1
|
Ma Q, Sun Y, Zhou S, Yin X, Sun H. The transport of polystyrene microplastics in saturated porous media: Impacts of functional groups and solution chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124696. [PMID: 40020367 DOI: 10.1016/j.jenvman.2025.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Global attention to microplastics (MPs) pollution has been increasing as it has become a novel environmental issue. Natural aging processes alter MPs surface properties, introducing charged functional groups that affect their transport in porous media. This study investigated the transport of polystyrene microplastics (PSMPs) in saturated porous media through column experiments, including non-functionalized PSMPs (PS-Bare), carboxyl-modified PSMPs (PS-COOH), and amino-modified PSMPs (PS-NH2). Unlike previous studies focusing on pristine microplastics, our research integrated the effects of surface functionalization with complex solution chemistry, including ionic strength, cation valence, and pH. Results indicated that surface functional groups and solution chemistry combined to impact PSMPs migration through zeta potential and hydrodynamic size. Increasing ionic strength decreased migration rates due to double-layer compression and charge screening. Higher cation valence and lower pH decreased PS-Bare and PS-COOH migration rates, while PS-NH2 showed the opposite trend due to differences in surface charges. As pH increased, carboxyl groups dissociated, enhancing the negative charge on PS-COOH and promoting its migration, while amino groups deprotonated, reducing the positive charge on PS-NH2 and inhibiting its migration. PS-NH2 exhibited higher mobility than expected. Despite its positive charge, PS-NH2 preferentially occupied active sites on sand surfaces, reducing aggregation and enhancing transport. In the presence of Al3+, PSMPs recovery rates were PS-NH2 (94.60%) > PS-COOH (41.48%) > PS-Bare (41.12%). This study enhances understanding of functionalized microplastics transport and its potential impact on groundwater contamination.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Yingying Sun
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Shi Zhou
- College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Hu M, Sun S, Ma H, Xing B. Adsorption behaviors of microplastics from packaging materials subjected to ultraviolet irradiation and microbial colonization. MARINE POLLUTION BULLETIN 2025; 212:117517. [PMID: 39752813 DOI: 10.1016/j.marpolbul.2024.117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 03/05/2025]
Abstract
Microplastics (MPs) in nature inevitably undergo various aging processes and may exhibit varied interfacial interactions with the coexisted contaminants. Here several discarded disposable polyethylene and polypropylene plastic packaging materials were collected and employed as the raw materials of MPs, and the effects of stimulated UV irradiation and microbial colonization on the variations of surface physicochemical characteristics, including biofilm content, oxygen-containing functional groups, oxygen/carbon ratio, hydrophilicity and surface charge properties were explored. Simultaneously, the adsorption behavior of each MPs on the representative cationic dye crystal violet (CV), as well as the influences of salinity and pH of CV solution, was investigated. The fitting results of kinetic and isotherm models indicated that the adsorption process was mainly multilayer on heterogeneous surfaces, involving hydrogen bonding, electrostatic attraction and hydrophobic interactions, which were further confirmed by FTIR spectra, pH and salinity experiments, respectively. This study elucidated the variation of surface physicochemical characteristics of MPs during natural aging processes and the possible interfacial interactions with CV, which provided theoretical information on MPs as the potential pollutant carriers.
Collapse
Affiliation(s)
- Miao Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Siao Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'An, Shaanxi 710072, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Berrellez-Reyes F, Schiavo B, Gonzalez-Grijalva B, Angulo-Molina A, Meza-Figueroa D. Characterization of soot and crystalline atmospheric ultrafine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125314. [PMID: 39547557 DOI: 10.1016/j.envpol.2024.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The extraction and characterization of atmospheric ultrafine particles (UFPs) is critical to understanding environmental health and climate dynamics. This study uses an aqueous extraction method to characterize the size distribution, shape, and composition of atmospheric UFPs. We propose a combined use of techniques rarely implemented in air quality analysis, such as atomic force microscopy (AFM), with more conventional methods, such as Transmission Electron microscopy (TEM) and Dynamic Light Scattering (DLS). DLS results indicate a hydrodynamic diameter range from 117 to 1069 nm and a polydispersity index of 0.3-0.79. The high polydispersity reflects the complexity of UFPs agglomeration processes. AFM identified NPs ranging from 10 to 25 nm; topographic images show soot and crystalline structures. High-resolution TEM analysis measured the interplanar distances of crystalline UFPs, showing the presence of calcium carbonates. TEM-EDS identified soot and crystalline particles with variable composition, from Si-enriched NPs to Ca-F-Cl-Na-Si, carbonates, chlorides, and Zn-Ti-enriched nanosilica. These findings provide valuable insights into the physicochemical properties of atmospheric dust, contributing to our knowledge and the potential implications for human health and the environment.
Collapse
Affiliation(s)
- Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
4
|
Zhang R, Lu X, Huang W, Liu Y, Zhou Z, Xia Y, Wang J, Fan X. Reflecting the aging behavior of polystyrene nanoplastics in the seawater through Young's modulus by atomic force microscope. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136438. [PMID: 39522214 DOI: 10.1016/j.jhazmat.2024.136438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nanoplastics (NPs), with different physicochemical properties at various aging stages, have severe impacts on human health and the ecological environment. Restricted by the traditional technique, such as time-consuming, sample concentration, and the destructive of the sample, it is hard to precisely determine their aging behavior. Interestingly, we found that the nano-mechanical properties of the NPs were largely influenced by the oxidation and the cross-linking, however, their deep relationship remains lacking. Herein, this study investigates the aging behaviors of commodity plastics, microplastics and NPs in seawater via testing the changes of the physicochemical properties by combination of atomic force microscope. The results indicated that the changing behavior of Young's modulus (YM) for NPs exhibited distinctly with a rapid to a slow growth trend, an initial slow increase followed by an acceleration for microplastics, while there was almost no significant change for commodity plastics. And it was further validated by the changing trend of hydroxyl index and degree of cross-linking of the aged plastics with different sizes, which undoubtedly showed a consistent trend with the YM changes. These findings provide a new perspective for measuring the degree of cross-linking of aged NPs.
Collapse
Affiliation(s)
- Runzhe Zhang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xinyi Lu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenyi Huang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhikui Zhou
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanyan Xia
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jian Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Chelomin VP, Istomina AA, Mazur AA, Slobodskova VV, Zhukovskaya AF, Dovzhenko NV. New Insights into the Mechanisms of Toxicity of Aging Microplastics. TOXICS 2024; 12:726. [PMID: 39453146 PMCID: PMC11510949 DOI: 10.3390/toxics12100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Nowadays, synthetic polymer (plastic) particles are ubiquitous in the environment. It is known that for several decades microplastics (MPs) have been accumulating in the World Ocean, becoming available to a large variety of marine organisms. Particularly alarming is the accumulation of aging plastic particles, as the degradation processes of such particles increase their toxicity. The diverse display of negative properties of aging MPs and its effect on biota are still poorly understood. In this study, in vitro experiments modeling the interaction of pristine and UV-irradiated aging polypropylene (PP) fragments with hemocytes and mitochondria of bivalve mollusks Mytilus sp. were performed. The appearance of free radicals in the environment was recorded by spectral characteristics of indicator dyes-methylene blue (MB) and nitroblue tetrazolium (NBT). It was found that due to photooxidation, aging PP fragments sorbed more than threefold MB on their modified surface compared to pristine samples of this polymer. Using NBT, the formation of reactive oxygen species in seawater in the presence of pristine and photoactivated PP was recorded. It was also found that photodegraded PP fragments largely stimulated the development of lipid peroxidation processes in mitochondrial membranes and reduced the stability of hemocyte lysosome membranes compared to pristine PP fragments. In general, the results obtained concretize and supplement with experimental data the previously stated hypothesis of toxicity of aging MPs.
Collapse
|
6
|
Xiao Y, Tian Y, Xu W, Zhu J. Photodegradation of Microplastics through Nanomaterials: Insights into Photocatalysts Modification and Detailed Mechanisms. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2755. [PMID: 38894019 PMCID: PMC11174110 DOI: 10.3390/ma17112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) pose a profound environmental challenge, impacting ecosystems and human health through mechanisms such as bioaccumulation and ecosystem contamination. While traditional water treatment methods can partially remove microplastics, their limitations highlight the need for innovative green approaches like photodegradation to ensure more effective and sustainable removal. This review explores the potential of nanomaterial-enhanced photocatalysts in addressing this issue. Utilizing their unique properties like large surface area and tunable bandgap, nanomaterials significantly improve degradation efficiency. Different strategies for photocatalyst modification to improve photocatalytic performance are thoroughly summarized, with a particular emphasis on element doping and heterojunction construction. Furthermore, this review thoroughly summarizes the possible fundamental mechanisms driving the photodegradation of microplastics facilitated by nanomaterials, with a focus on processes like free radical formation and singlet oxygen oxidation. This review not only synthesizes critical findings from existing studies but also identifies gaps in the current research landscape, suggesting that further development of these photocatalytic techniques could lead to substantial advancements in environmental remediation practices. By delineating these novel approaches and their mechanisms, this work underscores the significant environmental implications and contributes to the ongoing development of sustainable solutions to mitigate microplastic pollution.
Collapse
Affiliation(s)
- Yiting Xiao
- Department of Biological Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yang Tian
- Program of Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Wenbo Xu
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Jun Zhu
- Department of Biological Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
8
|
Xie J, Gowen A, Xu W, Xu J. Analysing micro- and nanoplastics with cutting-edge infrared spectroscopy techniques: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2177-2197. [PMID: 38533677 DOI: 10.1039/d3ay01808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The escalating prominence of micro- and nanoplastics (MNPs) as emerging anthropogenic pollutants has sparked widespread scientific and public interest. These minuscule particles pervade the global environment, permeating drinking water and food sources, prompting concerns regarding their environmental impacts and potential risks to human health. In recent years, the field of MNP research has witnessed the development and application of cutting-edge infrared (IR) spectroscopic instruments. This review focuses on the recent application of advanced IR spectroscopic techniques and relevant instrumentation to analyse MNPs. A comprehensive literature search was conducted, encompassing articles published within the past three years. The findings revealed that Fourier transform infrared (FTIR) spectroscopy stands as the most used technique, with focal plane array FTIR (FPA-FTIR) representing the cutting edge in FTIR spectroscopy. The second most popular technique is quantum cascade laser infrared (QCL-IR) spectroscopy, which has facilitated rapid analysis of plastic particles. Following closely is optical photothermal infrared (O-PTIR) spectroscopy, which can furnish submicron spatial resolution. Subsequently, there is atomic force microscopy-based infrared (AFM-IR) spectroscopy, which has made it feasible to analyse MNPs at the nanoscale level. The most advanced IR instruments identified in articles covered in this review were compared. Comparison metrics encompass substrates/filters, data quality, spatial resolution, data acquisition speed, data processing and cost. The limitations of these IR instruments were identified, and recommendations to address these limitations were proposed. The findings of this review offer valuable guidance to MNP researchers in selecting suitable instrumentation for their research experiments, thereby facilitating advancements in research aimed at enhancing our understanding of the environmental and human health risks associated with MNPs.
Collapse
Affiliation(s)
- Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Xu
- Department of Life Sciences, Center for Coastal Studies, College of Sciences, Texas A&M University-Corpus Christi, USA
| | - Junli Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Surana M, Pattanayak DS, Yadav V, Singh VK, Pal D. An insight decipher on photocatalytic degradation of microplastics: Mechanism, limitations, and future outlook. ENVIRONMENTAL RESEARCH 2024; 247:118268. [PMID: 38244970 DOI: 10.1016/j.envres.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Plastic material manufacturing and buildup over the past 50 years has significantly increased pollution levels. Microplastics (MPs) and non-biodegradable residual plastic films have become the two most pressing environmental issues among the numerous types of plastic pollution. These tiny plastic flakes enter water systems from a variety of sources, contaminating the water. Since MPs can be consumed by people and aquatic species and eventually make their way into the food chain, their presence in the environment poses a serious concern. Traditional technologies can remove MPs to some extent, but their functional groups, stable covalent bonds, and hydrophobic nature make them difficult to eliminate completely. The urgent need to develop a sustainable solution to the worldwide contamination caused by MPs has led to the exploration of various techniques. Advanced oxidation processes (AOPs) such as photo-catalytic oxidation, photo-degradation, and electrochemical oxidation have been investigated. Among these, photocatalysis stands out as the most promising method for degrading MPs. Photocatalysis is an environmentally friendly process that utilizes light energy to facilitate a chemical reaction, breaking down MPs into carbon dioxide and water-soluble hydrocarbons under aqueous conditions. In photocatalysis, semiconductors act as photocatalysts by absorbing energy from a light source, becoming excited, and generating reactive oxygen species (ROS). These ROS, including hydroxyl radicals (•OH) and superoxide ions ( [Formula: see text] ), play a crucial role in the degradation of MPs. This extensive review provides a detailed exploration of the mechanisms and processes underlying the photocatalytic removal of MPs, emphasizing its potential as an efficient and environmentally friendly approach to address the issue of plastic pollution.
Collapse
Affiliation(s)
- Madhu Surana
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dhruti Sundar Pattanayak
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - V K Singh
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India.
| |
Collapse
|
10
|
Lu J, Qiu Y, Zhang L, Wang J, Li C, Wang P, Ren L. Effects of Fe 3O 4 NMs based Fenton-like reactions on biodegradable plastic bags in compost: New insight into plastisphere community succession, co-composting efficiency and free radical in situ aging theory. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133689. [PMID: 38335609 DOI: 10.1016/j.jhazmat.2024.133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Biodegradable plastic bags (BPBs), meant for eco-friendly, often inadequately degrade in compost, leading to microplastic pollution. In this study, the effect of Fenton-like reaction with Fe3O4 nanoparticles (NMs) on the plastisphere microorganisms' evolution and the BPBs' aging mechanism was revealed by co-composting of food waste with BPBs for 40 days. The establishment of the Fenton-like reaction was confirmed, with the addition of Fenton-like reagent treatments resulting in an increase of 57.67% and 37.75% in H2O2 levels during the composting, compared to the control group. Moreover, the structural characterization reveals that increasing oxygen content continuously generates reactive free radicals on the surface, leading to the formation of oxidative cavities. This process results in random chain-breaking, significantly reducing molecular weights by 39.27% and 38.81%, thus showcasing a deep-seated transformation in the plastic's molecular structure. Furthermore, the microbial network suggested that the Fenton-like reaction enriched plastisphere keystone species, thus accelerating the BPBs' aging. Additionally, the Fenton-like reaction improved compost maturity and reduced greenhouse gas emissions. These results reveal the bio-chemical mechanisms of BPBs aging and random chain-breaking by the Fenton-like reaction, under alternating oxidative/anoxic conditions of composting and provide a new insight to resolve the BPBs' pollutions.
Collapse
Affiliation(s)
- Jiaxin Lu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Luxi Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiancheng Wang
- Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, China
| | - Chunmei Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Su X, Liu M, Dai H, Dou J, Lu Z, Xu J, He Y. Novel insight into the aging process of microplastics: An in-situ study in coastal wetlands. WATER RESEARCH 2024; 248:120871. [PMID: 37979566 DOI: 10.1016/j.watres.2023.120871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Coastal wetlands, the critical interface between the terrestrial and marine environments, provide a dynamic and unique environment for the aging of microplastics (MPs). Nevertheless, both abiotic and biotic processes that contribute to the aging of MPs in coastal wetlands have been largely neglected. In this study, the aging of MPs was continuously characterized in Hangzhou Bay, a representative coastal wetland in Zhejiang, China. Three-month exposure of polymers in sediment-water interface induced the aging phenomenon with embrittlement and exfoliation, as evidenced by simultaneous observed alternations in crystallinity and functional groups. A first-order kinetic model was fitted to describe the rate and degree of aging quantitatively. As evidenced by the carbonyl index, the residence time of all the examined MPs exhibited significant variance, ranging from 335 to 661 days. These variations might be caused by the selective attachment of plastic-degrading microorganisms (such as Moraxella sp. and Rhodococcus sp.). A positive correlation between the carbonyl index, the number of OTUs in the MP-associated biofilm, and irradiation was observed (p < 0.001), suggesting that the aging process may be co-regulated by natural sunlight and wetland microbial colonization. This study sheds new light on the long-term environmental fate of MPs and their associated ecological risks.
Collapse
Affiliation(s)
- Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
12
|
Luo H, Tu C, He D, Zhang A, Sun J, Li J, Xu J, Pan X. Interactions between microplastics and contaminants: A review focusing on the effect of aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165615. [PMID: 37481081 DOI: 10.1016/j.scitotenv.2023.165615] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are a major global concern due to their persistent nature and wide distribution. The aging of MPs is influenced by several processes including photodegradation, thermal degradation, biodegradation and mechanical fragmentation, which affect their interaction with contaminants. This comprehensive review aims to summarize the aging process of MPs and the factors that impact their aging, and to discuss the effects of aging on the interaction of MPs with contaminants. A range of characterization methods that can effectively elucidate the mechanistic processes of these interactions are outlined. The rate and extent of MPs aging are influenced by their physicochemical properties and other environmental factors, which ultimately affect the adsorption and aggregation of aged MPs with environmental contaminants. Pollutants such as heavy metals, organic matter and microorganisms have a tendency to accumulate on MPs through adsorption and the interactions between them impact their environmental behavior. Aging enhances the specific surface area and oxygen-containing functional groups of MPs, thereby affecting the mechanism of interaction between MPs and contaminants. To obtain a more comprehensive understanding of how aging affects the interactions, this review also provides an overview of the mechanisms by which MPs interact with contaminants. In the future, there should be further in-depth studies of the potential hazards of aged MPs in different environments e.g., soil, sediment, aquatic environment, and effects of their interaction with environmental pollutants on human health and ecology.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
He Y, Rehman AU, Xu M, Not CA, Ng AM, Djurišić AB. Photocatalytic degradation of different types of microplastics by TiO x/ZnO tetrapod photocatalysts. Heliyon 2023; 9:e22562. [PMID: 38034782 PMCID: PMC10687295 DOI: 10.1016/j.heliyon.2023.e22562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
We investigated the use of titania coated ZnO tetrapods for photocatalytic degradation of two common types of microplastics, namely polyethylene (PE) microparticles and polyester (PES) microfibers. We found that the plastics morphology affects the rate of degradation, and that the use of electron scavengers is needed to maintain the reactivity of the photocatalysts over a prolonged period of time. Complete mass loss of PE and PES is achieved under UV illumination for 480 h and 624 h, respectively. In addition to pristine microplastics, the degradation of environmental microplastics sample (consisting primarily of polypropylene) was also demonstrated, though in this case longer degradation time (∼816 h) was needed to achieve complete mass loss of the samples.
Collapse
Affiliation(s)
- Yanling He
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Atta Ur Rehman
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Muxian Xu
- Department of Physics & Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Christelle A. Not
- Dept. of Earth Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alan M.C. Ng
- Department of Physics & Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
| | | |
Collapse
|
14
|
Azeem I, Shakoor N, Chaudhary S, Adeel M, Zain M, Ahmad MA, Li Y, Zhu G, Shah SAA, Khan K, Khan AA, Xu M, Rui Y. Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108132. [PMID: 37918078 DOI: 10.1016/j.plaphy.2023.108132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China.
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, PR China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Syed Aizaz Ali Shah
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Kashif Khan
- College of Harbin, Northeast Forestry University, Harbin, PR China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ming Xu
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
15
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
16
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
Jeong Y, Gong G, Lee HJ, Seong J, Hong SW, Lee C. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130313. [PMID: 36372022 DOI: 10.1016/j.jhazmat.2022.130313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that accumulate in various environments, where they pose threats to both the ecosystem and public health. Since MPs have been detected in drinking water resources and wastewater effluents, more efficient treatment is needed at wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). This review discusses the potential of biological, photochemical, Fenton (-like) systems, ozonation, and other oxidation processes in the treatment of MPs in terms of their indicators of oxidation such as mass loss and surface oxidation. The oxidation processes were further analyzed in terms of limitations and environmental implications. Most previous studies examining MPs degradation using conventional treatments-such as UV disinfection, ozonation, and chlorination-employed significantly higher doses than the common doses applied in DWTPs and WWTPs. Owing to such dose gaps, the oxidative transformation of MPs observed in many previous studies are not likely to occur under practical conditions. Some novel oxidation processes showed promising MPs treatment efficiencies, while many of them have not yet been applied on a larger scale due to high costs and the lack of extensive basic research. Health and environmental impacts related to the discharge of oxidized MPs in effluents should be considered carefully in different aspects: the role as vectors of external pollutants, release of organic compounds (including organic byproducts from oxidation) and fragmentation into smaller particles as MPs circulate in the ecosystem as well as the possibility of bioaccumulation. Future research should also focus on ways to incorporate developed oxidation processes in DWTPs and WWTPs to mitigate MPs contamination.
Collapse
Affiliation(s)
- Yeonseo Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, 21 Washington Ave. SE, Minneapolis, MN 55455-0132, United States
| | - Gyeongtaek Gong
- Clean Energy Research Center, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hye-Jin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Seong
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Xia Y, Niu S, Wang T, Wu J. Aging dependent plastic bag derived-microplastics as a vector of metals in lake water. MARINE POLLUTION BULLETIN 2023; 187:114588. [PMID: 36652863 DOI: 10.1016/j.marpolbul.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The adsorption of microplastics (MPs) for metals in aquatic environment remains poorly understood due to the use of either commercial MPs, which have different property from the MPs in environments, or artificial solutions, which have not only the significantly higher concentration of metals than natural aqueous environment but also the different natures. In this study, we elaborated the adsorption throughout the aging process of plastic bag derived-MPs (initially 1-2 mm) by potassium persulfate (K2S2O8) solution to metals in lake water. Comparatively, plastic bag derived-MPs had the highest adsorption capacity for Zn2+ followed by Fe3+, Pb2+, Mn2+, Cr6+, Ni2+, Cu2+ and Cd2+, which is not completely consistent with the literature. Both the adsorption capacity and distribution coefficients of Cu2+, Ni2+, Zn2+, Mn2+ and Pb2+ had significant linear correlation with carbonyl index (p < 0.05). Although the aging overall enhanced the adsorption, the adsorption capacities of MPs might fluctuate depending on metal.
Collapse
Affiliation(s)
- Yanrong Xia
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| | - Tiantian Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Jing Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| |
Collapse
|
19
|
Wang L, Zhang J, Huang W, He Y. Laboratory simulated aging methods, mechanisms and characteristic changes of microplastics: A review. CHEMOSPHERE 2023; 315:137744. [PMID: 36626952 DOI: 10.1016/j.chemosphere.2023.137744] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) aging occurs in all environmental medias and affects the environmental behaviour and toxicity of MPs. Due to the extremely slow process of aging, laboratory simulated aging methods have had to be used to research the properties, behaviour, toxicity and effects of aged MPs. However, multiple laboratory aging methods with different mechanisms have led to divergent viewpoints on the characteristics, behavior and toxicity of aged MPs. Therefore, this paper reviewed the main laboratory MPs aging methods and mechanism, including those that involve UV, advanced oxidation processes (AOPs), sunlight or simulated sunlight, chemical treatment, heat, plasma radiation, etc. As a technology with a low time cost, AOPs have potential and are recommended. Physical, chemical, and coupled aging significantly alter MPs surface topography and functional groups, which affect MPs adsorption, migration and toxicity. However, the effects of aging on environmental behaviour and toxicity are highly uncertain. The carbonyl index (CI) and O/C ratio are generally applied to evaluate the MPs aging degree. This review highlights the need to provide adequate information on coupled simulated aging methods to allow better elucidation of the underlying mechanisms of aging and its effect on MPs environmental behaviour and toxicity.
Collapse
Affiliation(s)
- Lin Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianqiang Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wen Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
20
|
Luo H, Liu C, He D, Sun J, Li J, Pan X. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157951. [PMID: 35961392 DOI: 10.1016/j.scitotenv.2022.157951] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), an emerging pollutant, are of global concern due to their wide distribution and large quantities. In addition to MPs themselves, various additives within MPs (such as plasticizers, flame retardants, antioxidants and heavy metals) may also have harmful effects on the environment. Most of these additives are physically bound to plastics and can therefore be leached from the plastic and released into the environment. Aging of MPs in the actual environment can affect the migration and release of additives, further increasing the ecotoxicological risk of additives to organisms. This work reviews the functions of several commonly used additives in MPs, and summarizes the representative characterization methods. Furthermore, the migration and leaching of additives in the human environment and marine environment are outlined. As aging promotes the internal chain breaking of MPs and the increase of specific surface area, it in turn stimulates the release of additives. The hazards of additive exposure have been elucidated, and various studies from the laboratory have shown that more toxic additives such as phthalates and brominated flame retardants can disrupt a variety of biological processes in organisms, including metabolism, skeletal development and so on. Increase of MPs ecological risk caused by the leaching of toxic additives is discussed, especially under the effect of aging. This study presents a systematic summary of various functional and environmental behaviors of additives in plastics, using weathering forces as the main factor, which helps to better assess the environmental impact and potential risks of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Shen M, Song B, Zhou C, Hu T, Zeng G, Zhang Y. Advanced oxidation processes for the elimination of microplastics from aqueous systems: Assessment of efficiency, perspectives and limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156723. [PMID: 35714750 DOI: 10.1016/j.scitotenv.2022.156723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 05/09/2023]
Abstract
Microplastics act as a vector of heavy metals, organic pollutants, pathogens and resistance genes in the environment further aggravate the pollution of plastics. The conventional wastewater/water treatment processes can physically capture and remove most of microplastics, but the success rates varies. How to quickly remove a large amount of microplastics from aqueous system is a key research topic at present. Recently, advanced oxidation processes (AOPs) as a green elimination strategy has attracted attention because of its effective elimination, strong destruction and safety. The molecular chain of microplastics can be gradually degraded into small molecular organics until H2O and CO2 by strong oxidizing free radical produced by AOPs. Unfortunately, problematically, the elimination of microplastics in aqueous system by AOPs is recently carried out on a laboratory scale. The application and implementation of this strategy are restricted by long reaction time, low liquid phase degradation efficiency and the formation of nanoplastics. Generally, the technology is still in its infancy, and most studies are carried out under laboratory conditions. The degradation of microplastics in aqueous system also needs appropriate conditions, but it is not always feasible under field conditions in AOPs. Although AOPs can be used as a green degradation technology to eliminate microplastics in aqueous systems in theory, it still needs to be furtherly explored in practical application. Consequently, before AOPs as a green elimination strategy is successfully applied to the effective remove microplastics, more in-depth research is still required, such as the setting from single condition to complex environment, the transfer from laboratory scale to field scale, and systematic toxicity evaluation of corresponding products.
Collapse
Affiliation(s)
- Maocai Shen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tong Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
22
|
Deniz F, Ertekin K, Ulucan U. Quantification of airborne concentrations of micro-scale and submicron phosphors in the manufacturing environment by spectrofluorometric method. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Liu R, Tan Z, Wu X, Liu Y, Chen Y, Fu J, Ou H. Modifications of microplastics in urban environmental management systems: A review. WATER RESEARCH 2022; 222:118843. [PMID: 35870394 DOI: 10.1016/j.watres.2022.118843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are a worldwide environmental pollution issue. Besides the natural environmental stresses, various treatments in urban environmental management systems induce modifications on MPs, further affecting their environmental behavior. Investigating these modifications and inherent mechanisms is crucial for assessing the environmental impact and risk of MPs. In this review, up-to-date knowledge regarding the modifications of MPs in urban environmental management systems was summarized. Variations of morphology, chemical composition, hydrophilicity and specific surface area of MPs were generalized. The aging and degradation of MPs during drinking water treatment, wastewater treatment, sewage sludge treatment and solid waste treatment were investigated. A high abundance of MPs occurred in sewage sludge and aging solid waste, while digestion and composting contributed to significant decomposition and reduction of MPs. These treatments have become converters for MPs before entering the environment. Several novel technologies for MPs removal were listed; However, no appropriate methods can be put into actual application by now, except the membrane separation. The corresponding effects of degradation on the behaviors of MPs, including adsorption, sinking and contaminant leakage, were discussed. Finally, three priorities for research were proposed. This critical review provides viewpoints and references for risk evaluation of MPs after treatments in urban environmental management systems.
Collapse
Affiliation(s)
- Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Chen
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Jianwei Fu
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
24
|
Luo H, Liu C, He D, Sun J, Zhang A, Li J, Pan X. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. WATER RESEARCH 2022; 222:118921. [PMID: 35932707 DOI: 10.1016/j.watres.2022.118921] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
As an emerging pollutant, microplastics (MPs) may interact with dissolved organic matter (DOM) which is prevalent in the aqueous environment. Meanwhile, the aging of MPs in the actual environment increases the uncertainty of their environmental fate. Here, the interaction mechanisms between pristine and aged polypropylene microplastics (PP-MPs) and humic acid (HA) at pH 7.0 were explored. Microstructural changes of HA were examined by fluorescence and Fourier transformation infrared (FT-IR) spectroscopy. Atomic force microscopy coupled with infrared (AFM-IR) and micro-Raman techniques were used to characterize and analyze the interacted PP-MPs. The addition of HA increased the surface roughness of both pristine and aged PP-MPs. Results of AFM-IR and Raman spectra showed that the interaction of PP-MPs with HA accelerated their surface oxidation and enhanced the characteristic signals. XPS spectra showed that the oxygen content ratio of pristine and aged PP-MPs increased by 0.95% and 1.48% after the addition of HA, respectively. PP-MPs after aging interacted more strongly with HA and there was a higher affinity between them. Two-dimensional correlation spectroscopy (2D-COS) combined with FT-IR spectra further elucidated the interaction mechanism at the molecular level. This work will help to evaluate the environmental impact of MPs in ecosystems and understand their interactions with DOM.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
25
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Microplastics Generation Behavior of Polypropylene Films with Different Crystalline Structures under UV Irradiation. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Luo H, Liu C, He D, Xu J, Sun J, Li J, Pan X. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126915. [PMID: 34461541 DOI: 10.1016/j.jhazmat.2021.126915] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs, < 5 mm) in the environment have attracted worldwide attention due to their wide distribution and difficulty in handling. Aging processes such as UV irradiation, biodegradation, physical abrasion and chemical oxidation can affect the environmental behavior of MPs. This review article summarizes different aging processes of MPs and subsequent effects on the adsorption of pollutants, the leaching of additives, and the toxicity of MPs. In addition, the formation process of biofilm on the surface of MPs and the interactions between biofilm and aged MPs are revealed. MPs can accumulate different environmental pollutants (organic pollutants, heavy metals, microorganisms, etc.) through surface adsorption, pore filling and distribution. Moreover, the aging of MPs affects their adsorption performance toward these pollutants due to a series of changes in their specific surface area and oxygen-containing functional groups. The release of some toxic additives such as phthalates after aging can enhance the toxic effects of MPs. Aging also changes the shape and size of MPs, which can affect the eating habits of the organisms and further increase the potential toxicity of MPs. This article conducts a systematical analysis and summary of the environmental behavior and physicochemical properties of MPs as well as the changes due to MPs aging, which helps to better understand the impact of aging on MPs in the environment. Future research on MPs aging should reduce the knowledge gap between laboratory simulation and actual conditions and increase the environmental relevance.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
28
|
Nanomechanical Atomic Force Microscopy to Probe Cellular Microplastics Uptake and Distribution. Int J Mol Sci 2022; 23:ijms23020806. [PMID: 35054990 PMCID: PMC8775627 DOI: 10.3390/ijms23020806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The concerns regarding microplastics and nanoplastics pollution stimulate studies on the uptake and biodistribution of these emerging pollutants in vitro. Atomic force microscopy in nanomechanical PeakForce Tapping mode was used here to visualise the uptake and distribution of polystyrene spherical microplastics in human skin fibroblast. Particles down to 500 nm were imaged in whole fixed cells, the nanomechanical characterization allowed for differentiation between internalized and surface attached plastics. This study opens new avenues in microplastics toxicity research.
Collapse
|
29
|
López ADF, Fabiani M, Lassalle VL, Spetter CV, Severini MDF. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. MARINE POLLUTION BULLETIN 2022; 174:113276. [PMID: 35090270 DOI: 10.1016/j.marpolbul.2021.113276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/23/2023]
Abstract
A wide range of contaminants of emerging concern such as micro/nanoplastics (MPs/PNPs) and metal-nanoparticles (Me-NPs) from anthropogenic activities have been identified in aquatic environments. The hazardous effects of these micro/nanomaterials as pollutants in organisms and the lack of knowledge about their behavior in aquatic environments have generated growing concern in the scientific community. The nanomaterials have a colloidal-type behavior due to their size range but with differences in their physicochemical properties. This review comprises the behavior of micro/nanomaterials pollutants and the physicochemical interactions between MPs/PNPs and Me-NPs in aquatic environments, and their potential toxicological effects in organisms. Moreover, this article describes the potential use of Me-NPs to remove MPs/PNPs present in the water column due to their photocatalytic and magnetic properties. It also discusses the challenge to determine harmful effects of micro/nanomaterials pollutants in organisms and provides future research directions to improve integrated management strategies to mitigate their environmental impact.
Collapse
Affiliation(s)
- A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - M Fabiani
- Instituto de Química del Sur (INQUISUR), Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - V L Lassalle
- Instituto de Química del Sur (INQUISUR), Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernandez Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Abstract
Microplastics are found in various environments with the increasing use of plastics worldwide. Several methods have been developed for the sampling, extraction, purification, identification, and quantification of microplastics in complex environmental matrices. This study intends to summarize recent research trends on the subject. Large microplastic particles can be sorted manually and identified through chemical analysis; however, sample preparation for small microplastic analysis is usually more difficult. Microplastics are identified by evaluating the physical and chemical properties of plastic particles separated through extraction and washing steps from a mixture of inorganic and organic particles. This identification has a high risk of producing false-positive and false-negative results in the analysis of small microplastics. Currently, a combination of physical (e.g., microscopy), chemical (e.g., spectroscopy), and thermal analyses is widely used. We aim to summarize the best strategies for microplastic analysis by comparing the strengths and limitations of each identification method.
Collapse
|
31
|
Luo H, Zeng Y, Zhao Y, Xiang Y, Li Y, Pan X. Effects of advanced oxidation processes on leachates and properties of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125342. [PMID: 33618270 DOI: 10.1016/j.jhazmat.2021.125342] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs) in natural environments undergo various aging processes. So far, little is known about the effects of chemical oxidation on leachates and properties of MPs. Here, we investigated the removal of pigment red from MPs by ozonation, Fenton, and heat-activated persulfate treatments, and further explored the nanoscale surface properties of treated MPs. Experimental results indicated that advanced oxidation processes effectively degraded pigment red released from MPs and the degradation rate was much faster than the leaching rate of pigments. Dominant reactive oxygen radicals in the ozone, Fenton, and heat-activated persulfate systems were identified as O2•-, HO•, and SO4•-, respectively. Height ranges of untreated, ozone-treated, Fenton-treated, and persulfate-treated MPs were 73 nm, 163 nm, 195 nm, and 206 nm, respectively. Oxidation of the -CH3 and -CH2 bonds occurred on the surface of treated MPs and the persulfate system achieved more serious oxidation degree than the ozone and Fenton systems. Addition of pigment red to the plastic polymer increased the glass transition temperature of MPs, which then showed a decline after advanced oxidation treatments except Fenton. The surface of persulfate-treated MPs was the stiffest, but the stiffness distribution of the ozone-treated and Fenton-treated MPs was more uneven. These research findings provide promising strategies to accelerate the aging process of MPs and contribute to a better understanding of the effects of aging on the environmental behavior of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
You H, Huang B, Cao C, Liu X, Sun X, Xiao L, Qiu J, Luo Y, Qian Q, Chen Q. Adsorption-desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments. MARINE POLLUTION BULLETIN 2021; 167:112287. [PMID: 33892435 DOI: 10.1016/j.marpolbul.2021.112287] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, polyethylene microplastics were artificially photoaged by xenon light. Experiments were then performed with methylene blue (MB) dye to compare the changes in the structure, properties, and adsorption-desorption behaviors of the aged and virgin polyethylene microplastics. The results showed that the aged polyethylene microplastics were hydrophilic with oxygen-containing functional groups, which enhanced the adsorption capacity of polyethylene for MB from 0.63 mg·g-1 to 8.12 mg·g-1. The adsorption isotherms changed from the Henry model (virgin polyethylene microplastics) to the Langmuir model (aged polyethylene microplastics), indicating that the partitioning function was gradually replaced by a single-layer covering during the adsorption process. In addition, 7% and 17.8% of the MB loaded onto the aged polyethylene microplastics was desorbed into water and a simulated intestinal fluid, respectively. These findings reveal that aged polyethylene microplastics can accumulate MB, thus posing potential risks to aqueous environments and biological tissues.
Collapse
Affiliation(s)
- Huimin You
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Baoquan Huang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Changlin Cao
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xinping Liu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Sun
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Liren Xiao
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Jianbin Qiu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Yongjin Luo
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China.
| | - Qinghua Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
33
|
Rius-Ayra O, Biserova-Tahchieva A, LLorca-Isern N. Surface-functionalised materials for microplastic removal. MARINE POLLUTION BULLETIN 2021; 167:112335. [PMID: 33839572 DOI: 10.1016/j.marpolbul.2021.112335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) pollution is a matter of great concern attracting increasing attention due to its adverse effects on the environment. Different technologies and methodologies have been developed to remove these pollutants. Herein, we focus on a promising environmental solution that involves surface modification to change the wettability properties of MPs or solid materials by conferring superhydrophobicity and superoleophilicity to increase the selectivity for MP separation. Both processes can be used to selectively separate MPs because of the changes in the wettable properties of the MP or by changing the oil used in the case of superhydrophobic surfaces. We show two distinct methods based on changing the wettability properties of surfaces that could lead to innovative and environmental applications. We also discuss some of the challenges that need to be overcome.
Collapse
Affiliation(s)
- O Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain.
| | - A Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| | - N LLorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Liu P, Shi Y, Wu X, Wang H, Huang H, Guo X, Gao S. Review of the artificially-accelerated aging technology and ecological risk of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144969. [PMID: 33736298 DOI: 10.1016/j.scitotenv.2021.144969] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
After being discarded into the environment, the microplastics (MPs) will undergo weathering effects. However, the low degradation rate of MPs in natural processes greatly limits the understanding of long-term aging behavior. By critically reviewing 82 articles in Web of Science from 2015 to 2020, the paper summarized different laboratory technologies including light irradiation, chemical oxidation, heat treatment and γ-ray irradiation to simulate and accelerate the aging of MPs, and evaluated the feasibility by comparison with natural processes. The advantages of laboratory technologies are that aging conditions can be artificially controlled and that the labor and time costs can be saved, whereas the laboratory system is too simple to simulate complex aging processes in the environment. We further reviewed the potential impacts of aging process on the risks of MPs (i.e. physical injury, combined toxicity with external pollutants and chemical risk of additives and low-molecular products). The overall risks are seemingly enhanced by aging process due to the high ingestion by organisms, the strong interaction with pollutants and the release of MP-derived organic compounds. Further studies on the aging behavior of MPs should be focused on the laboratory techniques that can simulate multiple processes of natural aging, the long-term fragmentation behavior of MPs, the effect of aging on growth rate of biofilm in MPs and ingestion property by organisms, and the relationship between aging property of MPs and release rate of chemicals in leachates.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
35
|
Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. FRONTIERS IN TOXICOLOGY 2021; 3:636640. [PMID: 35295124 PMCID: PMC8915801 DOI: 10.3389/ftox.2021.636640] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Micro and nanoplastics are fragments with dimensions less than a millimeter invading all terrestrial and marine environments. They have become a major global environmental issue in recent decades and, indeed, recent scientific studies have highlighted the presence of these fragments all over the world even in environments that were thought to be unspoiled. Analysis of micro/nanoplastics in isolated samples from abiotic and biotic environmental matrices has become increasingly common. Hence, the need to find valid techniques to identify these micro and nano-sized particles. In this review, we discuss the current and potential identification methods used in microplastic analyses along with their advantages and limitations. We discuss the most suitable techniques currently available, from physical to chemical ones, as well as the challenges to enhance the existing methods and develop new ones. Microscopical techniques (i.e., dissect, polarized, fluorescence, scanning electron, and atomic force microscopy) are one of the most used identification methods for micro/nanoplastics, but they have the limitation to produce incomplete results in analyses of small particles. At present, the combination with chemical analysis (i.e., spectroscopy) overcome this limit together with recently introduced alternative approaches. For example, holographic imaging in microscope configuration images microplastics directly in unfiltered water, thus discriminating microplastics from diatoms and differentiates different sizes, shapes, and plastic types. The development of new analytical instruments coupled with each other or with conventional and innovative microscopy could solve the current problems in the identification of micro/nanoplastics.
Collapse
Affiliation(s)
- Stefania Mariano
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
- *Correspondence: Luciana Dini
| |
Collapse
|
36
|
Luo H, Xiang Y, Tian T, Pan X. An AFM-IR study on surface properties of nano-TiO 2 coated polyethylene (PE) thin film as influenced by photocatalytic aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143900. [PMID: 33316515 DOI: 10.1016/j.scitotenv.2020.143900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Most plastic wastes undergo extensive photo-aging in the environment, and the aged plastics exhibit different surface properties from pristine ones. Here, we investigate the surface properties of a nano-TiO2 coated polyethylene (PE) film as influenced by photocatalytic aging process using an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. Results showed that the height range of the as-prepared samples was about 30 nm, and the equivalent diameter of nano-TiO2 was ~70 nm. The photo-induced oxidation of the CH2 bond occurred on the surface of the PE film. Photo-aging mainly affected the thermal properties of PE film in a local area, especially affecting the components surrounding the nano-TiO2 particle. The glass transition temperature of unaged PE film mainly changed in the range of 93.9-96.5 °C, but after aging the temperature gradually increased with the distance to nano-TiO2 increasing from near to far. The plastic film surrounding the nano-TiO2 particle became stiffer after photo-aging, and the photocatalytic reaction had an effect on the stiffness of the film material. The second characteristic peaks with resonance deviations (i.e., 110, 112, and 115 kHz) were used for Lorentz contact resonance (LCR) measurements. The mechanical properties of PE film after photo-aging were closely related to the distance between nano-TiO2 and film surface. These research findings are conducive for us to understand better the photo-induced aging process of functional plastic film.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|