1
|
Li B, Chen Z, Zhang Y, Mao R, Song J, Long Y, Tang B, Feng J, Nyein MM. Interaction and bacterial effects of microplastics pollution on heavy metals in hyporheic sediments of different land-use types in the Beiluo River Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125190. [PMID: 39454817 DOI: 10.1016/j.envpol.2024.125190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Microplastics (MPs) pollution is ubiquitous, causing serious ecological damage by threatening the growth and health of living organisms. This study investigated the vertical and horizontal distribution of MPs, MPs-heavy metals (MPs-HMs) accumulation, contamination assessment and microbial biodiversity in hyporheic sediments of different land-use types. MPs abundance in shallow sediments (0-30 cm) was significantly higher than that in deep sediments (30-60 cm), with fewer large MPs in the deep sediments. Blue, fiber, and <500 μm were the dominant MPs types, and polystyrene, polylactic acid, and polyvinyl chloride were the dominant polymers in the Beiluo River Basin. The average concentrations of HMs detected in MPs were all much higher than the same metals in the sediments. The pollution loading index of MPs was higher in areas with a greater proportion of anthropogenic land use, and MP-HM were present to varying degrees in the vertical distribution (PN > 1). Critically, bacterial diversity of anthropogenic land use was smaller than that of natural land use. High MP-HM concentrations reduced the abundance of cyanobacteria, nitrospirota, acidobacteriota, and planctomycetota, whereas desulfobacterota, chloroflexi, myxococcota, actinobacteriota, and proteobacteria have developed tolerance to MP-HM. Overall, our findings contribute to the understanding of the relationship between different land-use types and the spatial distribution of MPs and MP-HM, which is critical to manage and mitigate the hyporheic zone pollution.
Collapse
Affiliation(s)
- Bingjie Li
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Zeyu Chen
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Yuting Zhang
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Ruichen Mao
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Jinxi Song
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China.
| | - Yongqing Long
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Bin Tang
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Jiayuan Feng
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| | - Myint Myint Nyein
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, Xi'an, 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an, 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Xi'an, 710127, China
| |
Collapse
|
2
|
Zhai J, Zhou Z, Yan Y, Wang X. Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123827. [PMID: 39731940 DOI: 10.1016/j.jenvman.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/24/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida. As stress, both alone and in combination with the MPs, induced DNA damage in coelomocytes. In As-exposed earthworms, PS and LDPE increased the accumulation of reactive oxygen species while the activities of the antioxidant enzymes peroxidase, superoxide dismutase, and catalase were significantly lower under combined PS/LDPE + As exposure than under As exposure alone. As stress alone reduced cocoon production and the mRNA level of the reproduction-related gene ANN whereas As combined with PS/LDPE reduced the mRNA levels of CYP450, an enzyme involved in detoxification. Integrated biomarker response analysis revealed that PS/LDPE did not significantly impact the overall ecotoxicological effects of As exposure on earthworms. This study provides important insights into the potential ecological risks of MPs in heavy-metal-contaminated soil.
Collapse
Affiliation(s)
- Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Zihan Zhou
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Yunxiu Yan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen L, Sun Y, Wang X, Xia S, Zhao J. Adsorption behavior of commercial biodegradable plastics towards pollutants during the biodegradation process: Taking starch-based biodegradable microplastics, oxytetracycline and Cu (II) as examples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125538. [PMID: 39689834 DOI: 10.1016/j.envpol.2024.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.65% to 35.82%. The starch's degradation in PPT altered its thermal properties. Microbial colonization on PPT (B-PPT) enhanced Cu(II) and OTC adsorption, while biodegradation (D-PPT) reduced their adsorption. Reduced surface carbonyl and hydroxyl groups, alongside increased crystallinity, diminished D-PPT's Cu(II) adsorption. While OTC adsorption, driven by hydrophobic partitioning, was less affected by biodegradation. In the binary pollutant system, the Cu(II) and OTC adsorption of D-PPT increased by 20.27% and 8.63 times, respectively; B-PPT showed decreased adsorption of both. Coexisting organic matter and pH significantly affected PPT's adsorption behavior by altering Cu(II) and OTC speciation, and influencing adsorption competition, hydrogen bonding and bridging effects. This study is the first to explore biodegradation impacts of commercial starch-based microplastics on typical heavy metals and antibiotics adsorption, providing important theoretical insights for understanding their environmental risks.
Collapse
Affiliation(s)
- Liuyu Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
5
|
Wang Y, Ma C, Chen Z, Guo Y, Jing Y, Chen X, Liang H. Polystyrene microplastics exacerbate acetochlor-induced reproductive toxicity and transgenerational effects in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107208. [PMID: 39675217 DOI: 10.1016/j.aquatox.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission. Zebrafish were employed in this study to assess the reproductive toxicity of ACT alone and in combination with polystyrene microplastics (PS-MPs) of different sizes (200 nm and 2 μm) and concentrations (0.1 and 1 mg/L) over a 63-day exposure experiment. The results indicated that ACT was concentrated in zebrafish tissues in the order: intestine > liver > gill > brain > gonad > muscle. PS-MPs increased ACT bioaccumulation, worsened gonadal damage, led to abnormalities in hormone levels, and caused disruptions in HPG axis gene expression, further exacerbating the reproductive toxicity. Maternal transfer of ACT affected offspring growth, thyroid function, and HPT axis gene expression, with nanoplastics (NPS) amplifying these adverse effects. This study offers crucial insights into the ecological hazards posed by ACT and PS-MPs, emphasizing the increased toxicity due to PS-MPs.
Collapse
Affiliation(s)
- Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yinping Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China
| | - Yuan Jing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China
| | - Xiaolei Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China.
| |
Collapse
|
6
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
7
|
Wang J, Lv L, An X, Zhang C, Tang T, Sun Y, Wang F. Combined effects of different-sized microplastics and fluindapyr on earthworm: bioaccumulation, oxidative stress, histopathological responses and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125478. [PMID: 39647773 DOI: 10.1016/j.envpol.2024.125478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Soil is an important sink for microplastics (MPs) and pesticides. MPs can act as carriers for pesticides, thus induce direct and indirect effects on soil organisms. Fluindapyr (FIP), a novel succinate dehydrogenase inhibitors fungicides (SDHIs), may pose a serious threat to earthworms. However, few studies have evaluated the effects of joint exposure to MPs and FIP. Here, earthworms (Eisenia fetida) were jointly exposed to PMMA (polymethylmethacrylate) and PS (polystyrene) MPs of different sizes (0.1, 1 and 10 μm) along with FIP for 28-day to investigate the toxic effects of single and joint exposure of FIP and MPs on earthworms. The results showed that joint exposure to 0.1 and 1 μm MPs promoted the accumulation of FIP in earthworms at the beginning of the experiment compared to the sole group, but the elimination of FIP from earthworms accelerated after 14 d. In addition, the joint exposure caused more serious damages to the epidermis and intestine of earthworms and increased the severity of oxidative stress. The effects of joint exposure to FIP and MPs depended on the size of the MPs, and the strongest effects were observed in the treatment with the smallest size. The 16S rRNA sequencing results showed that the joint exposure to MPs and FIP didn't cause gut microbiota dysbiosis. However, the sole 0.1 μm PS significantly altered the community diversity and richness of earthworm gut bacteria, and the relative abundance of Proteobacteria, Actinobacteria and Firmicutes was significantly changed. The obtained results inferred that MPs could influence environmental and toxicological behaviors of FIP and may provide data support for the risk assessments of MPs and FIP on soil ecosystems.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
8
|
Sun Z, Zhao L, Peng X, Kang B. A comparative study on the toxic effects of lead pollution and nanoplastic-lead mixed pollution on red drum and their detoxification strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136018. [PMID: 39366049 DOI: 10.1016/j.jhazmat.2024.136018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics and heavy metals pose various adverse effects on marine organisms. However, the combined toxicity of nanoplastics and lead pollution to marine fish is not fully understood. This study investigates the toxic effects and detoxification strategies of lead pollution (p07) compared to nanoplastic-lead mixed pollution (m07) in red drum during exposure and recovery phases. Under m07 pollution, the maximum lead content in muscle was 22.61 mg/kg, which was significantly higher than the 15.82 mg/kg observed under p07 pollution. This finding demonstrated that nanoplastics significantly enhance lead accumulation, leading to more severe toxic effects on red drum. Histological analyses revealed that lipid droplets in the liver and epithelial lifting in the gills were the primary lesion types. During the exposure periods, red drum primarily detoxified lead through cellular renewal and the removal of damaged proteins under p07 pollution. Conversely, under m07 pollution, detoxification relied on cellular senescence, apoptosis, endocytosis, and the removal of damaged proteins. In the recovery phases, red drum predominantly recovered through cell proliferation and antioxidant responses under p07 pollution. Under m07 pollution, the focus shifted to functional protein synthesis, apoptosis, endocytosis, and lipid metabolism. This study offers valuable insights into the monitoring and management of combined environmental pollution.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou 315613, Zhejiang, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou 310012, Zhejiang, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
9
|
Qiu X, Yang D, Yu L, Song L, Yang L, Yang Q. Effect of polyethylene microplastics on tebuconazole bioaccumulation, oxidative stress, and intestinal bacterial community in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136056. [PMID: 39405703 DOI: 10.1016/j.jhazmat.2024.136056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024]
Abstract
Polyethylene microplastics (PE-MPs) are commonly found alongside fungicides in farmland soils. However, the toxic effects of varying PE-MP sizes and concentrations on soil fauna in fungicide-contaminated soils are unclear. This study aimed to investigate the impact of different PE-MP sizes (13, 48, and 150 µm) and concentrations (0.05 % and 0.25 %) on tebuconazole accumulation, oxidative stress, and gut bacteria in earthworms. The results indicated that earthworms exposed to MP13-H accumulated the highest tebuconazole on day 7, 19.77 % higher than tebuconazole alone, 7.27 % higher than MP48-H, and 10.30 % higher than MP150-H. MP13-H led to the most severe oxidative stress, significantly increasing the oxidative biomarkers catalase and peroxidase in earthworms. After 28 days, the expression of glutathione sulfotransferase genes was the lowest in the MP13-H group, while the antibacterial defense gene heat shock protein 70 and translationally controlled tumor protein were the highest, indicating severe DNA damage and increased toxicity to earthworms. Further, 150-µm PE-MPs caused the most severe damage to the intestinal epithelium. Moreover, PE-MPs induced an increase in the abundance of specific gut bacterial community associated with oxidative stress. The study suggested that PE-MPs changed the migration of fungicides to earthworms, induced oxidative stress, altered gene expression, and modified the gut microbiota, thereby increasing the risk to earthworms.
Collapse
Affiliation(s)
- Xiaoqian Qiu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Diwen Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Leixin Yu
- Shenyang Urban Construction University, Shenyang 110167, China
| | - Lichao Song
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lijuan Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qinghai Yang
- College of Urban Construction, Eastern Liaoning University, Dandong 118003, China
| |
Collapse
|
10
|
Chen Q, Ge X, Xu F, Li J, Xu Z, Liu L, Tang Y. Distribution and co-occurrence of microplastics and co-existing pollutants in bottom water and sediment of the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176405. [PMID: 39304163 DOI: 10.1016/j.scitotenv.2024.176405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Microplastics (MPs) contamination in marine environment has been an emerging issue worldwide, notably due to the potential ecological risks of MPs with co-existing environmental contaminants and released toxic plastic additives. To verify the co-occurrence characteristics of MPs and co-existing pollutants in the benthic boundary layer (BBL), the distribution characteristics of MPs, and selected heavy metals (HMs) and halogenated flame retardants (Polybrominated diphenyl ethers, PBDEs, and Dechlorane Plus) in the bottom water and sediment were comprehensively investigated in the East China Sea (ECS). The sampling sites were selected along the coast of ECS, where might be significantly affected by terrigenous inputs and anthropogenic sources. MPs were abundant in the bottom water (62.8-480.2 items/L) and sediment (80.1-1346.7 items/kg d.w.) with polyester, polyethylene, and polypropylene being as the most abundant types and characterized as fiber/line, particle size 200-500 μm, and transparent/white. The abundance and characteristics of MPs demonstrated strong correlations within the bottom water and sediment, which might be due to the frequent exchange of materials. In addition, the abundance of MPs was significantly positively correlated with HMs (Cd, Cr, Pb) in the bottom water and PBDEs in sediment, respectively. According to the scanning electron microscopy/energy dispersive X-ray spectrometry analysis, MPs might act as carriers to transport and co-sediment the co-existing pollutants in water, and physically adsorb or chemically bind with pollutants in sediment. These results could help to elucidate the sources, migration, and fate, and verify the occurrence and potential risks of MPs and their co-existing pollutants in BBL, thus realize the management and control of MPs contamination in marine.
Collapse
Affiliation(s)
- Qiqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Ge
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhe Xu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Saikumar S, Mani R, Ganesan S, Ganesan M. Evaluating the impact of the combined acute toxicity of iron (Fe) and microplastics on Namalycastis jaya. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107141. [PMID: 39520843 DOI: 10.1016/j.aquatox.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The rising concern over heavy metals (HMs) and microplastics (MPs) pollution in marine ecosystems, primarily driven by anthropogenic activities, poses significant threats to ecological health. Understanding the combined exposure of HMs and MPs aids in toxicity assessment. In this study, we examined the combined effects of polystyrene microplastics (MPs) and iron (Fe) on oxidative stress, bioaccumulation, histopathology, and genotoxicity in Namalycastis jaya. Oxidative stress was assessed by analyzing the levels of Superoxide dismutase (SOD), Catalase (CAT), Peroxidase (POD), Malondialdehyde (MDA), and Bicinchoninic acid (BCA), while genotoxicity was evaluated using the comet assay. Bioaccumulation analysis, conducted via Inductively coupled plasma-optical emission spectrometry (ICP-OES), indicated that the highest values (4.790 µg/ml) were observed in combined exposure, emphasizing the significant increase in iron (Fe) accumulation in polychaetes facilitated by MPs. Biochemical analysis revealed that oxidative damage in polychaetes became evident within 48 h of exposure to individual contaminants. However, in the case of combined exposures, elevated stress levels were observed within just 24 h. The genotoxic assay further demonstrated a higher degree of DNA damage in the combined exposure compared to individual exposures. Similarly, histopathology revealed mild alterations in the gut epithelium in combined exposures. It is evident that MPs intensify both oxidative and DNA damage induced by Fe in polychaetes. The insights gained from this study provide valuable information for the risk assessment of Fe and MPs in environmental safety, contributing to our understanding of the complex interactions between these pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Sakthinarenderan Saikumar
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Swedha Ganesan
- Department of Biotechnology, A.V.C. College (Autonomous), Mayiladuthurai, Tamil Nadu, India
| | - Mirunalini Ganesan
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
12
|
Khant NA, Chia RW, Moon J, Lee JY, Kim H. Review on the relationship between microplastics and heavy metals in freshwater near mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66009-66028. [PMID: 39641844 DOI: 10.1007/s11356-024-35675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs), degraded from plastic wastes, have drawn significant attention worldwide due to its prevalence and rapid transition. Contamination of freshwater with MPs has become an emerging global issue. Heavy metals (HMs), a prominent global pollutant, also garnered much attention due to their potential interaction with MPs, presenting a multifaceted environmental threat. The primary source of HM contamination in freshwater has been identified as mining sites. Additionally, the increasing use of plastic materials within mining areas raises concerns about MP release into the surrounding freshwater environments. Recent studies only provide information on the contamination of HMs status with MPs. However, studies on the mechanism responsible for MPs contamination from both external and internal sources of freshwater MPs and HMs are limited. The knowledge gaps in the deposition and fate of MPs in various mining situations and the possibility of combined impacts of heavy metals and MPs in the ecosystem raise ecological concerns. Here, we review the origins of MPs and HM pollution within mining sites and explore the potential combined detrimental impacts on plants and animal life. We found out that polystyrene (PS) and polyethylene (PE) have higher adsorption affinity to heavy metals, and the mingle toxic consequence of the MPs and HM can depend on the MP surface properties, pH, and salinity of the neighboring water solution. The Langmuir and Freundlich isotherm models enable the efficient design of adsorption systems. The Langmuir model describes single-layer adsorption at homogeneous sites, while the Freundlich model addresses multilayer adsorption on heterogeneous surfaces. The crucial mechanism of adsorption and desorption that underlies the occurrence of both MPs and heavy metals is a decisive matter in this issue.
Collapse
Affiliation(s)
- Naing Aung Khant
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jinah Moon
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research On Microplastic in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Islam T, Cheng H. Existence and fate of microplastics in terrestrial environment: A global fretfulness and abatement strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176163. [PMID: 39260485 DOI: 10.1016/j.scitotenv.2024.176163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Widespread use of plastics in consumer products, packaging, cosmetics, and industrial and agricultural production has resulted in the ubiquitous occurrence of microplastics in terrestrial environment. Compared to the marine environment, only limited studies have investigated the microplastics pollution and associated risk in terrestrial environment. The present review summarizes the global distribution of microplastics in terrestrial environment, their transport pathways and fate, risk to ecosystem and human health, and abatement strategies. Small particle sizes (<500 μm); fragment, fiber, and film shapes; transparent and white color; polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) polymers were the major characteristics of the microplastics found in terrestrial environment. Microplastics in soils negatively affect soil organisms, while the impact of microplastics in terrestrial environment on human health is poorly understood, which needs to be explored further as there is clear evidence on their presence in human bodies. The removal of microplastics from soil environment is quite complex and costly, thus prevention of their releases is preferable. Among the existing abatement options, biodegradation, which harnesses bacterial strains to degrade microplastics through enzymatic hydrolysis, hold promise for terrestrial environment. Strengthening global cooperation, implementing timely policies on plastic use and recycle, and developing new technologies for control of microplastics are recommended to reduce the pollution in terrestrial environment. Global effort on reducing plastic wastes and enhancing their management is imperative, while substitution with biodegradable plastics could help minimize future accumulation of microplastics in terrestrial environment.
Collapse
Affiliation(s)
- Tariqul Islam
- Institute of Ocean Research, Peking University, Beijing, China; College of Urban and Environmental Sciences, Peking University, Beijing, China; Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hefa Cheng
- Institute of Ocean Research, Peking University, Beijing, China; College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Yan Y, Zhai J, Wang L, Wang X. Response and defense mechanisms of the earthworms Eisenia foetida to natural saline soil stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175480. [PMID: 39182779 DOI: 10.1016/j.scitotenv.2024.175480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Salinization of soil is a serious global environmental issue, particularly in agricultural lands. Saline farmland not only endangers grain production but also affects the survival of soil fauna. Earthworms, as soil ecosystem engineers, play a crucial role in maintaining soil health and enhancing global agricultural production. However, the response of earthworms to natural saline soil stress remains poorly understood. To explore this, we investigated the effects of natural saline soil from Dongying City, Shandong Province, China, on the growth, survival, reproduction, antioxidation, and defense-related gene expression of the earthworm Eisenia foetida. Our findings demonstrate that the growth rate, survival rate, and cocoon production of E. foetida decrease under exposure to natural saline soil in a dose-dependent manner. Elevated levels of DNA damage in coelomocytes and increased reactive oxygen species (ROS) were observed. Additionally, antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), increased under stress. The mRNA levels of Cyp450 and Hsp70 also rose in response to saline soil exposure. Furthermore, the activity of Na+/K+-ATPase and the expression of the osmotic sensor gene wnk-1 were elevated. In conclusion, our findings indicate that natural saline soil induces antioxidant and osmotic stress in earthworms E. foetida, highlighting the detrimental effects and defense mechanisms of soil fauna under such conditions.
Collapse
Affiliation(s)
- Yunxiu Yan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China.
| |
Collapse
|
15
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Zou H, Song J, Luo X, Ali W, Li S, Xiong L, Chen Y, Yuan Y, Ma Y, Tong X, Liu Z. Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney. Poult Sci 2024; 104:104490. [PMID: 39571196 PMCID: PMC11617461 DOI: 10.1016/j.psj.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD2, SOD2) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Jie Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xianzu Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Sifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
17
|
Hoang VH, Nguyen MK, Hoang TD, Ha MC, Huyen NTT, Bui VKH, Pham MT, Nguyen CM, Chang SW, Nguyen DD. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175276. [PMID: 39102948 DOI: 10.1016/j.scitotenv.2024.175276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
Collapse
Affiliation(s)
- Van-Hiep Hoang
- Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Minh Cuong Ha
- School of Aerospace Engineering (SAE), University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi 100000, Viet Nam
| | - Nguyen Thi Thanh Huyen
- Faculty of International Economics, Foreign Trade University, Vietnam, Dong Da District, Hanoi, Viet Nam
| | - Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Minh-Thuan Pham
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Cong-Manh Nguyen
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
18
|
Bian J, Peng N, Zhou Z, Yang J, Wang X. A critical review of co-pollution of microplastics and heavy metals in agricultural soil environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117248. [PMID: 39467422 DOI: 10.1016/j.ecoenv.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The soil environment is a primary destination for contaminants such as microplastics (MPs) and heavy metals (HMs), which are frequently detected simultaneously. The long-term coexistence of MPs and HMs in the soil necessitates unavoidable interactions, affecting their environmental chemical behavior and bioavailability. These co-contaminants pose potential threats to soil organism growth and reproduction, crop productivity, food security, and may jeopardize human health via the food chain. This paper summarizes the sources and trends of MPs in the soil environment, along with the mechanisms and current research status of MP adsorption or desorption of HMs. Additionally, this paper reviews factors affecting HM adsorption on MPs, including MP properties, HM chemical properties, and other environmental factors. Lastly, the effects of MPs and HMs on soil ecology and human health are summarized. The interaction mechanisms and potential biological effects of their co-contamination require further exploration. Future research should delve deeper into the ecotoxic effects of MP-HM co-contamination at cellular and molecular levels, to provide a comprehensive reference for understanding the environmental behavior of their co-contamination in soil.
Collapse
Affiliation(s)
- Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Nian Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China.
| | - Ziyi Zhou
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| |
Collapse
|
19
|
Pei L, Sheng L, Ye Y, Sun J, Wang JS, Sun X. Microplastics from face masks: Unraveling combined toxicity with environmental hazards and their impacts on food safety. Compr Rev Food Sci Food Saf 2024; 23:e70042. [PMID: 39523687 DOI: 10.1111/1541-4337.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) refer to tiny plastic particles, typically smaller than 5 mm in size. Due to increased mask usage during COVID-19, improper disposal has led to masks entering the environment and releasing MPs into the surroundings. MPs can absorb environmental hazards and transfer them to humans and animals via the food chain, yet their impacts on food safety and human health are largely neglected. This review summarizes the release process of MPs from face masks, influencing factors, and impacts on food safety. Highlights are given to the prevalence of MPs and their combined toxicities with other environmental hazards. Control strategies are also explored. The release of MPs from face masks is affected by environmental factors like pH, UV light, temperature, ionic strength, and weathering. Due to the chemical active surface and large surface area, MPs can act as vectors for heavy metals, toxins, pesticides, antibiotics and antibiotic resistance genes, and foodborne pathogens through different mechanisms, such as electrostatic interaction, precipitation, and bioaccumulation. After being adsorbed by MPs, the toxicity of these environmental hazards, such as oxidative stress, cell apoptosis, and disruption of metabolic energy levels, can be magnified. However, there is a lack of comprehensive research on both the combined toxicities of MPs and environmental hazards, as well as their corresponding control strategies. Future research should prioritize understanding the interaction of MPs with other hazards in the food chain, their combined toxicity, and integrating MPs detection and degradation methods with other hazards.
Collapse
Affiliation(s)
- Luyu Pei
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| |
Collapse
|
20
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
21
|
Ding Y, Zheng JT, Wang YN, Wu D, Zhu D. Presence of microplastics enhanced the toxicity of silver nanoparticles on the collembolan Folsomia candida. CHEMOSPHERE 2024; 366:143557. [PMID: 39424157 DOI: 10.1016/j.chemosphere.2024.143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
There is growing interest in interactions of microplastics (MPs) with other pollutants. However, there is limited understanding of the combined effects of MPs and silver nanoparticles (AgNPs) on nontarget soil organisms. This work aimed to examine the effects of exposure to various AgNPs' concentrations alone (0, 0.1, 1, 10, 100, 1000 mg kg-1, 50 nm) and in combination with polyvinyl chloride microplastics (PVC MPs, 80-250 μm) at 0.1% concentration for 28 days on reproduction, Ag accumulation, C/N ratio, and isotopic fractionation of the standard soil fauna collembolan Folsomia candida. Results showed that compared to the AgNPs exposure alone, the presence of MPs significantly reduced reproduction by 51.4% and markedly increased Ag content in collembolans by 87.7% at 1000 mg kg-1 AgNPs, which evidenced a synergistic effect. Co-exposure to MPs and AgNPs resulted in a noticeable reduction in the C/N ratio in F. candida body tissues by 9.90% and 5.27% at 1 and 10 mg kg-1 AgNPs, respectively, showing additive and synergistic effects. Additionally, this co-exposure altered stable isotope fractionation, with the highest increments of δ15N by 32.3% and inhibition of δ13C by 2.62%, demonstrating the turnover of nutrients shift in the collembolan tissues. Collectively, this study demonstrates that con-current exposure to environmentally relevant concentration of MPs and relatively high doses of AgNPs synergistically induces toxic effects on F. candida, leading to Ag accumulation and reproduction decline. These findings imply that MPs could alter collembolans' responses to AgNPs exposure, potentially enhancing the metal ions' bioavailability in soil environments and posing ecotoxicological threats to soil-dwelling organisms.
Collapse
Affiliation(s)
- Ying Ding
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Jin-Ting Zheng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ya-Ning Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
23
|
Xiao X, Sallach JB, Hodson ME. Microplastics and metals: Microplastics generated from biodegradable polylactic acid mulch reduce bioaccumulation of cadmium in earthworms compared to those generated from polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116746. [PMID: 39053046 DOI: 10.1016/j.ecoenv.2024.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture as a response to growing concerns about recalcitrant plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium is a significant soil pollutant in China. MPs have been shown to adsorb metals. In this study the earthworm Lumbricus terrestris was exposed to either Cd (1.0-100 mg / kg) or MPs (PE and PLA, 0.1-3 % w / w), or a combination of the two, for 28 days. Cd bioavailability significantly decreased in the presence of MPs. In particular, at the end of the experiment, PLA treatments had lower measured Cd concentrations in both earthworms (2.127-29.24 mg / kg) and pore water (below detection limits - 0.1384 mg /L) relative to PE treatments (2.720-33.77 mg / kg and below detection limits - 0.2489 mg / L). In our adsorption experiment PLA MPs adsorbed significantly more Cd than PE MPs with maximum adsorption capacities of 126.0 and 23.2 mg / kg respectively. These results suggest that the PLA MPs reduce earthworm exposure to Cd relative to PE by removing it from solution and reducing its bioavailability.
Collapse
Affiliation(s)
- X Xiao
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom.
| | - J B Sallach
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom
| | - M E Hodson
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|
24
|
Anindita MA, Ismanto A, Zainuri M, Hadibarata T, Kunarso K, Maslukah L, Widada S, Indrayanti E, Widiaratih R, Sugianto DN, Rochaddi B, Helmi M, Atmodjo W. Trajectory of microplastic particles with 2-dimensional hydrodynamic modelling approach at Pekalongan waters, Central Java, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:832. [PMID: 39177841 DOI: 10.1007/s10661-024-13016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This research aims to understand the extent of microplastic contamination in Pekalongan waters, Central Java, and its potential impact on fishing grounds, aligning with Indonesia's National Action Plan for Handling Marine Debris 2018-2025. The study employs a 2D hydrodynamics modelling approach with Mike 21 Software to map the spatial distribution of microplastic movement concerning fishing areas during the west and east monsoon seasons. The results showed that microplastic particles follow tidal currents in Pekalongan waters, with their movement influenced by factors such as current, wind, and tidal conditions. The trajectory of microplastics entering fishing ground areas poses potential contamination risk for fish caught by fishermen, threatening the health of marine ecosystems and the stability of their structure and function.
Collapse
Affiliation(s)
- Malya Asoka Anindita
- Master of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia.
| | - Muhammad Zainuri
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Malaysia
| | - Kunarso Kunarso
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Lilik Maslukah
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Sugeng Widada
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Elis Indrayanti
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Rikha Widiaratih
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Denny Nugroho Sugianto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Baskoro Rochaddi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Muhammad Helmi
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Warsito Atmodjo
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
25
|
Dovzhenko AP, Yapryntseva OA, Sinyashin KO, Doolotkeldieva T, Zairov RR. Recent progress in the development of encapsulated fertilizers for time-controlled release. Heliyon 2024; 10:e34895. [PMID: 39144920 PMCID: PMC11320312 DOI: 10.1016/j.heliyon.2024.e34895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
This review describes the latest achievements in the development of encapsulated controlled-release fertilizers, which encompasses sustainability issues in agriculture. The research community's interest in this particular area of science has doubled over the last couple of years due to the yearly increasing complexity of the food and supply situation, as well as maintaining the development of modern society in the era of population outbreak. This review covers demand in timely systematization and comprehensive analysis of emerging research in so-called "smart fertilizers" that release mineral components in accordance with the needs for nutrients classified into controlled- and slow-release fertilizers (CRFs and SRFs). Along with the thoroughly selected fundamental studies published in this area, the review specially focuses on the materials-based classification, emphasizing the importance of the host matrix in the time-controlled release of dopant. This substantially differentiates our review and renders scientific novelty and relevancy to it. The review is divided into sections, dealing with the types of slow- and controlled-release fertilizers each, and supplemented with the critical view on their usage. All data regarding encapsulated fertilizers in this review are systematized for the convenience of the readership when becoming familiarized with the latest achievements in this area. Perspectives and potential pathways are also described to recommend and guide researchers working on the related academic fields.
Collapse
Affiliation(s)
- Alexey P. Dovzhenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| | - Olga A. Yapryntseva
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| | - Kirill O. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Tinatin Doolotkeldieva
- Kyrgyz National Agrarian University named after K.I. Skryabin, Mederov str., 68, 720005, Bishkek, Kyrgyzstan
| | - Rustem R. Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation
| |
Collapse
|
26
|
Lourenço R, Cesar R, Koifman G, Teixeira M, Santos D, Polivanov H, Alexandre K, Carneiro M, da Silva LID, Pereira MMSC, Castilhos Z. Land disposal of dredged sediments from an urbanized tropical lagoon: toxicity to soil fauna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:590-607. [PMID: 38733499 DOI: 10.1007/s10646-024-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Urban tropical lagoons are commonly impacted by silting, domestic sewage and industrial wastes and the dredging of their sediments is often required to minimize environmental impacts. However, the ecological implications of land disposal of dredged sediments are still poorly investigated in the tropics. Aiming to contribute to filling this gap, an ecotoxicological evaluation was conducted with dredged sediments from Tijuca Lagoon (Rio de Janeiro, Brazil) using different lines of evidence, including soil and sediment characterization, metal determination, and acute and avoidance bioassays with Eisenia andrei. Two different dredged sediment samples, a sandy sediment and another muddy one, were obtained in two distinct and spatially representative sectors of the Tijuca Lagoon. The sediments were mixed with an artificial soil, Ferralsol and Spodosol to obtain doses between 0 (pure soil) and 12%. The sediment dose that caused mortality (LC50) or avoidance responses (EC50) to 50% of the organisms was estimated through PriProbit analysis. Metal concentrations and toxicity levels were higher in the muddy sediment (artificial soil LC50 = 3.84%; Ferralsol LC50 = 4.58%; Spodosol LC50 = 2.85%) compared to the sandy one (artificial soil LC50 = 10.94%; Ferralsol LC50 = 14.36%; Spodosol LC50 = 10.38%), since fine grains tend to adsorb more organic matter and contaminants. Mortality and avoidance responses were the highest in Spodosol due to its extremely sandy texture (98% of sand). Metal concentrations in surviving earthworms were generally low, except sodium whose bioaccumulation was high. Finally, the toxicity is probably linked to marine salts, and the earthworms seem to accumulate water in excess to maintain osmotic equilibrium, increasing their biomass.
Collapse
Affiliation(s)
- Rodrigo Lourenço
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ricardo Cesar
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Koifman
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Matheus Teixeira
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Geochemistry, Fluminense Federal University, UFF, Outeiro São João Baptista, s/n. Centro, Niterói, RJ, Brazil
| | - Domynique Santos
- Department of Geography, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Helena Polivanov
- Department of Geology, CCMN-Geosciences Institute, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Katia Alexandre
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Manuel Carneiro
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lilian Irene Dias da Silva
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | - Zuleica Castilhos
- Centre for Mineral Technology, CETEM/MCTI, Av. Pedro Calmon, 900. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Zhang SN, Zhou YT, Xia J, Wang YM, Ma JW, Wang LK, Hayat K, Bai SS, Li CH, Qian MR, Lin H. Combined effects of cadmium and sulfamethoxazole on Eisenia fetida: Insights into accumulation, subcellular partitioning, biomarkers and toxicological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173303. [PMID: 38761948 DOI: 10.1016/j.scitotenv.2024.173303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.
Collapse
Affiliation(s)
- Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun-Wei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Kun Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shan-Shan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Cheng-Han Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ming-Rong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
28
|
Li B, Mao R, Chen Z, Zhang Y, Song J, Li N, Tang B, Feng J, Guan M. The competition of heavy metals between hyporheic sediments and microplastics of driving factors in the Beiluo River Basin. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134538. [PMID: 38761759 DOI: 10.1016/j.jhazmat.2024.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Both sediments and microplastics (MPs) are medias of heavy metals (HMs) in river ecosystems. This study investigated HMs (Mn, Cr, V, As, Cu, Co, Cd, Pb, and Ni) concentration and driving factors for competitive enrichment between hyporheic sediments versus MPs. The medias basic characteristics indicated that the sediments were mostly sand and rich in Fe2O3; three polymer types were identified, with blue, fragment, less than 500 µm being the main types of MPs. The results have shown that the average content of extracted HMs in MPs was much higher than that of the same metals accumulated in sediments. HMs in sediments and MPs reached heavily polluted at some points, among which As and Cd were ecological risks. Electrostatic adsorption and surface complexation, and biofilm-mediated and organic matter complexation were the interaction mechanism of HMs with sediments and MPs. Further, the driving factors affecting the distribution of HMs in the two carriers were analyzed by multivariate statistical analysis. The results demonstrated that carrier characteristics, hydrochemical factors, and the inherent metal load of MPs were the main causes of the high HMs content. These findings improved our understanding of HMs fate and environmental risks across multiple medias.
Collapse
Affiliation(s)
- Bingjie Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ruichen Mao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zeyu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuting Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an 710127, China.
| | - Nan Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Bin Tang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiayuan Feng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mingchang Guan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
29
|
Jiang X, Wang X, Kah M, Li M. Environmentally relevant concentrations of microplastics from agricultural mulch and cadmium negatively impact earthworms by triggering neurotoxicity and disrupting homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135158. [PMID: 39002475 DOI: 10.1016/j.jhazmat.2024.135158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Recent research has highlighted the ecological risk posed by microplastics (MPs) from mulching film and heavy metals to soil organisms. However, most studies overlooked real environmental levels of MPs and heavy metals. To address this gap, pristine and aged polyethylene (PE) mulching film-derived MPs (PMPs, 500 mg/kg; AMPs, 500 mg/kg) were combined with cadmium (Cd, 0.5 mg/kg) to assess the acute toxicity to earthworms and investigate associated molecular mechanisms (oxidative stress, osmoregulation pressure, gut microbiota, and metabolic responses) at environmentally relevant concentrations. Compared to Cd alone and Cd + PMPs treatments (11.15 ± 4.19 items/g), Cd + AMPs treatment resulted in higher MPs bioaccumulation (23.73 ± 13.14 items/g), more severe tissue lesions, and increased cell membrane osmotic pressure in earthworms' intestines. Cd + AMPs induced neurotoxicity through elevated levels of glutamate and acetylcholinesterase. Earthworm intestines (0.98 ± 0.49 to 3.33 ± 0.37 mg/kg) exhibited significantly higher Cd content than soils (0.19 ± 0.01 to 0.51 ± 0.06 mg/kg) and casts (0.15 ± 0.01 to 0.25 ± 0.05 mg/kg), indicating PE-MPs facilitated Cd transport in earthworms' bodies. Metabolomic analysis showed Cd + AMPs exposure depleted energy and nucleotide metabolites, disrupted cell homeostasis more profoundly than Cd and Cd + PMPs treatments. Overall, co-exposure to AMPs + Cd induced more severe neurotoxicity and disruption of homeostasis in earthworm than Cd and PMPs + Cd treatments. Our study, using Cd and MPs with environmental relevance, underscores MPs' role in amplifying Cd accumulation and toxicity in earthworms.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Melanie Kah
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Colpaert R, de Vaufleury A, Rieffel D, Amiot C, Crini N, Gimbert F. The effects of polystyrene microparticles on the environmental availability and bioavailability of As, Cd and Hg in soil for the land snail Cantareus aspersus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174451. [PMID: 38969124 DOI: 10.1016/j.scitotenv.2024.174451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The combined contamination of terrestrial environments by metal(loid)s (MEs) and microplastics (MPs) is a major environmental issue. Once MPs enter soils, they can interact with MEs and modify their environmental availability, environmental bioavailability, and potential toxic effects on biota. Although research efforts have been made to describe the underlying mechanisms driving MP and ME interactions, the effects of MPs on ME bioavailability in terrestrial Mollusca have not yet been documented. To fill this gap, we exposed the terrestrial snail Cantareus aspersus to different combinations of polystyrene (PS) and arsenic (As), cadmium (Cd), or mercury (Hg) concentrations. Using kinetic approaches, we then assessed the variations in the environmental availability of As, Cd or Hg after three weeks of equilibration and in the environmental bioavailability of As, Cd or Hg to snails after four weeks of exposure. We showed that while environmental availability was influenced by the total ME concentration, the effects of PS were limited. Although an increase in As availability was observed for the highest exposure concentrations at the beginning of the experiment, the soil ageing processes led to rapid adsorption in the soil regardless of the PS particle concentration. Concerning transfers to snail, ME bioaccumulation was ME concentration-dependent but not modified by the PS concentration in the soils. Nevertheless, the kinetic approaches evidenced an increase in As (2- to 2.6-fold) and Cd (1.6-fold), but not Hg, environmental bioavailability or excretion (2.3- to 3.6-fold for As, 1.8-fold for Cd) at low PS concentrations. However, these impacts were no longer observable at the highest PS exposure concentrations because of the increase in the bioaccessibility of MEs in the snail digestive tract. The generalization of such hormetic responses and the identification of the precise mechanisms involved necessitate further research to deepen our understanding of the MP-mediated behaviour of MEs in co-occurring scenarios.
Collapse
Affiliation(s)
- Romain Colpaert
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Annette de Vaufleury
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Dominique Rieffel
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Caroline Amiot
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Nadia Crini
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Frédéric Gimbert
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
31
|
Mekersi N, Kadi K, Hackenberger DK, Casini S, Addad D, Thangaraj R, Chen Z, Zhang C, Yuvaraj A. Accumulation of heavy metals from single and combined olive mill wastewater and pomace in soil and bioaccumulation in tissues of two earthworm species: Endogeic (Aporrectodea trapezoides) and Epigeic (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45280-45294. [PMID: 38963619 DOI: 10.1007/s11356-024-34087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Soil and earthworms are threatened by anthropogenic contamination resulting from olive mill waste dumping on the soil due to their pollutant properties. While several studies have explored the effects of olive mill waste on soil properties and the accumulation of heavy metals in soil, there is currently a gap in the literature regarding the potential bioaccumulation of heavy metals from olive mill waste in earthworms. In this study, soil with earthworms from two ecological categories (endogeic: Aporrectodea trapezoides and epigeic: Eisenia fetida) was treated with increasing doses of olive mill wastewater (OMWW) and olive mill pomace (OMP), applied individually or combined, in an indoor experiment in plastic containers, under laboratory conditions. The results revealed the presence of significant concentrations of heavy metals in the two types of wastes ranging as follows: Fe˃ Zn˃ Cu˃ Cd˃ Cr for OMWW, and Fe˃ Zn˃ Cu˃ Cr for OMP (with Cd below the detection limit). The study demonstrated distinct effects of OMWW and OMP, both individually and in combination, on soil heavy metal content, ranging as follows: soil OMWW > soil Combination > soil OMP for Cd; soil Combination > soil OMWW > soil OMP for Cr and Fe; and soil Combination > soil OMP > soil OMWW for Cu and Zn. Additionally, our investigation showed that both earthworm species exhibited significant uptake of these metals into their tissues, particularly the endogeic species. Interestingly, the most significant difference between species was in the accumulation of Cu, with the epigeic species accumulating significantly lower amounts.
Collapse
Affiliation(s)
- Nawal Mekersi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | - Kenza Kadi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | | | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Dalila Addad
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
- Natural Resources and Management of Sensitive Environments Laboratory, Larbi Ben M'hidi University, 04000, Oum El Bouaghi, Algeria
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague-Suchdol, 16500, Czech Republic
| | - Chi Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| |
Collapse
|
32
|
Xie Y, Irshad S, Jiang Y, Sun Y, Rui Y, Zhang P. Microplastic-mediated environmental behavior of metal contaminants: mechanism and implication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43524-43539. [PMID: 38904875 DOI: 10.1007/s11356-024-34042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and metals are currently two of the most concerning environmental pollutants due to their persistent nature and potential threats to ecosystems and human health. This review examines the intricate interactions between MPs and metals in diverse environmental compartments, including aquatic, terrestrial, and atmospheric environments by focusing on the complex processes of adsorption and desorption and the mechanisms that govern these interactions. MPs act as carriers and concentrators of metals in aquatic and terrestrial environments, affecting the bioavailability and toxicity of these contaminants to aquatic and terrestrial organisms. This review highlights the existing challenges and constraints associated with current analytical methods, including microscopy, spectroscopy, and isotherm models in studying microplastic-heavy metal interactions. Moreover, we identified the knowledge gaps and future research directions that can enhance our understanding of the dynamic interplay between MPs and metals in various environmental settings.
Collapse
Affiliation(s)
- Yu Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Samina Irshad
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaqi Jiang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yi Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
33
|
Zhao B, Chen F, Yao Q, Lin M, Zhou K, Mi S, Pan H, Zhao X. Toxicity effects and mechanism of micro/nanoplastics and loaded conventional pollutants on zooplankton: An overview. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106547. [PMID: 38739970 DOI: 10.1016/j.marenvres.2024.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Micro/nanoplastics in aquatic environments is a noteworthy environmental problem. Zooplankton, an important biological group in aquatic ecosystems, readily absorb micro/nanoplastics and produce a range of toxic endpoints due to their small size. This review summarises relevant studies on the effects of micro/nanoplastics on zooplankton, including combined effects with conventional pollutants. Frequently reported adverse effects include acute/chronic lethal effects, oxidative stress, gene expression, energetic homeostasis, and growth and reproduction. Obstruction by plastic entanglement and blockage is the physical mechanism. Genotoxicity and cytotoxicity are molecular mechanisms. Properties of micro/nanoplastics, octanol/water partition coefficients of conventional pollutants, species and intestinal environments are important factors influencing single and combined toxicity. Selecting a wider range of micro/nanoplastics, focusing on the aging process and conducting field studies, adopting diversified zooplankton models, and further advancing the study of mechanisms are the outstanding prospects for deeper understanding of impacts of micro/nanoplastics on aquatic ecosystem.
Collapse
Affiliation(s)
- Bo Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Qiang Yao
- Ocean College, Hebei Agriculture University, Qinhuangdao, 066004, China.
| | - Manfeng Lin
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Kexin Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Shican Mi
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
34
|
Sun J, Su F, Chen Y, Wang T, Ali W, Jin H, Xiong L, Ma Y, Liu Z, Zou H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172395. [PMID: 38608882 DOI: 10.1016/j.scitotenv.2024.172395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangyu Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hengqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
35
|
Wu X, Lin L, Lin Z, Deng X, Li W, He T, Zhang J, Wang Y, Chen L, Lei Z, Liu C, Xu Z. Influencing mechanisms of microplastics existence on soil heavy metals accumulated by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171878. [PMID: 38537832 DOI: 10.1016/j.scitotenv.2024.171878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.
Collapse
Affiliation(s)
- Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanli Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao He
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan 442000, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou 510656, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lili Chen
- Business School, Central South University of Forestry and Technology, Changsha 410004, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zexiang Lei
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
36
|
Chen XC, Wang A, Wang JJ, Zhang ZD, Yu JY, Yan YJ, Zhang JY, Niu J, Cui XY, Liu XH. Influences of coexisting aged polystyrene microplastics on the ecological and health risks of cadmium in soils: A leachability and oral bioaccessibility based study. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133884. [PMID: 38412647 DOI: 10.1016/j.jhazmat.2024.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd. The mechanisms by which MPs influence soil Cd were discussed from direct and indirect perspectives. Results showed that there was no significant difference in the leachability of soil Cd with/without aged PS. Additionally, aged PS led to a significant decrease in the bioaccessibility of soil Cd in gastric phase, but not in small intestinal phase. The increase in surface roughness and the new characteristic peaks (e.g., Si-O-Si) of aged PS directly accounted for the change in Cd bioaccessibility. The change in organic matter content indirectly accounted for the exceptional increase in Cd bioaccessibility of black soil with aged PS in small intestinal phase. Furthermore, the changes in cation exchange capacity and Cd mobility factor caused by aged PS explained the change in Cd leachability. These results contribute to a deeper understanding about environmental and public health in complicated emerging scenarios.
Collapse
Affiliation(s)
- Xiao-Chen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Ao Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jun-Jie Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou City Construction Design and Research Institute Co., Ltd., 340 Liuyibei Road, Fuzhou 350001, PR China
| | - Zeng-Di Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jian-Ying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, 1 Kejidong Road, Fuzhou 350108, PR China
| | - Ying-Jie Yan
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou University Zhicheng College, 50 Yangqiaoxi Road, Fuzhou 350002, PR China
| | - Jian-Yu Zhang
- Jiangsu Longchang Chemical Co., Ltd., 1 Qianjiang Road, Rugao 226532, PR China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, 33 Xuefunan Road, Fuzhou 350118, PR China
| | - Xiao-Yu Cui
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China
| | - Xian-Hua Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China.
| |
Collapse
|
37
|
Gogoi B, Acharjee SA, Bharali P, Sorhie V, Walling B, Alemtoshi. A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. ENVIRONMENTAL RESEARCH 2024; 248:118280. [PMID: 38272294 DOI: 10.1016/j.envres.2024.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Heavy metals (HMs) have become a significant concern in the current era, with deleterious effects on diverse living organisms when exposed beyond threshold concentrations. Both nature and human beings have been constantly casting out HMs into environmental matrices through various activities. Innumerable cases of threatened diseases such as cancer, respiratory ailments, reproductive defects, skin diseases, and several others have been a cause of significant concern for humans as the number of instances has been increasing with each decade. HMs migrates via several pathways to infiltrate biological organisms and amass within them. Even though numerous treatment approaches are available for remediating HM pollution, however, they are expensive, along with other setbacks. Due to such constraints, combating HM contamination requires environmentally conscious strategies like bioremediation, which employs an array of biological systems to remove HMs from the environment. Nonetheless, to address the current global HM pollution situation, it is critical to comprehend not only how these hazardous HMs cause toxicity in various living organisms but also the knowledge gaps that currently exist concerning the subject of HM ecotoxicity. In the present investigation, data was extracted from Google Scholar using software program called Harzing's Publish or Perish. The collected information has been subsequently displayed as a network file using the VOSViewer software tool. Thus, the current review presents a significant insight with the inclusion of a readily accessible bibliometric analysis to comprehend the present status of HMs research, global research trends, existing knowledge discrepancies, and research challenges. Further, it also provides an in-depth review of HMs ecotoxicity, with a focus on arsenic (As), cadmium (Cd), and lead (Pb). Thus, as indicated by the bibliometric study, the present review will assist future investigators studying HMs ecotoxicity by providing baseline data concerning a wide range of living organisms and by addressing research gaps.
Collapse
Affiliation(s)
- Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India.
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| |
Collapse
|
38
|
Redondo-Hasselerharm PE, Rico A, Huerta Lwanga E, van Gestel CAM, Koelmans AA. Source-specific probabilistic risk assessment of microplastics in soils applying quality criteria and data alignment methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133732. [PMID: 38350316 DOI: 10.1016/j.jhazmat.2024.133732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.
Collapse
Affiliation(s)
- Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081H Amsterdam, the Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
39
|
Hua X, Wang D. Polyethylene nanoparticles at environmentally relevant concentrations enhances neurotoxicity and accumulation of 6-PPD quinone in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170760. [PMID: 38331287 DOI: 10.1016/j.scitotenv.2024.170760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The exposure risk of 6-PPD quinone (6-PPDQ) has aroused increasing concern. In the natural environment, 6-PPDQ could interact with other pollutants, posing more severe environmental problems and toxicity to organisms. We here examined the effect of polyethylene nanoplastic (PE-NP) on 6-PPDQ neurotoxicity and the underling mechanisms in Caenorhabditis elegans. In nematodes, PE-NP (1 and 10 μg/L) decreased locomotion behavior, but did not affect development of D-type neurons. Exposure to PE-NP (1 and 10 μg/L) strengthened neurotoxicity of 6-PPDQ (10 μg/L) on the aspect of locomotion and neurodegeneration induction of D-type motor neurons. Exposure to PE-NPs (10 μg/L) caused increase in expressions of mec-4, asp-3, and asp-4 governing neurodegeneration in 10 μg/L 6-PPDQ exposed nematodes. Moreover, exposure to PE-NP (10 μg/L) increased expression of some neuronal genes (daf-7, dbl-1, jnk-1, and mpk-1) in 6-PPDQ exposed nematodes, and RNAi of these genes resulted in susceptibility to neurotoxicity of PE-NP and 6-PPDQ. 6-PPDQ could be adsorbed by PE-NPs, and resuspension of PE-NP and 6-PPDQ after adsorption equilibrium exhibited similar neurotoxicity to co-exposure of PE-NP and 6-PPDQ. In addition, exposure to PE-NP (1 and 10 μg/L) increased 6-PPDQ accumulation in body of nematodes and increased defecation cycle length in 6-PPDQ exposed nematodes. Therefore, 6-PPDQ could be adsorbed on nanoplastics (such as PE-NPs) and enhance both neurotoxicity and accumulation of 6-PPDQ in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
40
|
Liu B, Zhao S, Qiu T, Cui Q, Yang Y, Li L, Chen J, Huang M, Zhan A, Fang L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170281. [PMID: 38272091 DOI: 10.1016/j.scitotenv.2024.170281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) in soil contamination are considered an emerging global problem that poses environmental and health risks. However, their interaction and potential biological effects remain unclear. Here, we reviewed the interaction of MPs with HMs in soil, including its mechanisms, influencing factors and biological effects. Specifically, the interactions between HMs and MPs mainly involve sorption and desorption. The type, aging, concentration, size of MPs, and the physicochemical properties of HMs and soil have significant impacts on the interaction. In particular, MP aging affects specific surface areas and functional groups. Due to the small size and resistance to decomposition characteristics of MPs, they are easily transported through the food chain and exhibit combined biological effects with HMs on soil organisms, thus accumulating in the human body. To comprehensively understand the effect of MPs and HMs in soil, we propose combining traditional experiments with emerging technologies and encouraging more coordinated efforts.
Collapse
Affiliation(s)
- Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
41
|
Boughattas I, Vaccari F, Zhang L, Bandini F, Miras-Moreno B, Missawi O, Hattab S, Mkhinini M, Lucini L, Puglisi E, Banni M. Co-exposure to environmental microplastic and the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) induce distinctive alterations in the metabolome and microbial community structure in the gut of the earthworm Eisenia andrei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123213. [PMID: 38158010 DOI: 10.1016/j.envpol.2023.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 μg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Omayma Missawi
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Sabrine Hattab
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
42
|
Jia Y, Cheng Z, Peng Y, Yang G. Microplastics alter the equilibrium of plant-soil-microbial system: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116082. [PMID: 38335576 DOI: 10.1016/j.ecoenv.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) are widely identified as emerging hazards causing considerable eco-toxicity in terrestrial ecosystems, but the impacts differ in different ecosystem functions among different chemical compositions, morphology, sizes, concentrations, and experiment duration. Given the close relationships and trade-offs between plant and soil systems, probing the "whole ecosystem" instead of individual functions must yield novel insights into MPs affecting terrestrial ecosystems. Here, a comprehensive meta-analysis was employed to reveal an unambiguous response of the plant-soil-microbial system to MPs. Results showed that in view of plant, soil, and microbial functions, the general response patterns of plant and soil functions to MPs were obviously opposite. For example, polyethylene (PE) and polyvinyl chloride (PVC) MPs highly increased plant functions, while posed negative effects on soil functions. Polystyrene (PS) and biodegradable (Bio) MPs decreased plant functions, while stimulating soil functions. Additionally, low-density polyethylene (LDPE), PE, PS, PVC, Bio, and granular MPs significantly decreased soil microbial functions. These results clearly revealed that MPs alter the equilibrium of the plant-soil-microbial system. More importantly, our results further revealed that MPs tended to increase ecosystem multifunctionality, e.g., LDPE and PVC MPs posed positive effects on ecosystem multifunctionality, PE, PS, and Bio MPs showed neutral effects on ecosystem multifunctionality. Linear regression analysis showed that under low MPs size (<100 µm), ecosystem multifunctionality was gradually reduced with the increased size of MPs. The response of ecosystem multifunctionality showed a concave shape pattern along the gradient of experimental duration which was lower than 70 days. More importantly, there was a threshold (i.e., 5% w/w) for the effects of MPs concentration on ecosystem multifunctionality, i.e., under low concentration (< 5% w/w), ecosystem multifunctionality was gradually increased with the increased concentration of MPs, while ecosystem multifunctionality was gradually decreased under high concentration (i.e., > 5% w/w). These findings emphasize the importance of studying the effects of MPs on plant-soil-microbial systems and help us identify ways to reduce the eco-toxicity of MPs and maintain environmental safety in view of an ecology perspective.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Zhen Cheng
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yi Peng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guojiang Yang
- Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
43
|
Yang L, Luo L, Cai W, Chen Z, Luo X, Chen Y. Changes in carbohydrate metabolism and soil microorganisms under the stress of polyamide and polyethylene nanoplastics during rice (Oryza sativa L.) growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169183. [PMID: 38092212 DOI: 10.1016/j.scitotenv.2023.169183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Nanoplastics (NPs) presence in agricultural soils can affect plant growth and impact the quality of agricultural products. To investigate the effect of polyamide (PA) NPs and polyethylene (PE) NPs on carbohydrate metabolism and soil microorganisms during rice growth, rice seedlings were exposed to soil containing 2 g/kg of 100 nm PA or 100 nm PE powder for 33 d. The results revealed that 100 nm PE reduced shoot length and dry weight of rice by 4.14 % and 15.68 %, respectively. Analyzing the expression of hexokinase-2 (HXK), phosphofructokinase-1 (PFK), pyruvate kinase (PK) and isocitrate dehydrogenase (IDH), which are four genes related to carbohydrate metabolism, 100 nm PA decreased the expression of PFK and increased the expression of PK and IDH. 100 nm PE increased the expression of HXK, PFK, PK, and IDH. The results of soil microorganisms showed that 100 nm PA significantly effects on 3 bacterial phyla (Bacteroidota, Deinococcota, and Desulfobacterota), whereas 100 nm PE significantly effects on phylum Rozellomycota, class Umbelopsidomycetes, and an unclassified Firmicutes. Our study provides direct evidence of the negative effects of PA and PE on rice, which may be important for assessing the risk of NPs on agroecosystems.
Collapse
Affiliation(s)
- Limin Yang
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China; Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Lili Luo
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Wenshan Cai
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Zheng Chen
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China.
| | - Yaling Chen
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China.
| |
Collapse
|
44
|
Song J, Chen X, Li S, Tang H, Dong S, Wang M, Xu H. The environmental impact of mask-derived microplastics on soil ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169182. [PMID: 38092201 DOI: 10.1016/j.scitotenv.2023.169182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
During the COVID-19 pandemic, a significant increased number of masks were used and improperly disposed of. For example, the global monthly consumption of approximately 129 billion masks. Masks, composed of fibrous materials, can readily release microplastics, which may threaten various soil ecosystem components such as plants, animals, microbes, and soil properties. However, the specific effects of mask-derived microplastics on these components remain largely unexplored. Here, we investigated the effects of mask-derived microplastics (grouped by different concentrations: 0, 0.25, 0.5, and 1 % w/w) on soil physicochemical properties, microbial communities, growth performance of lettuce (Lactuca sativa L. var. ramosa Hort.) and earthworm (Eisenia fetida) under laboratory conditions for 80 days. Our findings suggest that mask-derived microplastics reduced soil bulk density while increasing the mean weight diameter of soil aggregates and modifying nutrient levels, including organic matter, potassium, nitrogen, and phosphorus. An increase in the abundance of denitrification bacteria (Rhodanobacteraceae) was also observed. Mask-derived microplastics were found to reduce lettuce germination, and a hormesis effect of low-concentration stimulation and high-concentration inhibition was observed on biomass, chlorophyll, and root activity. While the mortality of earthworms was not significantly affected by the mask-derived microplastics, but their growth was inhibited. Collectively, our results indicate that mask-derived microplastics can substantially impact soil properties, plant growth, and earthworm health, with potential implications for soil ecosystem functionality.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, Sichuan, PR China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
45
|
Ning Y, Wang S, Sun Y, Zhang S, Wen Y, Zou D, Zhou D. Deciphering survival strategies: Oxidative stress and microbial interplay in Eisenia fetida under tetracycline contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168647. [PMID: 37977382 DOI: 10.1016/j.scitotenv.2023.168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Soil contamination resulting from residual antibiotics presents a pressing need to understand the survival mechanisms of soil organisms in polluted environments. This study focused on Eisenia fetida, and tetracycline stress experiments were conducted in a controlled environment using sterile artificial soil. The stress concentration ranged from 0 to 600 mg/kg, and stress cycles lasted either 10 or 30 days. The objective of this study was to assess the effects of oxidative stress and the changes in microbial communities both within and outside the earthworms. A comprehensive mathematical model was developed to elucidate the responses of organisms following exposure to stress utilizing factor analysis, grey relational analysis, and hierarchical entropy weight analysis. Under tetracycline stress, the initial stage (1-3 days) exhibited a coordinated regulation of oxidative stress and microbial communities in the soil with the assistance of CAT and GPX enzymes. The subsequent stage (4-5 days) further emphasized the influence of soil microbial communities. A notable "feedback regulation" of soil microbial communities on oxidative stress was observed during the third stage (6-8 days). Earthworms maintained a metabolic balance in the fourth stage (9-10 days). In the long term, the stress-induced a self-detoxification mechanism within soil microbial communities, which collaborated with GPX to respond to oxidative stress.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Siqi Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuting Sun
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengwei Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
46
|
Chen C, Zheng N, Zhu H, An Q, Pan J, Li X, Ji Y, Li N, Sun S. Co-exposure to UV-aged microplastics and cadmium induces intestinal toxicity and metabolic responses in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132737. [PMID: 37832442 DOI: 10.1016/j.jhazmat.2023.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Aged microplastics (MPs) alter the interaction with heavy metals due to changes in surface properties. However, the combined toxicological effects of aged MPs on heavy metals in soil remain poorly understood. In this study, earthworms were employed as model animals to investigate the effects of aged MPs on the biotoxicity of cadmium (Cd) by simulating the exposure patterns of original and UV-aged MPs (polylactic acid (PLA) and polyethylene (PE)) with Cd. The results showed that UV-aging decreased the zeta potential and increased the specific surface area of the MPs, which enhanced the bioaccumulation of Cd and caused more severe oxidative stress to earthworms. Meanwhile, the earthworm intestines exhibited increased tissue damage, including chloragogenous tissue congestion lesions, and typhlosole damage. Furthermore, the combined exposure to UV-aged MPs and Cd enhanced the complexity of the microbial network in the earthworm gut and interfered with endocrine disruption, membrane structure, and energy metabolic pathways in earthworms. The results emphasized the need to consider the degradation of MPs in the environment. Hence, we recommend that future toxicological studies use aged MPs that are more representative of the actual environmental conditions, with the results being important for the risk assessment and management of MPs.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
47
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
48
|
Zhao X, Ren Z, Hu Z, Li Y, Zhang C, Yang Q, An L, Zhu B, Wang H, Liu J. Study on the simultaneous release of microfiber and indigo dye in denim fabric home washing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115735. [PMID: 38039852 DOI: 10.1016/j.ecoenv.2023.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
In recent years, with the increasing global focus on environmental protection, the issue of microfiber release from denim during the washing process has gained attention. In this study, a programmable washing device simulating household drum washing was designed and developed, microfibers and indigo dyes released from denim washing were quantitatively detected, and we have also developed a novel method for estimating the release of microfibers during washing. The effects of washing time, washing temperature, and washing load on microfiber and indigo dye release from denim were explored. The results showed that the effect of washing load on microfiber and indigo dye release was greater than washing temperature and washing time. The research findings indicate that with an increase in washing time (35-95 min) and washing load (100-250 g), the shedding of microfibers and indigo dye significantly increases, reaching peak release levels of 343.6 μg/g fabric and 0.027 mg/L, respectively. However, there is a decreasing trend in the release of microfibers and indigo dye when the washing temperature exceeds 50 °C. Furthermore, our data suggests that an increase in washing load leads to a significant change in the number of microfibers (from 978 items/g fabric to 1997 items/g fabric) and their mass (from 156.87 μg/g fabric to 343.56 μg/g fabric). The influence of washing time, washing temperature, and washing load on microfiber length shows relatively small fluctuations within the range of 600-900 µm. This study provides new ideas and methods for estimating the release of microfiber and indigo dye in denim washing around the world.
Collapse
Affiliation(s)
- Xu Zhao
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Zehua Ren
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | | | - Yinghua Li
- Faculty of Education, Huaibei Institute of Technology, Huaibei 235000, China
| | - Chaoyu Zhang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | | | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Hongbo Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| | - Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| |
Collapse
|
49
|
Guo S, Shi H, Qi Y, Tian G, Wang T, He F, Li X, Liu R. Environmental relevant concentrations of polystyrene nanoplastics and lead co-exposure triggered cellular cytotoxicity responses and underlying mechanisms in Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167264. [PMID: 37741403 DOI: 10.1016/j.scitotenv.2023.167264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Heavy metal pollution of soils and the widespread use of plastics have caused environmental problems worldwide. Nanoplastics (NPs) contaminants in water and soil environments can adsorb heavy metals, thereby affecting the bioavailability and toxicity of heavy metals. In this paper, the effect of co-exposure of polystyrene microspheres with 100 nm particle size and lead acetate (Pb) on the Eisenia fetida coelomocytes was investigated. The environmental concentration of NPs used was 0.01 mg/L and the concentration of Pb ranged from 0.01 to 1 mg/L, and the exposed cells were incubated at 298 k for 24 h. Our study demonstrated that exposure of cells to environmental relevant concentrations of NPs did not significantly affect the cytotoxicity of Pb exposure. It was shown that co-exposure induced cellular production of reactive oxygen species (ROS, increased to 134.4 %) disrupted the antioxidant system of earthworm body cavity cells, activated superoxide dismutase and catalase (CAT), produced reduced glutathione, and inhibited glutathione-dependent enzyme (GST) activity (Reduced to 64 %). Total antioxidant capacity (T-AOC) is first enhanced against ROS due to the stress of NPs and Pb. When the antioxidant reserves of cells are exhausted, the antioxidant capacity will decrease. The level of malondialdehyde, a biomarker of eventual lipid peroxidation, increased to 231.7 %. At the molecular level, due to co-exposure to NPs and Pb, CAT was loosely structured and the secondary structure is misfolded, which was responsible for exacerbating oxidative damage in E. fetida coelomocytes. The findings of this study have significant implications for the toxicological interaction and future risk assessment of co-contamination of NPs and Pb in the environment.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
50
|
Shang G, Zhai J, Xu G, Wang L, Wang X. Ecotoxicological effects of co-exposure biodegradable microplastics polylactic acid with cadmium are higher than conventional microplastics polystyrene with cadmium on the earthworm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166953. [PMID: 37699480 DOI: 10.1016/j.scitotenv.2023.166953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Microplastics (MPs) are plastic fragments with particle sizes <5 mm, ubiquitously distributed in terrestrial environments. However, the negative effects of MPs, such as joint-pollution with heavy metals on soil fauna remain controversial. This study investigated survival rate, growth, reproduction, avoidance behavior, histology, biochemical assays, comet assay, qPCR, Cd content, and IBR index. We found that six types of traditional MPs (PC, PP, PVC, LDPE, PET and PS, and PLA (a biodegradable microplastics)) had no adverse effects on earthworm growth, survival and reproduction. Moreover, we found that earthworms exhibit an avoidance behavior towards PLA. Both PS and PLA can exacerbated Cd pollution, leading to loose circular muscle layer, DNA damage in coelomocytes, and impaired antioxidant system due to increased reactive oxygen species (ROS). mRNA level of HSP70 increased under joint-pollution of both PS and Cd or PLA and Cd compared to Cd treatment alone. MPs enhanced Cd accumulation in earthworms in Cd-contaminated soil. Notably, the Integrated Biomarkers Response index revealed that the toxicity of joint PLA and Cd was greater than the joint effect of PS and Cd, which might violate the original intention of biodegradable plastics having non-toxic influence on the soil fauna. Our findings provide new insights into the ecotoxicological effects of MPs, the joint ecotoxicological effects of MPs and Cd on earthworms, and the ecological risks of MPs to soil fauna.
Collapse
Affiliation(s)
- Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Guangxia Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China.
| |
Collapse
|