which 41 aromatic halogenated DBPs were detected in swimming pool water for the first time. The average concentrations of the five categories of aliphatic halogenated DBPs in the swimming pool water were in the order of HAAs > HANs > HKs > THMs > HNMs, while those in their incoming tap water were in the order of THMs > HAAs > HKs > HANs > HNMs. The average concentrations of the aromatic halogenated DBPs in the swimming pool water were significantly lower than those of the aliphatic halogenated DBPs, following the order of HBQs > HPs > HBAs > HBALs > HAs > HNPs, while those in their incoming tap water were in the order of HBALs > HBQs > HPs > HBAs > HAs > HNPs. The average concentration-cytotoxicity contributions of different DBP categories in the swimming pool water followed the order of HAAs > HANs > HNMs > HKs > HBQs > THMs > HPs > HNPs > HBAs > HBALs > HAs, with HAAs, HANs, and HNMs possessing the main concentration-cytotoxicity contributions (93.2% in total) among all DBP categories.
Collapse
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- School of Energy and Environment, Southeast University, Nanjing210096, China
| | - Meiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing210096, China
| |
Collapse
|
9
|
Zhang D, Chen L, Dong S, Luo J, Xu Z, Chu W. Dramatically increased disinfection byproducts in swimming pool water caused by commonly used urea degradants. WATER RESEARCH 2022; 223:118987. [PMID: 36029699 DOI: 10.1016/j.watres.2022.118987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In China, urea degradants are often used in combination with chlorine in swimming pool water to remove urea. Here we report the first study about the impacts of urea degradants on urea degradation, disinfection byproduct (DBP) formation and estimated DBP-associated cytotoxicity and genotoxicity. Firstly, four groups of typical DBPs from six real indoor swimming pools were analyzed. The concentration of DBPs in swimming pool waters was about 1-2 orders of magnitude higher than that source tap water. Notably, a rapid increase in DBPs was observed after urea degradant treatment. Simulated processes of urea removal using three commonly used urea degradants were therefore conducted in laboratory. Neither urea degradant nor chlorine alone removed urea effectively within 48 h. When applied in combination, urea degradant with sufficient chlorine rapidly removed urea by 100% within 3 h, and anti-chlorourea oligomer in urea degradants was the main contributor. Meanwhile, a remarkable increase in DBPs, especially brominated DBPs, was observed due to bromide introduction by urea degradants. For this reason, bromine incorporation factor (BIF) of DBPs dramatically increased. For instance, the BIF of dihaloacetic acids increased by 2665%-4025% after applying three urea degradants. As the highly toxic brominated DBPs were generated, attention should be paid into the potential DBP-related health risks from the use of urea degradants together with chlorine.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Sanchís J, Redondo-Hasselerharm PE, Villanueva CM, Farré MJ. Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples. CHEMOSPHERE 2022; 303:135087. [PMID: 35623424 DOI: 10.1016/j.chemosphere.2022.135087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The generation of disinfection by-products during water chlorination is a major concern in water treatment, given the potential health risks that these substances may pose. In particular, nitrogen-containing DBPs are believed to have greater toxicological significance than carbon-based DBPs. Hence, high performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) in positive mode was employed to identify new non-volatile nitrogen containing disinfection by-products (DBPs) and to assess their presence in potable water. Nine water samples were taken in the Llobregat river, in the context of a water reuse trial, near the catchment of a drinking water treatment plant (DWTP) in 2019. River samples were disinfected with chlorine under controlled formation potential tests conditions and analysed with a non-target approach. The peak lists of raw and chlorinated samples were compared exhaustively, resulting in an extensive list of 495 DBPs that include bromine and/or chlorine atoms. 172 of these species were found frequently, in three or more chlorinated samples. The empirical formulae of these DBPs were unambiguously annotated on the basis of accurate m/z measurements, isotopic patterns and common heuristic rules. Most of the annotated species (310) contained bromide, which is consistent with the relatively high bromide content of the Llobregat basin (>0.3 mg/l). Drinking water samples were taken at the outlet of the DWTP during the same sampling period. According to their analysis, a large portion of the DBPs detected after the formation potential tests do not reach real-life drinking water, which suggests that the treatment train successfully removes a significant fraction of DBP precursors. However, 131 DBPs could still be detected in the final product water. A larger sampling was carried in the Barcelona water distribution network, during six consecutive weeks, and it revealed the presence of 78 halogenated DBPs in end-consumer water, most of which were nitrogen-containing. MS/MS fragmentation and retention times were employed to tentatively suggest molecular structure for these recalcitrant DBPs.
Collapse
Affiliation(s)
- Josep Sanchís
- Catalan Institute for Water Research (ICRA), Girona, Spain; Universitat de Girona (UdG), Girona, Spain
| | | | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA), Girona, Spain; Universitat de Girona (UdG), Girona, Spain.
| |
Collapse
|
11
|
Zheng W, Zhao H, Liu Q, Crabbe MJC, Qu W. Spatial-temporal distribution, cancer risk, and disease burden attributed to the dietary dioxins exposure of Chinese residents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154851. [PMID: 35351502 DOI: 10.1016/j.scitotenv.2022.154851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
This study analyzed the characteristics of dioxins represented by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) as well as dioxin-like polychlorinated biphenyls (dl-PCBs) in food from China. The spatial-temporal distribution characteristics of dioxins dietary intake, cancer risk, and disease burden were evaluated among the Chinese population. In the temporal dimension, descending trends in animal-origin-food were found both in dietary intake PCDD/Fs and dl-PCBs, with the reverse for plant-origin-food. The probability assessments of dietary intakes showed that after 2007, the exposure level of PCDD/Fs through diets of urban and rural residents in China was significantly lower than that before 2007 (p < 0.05). The spatial distribution results showed that the southern coastal regions were high exposure regions of dietary intakes of PCDD/Fs and dl-PCBs. Cancer risk and disease burden of dietary dioxins showed downward trends after 2007 both under an average exposure scenario and an extreme exposure scenario. After 2007, the disease burden resulting from exposure to dl-PCBs became higher and approached the median of values reported by the WHO, while the disease burden resulting from exposure to PCDD/Fs approached the lower level of 95% CI reported by the WHO. The results indicate that accompanying the National Implementation Plan and a series of subsequent scientific guidance documents launched for reducing dioxins pollution in 2007, the health benefits and the health risks caused by dl-PCBs should be given further attention and evaluation in future studies.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Huijuan Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
12
|
Sun Y, Wang YX, Mustieles V, Zhang Y, Pan XF, Messerlian C. Blood trihalomethane concentrations and lung function in US adolescents: a nationally representative cross-sectional study. Eur Respir J 2022; 60:2200753. [PMID: 35680146 DOI: 10.1183/13993003.00753-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yang Sun
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada, Spain
| | - Yu Zhang
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Carmen Messerlian
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Liu C, Sun Y, Mustieles V, Chen YJ, Huang LL, Deng YL, Wang YX, Lu WQ, Messerlian C. Prenatal Exposure to Disinfection Byproducts and Intrauterine Growth in a Chinese Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16011-16022. [PMID: 34813313 DOI: 10.1021/acs.est.1c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth. The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC), head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores. After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations (both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs, particularly during the first trimester, was associated with reduced fetal abdominal circumference.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid 28029, Spain
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Colombo R, Souza AT. Degradation of ethyl butylacetylaminopropionate (IR3535) during chlorination: Tentative identification and toxicity prediction of its disinfection by-products. CHEMOSPHERE 2021; 280:130656. [PMID: 33933999 DOI: 10.1016/j.chemosphere.2021.130656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Studies have reported the presence of ethyl butylacetylaminopropionate (IR3535) in waters, and the content of this repellent is expected to rise significantly in the future. There are extremely scarce data in the literature regarding the behavior of IR3535 and its derivatives in water. The present work reports the results obtained from experiments conducted under controlled conditions aiming at investigating the transformation of IR3535 in chlorinated water, in addition to an attempt to identify its disinfection by-products (DBPs). The work also reports the findings of analyses conducted in swimming pool water samples which sought to investigate the presence and content of IR3535 and its targeted DBPs in these samples. The results obtained in the controlled experiments show that IR3535 is not completely degraded under the chlorinated conditions evaluated and 9 DBPs were tentatively identified. The presence of IR3535 was detected in both adults and children's pool water samples at concentrations ranging from 62 ng L-1 to 114 ng L-1. Some of the DBPs identified in the controlled experiments were also detected in the pool water samples. The toxicity of the 9 DBPs identified was evaluated using the QSAR model, where some by-products presented mutagenic and carcinogenic properties.
Collapse
Affiliation(s)
- Renata Colombo
- School of Arts, Sciences and Humanities, University of São Paulo, R. Arlindo Béttio, 100, Vila Guaraciaba, 03828-000, São Paulo, SP, Brazil.
| | - Alanis Tiozzo Souza
- School of Arts, Sciences and Humanities, University of São Paulo, R. Arlindo Béttio, 100, Vila Guaraciaba, 03828-000, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Téllez Tovar SS, Rodríguez Susa M. Cancer risk assessment from exposure to trihalomethanes in showers by inhalation. ENVIRONMENTAL RESEARCH 2021; 196:110401. [PMID: 33130164 DOI: 10.1016/j.envres.2020.110401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/25/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
In many countries water disinfection for human consumption is still carried out via chlorination which generates by-products such as trihalomethanes (THM). Exposure to THM constitutes a public health risk as such substances are known to be carcinogenic. This study evaluated exposure to THMs by inhalation in showers and assessed the carcinogenic risk for lifetime exposure. The study population involved students at Universidad de los Andes residing in Bogotá, Colombia. The risk assessment was performed stochastically and the exposure parameters were taken as probability distributions. Most variables were measured in relation to the chosen population. The risk was calculated using two different methodologies but no significant variations were obtained. The average risk calculated for men and women was 56 cases in a million (5.6 × 10-5). A sensitivity analysis was carried out where it was found that the parameters that increase risk the most are the concentration of chloroform in the water, exposure time, and the volume of the shower cubicle.
Collapse
Affiliation(s)
- Silvana Sofía Téllez Tovar
- Environmental Engineering Research Center. Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Manuel Rodríguez Susa
- Environmental Engineering Research Center. Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia.
| |
Collapse
|