1
|
Wu Y, Zhou J, Zhang J, Li H. Cytokeratin 18 in nonalcoholic fatty liver disease: value and application. Expert Rev Mol Diagn 2024; 24:1009-1022. [PMID: 39387822 DOI: 10.1080/14737159.2024.2413941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a common metabolism-related disease worldwide. Although studies have shown that some medications may be effective for treating NAFLD, they do not satisfy the medical requirements, and lifestyle changes are the most basic strategy. Thus, early detection of NAFLD and timely lifestyle interventions are highly important. AREAS COVERED The traditional diagnostic methods for NAFLD are limited by accuracy, cost, and security issues. Cytokeratin 18 (CK18), which is a marker of apoptosis and overall cell death, is an excellent biomarker for NAFLD. Liver fat accumulation in NAFLD triggers the activation of caspases, which increases the CK18 cleavage and its release into the blood. CK18 can help diagnose different stages of NAFLD, especially the nonalcoholic steatohepatitis (NASH) stage. In evaluating the efficacy of the NAFLD treatment and predicting the risk of NAFLD-related diseases, CK18 plays a significant role. EXPERT OPINION CK18 can non-invasively monitor the pathological conditions of NAFLD patients and provide new hope for the early diagnosis of NAFLD. Adding CK18 to the NAFLD diagnostic criteria that are widely used in clinical settings may be efficient for the detection of NAFLD and early effective intervention.
Collapse
Affiliation(s)
- Yuan Wu
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongshan Li
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Tihy M, Lin-Marq N, Berney T, Spahr L, Rubbia-Brandt L, Elkrief L. Impact of Keratins 8 and 18 Genetic Variants on the Severity of Alcoholic Liver Disease. J Transl Med 2024; 104:102133. [PMID: 39278623 DOI: 10.1016/j.labinv.2024.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
Alcohol-related liver disease (ALD) affects ∼30% of heavy drinkers and is characterized by liver steatosis, fibrosis, and steatohepatitis. The aggregation of keratins 8 (KRT8) and 18 (KRT18) plays a key role in the formation of Mallory-Denk bodies, a hallmark of ALD. Circulating levels of KRT18 fragments are elevated during ALD, and several KRT8/18 genetic variants have been linked to an increased risk of liver disease. In this study, we explored the relationship between the histologic features of ALD and genetic variants of KRT8/18 in 106 severe patients with ALD from the Hôpitaux Universitaires de Genève. We found a significant over-representation of several KRT8 (rs2070910, rs137898974, rs1065306) and KRT18 (rs17120866, rs1492241) variants located in the noncoding regions of these genes. Increased circulating level of keratins 18 fragments were associated with rs17120866 and alcoholic hepatitis. The combination of several KRT18 variants appeared associated with a poorer prognosis. These results highlight the possible role of KRT18 variants in ALD.
Collapse
Affiliation(s)
- Matthieu Tihy
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland; Clinical Pathology Division, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Nathalie Lin-Marq
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Thierry Berney
- Gastroenterology Division, University Hospitals, Geneva, Switzerland
| | - Laurent Spahr
- Gastroenterology Division, University Hospitals, Geneva, Switzerland
| | | | - Laure Elkrief
- Gastroenterology Division, University Hospitals, Geneva, Switzerland; Gastroenterology Division, Tours University Hospital, France
| |
Collapse
|
3
|
Phuong-Nguyen K, O’Hely M, Kowalski GM, McGee SL, Aston-Mourney K, Connor T, Mahmood MQ, Rivera LR. The Impact of Yoyo Dieting and Resistant Starch on Weight Loss and Gut Microbiome in C57Bl/6 Mice. Nutrients 2024; 16:3138. [PMID: 39339738 PMCID: PMC11435396 DOI: 10.3390/nu16183138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Martin O’Hely
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Greg M. Kowalski
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L. McGee
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Kathryn Aston-Mourney
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Timothy Connor
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Malik Q. Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Leni R. Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| |
Collapse
|
4
|
Ribback S, Peters K, Yasser M, Prey J, Wilhelmi P, Su Q, Dombrowski F, Bannasch P. Hepatocellular Ballooning is Due to Highly Pronounced Glycogenosis Potentially Associated with Steatosis and Metabolic Reprogramming. J Clin Transl Hepatol 2024; 12:52-61. [PMID: 38250461 PMCID: PMC10794273 DOI: 10.14218/jcth.2023.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims Hepatocellular ballooning is a common finding in chronic liver disease, mainly characterized by rarefied cytoplasm that often contains Mallory-Denk bodies (MDB). Ballooning has mostly been attributed to degeneration but its striking resemblance to glycogenotic/steatotic changes characterizing preneoplastic hepatocellular lesions in animal models and chronic human liver diseases prompts the question whether ballooned hepatocytes (BH) are damaged cells on the path to death or rather viable cells, possibly involved in neoplastic development. Methods Using specimens from 96 cirrhotic human livers, BH characteristics were assessed for their glycogen/lipid stores, enzyme activities, and proto-oncogenic signaling cascades by enzyme- and immunohistochemical approaches with serial paraffin and cryostat sections. Results BH were present in 43.8% of cirrhotic livers. Particularly pronounced excess glycogen storage of (glycogenosis) and/or lipids (steatosis) were characteristic, ground glass features and MDB were often observed. Decreased glucose-6-phosphatase, increased glucose-6-phosphate dehydrogenase activity and altered immunoreactivity of enzymes involved in glycolysis, lipid metabolism, and cholesterol biosynthesis were discovered. Furthermore, components of the insulin signaling cascade were upregulated along with insulin dependent glucose transporter glucose transporter 4 and the v-akt murine thymoma viral oncogene homolog/mammalian target of rapamycin signaling pathway associated with de novo lipogenesis. Conclusions BH are hallmarked by particularly pronounced glycogenosis with facultative steatosis, many of their features being reminiscent of metabolic aberrations documented in preneoplastic hepatocellular lesions in experimental animals and chronic human liver diseases. Hence, BH are not damaged entities facing death but rather viable cells featuring metabolic reprogramming, indicative of a preneoplastic nature.
Collapse
Affiliation(s)
- Silvia Ribback
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Kristin Peters
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Mohd Yasser
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Jessica Prey
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Paula Wilhelmi
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Qin Su
- Cell Marque, Millipore-Sigma, Rocklin, CA, USA
| | - Frank Dombrowski
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Peter Bannasch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Sanyal AJ, Jha P, Kleiner DE. Digital pathology for nonalcoholic steatohepatitis assessment. Nat Rev Gastroenterol Hepatol 2024; 21:57-69. [PMID: 37789057 DOI: 10.1038/s41575-023-00843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Histological assessment of nonalcoholic fatty liver disease (NAFLD) has anchored knowledge development about the phenotypes of the condition, their natural history and their clinical course. This fact has led to the use of histological assessment as a reference standard for the evaluation of efficacy of drug interventions for nonalcoholic steatohepatitis (NASH) - the more histologically active form of NAFLD. However, certain limitations of conventional histological assessment systems pose challenges in drug development. These limitations have spurred intense scientific and commercial development of machine learning and digital approaches towards the assessment of liver histology in patients with NAFLD. This research field remains an area in rapid evolution. In this Perspective article, we summarize the current conventional assessment of NASH and its limitations, the use of specific digital approaches for histological assessment, and their application to the study of NASH and its response to therapy. Although this is not a comprehensive review, the leading tools currently used to assess therapeutic efficacy in drug development are specifically discussed. The potential translation of these approaches to support routine clinical assessment of NAFLD and an agenda for future research are also discussed.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Prakash Jha
- Food and Drug Administration, Silver Spring, MD, USA
| | - David E Kleiner
- Post-Mortem Section Laboratory of Pathology Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Aldaba-Muruato LR, Sánchez-Barbosa S, Rodríguez-Purata VH, Cabrera-Cruz G, Rosales-Domínguez E, Martínez-Valentín D, Alarcón-López YA, Aguirre-Vidal P, Hernández-Serda MA, Cárdenas-Granados LA, Vázquez-Valadez VH, Angeles E, Macías-Pérez JR. In Vivo and In Silico Studies of the Hepatoprotective Activity of Tert-Butylhydroquinone. Int J Mol Sci 2023; 25:475. [PMID: 38203648 PMCID: PMC10779046 DOI: 10.3390/ijms25010475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Tert-butylhydroquinone (TBHQ) is a synthetic food antioxidant with biological activities, but little is known about its pharmacological benefits in liver disease. Therefore, this work aimed to evaluate TBHQ during acute liver damage induced by CCl4 (24 h) or BDL (48 h) in Wistar rats. It was found that pretreatment with TBHQ prevents 50% of mortality induced by a lethal dose of CCl4 (4 g/kg, i.p.), and 80% of BDL+TBHQ rats survived, while only 50% of the BDL group survived. Serum markers of liver damage and macroscopic and microscopic (H&E staining) observations suggest that TBHQ protects from both hepatocellular necrosis caused by the sublethal dose of CCl4 (1.6 g/kg, i.p.), as well as necrosis/ductal proliferation caused by BDL. Additionally, online databases identified 49 potential protein targets for TBHQ. Finally, a biological target candidate (Keap1) was evaluated in a proof-of-concept in silico molecular docking assay, resulting in an interaction energy of -5.5491 kcal/mol, which was higher than RA839 and lower than monoethyl fumarate (compounds known to bind to Keap1). These findings suggest that TBHQ increases the survival of animals subjected to CCl4 intoxication or BDL, presumably by reducing hepatocellular damage, probably due to the interaction of TBHQ with Keap1.
Collapse
Affiliation(s)
- Liseth Rubi Aldaba-Muruato
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| | - Sandra Sánchez-Barbosa
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| | - Víctor Hugo Rodríguez-Purata
- Pharmacobiological Sciences, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico;
| | - Georgina Cabrera-Cruz
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| | - Estefany Rosales-Domínguez
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| | - Daniela Martínez-Valentín
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| | - Yoshio Aldo Alarcón-López
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - Pablo Aguirre-Vidal
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - Manuel Alejandro Hernández-Serda
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - Luis Alfonso Cárdenas-Granados
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - Víctor Hugo Vázquez-Valadez
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - Enrique Angeles
- Laboratorio de Química Teórica y Medicinal, FESC, Universidad Nacional Autónoma de México, Avenida 1 de Mayo S/N, Santa María las Torre, Cuautitlán Izcalli 54750, Estado de México, Mexico; (Y.A.A.-L.); (P.A.-V.); (M.A.H.-S.); (L.A.C.-G.); (V.H.V.-V.); (E.A.)
| | - José Roberto Macías-Pérez
- Biomedical Science Laboratory, Clinical Chemistry, Faculty of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosi, Ciudad Valles 79060, San Luis Potosi, Mexico; (L.R.A.-M.); (S.S.-B.); (G.C.-C.); (E.R.-D.); (D.M.-V.)
| |
Collapse
|
9
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
10
|
Kakimoto T, Hosokawa M, Ichimura-Shimizu M, Ogawa H, Miyakami Y, Sumida S, Tsuneyama K. Accumulation of α-synuclein in hepatocytes in nonalcoholic steatohepatitis and its usefulness in pathological diagnosis. Pathol Res Pract 2023; 247:154525. [PMID: 37209576 DOI: 10.1016/j.prp.2023.154525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUNDS Nonalcoholic steatohepatitis (NASH) is characterized by fat deposition, inflammation, and hepatocellular damage. The diagnosis of NASH is confirmed pathologically, and hepatocyte ballooning is an important finding for definite diagnosis. Recently, α-synuclein deposition in multiple organs was reported in Parkinson's disease. Since it was reported that α-synuclein is taken up by hepatocytes via connexin 32, the expression of α-synuclein in the liver in NASH is of interest. The accumulation of α-synuclein in the liver in NASH was investigated. Immunostaining for p62, ubiquitin, and α-synuclein was performed, and the usefulness of immunostaining in pathological diagnosis was examined. METHODS Liver biopsy tissue specimens from 20 patients were evaluated. Several antibodies against α-synuclein, as well as antibodies against connexin 32, p62, and ubiquitin were used for immunohistochemical analyses. Staining results were evaluated by several pathologists with varying experience, and the diagnostic accuracy of ballooning was compared. RESULTS Polyclonal α-synuclein antibody, not the monoclonal antibody, reacted with eosinophilic aggregates in ballooning cells. Expression of connexin 32 in degenerating cells was also demonstrated. Antibodies against p62 and ubiquitin also reacted with some of the ballooning cells. In the pathologists' evaluations, the highest interobserver agreement was obtained with hematoxylin and eosin (H&E)-stained slides, followed by slides immunostained for p62 and α-synuclein, and there were cases with different results between H&E staining and immunostaining CONCLUSION: These results indicate the incorporation of degenerated α-synuclein into ballooning cells, suggesting the involvement of α-synuclein in the pathogenesis of NASH. The combination of immunostaining including polyclonal α-synuclein may contribute to improving the diagnosis of NASH.
Collapse
Affiliation(s)
- Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Masato Hosokawa
- Department of Immunological and Molecular Pharmacology, Fukuoka University Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
11
|
Soon GST, Torbenson M. The Liver and Glycogen: In Sickness and in Health. Int J Mol Sci 2023; 24:ijms24076133. [PMID: 37047105 PMCID: PMC10094386 DOI: 10.3390/ijms24076133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The liver is a major store of glycogen and is essential in maintaining systemic glucose homeostasis. In healthy individuals, glycogen synthesis and breakdown in the liver are tightly regulated. Abnormal glycogen metabolism results in prominent pathological changes in the liver, often manifesting as hepatic glycogenosis or glycogen inclusions. This can occur in genetic glycogen storage disease or acquired conditions with insulin dysregulation such as diabetes mellitus and non-alcoholic fatty liver disease or medication effects. Some primary hepatic tumors such as clear cell hepatocellular carcinoma also demonstrate excessive glycogen accumulation. This review provides an overview of the pathological manifestations and molecular mechanisms of liver diseases associated with abnormal glycogen accumulation.
Collapse
Affiliation(s)
- Gwyneth S T Soon
- Department of Pathology, National University Hospital, Singapore 119074, Singapore
| | - Michael Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Takahashi Y, Dungubat E, Kusano H, Fukusato T. Artificial intelligence and deep learning: new tools for histopathological diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Comput Struct Biotechnol J 2023; 21:2495-2501. [PMID: 37090431 PMCID: PMC10113753 DOI: 10.1016/j.csbj.2023.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is associated with metabolic syndrome and is rapidly increasing globally with the increased prevalence of obesity. Although noninvasive diagnosis of NAFLD/NASH has progressed, pathological evaluation of liver biopsy specimens remains the gold standard for diagnosing NAFLD/NASH. However, the pathological diagnosis of NAFLD/NASH relies on the subjective judgment of the pathologist, resulting in non-negligible interobserver variations. Artificial intelligence (AI) is an emerging tool in pathology to assist diagnoses with high objectivity and accuracy. An increasing number of studies have reported the usefulness of AI in the pathological diagnosis of NAFLD/NASH, and our group has already used it in animal experiments. In this minireview, we first outline the histopathological characteristics of NAFLD/NASH and the basics of AI. Subsequently, we introduce previous research on AI-based pathological diagnosis of NAFLD/NASH.
Collapse
Affiliation(s)
- Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
- Corresponding author.
| | - Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia
| | - Hiroyuki Kusano
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
13
|
Leow WQ, Chan AWH, Mendoza PGL, Lo R, Yap K, Kim H. Non-alcoholic fatty liver disease: the pathologist's perspective. Clin Mol Hepatol 2023; 29:S302-S318. [PMID: 36384146 PMCID: PMC10029955 DOI: 10.3350/cmh.2022.0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases characterized by fatty accumulation in hepatocytes, ranging from steatosis, non-alcoholic steatohepatitis, to cirrhosis. While histopathological evaluation of liver biopsies plays a central role in the diagnosis of NAFLD, limitations such as the problem of interobserver variability still exist and active research is underway to improve the diagnostic utility of liver biopsies. In this article, we provide a comprehensive overview of the histopathological features of NAFLD, the current grading and staging systems, and discuss the present and future roles of liver biopsies in the diagnosis and prognostication of NAFLD.
Collapse
Affiliation(s)
- Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Regina Lo
- Department of Pathology and State Key Laboratory of Liver Research (HKU), The University of Hong Kong, Hong Kong, China
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Gill RM, Allende D, Belt PH, Behling CA, Cummings OW, Guy CD, Carpenter D, Neuschwander-Tetri BA, Sanyal AJ, Tonascia J, Van Natta ML, Wilson LA, Yamada G, Yeh M, Kleiner DE. The nonalcoholic steatohepatitis extended hepatocyte ballooning score: histologic classification and clinical significance. Hepatol Commun 2023; 7:e0033. [PMID: 36724127 PMCID: PMC9894357 DOI: 10.1097/hc9.0000000000000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/21/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND AIMS The NAFLD activity score was developed to measure histologic changes in NAFLD during therapeutic trials. Hepatocyte ballooning (HB) is the most specific feature in steatohepatitis diagnosis, yet the impact of variations in HB has not been incorporated. APPROACH AND RESULTS Liver biopsies from patients enrolled in the NASH Clinical Research Network with an initial diagnosis of NASH or NAFL (n=1688) were evaluated to distinguish classic hepatocyte ballooning (cHB) from smaller, nonclassic hepatocyte ballooning (nHB), and also to designate severe ballooning and assign an extended hepatocyte ballooning (eB) score [0 points, no ballooning (NB); 1 point, few or many nHB; 2 points, few cHB; 3 points, many cHB; 4 points, severe cHB] to the biopsy assessment. The eB score was reproducible among NASH CRN liver pathologists (weighted kappa 0.76) and was significantly associated with older age (mean 52.1 y, cHB; 48.5 y, nHB, p<0.001), gender (72.3% female, cHB; 54.5% female, nHB, p<0.001), diabetes (49.8% diabetes, cHB; 28.2% diabetes, nHB, p<0.001), metabolic syndrome (68.5% metabolic syndrome, nHB; 50.2% metabolic syndrome, NB, p<0.001), and body mass index [33.2, 34.2, 35 mean body mass index (kg/m2); NB, nHB, and cHB, respectively, p<0.05]. Finally, fibrosis stage, as a marker of disease severity, was significantly correlated with the eB score (p<0.001). CONCLUSIONS The eB score allows for a reproducible and more precise delineation of the range of ballooned hepatocyte morphology and corresponds with both clinical features of NASH and fibrosis stage.
Collapse
Affiliation(s)
- Ryan M. Gill
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Daniela Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia H. Belt
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Oscar W. Cummings
- Department of Pathology, Indiana University, Indianapolis, Indiana, USA
| | - Cynthia D. Guy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniela Carpenter
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | | | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James Tonascia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mark L. Van Natta
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura A. Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Goro Yamada
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew Yeh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Torquetti CG, de Carvalho TP, de Freitas RMP, Freitas MB, Guimarães ATB, Soto-Blanco B. Influence of landscape ecology and physiological implications in bats from different trophic guilds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159631. [PMID: 36280059 DOI: 10.1016/j.scitotenv.2022.159631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bats may serve as bioindicators of human impact on landscape ecology. This study aimed to evaluate the health condition of bats from different food guilds captured in two areas with different land use profiles in Brazil and to compare data on the oxidant-antioxidant balance and histopathological changes due to different anthropogenic pressures. Bats were collected from a protected area in Serra do Cipó National Park (SCNP), MG, Brazil, and an area with intense agricultural activity in the municipality of Uberaba (UB), MG, Brazil. Despite the differences in land use and occupation between the studied areas, bats showed similar responses. However, the trophic guilds were affected differently. Frugivorous bats in both areas showed lower activities of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and concentrations of malondialdehyde (MDA) than other guilds, which can be explained by the greater intake of antioxidants from the diet in addition to the lower production of reactive oxygen species (ROS). Histopathological analysis of the livers revealed that the animals had a similar prevalence in the two areas, with some differences related to guilds. Compared with other bats, hematophagous bats from SCNP had a higher prevalence of steatosis and, together with frugivorous bats from Uberaba, had higher frequencies of ballooning degeneration, suggesting that these animals are subjected to anthropogenic factors capable of inducing disturbances in hepatic metabolism. Hematophagous bats from Uberaba had a higher prevalence of portal inflammation, while insectivorous bats from Uberaba had a higher prevalence of lobular and portal inflammation. The profiles of use and occupation of the areas are different; Uberaba bats seem to face worse conditions because they show more liver damage owing to lipoperoxidation.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Thaynara Parente de Carvalho
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Renata Maria Pereira de Freitas
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Goiânia, GO 74690-900, Brazil
| | - Mariella Bontempo Freitas
- Departamento de Biologia Animal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs s/n, Viçosa, MG 36570-000, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
16
|
Schelbert S, Schindeldecker M, Drebber U, Witzel HR, Weinmann A, Dries V, Schirmacher P, Roth W, Straub BK. Lipid Droplet-Associated Proteins Perilipin 1 and 2: Molecular Markers of Steatosis and Microvesicular Steatotic Foci in Chronic Hepatitis C. Int J Mol Sci 2022; 23:ijms232415456. [PMID: 36555099 PMCID: PMC9778710 DOI: 10.3390/ijms232415456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic infection with hepatitis C (HCV) is a major risk factor in the development of cirrhosis and hepatocellular carcinoma. Lipid metabolism plays a major role in the replication and deposition of HCV at lipid droplets (LDs). We have demonstrated the importance of LD-associated proteins of the perilipin family in steatotic liver diseases. Using a large collection of 231 human liver biopsies with HCV, perilipins 1 and 2 have been localized to LDs of hepatocytes that correlate with the degree of steatosis and specific HCV genotypes, but not significantly with the HCV viral load. Perilipin 1- and 2-positive microvesicular steatotic foci were observed in 36% of HCV liver biopsies, and also in chronic hepatitis B, autoimmune hepatitis and mildly steatotic or normal livers, but less or none were observed in normal livers of younger patients. Microvesicular steatotic foci did not frequently overlap with glycogenotic/clear cell foci as determined by PAS stain in serial sections. Steatotic foci were detected in all liver zones with slight architectural disarrays, as demonstrated by immunohistochemical glutamine synthetase staining of zone three, but without elevated Ki67-proliferation rates. In conclusion, microvesicular steatotic foci are frequently found in chronic viral hepatitis, but the clinical significance of these foci is so far not clear.
Collapse
Affiliation(s)
- Selina Schelbert
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
- Institute of Pathology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | | | - Uta Drebber
- Institute of Pathology, University Clinic Cologne, 50931 Cologne, Germany
| | - Hagen Roland Witzel
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Arndt Weinmann
- Department of Internal Medicine, University Medical Center, 55131 Mainz, Germany
| | - Volker Dries
- Institute of Pathology, University Clinic Cologne, 50931 Cologne, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Medical Center Heidelberg, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-17-7307
| |
Collapse
|
17
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
18
|
Thorhauge KH, Thiele M, Detlefsen S, Rasmussen DN, Johansen S, Madsen BS, Antonsen S, Rasmussen LM, Lindvig KP, Krag A. Serum keratin-18 detects hepatic inflammation and predicts progression in compensated alcohol-associated liver disease. Hepatol Commun 2022; 6:3421-3432. [PMID: 36264145 PMCID: PMC9701478 DOI: 10.1002/hep4.2075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
Alcohol-associated liver fibrosis accumulates over decades, driven by hepatic inflammation and cell death. We investigated the diagnostic accuracy of keratin-18 degradation, measured using serum M30 and M65 levels, and the ActiTest for hepatic inflammatory activity in patients with compensated alcohol-associated liver disease (ALD). Furthermore, we evaluated the prognostic accuracy of markers for liver-related events and all-cause mortality. All findings were compared with routine liver function tests: Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyltransferase. Our prospective, biopsy-controlled, single-center study included 265 patients with ongoing or prior excessive alcohol intake, representing the full spectrum of compensated ALD. We defined hepatic inflammatory activity as a combined score of lobular inflammation and ballooning. For severe hepatic inflammatory activity (n = 40), we found excellent diagnostic accuracy for M30 (area under the receiver operating characteristics curve [AUROC] = 0.90), M65 (AUROC = 0.86), and AST (AUROC = 0.86). Elevated M30 (M30 > 240 U/L) had the highest positive predictive value (PPV) and specificity, significantly higher than M65, ActiTest and ALT, but not AST (M30: sensitivity = 83%, specificity = 82%, positive predictive value = 45%, negative predictive value = 95%). Patients were followed up for 1445 patient-years. All markers, except for ALT, significantly predicted liver-related events and all-cause mortality. After adjusting for advanced fibrosis, drinking behavior and body mass index, M30 and M65 remained significant predictors of liver-related events, whereas M30 and AST were significant predictors of all-cause mortality. Conclusion: M30 and AST accurately detect severe hepatic inflammatory activity in patients with compensated ALD. M30 was the only significant predictor of both liver-related events and all-cause mortality after adjusting for advanced fibrosis, body mass index, and drinking behavior at inclusion.
Collapse
Affiliation(s)
- Katrine Holtz Thorhauge
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Maja Thiele
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Odense Patient data Exploratory NetworkOdense University HospitalOdenseDenmark
| | - Sönke Detlefsen
- Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of PathologyOdense University HospitalOdenseDenmark
| | - Ditlev Nytoft Rasmussen
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Stine Johansen
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Bjørn Stæhr Madsen
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Steen Antonsen
- Department of Clinical BiochemistryOdense University HospitalSvendborgDenmark
| | - Lars Melholt Rasmussen
- Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Katrine Prier Lindvig
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Aleksander Krag
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute for Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
19
|
Wang SX, Yan JS, Chan YS. Advancements in MAFLD Modeling with Human Cell and Organoid Models. Int J Mol Sci 2022; 23:11850. [PMID: 36233151 PMCID: PMC9569457 DOI: 10.3390/ijms231911850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is one of the most prevalent liver diseases and has no approved therapeutics. The high failure rates witnessed in late-phase MAFLD drug trials reflect the complexity of the disease, and how the disease develops and progresses remains to be fully understood. In vitro, human disease models play a pivotal role in mechanistic studies to unravel novel disease drivers and in drug testing studies to evaluate human-specific responses. This review focuses on MAFLD disease modeling using human cell and organoid models. The spectrum of patient-derived primary cells and immortalized cell lines employed to model various liver parenchymal and non-parenchymal cell types essential for MAFLD development and progression is discussed. Diverse forms of cell culture platforms utilized to recapitulate tissue-level pathophysiology in different stages of the disease are also reviewed.
Collapse
Affiliation(s)
- Shi-Xiang Wang
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ji-Song Yan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| |
Collapse
|
20
|
Brunt EM, Clouston AD, Goodman Z, Guy C, Kleiner DE, Lackner C, Tiniakos DG, Wee A, Yeh M, Leow WQ, Chng E, Ren Y, Boon Bee GG, Powell EE, Rinella M, Sanyal AJ, Neuschwander-Tetri B, Younossi Z, Charlton M, Ratziu V, Harrison SA, Tai D, Anstee QM. Complexity of ballooned hepatocyte feature recognition: Defining a training atlas for artificial intelligence-based imaging in NAFLD. J Hepatol 2022; 76:1030-1041. [PMID: 35090960 PMCID: PMC10544770 DOI: 10.1016/j.jhep.2022.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Histologically assessed hepatocyte ballooning is a key feature discriminating non-alcoholic steatohepatitis (NASH) from steatosis (NAFL). Reliable identification underpins patient inclusion in clinical trials and serves as a key regulatory-approved surrogate endpoint for drug efficacy. High inter/intra-observer variation in ballooning measured using the NASH CRN semi-quantitative score has been reported yet no actionable solutions have been proposed. METHODS A focused evaluation of hepatocyte ballooning recognition was conducted. Digitized slides were evaluated by 9 internationally recognized expert liver pathologists on 2 separate occasions: each pathologist independently marked every ballooned hepatocyte and later provided an overall non-NASH NAFL/NASH assessment. Interobserver variation was assessed and a 'concordance atlas' of ballooned hepatocytes generated to train second harmonic generation/two-photon excitation fluorescence imaging-based artificial intelligence (AI). RESULTS The Fleiss kappa statistic for overall interobserver agreement for presence/absence of ballooning was 0.197 (95% CI 0.094-0.300), rising to 0.362 (0.258-0.465) with a ≥5-cell threshold. However, the intraclass correlation coefficient for consistency was higher (0.718 [0.511-0.900]), indicating 'moderate' agreement on ballooning burden. 133 ballooned cells were identified using a ≥5/9 majority to train AI ballooning detection (AI-pathologist pairwise concordance 19-42%, comparable to inter-pathologist pairwise concordance of between 8-75%). AI quantified change in ballooned cell burden in response to therapy in a separate slide set. CONCLUSIONS The substantial divergence in hepatocyte ballooning identified amongst expert hepatopathologists suggests that ballooning is a spectrum, too subjective for its presence or complete absence to be unequivocally determined as a trial endpoint. A concordance atlas may be used to train AI assistive technologies to reproducibly quantify ballooned hepatocytes that standardize assessment of therapeutic efficacy. This atlas serves as a reference standard for ongoing work to refine how ballooning is classified by both pathologists and AI. LAY SUMMARY For the first time, we show that, even amongst expert hepatopathologists, there is poor agreement regarding the number of ballooned hepatocytes seen on the same digitized histology images. This has important implications as the presence of ballooning is needed to establish the diagnosis of non-alcoholic steatohepatitis (NASH), and its unequivocal absence is one of the key requirements to show 'NASH resolution' to support drug efficacy in clinical trials. Artificial intelligence-based approaches may provide a more reliable way to assess the range of injury recorded as "hepatocyte ballooning".
Collapse
Affiliation(s)
- Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Andrew D Clouston
- Molecular and Cellular Pathology, University of Queensland and Envoi Specialist Pathologists, Brisbane, Australia
| | - Zachary Goodman
- Pathology Department, and Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Cynthia Guy
- Division of Pathology, Duke University Medical Center, Durham, NC, USA
| | - David E Kleiner
- Laboratory of Pathology; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Dina G Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Dept of Pathology, Aretaieion Hospital, National and Kapodistrian University of Athens, Greece
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore
| | - Matthew Yeh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore & Duke-NUS Medical School, Singapore
| | | | | | - George Goh Boon Bee
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Elizabeth E Powell
- Centre for Liver Disease Research, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Mary Rinella
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Arun J Sanyal
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
| | - Michael Charlton
- Center for Liver Diseases, and Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Vlad Ratziu
- Department of Hepatology, Sorbonne University and Pitié-Salpêtrière Hospital, Paris, France
| | - Stephen A Harrison
- Pinnacle Clinical Research, San Antonio, USA; Hepatology, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Dean Tai
- Department of Anatomical Pathology, Singapore General Hospital, Singapore & Duke-NUS Medical School, Singapore.
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
In vitro ballooned hepatocytes can be produced by primary human hepatocytes and hepatic stellate cell sheets. Sci Rep 2022; 12:5341. [PMID: 35351975 PMCID: PMC8964766 DOI: 10.1038/s41598-022-09428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the increasing prevalence of Nonalcoholic steatohepatitis (NASH) worldwide, there is no effective treatment available for this disease. “Ballooned hepatocyte” is a characteristic finding in NASH and is correlated with disease prognosis, but their mechanisms of action are poorly understood; furthermore, neither animal nor in vitro models of NASH have been able to adequately represent ballooned hepatocytes. Herein, we engineered cell sheets to develop a new in vitro model of ballooned hepatocytes. Primary human hepatocytes (PHH) and Hepatic stellate cells (HSC) were co-cultured to produce cell sheets, which were cultured in glucose and lipid containing medium, following which histological and functional analyses were performed. Histological findings showed hepatocyte ballooning, accumulation of fat droplets, abnormal cytokeratin arrangement, and the presence of Mallory–Denk bodies and abnormal organelles. These findings are similar to those of ballooned hepatocytes in human NASH. Functional analysis showed elevated levels of TGFβ-1, SHH, and p62, but not TNF-α, IL-8. Exposure of PHH/HSC sheets to a glucolipotoxicity environment induces ballooned hepatocyte without inflammation. Moreover, fibrosis is an important mechanism underlying ballooned hepatocytes and could be the basis for the development of a new in vitro NASH model with ballooned hepatocytes.
Collapse
|
22
|
Kusano H, Kondo R, Ogasawara S, Omuraya M, Okudaira M, Mizuochi S, Mihara Y, Kinjo Y, Yano Y, Nakayama M, Naito Y, Akiba J, Nakashima O, Yano H. Utility of sonic hedgehog and keratin 8/18 immunohistochemistry for detecting ballooned hepatocytes. Histopathology 2022; 80:974-981. [DOI: 10.1111/his.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hironori Kusano
- Department of Pathology Kurume University School of Medicine Kurume Japan
- Department of Clinical Laboratory, National Hospital Organization Kokura Medical Center, Kitakyushu Japan
| | - Reiichiro Kondo
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Sachiko Ogasawara
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | | | | | - Shinji Mizuochi
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Yutaro Mihara
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Yoshinao Kinjo
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Yuta Yano
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Masamichi Nakayama
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology Kurume University Hospital Kurume Japan
| | - Jun Akiba
- Department of Diagnostic Pathology Kurume University Hospital Kurume Japan
| | - Osamu Nakashima
- Department of Clinical Laboratory Medicine Kurume University Hospital Kurume Japan
| | - Hirohisa Yano
- Department of Pathology Kurume University School of Medicine Kurume Japan
| |
Collapse
|
23
|
RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. Nat Commun 2022; 13:334. [PMID: 35039505 PMCID: PMC8764073 DOI: 10.1038/s41467-021-27923-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.
Collapse
|
24
|
Abdelhameed RFA, Ibrahim AK, Elfaky MA, Habib ES, Mahamed MI, Mehanna ET, Darwish KM, Khodeer DM, Ahmed SA, Elhady SS. Antioxidant and Anti-Inflammatory Activity of Cynanchum acutum L. Isolated Flavonoids Using Experimentally Induced Type 2 Diabetes Mellitus: Biological and In Silico Investigation for NF-κB Pathway/miR-146a Expression Modulation. Antioxidants (Basel) 2021; 10:antiox10111713. [PMID: 34829584 PMCID: PMC8615122 DOI: 10.3390/antiox10111713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-β-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-β-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Correspondence: (A.K.I.); (E.T.M.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Mayada I. Mahamed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.I.); (E.T.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina M. Khodeer
- Department of Pharmacology, and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
| |
Collapse
|
25
|
Carranza-Trejo AM, Vetvicka V, Vistejnova L, Kralickova M, Montufar EB. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:783-796. [PMID: 33557653 DOI: 10.1080/17474124.2021.1887730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disease in the world. It can evolve into nonalcoholic steatohepatitis (NASH) where inflammation and hepatocyte ballooning are key participants in the determination of this steatotic state.Areas covered: To provide a systematic overview and current understanding of the role of inflammation in NAFLD and its progression to NASH, the function of the cells involved, and the activation pathways of the innate immunity and cell death; resulting in inflammation and chronic liver disease. A PubMed search was made with relevant articles together with relevant references were included for the writing of this review.Expert opinion: Innate and adaptive immunity are the key players in the NAFLD progression; some of the markers presented during NAFLD are also known to be immunity biomarkers. All cells involved in NAFLD and NASH are known to have immunoregulatory properties and their imbalance will completely change the cytokine profile and form a pro-inflammatory microenvironment. It is necessary to fully answer the question of what initiators and metabolic imbalances are particularly important, considering sterile inflammation as the architect of the disease. Due to the shortage of elucidation of NASH progression, we discuss in this review, how inflammation is a key part of this development and we presume the targets should lead to inflammation and oxidative stress treatment.
Collapse
Affiliation(s)
| | - Vaclav Vetvicka
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Lucie Vistejnova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
26
|
Ore A, Akinloye OA, Adeogun AI, Ugbaja RN, Morifi E, Makatini M, Moepya R, Mbhele T. Buchholzia coriacea seed (wonderful kolanut) alleviates insulin resistance, steatosis, inflammation and oxidative stress in high fat diet model of fatty liver disease. J Food Biochem 2021; 46:e13836. [PMID: 34184286 DOI: 10.1111/jfbc.13836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic condition with multiple pathological features and it currently has no specific treatment or approved drug. Wonderful kolanut widely consumed fresh or cooked has been applied in the treatment of numerous diseases in folk medicine. In this study, we evaluate the therapeutic potentials of hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS) in NAFLD model. HEBCS was subjected to liquid chromatography - mass spectrometry, and 30 male BALB/c mice (28 ± 2 g) were allocated to three (3) experimental groups (n = 10/group). Mice in group I were fed chow diet (CD); those in group II, high fat diet (HFD) and group III, HFD and 250 mg/kg HEBCS p.o. daily for six weeks. HEBCS alleviates HFD-induced insulin resistance and high plasma insulin and glucose levels. It further alleviates hepatic steatosis, and alters plasma lipid profile. HEBCS also protected against HFD-induced inflammation, oxidative stress and hepatocellular damage. In conclusion, HEBCS alleviated NAFLD in mice via suppression of insulin resistance, hyperlipidemia, inflammation and oxidative stress. PRACTICAL APPLICATIONS: Bioactive polyphenols and alkaloids were identified in hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS). This study projects HEBCS as a potential therapeutic agent in the treatment of NAFLD. NAFLD is a multi-factorial condition and therefore, HEBCS is promising considering its multiple-target actions in the current model of NAFLD. HEBCS alleviates insulin resistance, metabolic dysfunction, steatosis, and inflammation in this model. There is a need to further investigate HEBCS in other models of NAFLD as a lead to future use in clinical studies.
Collapse
Affiliation(s)
- Ayokanmi Ore
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.,Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Abideen Idowu Adeogun
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Maya Makatini
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Refilwe Moepya
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Thapelo Mbhele
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| |
Collapse
|
27
|
Takahashi H, Kessoku T, Kawanaka M, Nonaka M, Hyogo H, Fujii H, Nakajima T, Imajo K, Tanaka K, Kubotsu Y, Isoda H, Oeda S, Kurai O, Yoneda M, Ono M, Kitajima Y, Tajiri R, Takamori A, Kawaguchi A, Aishima S, Kage M, Nakajima A, Eguchi Y, Anzai K. Ipragliflozin Improves the Hepatic Outcomes of Patients With Diabetes with NAFLD. Hepatol Commun 2021; 6:120-132. [PMID: 34558835 PMCID: PMC8710792 DOI: 10.1002/hep4.1696] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/26/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sodium glucose cotransporter‐2 inhibitors (SGLT2is) are now widely used to treat diabetes, but their effects on nonalcoholic fatty liver disease (NAFLD) remain to be determined. We aimed to evaluate the effects of SGLT2is on the pathogenesis of NAFLD. A multicenter, randomized, controlled trial was conducted in patients with type 2 diabetes with NAFLD. The changes in glycemic control, obesity, and liver pathology were compared between participants taking ipragliflozin (50 mg/day for 72 weeks; IPR group) and participants being managed without SGLT2is, pioglitazone, glucagon‐like peptide‐1 analogs, or insulin (CTR group). In the IPR group (n = 25), there were significant decreases in hemoglobin A1c (HbA1c) and body mass index (BMI) during the study (HbA1c, −0.41%, P < 0.01; BMI, −1.06 kg/m2, P < 0.01), whereas these did not change in the CTR group (n = 26). Liver pathology was evaluated in 21/25 participants in the IPR/CTR groups, and hepatic fibrosis was found in 17 (81%) and 18 (72%) participants in the IPR and CTR groups at baseline. This was ameliorated in 70.6% (12 of 17) of participants in the IPR group and 22.2 % (4 of 18) of those in the CTR group (P < 0.01). Nonalcoholic steatohepatitis (NASH) resolved in 66.7% of IPR‐treated participants and 27.3% of CTR participants. None of the participants in the IPR group developed NASH, whereas 33.3% of the CTR group developed NASH. Conclusion: Long‐term ipragliflozin treatment ameliorates hepatic fibrosis in patients with NAFLD. Thus, ipragliflozin might be effective for the treatment and prevention of NASH in patients with diabetes, as well as improving glycemic control and obesity. Therefore, SGLT2is may represent a therapeutic choice for patients with diabetes with NAFLD, but further larger studies are required to confirm these effects.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Michihiro Nonaka
- Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hideki Fujii
- Department of Gastroenterology and Hepatology, Osaka City Juso Hospital, Osaka, Japan.,Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Nakajima
- Department of Hepatology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Isoda
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoshi Oeda
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Osamu Kurai
- Department of Gastroenterology and Hepatology, Osaka City Juso Hospital, Osaka, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masafumi Ono
- Internal Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoichiro Kitajima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Gastroenterology, Eguchi Hospital, Ogi, Japan
| | - Ryo Tajiri
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
28
|
Zhang Y, Chatzistamou I, Kiaris H. Transcriptomic coordination at hepatic steatosis indicates robust immune cell engagement prior to inflammation. BMC Genomics 2021; 22:454. [PMID: 34134614 PMCID: PMC8210377 DOI: 10.1186/s12864-021-07784-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Deregulation in lipid metabolism leads to the onset of hepatic steatosis while at subsequent stages of disease development, the induction of inflammation, marks the transition of steatosis to non-alcoholic steatohepatitis. While differential gene expression unveils individual genes that are deregulated at different stages of disease development, how the whole transcriptome is deregulated in steatosis remains unclear. METHODS Using outbred deer mice fed with high fat as a model, we assessed the correlation of each transcript with every other transcript in the transcriptome. The onset of steatosis in the liver was also evaluated histologically. RESULTS Our results indicate that transcriptional reprogramming directing immune cell engagement proceeds robustly, even in the absence of histologically detectable steatosis, following administration of high fat diet. In the liver transcriptomes of animals with steatosis, a preference for the engagement of regulators of T cell activation and myeloid leukocyte differentiation was also recorded as opposed to the steatosis-free livers at which non-specific lymphocytic activation was seen. As compared to controls, in the animals with steatosis, transcriptome was subjected to more widespread reorganization while in the animals without steatosis, reorganization was less extensive. Comparison of the steatosis and non-steatosis livers showed high retention of coordination suggesting that diet supersedes pathology in shaping the transcriptome's profile. CONCLUSIONS This highly versatile strategy suggests that the molecular changes inducing inflammation proceed robustly even before any evidence of steatohepatitis is recorded, either histologically or by differential expression analysis.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, CLS 713, 715 Sumter Str., Columbia, SC, 29208-3402, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, CLS 713, 715 Sumter Str., Columbia, SC, 29208-3402, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
29
|
Allende DS, Gawrieh S, Cummings OW, Belt P, Wilson L, Van Natta M, Behling CA, Carpenter D, Gill RM, Kleiner DE, Yeh MM, Chalasani N, Guy CD. Glycogenosis is common in nonalcoholic fatty liver disease and is independently associated with ballooning, but lower steatosis and lower fibrosis. Liver Int 2021; 41:996-1011. [PMID: 33354866 PMCID: PMC8052274 DOI: 10.1111/liv.14773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Glycogen synthesis and storage are normal hepatocyte functions. However, glycogenosis, defined as excess hepatocyte glycogen visible by routine H&E light microscopy, has not been well characterized in nonalcoholic fatty liver disease (NAFLD). METHODS Glycogenosis in NAFLD liver biopsies was graded as "none", "focal" (in <50% of hepatocytes), or "diffuse" (in ≥50% of hepatocytes). Clinical and pathological variables associated with glycogenosis were assessed. 2047 liver biopsies were prospectively analysed. RESULTS In adults and children, any glycogenosis was present in 54% of cases; diffuse glycogenosis was noted in approximately 1/3 of cases. On multiple logistic regression analysis, adults with glycogenosis tended to be older (P = .003), female (P = .04), have higher serum glucose (P = .01), and use insulin (P = .02). Adults tended to have lower steatosis scores (P = .006) and lower fibrosis stages (P = .005); however, unexpectedly, they also tended to have more hepatocyte injury including ballooning (P = .003). On multiple logistic regression analysis, paediatric patients with glycogenosis were more likely to be Hispanic (P = .03), have lower body weight (P = .002), elevated triglycerides (P = .001), and a higher fasting glucose (P = .007). Paediatric patients with glycogenosis also had less steatosis (P < .001) than those without. CONCLUSIONS Glycogenosis is common in adult and paediatric NAFLD, and is associated with clinical features of insulin resistance. Glycogenosis is important to recognize histologically because it may be misinterpreted as ballooning, and when diffuse, confusion with glycogen storage disorders or glycogenic hepatopathy must be avoided. The newly observed dichotomous relationship between glycogenosis and increased liver cell injury but decreased steatosis and fibrosis requires further study.
Collapse
Affiliation(s)
| | - Samer Gawrieh
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Oscar W Cummings
- Department of PathologyIndiana University School of MedicineIndianapolisINUSA
| | - Patricia Belt
- Center for Clinical TrialsThe Johns Hopkins UniversityBloomberg School of Public HealthBaltimoreMDUSA
| | - Laura Wilson
- Center for Clinical TrialsThe Johns Hopkins UniversityBloomberg School of Public HealthBaltimoreMDUSA
| | - Mark Van Natta
- Center for Clinical TrialsThe Johns Hopkins UniversityBloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Ryan M Gill
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - David E Kleiner
- Laboratory of PathologyNational Cancer InstituteBethesdaMDUSA
| | - Mathew M Yeh
- Department of PathologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Naga Chalasani
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | | | | |
Collapse
|
30
|
Tang M, Chen Y, Li B, Sugimoto H, Yang S, Yang C, LeBleu VS, McAndrews KM, Kalluri R. Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. FASEB J 2021; 35:e21557. [PMID: 33855751 PMCID: PMC10851328 DOI: 10.1096/fj.202002777rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a wound healing response that results in excessive extracellular matrix (ECM) accumulation in response to chronic hepatic injury. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor associated with the pathogenesis of liver fibrosis. Though a promising potential therapeutic target, there are no specific drug candidates for STAT3. Exosomes are extracellular vesicles generated by all cell types with a capacity to efficiently enter cells across different biological barriers. Here, we utilize exosomes as delivery conduit to specifically target STAT3 in liver fibrosis. Exosomes derived from clinical grade fibroblast-like mesenchymal stem cells (MSCs) were engineered to carry siRNA or antisense oligonucleotide (ASO) targeting STAT3 (iExosiRNA-STAT3 or iExomASO-STAT3 ). Compared to scrambled siRNA control, siRNA-STAT3, or ASO-STAT3, iExosiRNA-STAT3 or iExomASO-STAT3 showed enhanced STAT3 targeting efficiency. iExosiRNA-STAT3 or iExomASO-STAT3 treatments suppressed STAT3 levels and ECM deposition in established liver fibrosis in mice, and significantly improved liver function. iExomASO-Stat3 restored liver function more efficiently when compared to iExosiRNA-STAT3 . Our results identify a novel anti-fibrotic approach for direct targeting of STAT3 with exosomes with immediate translational potential.
Collapse
Affiliation(s)
- Min Tang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Changqing Yang
- Division of Gastroenterology and Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Valerie S. LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
31
|
Brunt EM, Kleiner DE, Carpenter DH, Rinella M, Harrison SA, Loomba R, Younossi Z, Neuschwander-Tetri BA, Sanyal AJ. NAFLD: Reporting Histologic Findings in Clinical Practice. Hepatology 2021; 73:2028-2038. [PMID: 33111374 DOI: 10.1002/hep.31599] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
The role of liver biopsy in NASH has evolved along with the increased recognition of the significance of this disease, and the unmet medical need it presents. Drug development and clinical trials are rapidly growing, as are noninvasive tests for markers of steatosis, inflammation, injury, and fibrosis. Liver biopsy evaluation remains necessary for both drug development and clinical trials as the most specific means of diagnosis and patient identification for appropriate intervention. This White Paper, sponsored by the American Association for the Study of Liver Disease NASH Task Force, is a focused review of liver biopsy evaluation in fatty liver disease in subjects with presumed NAFLD for practicing clinical hepatologists and pathologists. The goal is to provide succinct and specific means for reporting the histopathologic elements of NASH, distinguishing NASH from nonalcoholic fatty liver without steatohepatitis, and from alcohol-associated steatohepatitis when possible. The discussion includes the special situations of NASH in advanced fibrosis or cirrhosis, and in the pediatric population. Finally, there is discussion of semiquantitative methods of evaluation of lesions of "disease activity" and fibrosis. Tables are presented for scoring and a suggested model for final reporting. Figures are presented to highlight the histopathologic elements of NASH.
Collapse
Affiliation(s)
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Mary Rinella
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA
| | - Zobair Younossi
- Inova Medicine Services, Inova Health System, Falls Church, VA
| | | | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | | |
Collapse
|
32
|
Briand F, Maupoint J, Brousseau E, Breyner N, Bouchet M, Costard C, Leste-Lasserre T, Petitjean M, Chen L, Chabrat A, Richard V, Burcelin R, Dubroca C, Sulpice T. Elafibranor improves diet-induced nonalcoholic steatohepatitis associated with heart failure with preserved ejection fraction in Golden Syrian hamsters. Metabolism 2021; 117:154707. [PMID: 33444606 DOI: 10.1016/j.metabol.2021.154707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of deaths in nonalcoholic steatohepatitis (NASH) patients. Mouse models, while widely used for drug development, do not fully replicate human NASH nor integrate the associated cardiac dysfunction, i.e. heart failure with preserved ejection fraction (HFpEF). To overcome these limitations, we established a nutritional hamster model developing both NASH and HFpEF. We then evaluated the effects of the dual peroxisome proliferator activated receptor alpha/delta agonist elafibranor developed for the treatment of NASH patients. METHODS Male Golden Syrian hamsters were fed for 10 to 20 weeks with a free choice diet, which presents hamsters with a choice between control chow diet with normal drinking water or a high fat/high cholesterol diet with 10% fructose enriched drinking water. Biochemistry, histology and echocardiography analysis were performed to characterize NASH and HFpEF. Once the model was validated, elafibranor was evaluated at 15 mg/kg/day orally QD for 5 weeks. RESULTS Hamsters fed a free choice diet for up to 20 weeks developed NASH, including hepatocyte ballooning (as confirmed with cytokeratin-18 immunostaining), bridging fibrosis, and a severe diastolic dysfunction with restrictive profile, but preserved ejection fraction. Elafibranor resolved NASH, with significant reduction in ballooning and fibrosis scores, and improved diastolic dysfunction with significant reduction in E/A and E/E' ratios. CONCLUSION Our data demonstrate that the free choice diet induced NASH hamster model replicates the human phenotype and will be useful for validating novel drug candidates for the treatment of NASH and associated HFpEF.
Collapse
Affiliation(s)
- François Briand
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France.
| | - Julie Maupoint
- Cardiomedex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | - Emmanuel Brousseau
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | - Natalia Breyner
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | - Mélanie Bouchet
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | - Clément Costard
- Cardiomedex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | | | - Mathieu Petitjean
- PharmaNest, 100 Overlook Center, FL2, Princeton, NJ 08540, United States of America
| | - Li Chen
- PharmaNest, 100 Overlook Center, FL2, Princeton, NJ 08540, United States of America
| | - Audrey Chabrat
- Sciempath Labo, 7 rue de la Gratiole, 37270 Larcay, France
| | | | - Rémy Burcelin
- Inserm U1048 CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | - Caroline Dubroca
- Cardiomedex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| | - Thierry Sulpice
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France; Cardiomedex, 280 rue de l'Hers, ZAC de la Masquère, 31750 Escalquens, France
| |
Collapse
|
33
|
Geier A, Tiniakos D, Denk H, Trauner M. From the origin of NASH to the future of metabolic fatty liver disease. Gut 2021; 70:gutjnl-2020-323202. [PMID: 33632710 PMCID: PMC8292567 DOI: 10.1136/gutjnl-2020-323202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Understanding the pathological and molecular hallmarks from its first description to definitions of disease entities, classifications and molecular phenotypes is crucial for both appropriate clinical management and research in this complex disease. We provide an overview through almost two hundred years of clinical research from the beginnings as a nebulous disease entity of unknown origin in the 19th century to the most frequent and vigorously investigated liver disease today. The clinical discrimination between alcohol-related liver disease and NAFLD was uncommon until the 1950s and likely contributed to the late acceptance of NAFLD as a metabolic disease entity for long time. Although the term 'fatty liver hepatitis' first appeared in 1962, it was in 1980 that the term 'non-alcoholic steatohepatitis' (NASH) was coined and the histopathological hallmarks that are still valid today were defined. The 2005 NASH Clinical Research Network scoring was the first globally accepted grading and staging system for the full spectrum of NAFLD and is still used to semiquantify main histological features. In 2021, liver biopsy remains the only diagnostic procedure that can reliably assess the presence of NASH and early fibrosis but increasing efforts are made towards non-invasive testing and molecular classification of NAFLD subtypes.
Collapse
Affiliation(s)
- Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Bayern, Germany
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece & Translational & Clinical Research Institute; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Steiermark, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Wien, Wien, Austria
| |
Collapse
|
34
|
Marti-Aguado D, Rodríguez-Ortega A, Mestre-Alagarda C, Bauza M, Valero-Pérez E, Alfaro-Cervello C, Benlloch S, Pérez-Rojas J, Ferrández A, Alemany-Monraval P, Escudero-García D, Monton C, Aguilera V, Alberich-Bayarri Á, Serra MÁ, Marti-Bonmati L. Digital pathology: accurate technique for quantitative assessment of histological features in metabolic-associated fatty liver disease. Aliment Pharmacol Ther 2021; 53:160-171. [PMID: 32981113 DOI: 10.1111/apt.16100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/24/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Histological evaluation of metabolic-associated fatty liver disease (MAFLD) biopsies is subjective, descriptive and with interobserver variability. AIMS To examine the relationship between different histological features (fibrosis, steatosis, inflammation and iron) measured with automated whole-slide quantitative digital pathology and corresponding semiquantitative scoring systems, and the distribution of digital pathology measurements across Fatty Liver Inhibition of Progression (FLIP) algorithm and Steatosis, Activity and Fibrosis (SAF) scoring system METHODS: We prospectively included 136 consecutive patients who underwent liver biopsy for MAFLD at three Spanish centres (January 2017-January 2020). Biopsies were scored by two blinded pathologists according to the Non-alcoholic Steatohepatitis (NASH) Clinical Research Network system for fibrosis staging, the FLIP/SAF classification for steatosis and inflammation grading and Deugnier score for iron grading. Proportionate areas of collagen, fat, inflammatory cells and iron deposits were measured with computer-assisted digital image analysis. A test-retest experiment was performed for precision repeatability evaluation. RESULTS Digital pathology showed strong correlation with fibrosis (r = 0.79; P < 0.001), steatosis (r = 0.85; P < 0.001) and iron (r = 0.70; P < 0.001). Performance was lower when assessing the degree of inflammation (r = 0.35; P < 0.001). NASH cases had a higher proportion of collagen and fat compared to non-NASH cases (P < 0.005), whereas inflammation and iron quantification did not show significant differences between categories. Repeatability evaluation showed that all the coefficients of variation were ≤1.1% and all intraclass correlation coefficient values were ≥0.99, except those of collagen. CONCLUSION Digital pathology allows an automated, precise, objective and quantitative assessment of MAFLD histological features. Digital analysis measurements show good concordance with pathologists´ scores.
Collapse
|
35
|
Epidemiology of non-alcoholic fatty liver disease and risk of hepatocellular carcinoma progression. Clin Exp Hepatol 2020; 6:289-294. [PMID: 33511275 PMCID: PMC7816638 DOI: 10.5114/ceh.2020.102153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Its incidence has grown alongside the increasing global prevalence of type 2 diabetes, obesity, and metabolic syndrome. The risk of progression to hepatocellular carcinoma for nonalcoholic steatohepatitis patients over 5 years is 8%, and despite targeted and immunotherapy treatment advances, HCC maintains a bleak 5-year survival of 19%. NAFLD’s primary risk factors are components of metabolic syndrome as well as possible sleep disturbances. NAFLD is most common among men 50-60 years of age, though incidence in women catches up after menopause. In the US, Hispanics are most likely to develop NAFLD and African Americans least likely, in part due to the prevalence of the PNPLA3 gene variant. With NAFLD risk factors especially prevalent in underserved populations and developing nations, public health interventions, earlier diagnosis, and novel treatments could curb the growing disease burden.
Collapse
|
36
|
Ahn J, Ahn JH, Yoon S, Son MY, Cho S, Oh JH. Quantification of non-alcoholic fatty liver disease progression in 3D liver microtissues using impedance spectroscopy. Biomaterials 2020; 268:120599. [PMID: 33341736 DOI: 10.1016/j.biomaterials.2020.120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a global pandemic. However, a pharmacological cure has not been approved for NAFLD treatment. The greatest barriers to the development of new treatments are the ambiguous criteria among the NAFLD stages and the lack of quantitative methodologies for its disease assessment in a translatable preclinical model. In this study, we developed impedance assessment systems to quantify NAFLD progression in three-dimensional (3D) liver microtissue (hMT). The hMT model undergoing NAFLD represents clinical-like characteristics for a range of stages, such as lipid accumulation, cell ballooning, and stiffening. Each stage can be quantitatively assessed by an impedance system with microchannels under constant or dynamic pressure, depending on the relevant mechanical and morphological changes used in the clinical assessment of NAFLD. We determined a correlation between the impedance parameters and pathophysiological characteristics, such as gap widening and cytoplasmic deformation associated with NAFLD progression using bioimpedance simulation, showing hMTs struggling to return to normal states. In addition, we identified the relative stiffness to assess fibrogenesis from the correlation of resistance change and elongation length into the smaller channel of hMTs. We hope this methodology will have a significant impact on drug development by facilitating improved NAFLD assessment.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
37
|
GUIMARÃES VM, SANTOS VN, BORGES PSDA, DE FARIAS JLR, GRILLO P, PARISE ER. PERIPHERAL BLOOD ENDOTOXIN LEVELS ARE NOT ASSOCIATED WITH SMALL INTESTINAL BACTERIAL OVERGROWTH IN NONALCOHOLIC FATTY LIVER DISEASE WITHOUT CIRRHOSIS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:471-476. [DOI: 10.1590/s0004-2803.202000000-82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease worldwide. Approximately 20% of individuals with NAFLD develop nonalcoholic steatohepatitis (NASH), which is associated with increased risk of cirrhosis, portal hypertension, and hepatocellular carcinoma. Intestinal microflora, including small intestinal bacterial overgrowth (SIBO), appear to play an important role in the pathogenesis of the disease, as demonstrated in several clinical and experimental studies, by altering intestinal permeability and allowing bacterial endotoxins to enter the circulation. OBJECTIVE: To determine the relationship between SIBO and endotoxin serum levels with clinical, laboratory, and histopathological aspects of NAFLD and the relationship between SIBO and endotoxin serum levels before and after antibiotic therapy. METHODS: Adult patients with a histological diagnosis of NAFLD, without cirrhosis were included. A comprehensive biochemistry panel, lactulose breath test (for diagnosis of SIBO), and serum endotoxin measurement (chromogenic LAL assay) were performed. SIBO was treated with metronidazole 250 mg q8h for 10 days and refractory cases were given ciprofloxacin 500 mg q12h for 10 days. RESULTS: Overall, 42 patients with a histopathological diagnosis of NAFLD were examined. The prevalence of SIBO was 26.2%. Comparison of demographic and biochemical parameters between patients with SIBO and those without SIBO revealed no statistically significant differences, except for use of proton pump inhibitors, which was significantly more frequent in patients with positive breath testing. The presence of SIBO was also associated with greater severity of hepatocellular ballooning on liver biopsy. Although the sample, as a whole, have elevated circulating endotoxin levels, we found no significant differences in this parameter between the groups with and without SIBO. Endotoxin values before and after antibiotic treatment did not differ, even on paired analysis, suggesting absence of any relationship between these factors. Serum endotoxin levels were inversely correlated with HDL levels, and directly correlated with triglyceride levels. CONCLUSION: Serum endotoxin levels did not differ between patients with and without SIBO, nor did these levels change after antibacterial therapy, virtually ruling out the possibility that elevated endotoxinemia in non-cirrhotic patients with NAFLD is associated with SIBO. Presence of SIBO was associated with greater severity of ballooning degeneration on liver biopsy, but not with a significantly higher prevalence of NASH. Additional studies are needed to evaluate the reproducibility and importance of this finding in patients with NAFLD and SIBO.
Collapse
|
38
|
Zhang Y, Chatzistamou I, Kiaris H. Coordination of the unfolded protein response during hepatic steatosis identifies CHOP as a specific regulator of hepatocyte ballooning. Cell Stress Chaperones 2020; 25:969-978. [PMID: 32577989 PMCID: PMC7591657 DOI: 10.1007/s12192-020-01132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
The unfolded protein response (UPR) is an adaptive response that is implicated in multiple metabolic pathologies, including hepatic steatosis. In the present study, we analyzed publicly available RNAseq data to explore how the execution of the UPR is orchestrated in specimens that exhibit hepatocyte ballooning, a landmark feature of steatosis. By focusing on a panel of well-established UPR genes, we assessed how the UPR is coordinated with the whole transcriptome in specimens with or without hepatocyte ballooning. Our analyses showed that neither average levels nor correlation in expression between major UPR genes such as HSPA5 (BiP/GRP78), HSP90b1 (GRP94), or DDIT3 (CHOP) is altered in different groups. However, a panel of transcripts depending on the stringency of the analysis ranged from 16 to 372 lost its coordination with HSPA5, the major UPR chaperone, when hepatocyte ballooning occurred. In 13 genes, the majority of which is associated with metabolic processes, and the coordination with the HSPA5 was reversed from positive to negative in livers with ballooning hepatocytes. In order to examine if during ballooning, UPR genes abolish established and acquire novel functionalities, we performed gene ontology analyses. These studies showed that among the various UPR genes interrogated, only DDIT3 was not associated with conventional functions linked to endoplasmic reticulum stress during ballooning, while HSPA90b1 exhibited the highest function retention between the specimens with or without ballooning. Our results challenge conventional notions on the impact of specific genes in disease and suggest that besides abundance, the mode of coordination of UPR may be more important for disease development.
Collapse
Affiliation(s)
- Y Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, CLS 713, 715 Sumter St, Columbia, SC, USA
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, CLS 713, 715 Sumter St, Columbia, SC, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, CLS 713, 715 Sumter St, Columbia, SC, USA.
| |
Collapse
|
39
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21218138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people’s perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2262
| |
Collapse
|
40
|
Park JG, Kim G, Jang SY, Lee YR, Lee E, Lee HW, Han MH, Chun JM, Han YS, Yoon JS, Kang MK, Kweon YO, Tak WY, Park SY, Hur K. Plasma Long Noncoding RNA LeXis is a Potential Diagnostic Marker for Non-Alcoholic Steatohepatitis. Life (Basel) 2020; 10:life10100230. [PMID: 33022942 PMCID: PMC7601228 DOI: 10.3390/life10100230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Non-invasive diagnostic markers are needed to ease the diagnosis of non-alcoholic steatohepatitis (NASH) among patients with non-alcoholic fatty liver disease (NAFLD). The long noncoding RNA (lncRNA) LeXis is related to cholesterol metabolism and hepatic steatosis in mice, and its batch genome conversion in humans is TCONS_00016452. Here, we aimed to evaluate the potential of lncRNA LeXis as a non-invasive diagnostic marker for NASH. We analyzed a total of 44 NAFLD patients whose diagnosis was confirmed by a pathologist through analysis of a percutaneous liver biopsy. The expression of LeXis in the plasma of NAFLD patients with and without NASH was compared using quantitative real-time polymerase chain reaction. The expression of plasma LeXis was significantly higher in patients with NASH than in those with NAFL (8.2 (5.0-14.9); 4.6 (4.0-6.6), p = 0.025). The area under the receiver operating characteristic curve was 0.743 (95% CI 0.590-0.895, p < 0.001), and a sensitivity of 54.3% and specificity of 100% could be achieved for NASH diagnosis. Low LeXis was independently associated with NASH diagnosis in patients with NAFLD (p = 0.0349, odds ratio = 22.19 (5% CI, 1.25-395.22)). Therefore, circulating lncRNA LeXis could be a potential non-invasive diagnostic biomarker for NASH.
Collapse
Affiliation(s)
- Jung Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.G.P.); (M.K.K.)
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Eunhye Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
| | - Hye Won Lee
- Department of Pathology, Dongsan Medical Center, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae Min Chun
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (J.M.C.); (Y.S.H.)
| | - Young Seok Han
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (J.M.C.); (Y.S.H.)
| | - Jun Sik Yoon
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan 74392, Korea;
| | - Min Kyu Kang
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.G.P.); (M.K.K.)
| | - Young Oh Kweon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
- Correspondence: (S.Y.P.); (K.H.); Tel.: +82-53-200-5516 (S.Y.P.); +82-53-420-4821 (K.H.); Fax: +82-53-426-8773 (S.Y.P.); +82-53-422-1466 (K.H.)
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
- Correspondence: (S.Y.P.); (K.H.); Tel.: +82-53-200-5516 (S.Y.P.); +82-53-420-4821 (K.H.); Fax: +82-53-426-8773 (S.Y.P.); +82-53-422-1466 (K.H.)
| |
Collapse
|
41
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
42
|
Ogawa Y, Kobayashi T, Honda Y, Kessoku T, Tomeno W, Imajo K, Nakahara T, Oeda S, Nagaoki Y, Amano Y, Ando T, Hirayama M, Isono O, Kamiguchi H, Nagabukuro H, Ogawa S, Satomi Y, Saigusa Y, Takahashi H, Hyogo H, Yoneda M, Saito S, Yamanaka T, Aishima S, Eguchi Y, Kage M, Chayama K, Nakajima A. Metabolomic/lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with non-alcoholic fatty liver disease: A multicenter study. Hepatol Res 2020; 50:955-965. [PMID: 32455496 DOI: 10.1111/hepr.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
AIM Liver biopsy is still required for the diagnosis of hepatocellular ballooning and inflammation, which are important histological features of non-alcoholic steatohepatitis. We undertook this multicenter, cross-sectional study to identify novel blood markers for the diagnosis of hepatocellular ballooning. METHODS We enrolled 176 patients, of whom 132 were proven by liver biopsy as having non-alcoholic fatty liver disease (NAFLD) and classified as non-ballooning (ballooning grade 0) (n = 83) or ballooning (ballooning grade 1 and 2) (n = 49) by a central pathology review. We carried out gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography tandem mass spectrometry, and lipidomics with plasma. RESULTS As correlates of hepatocellular ballooning, among the clinical parameters, serum type IV collagen 7S correlated most significantly with the ballooning grade (correlation coefficient [CC] = 0.463; P < 0.001). Among the metabolic/lipidomic markers, phosphatidylcholine (PC) (aa-44:8) correlated most significantly with the ballooning grade (CC = 0.394; P < 0.001). The area under the receiver operating characteristic curve of type IV collagen 7S, choline, and lysophosphatidylethanolamine (LPE) (e-18:2), was 0.846 (95% confidence interval, 0.772-0.919). CONCLUSIONS Plasma levels of PC were positively correlated, and those of lysophosphatidylcholine and LPE were negatively correlated with hepatocellular ballooning in NAFLD patients. These non-invasive metabolic/lipidomic-based plasma tests might be useful to distinguish between cases of NAFLD with and without hepatocellular ballooning.
Collapse
Affiliation(s)
- Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Gastroenterology, International University of Health and Welfare Atami Hospital, Atami, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Oeda
- Liver Center, Saga University Hospital, Saga, Japan
| | - Yuko Nagaoki
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichiro Amano
- Research, Takeda Pharmaceutical Company, Yokohama, Japan
| | - Tatsuya Ando
- Research, Takeda Pharmaceutical Company, Yokohama, Japan
| | | | - Osamu Isono
- Research, Takeda Pharmaceutical Company, Yokohama, Japan
| | | | | | - Shinji Ogawa
- Research, Takeda Pharmaceutical Company, Yokohama, Japan
| | | | - Yusuke Saigusa
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hirokazu Takahashi
- Liver Center, Saga University Hospital, Saga, Japan.,Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hiroshima, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Japan
| | | | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
43
|
Chen YY, Yeh MM. Non-alcoholic fatty liver disease: A review with clinical and pathological correlation. J Formos Med Assoc 2020; 120:68-77. [PMID: 32654868 DOI: 10.1016/j.jfma.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in North America and Europe, with increasing prevalence in other regions of the world. Its spectrum encompass steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. It is considered as the manifestation of metabolic syndrome in liver, and its development and progression is influenced by complex interaction of environmental and genetic factors. In this review we discuss the histopathological features, differential diagnoses, and the commonly used grading and staging systems of NAFLD. NAFLD associated with other diseases, histological changes after therapeutic intervention and recurrence or occurrence of NAFLD after liver transplantation are also addressed.
Collapse
Affiliation(s)
- Yen-Ying Chen
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, United States; Department of Medicine, University of Washington School of Medicine, Seattle, United States.
| |
Collapse
|
44
|
Oeda S, Takahashi H, Imajo K, Seko Y, Ogawa Y, Moriguchi M, Yoneda M, Anzai K, Aishima S, Kage M, Itoh Y, Nakajima A, Eguchi Y. Accuracy of liver stiffness measurement and controlled attenuation parameter using FibroScan ® M/XL probes to diagnose liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease: a multicenter prospective study. J Gastroenterol 2020; 55:428-440. [PMID: 31654131 DOI: 10.1007/s00535-019-01635-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/06/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Few studies have evaluated both liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease (NAFLD) using both FibroScan® M and XL probes. This study was performed to investigate the accuracy of both FibroScan® probes to diagnose liver fibrosis and steatosis in patients with NAFLD. METHODS We prospectively enrolled 137 consecutive patients with clinically suspected NAFLD in our joint-research facilities. Liver biopsies, liver stiffness measurements (LSMs), and controlled attenuation parameter (CAP) measurements were performed, and 122 patients with NAFLD diagnosed pathologically by central pathologists were included in the final analysis. RESULTS Reliable LSM results were obtained in 85.2% (M) and 89.3% (XL) of patients, and CAP was reliable in 90.2% (M) and 90.2% (XL). The median LSM was significantly lower with the XL than M probe, and CAP was significantly higher with the XL than M probe. The optimal cut-off values for diagnosing the fibrosis stage were lower for LSM with the XL than M probe (stage ≥ 2, 6.7 vs. 7.0; stage ≥ 3, 8.2 vs. 10.8; stage 4, 14.3 vs. 16.8, respectively), whereas those of CAP were higher for the XL than M probe (score of ≥ 2, 273 vs. 267; score of 3, 302 vs. 286, respectively). There were no significant differences in accuracy of the LSM and CAP between the probes. CONCLUSIONS Liver fibrosis and steatosis could be equally evaluated with FibroScan® M and XL probes in patients with NAFLD. There was no significant difference in diagnostic accuracy between the two probes using probe-specific cut-off values.
Collapse
Affiliation(s)
- Satoshi Oeda
- Liver Center, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan.,Department of Clinical Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Michihisa Moriguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Shinichi Aishima
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Masayoshi Kage
- Center for Innovative Cancer Therapy, Kurume University Research, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| |
Collapse
|
45
|
Addolorato G, Abenavoli L, Dallio M, Federico A, Germani G, Gitto S, Leandro G, Loguercio C, Marra F, Stasi E. Alcohol associated liver disease 2020: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig Liver Dis 2020; 52:374-391. [PMID: 32001151 DOI: 10.1016/j.dld.2019.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder which includes alcohol abuse and dependence represents one of the leading risk factors for premature mortality in Europe and it is responsible of over 200 conditions, including neuropsychiatric disorders, chronic diseases, cancers and accidents leading to permanent disability. Alcohol use disorder represents the most common cause of liver damage in the Western world, with a wide spectrum of diseases ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. The present clinical practice guidelines by the Italian Association for the Study of the Liver (AISF) are focused on the current knowledge about epidemiology, pathophysiology, clinical features, diagnosis and treatment of alcohol associated liver disease, aiming to provide practical recommendations on the management of this complex pathological condition.
Collapse
Affiliation(s)
- Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; "Agostino Gemelli" Hospital Foundation - IRCCS, Rome, Italy.
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomo Germani
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Gioacchino Leandro
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Research Center Denothe, University of Florence, Italy
| | - Elisa Stasi
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy
| |
Collapse
|
46
|
Kim HK, Lee GH, Bhattarai KR, Lee MS, Back SH, Kim HR, Chae HJ. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy 2020; 17:761-778. [PMID: 32167007 PMCID: PMC8032251 DOI: 10.1080/15548627.2020.1732161] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lysosomal Ca2+ contributes to macroautophagy/autophagy, an intracellular process for the degradation of cytoplasmic material and organelles in the lysosomes to protect cells against stress responses. TMBIM6 (transmembrane BAX inhibitor motif containing 6) is a Ca2+ channel-like protein known to regulate ER stress response and apoptosis. In this study, we examined the as yet unknown role of TMBIM6 in regulating lysosomal Ca2+ levels. The Ca2+ efflux from the ER through TMBIM6 was found to increase the resting lysosomal Ca2+ level, in which ITPR-independent regulation of Ca2+ status was observed. Further, TMBIM6 regulated the local release of Ca2+ through lysosomal MCOLN1/TRPML1 channels under nutrient starvation or MTOR inhibition. The local Ca2+ efflux through MCOLN1 channels was found to activate PPP3/calcineurin, triggering TFEB (transcription factor EB) nuclear translocation, autophagy induction, and lysosome biogenesis. Upon genetic inactivation of TMBIM6, lysosomal Ca2+ and the associated TFEB nuclear translocation were decreased. Furthermore, autophagy flux was significantly enhanced in the liver or kidney from starved Tmbim6+/+ mice compared with that in the counter tmbim6-/- mice. Together, our observations indicated that under stress conditions, TMBIM6 increases lysosomal Ca2+ release, leading to PPP3/calcineurin-mediated TFEB activation and subsequently enhanced autophagy. Thus, TMBIM6, an ER membrane protein, is suggested to be a lysosomal Ca2+ modulator that coordinates with autophagy to alleviate metabolism stress.Abbreviations: AVs: autophagic vacuoles; CEPIA: calcium-measuring organelle-entrapped protein indicator; ER: endoplasmic reticulum; GPN: glycyl-L-phenylalanine-beta-naphthylamide; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; LAMP1: lysosomal associated membrane protein 1; MCOLN/TRPML: mucolipin; MEF: mouse embryonic fibroblast; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TKO: triple knockout; TMBIM6/BI-1: transmembrane BAX inhibitor motif containing 6.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
47
|
Tsai MS, Lee HM, Huang SC, Sun CK, Chiu TC, Chen PH, Lin YC, Hung TM, Lee PH, Kao YH. Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. Arch Biochem Biophys 2020; 682:108281. [PMID: 32001246 DOI: 10.1016/j.abb.2020.108281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Upregulation of nerve growth factor (NGF) in parenchymal hepatocytes has been shown to exert hepatoprotective function during cholestatic liver injury. However, the modulatory role of NGF in regulation of liver autophagy remains unclear. This study aimed to scrutinize the regulatory role of NGF in hepatic expression of farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor, and to determine its cytoprotective effect on BA-induced autophagy and cytotoxicity. Livers of human hepatolithiasis and bile duct ligation (BDL)-induced mouse cholestasis were used for histopathological and molecular detection. The regulatory roles of NGF in autophagy flux and FXR expression, as well as its hepatoprotection against BA cytotoxicity were examined in cultured hepatocytes. FXR downregulation in human hepatolithiasis livers showed positive correlation with hepatic NGF levels. NGF administration upregulated hepatic FXR levels, while neutralization of NGF decreased FXR expression in BDL-induced cholestatic mouse livers. In vitro studies demonstrated that NGF upregulated FXR expression, increased cellular LC3 levels, and exerted hepatoprotective effect in cultured primary rat hepatocytes. Conversely, autophagy inhibition abrogated NGF-driven cytoprotection under BA exposure, suggesting involvement of NGF-modulated auophagy flux. Although FXR agonistic GW4064 stimulation did not affect auophagic LC3 levels, FXR activity inhibition significantly potentiated BA-induced cytotoxicity and increased cellular p62/SQSTM1 and Rab7 protein in SK-Hep1 hepatocytes. Moreover, FXR gene silencing abolished the protective effect of NGF under BA exposure. These findings support that NGF modulates autophagy flux via FXR upregulation and protects hepatocytes against BA-induced cytotoxicity. NGF/FXR axis is a novel therapeutic target for treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Body Health and Beauty Center, Jiann-Ren Hospital, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzu-Min Hung
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
48
|
De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Julé Y, Leclercq IA. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. J Transl Med 2020; 100:147-160. [PMID: 31506634 DOI: 10.1038/s41374-019-0315-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values. Here we performed an automatic numerical quantification of NASH features on liver sections in common preclinical NAFLD/NASH models. High-fat diet-fed foz/foz mice (Foz HF) or wild-type mice (WT HF) known to develop progressive NASH or an uncomplicated steatosis, respectively, and C57Bl6 mice fed a choline-deficient high-fat diet (CDAA) to induce steatohepatitis were analyzed at various time points. Automated software image analysis of steatosis, inflammation, and fibrosis was performed on digital images from entire liver sections. Data obtained were compared with the NAS score, biochemical quantification, and gene expression. As histologically assessed, WT HF mice had normal liver up to week 34 when they harbor mild steatosis with if any, little inflammation. Foz HF mice exhibited grade 2 steatosis as early as week 4, grade 3 steatosis at week 12 up to week 34; inflammation and ballooning increased gradually with time. Automated measurement of steatosis (macrovesicular steatosis area) revealed a strong correlation with steatosis scores (r = 0.89), micro-CT liver density, liver lipid content (r = 0.89), and gene expression of CD36 (r = 0.87). Automatic assessment of the number of F4/80-immunolabelled crown-like structures strongly correlated with conventional inflammatory scores (r = 0.79). In Foz HF mice, collagen deposition, evident at week 20 and progressing at week 34, was automatically quantified on picrosirius red-stained entire liver sections. The automated procedure also faithfully captured and quantitated macrovesicular steatosis, mixed inflammation, and pericellular fibrosis in CDAA-induced steatohepatitis. In conclusion, the automatic numerical analysis represents a promising quantitative method to rapidly monitor NAFLD activity with high-throughput in large preclinical studies and for accurate monitoring of disease evolution.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Heloïse Louvegny
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
49
|
Mostafa M, Abdelkader A, Evans JJ, Hagen CE, Hartley CP. Fatty Liver Disease: A Practical Approach. Arch Pathol Lab Med 2019; 144:62-70. [PMID: 31603713 DOI: 10.5858/arpa.2019-0341-ra] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Fatty liver disease is now one of the most commonly encountered entities in the practice of liver pathology. Distinguishing simple steatosis from steatohepatitis is critical because the latter requires follow-up because of long-term risks that include cirrhosis and hepatocellular carcinoma. An organized approach for evaluating liver biopsies with steatosis is recommended to capture all of the relevant features: (1) degree of steatosis, (2) presence or absence of ballooning degeneration, (3) lobular inflammation, and (4) fibrosis. Herein, we provide a stepwise approach that readers can use to evaluate liver biopsies with steatosis, including examples, pitfalls, differential diagnostic considerations, and suggested diagnostic phrasing. OBJECTIVE.— To provide a stepwise approach for the evaluation of liver biopsies showing significant steatosis (involving ≥5% of liver parenchyma). DATA SOURCES.— Biopsies demonstrating fatty liver disease encountered in our daily practice were examined as well as recent literature. CONCLUSIONS.— Effective evaluation of liver biopsies with steatosis requires careful histologic examination and correlation with clinical history, particularly regarding medications, nutrition status, and alcohol use. Examples of uniform reporting, including appropriate use of the nonalcoholic steatohepatitis Clinical Research Network Activity Score, are provided.
Collapse
Affiliation(s)
- Mohamed Mostafa
- From the Department of Pathology, Medical College of Wisconsin, Milwaukee
| | - Amrou Abdelkader
- From the Department of Pathology, Medical College of Wisconsin, Milwaukee
| | - John J Evans
- From the Department of Pathology, Medical College of Wisconsin, Milwaukee
| | - Catherine E Hagen
- From the Department of Pathology, Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|
50
|
Gao B, Sakaguchi K, Matsuura K, Ogawa T, Kagawa Y, Kubo H, Shimizu T. In Vitro Production of Human Ballooned Hepatocytes in a Cell Sheet-based Three-dimensional Model. Tissue Eng Part A 2019; 26:93-101. [PMID: 31347470 DOI: 10.1089/ten.tea.2019.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ballooned hepatocytes (BH) are enlarged, abnormal hepatocytes, which are usually involved in liver diseases, in particular, nonalcoholic steatohepatitis (NASH). However, formation of BHs in vitro has been seldom reported. This study reported an in vitro strategy to produce human BHs in a cell sheet-based three-dimensional (3D) model where primary human hepatocytes were cocultured with normal human dermal fibroblasts. Enlargement of hepatocytes (2.3 times larger than normal, p < 0.01), loss of cytoplasmic keratin, appearance of Mallory-Denk bodies (MDBs), and abundant fat droplets accumulation were observed after only a few days culture. Additionally, ultrastructural characteristic findings of BHs in human NASH, including enlarged mitochondria with crystalline inclusions, dilated endoplasmic reticulum, and MDBs formation were also observed in the 3D model. Furthermore, pathophysiological features of human NASH, such as increased secretion of sonic hedgehog ligands and myofibroblast activation were found. This study reports in vitro production of human BHs by using a cell sheet-based 3D model. Similar histological, ultrastructural, and pathophysiological features to human NASH are discovered in this model. This model may facilitate study of BHs and increase our knowledge of the pathogenesis of human liver diseases. Impact Statement Human ballooned hepatocytes (BH), which are present in nonalcoholic steatohepatitis (NASH) are mainly studied based on human liver biopsies and animal models. In this study, human BHs can be successfully reproduced in a cell sheet-based in vitro model, which, as far as we know, is the first in vitro model that recapitulates so many histological and ultrastructural hallmarks of BHs found in human NASH. Additionally, this study also demonstrated presence of some NASH pathophysiological features. This model may facilitate the study of hepatocellular ballooning and prove beneficial in translational preclinical drug discovery in NASH.
Collapse
Affiliation(s)
- Botao Gao
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsuhisa Sakaguchi
- School of Creative Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Tetsuya Ogawa
- Ogino Memorial Laboratory, Nihon Kohden Co., Ltd., TWIns, Tokyo, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Co., Ltd., TWIns, Tokyo, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Co., Ltd., TWIns, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|