1
|
Medina C, García AH, Crespo FI, Toro FI, Mayora SJ, De Sanctis JB. A Synopsis of Hepatitis C Virus Treatments and Future Perspectives. Curr Issues Mol Biol 2023; 45:8255-8276. [PMID: 37886964 PMCID: PMC10605161 DOI: 10.3390/cimb45100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health problem. Chronic infection with HCV can lead to liver cirrhosis or cancer. Although some immune-competent individuals can clear the virus, others develop chronic HCV disease due to viral mutations or an impaired immune response. IFNs type I and III and the signal transduction induced by them are essential for a proper antiviral effect. Research on the viral cycle and immune escape mechanisms has formed the basis of therapeutic strategies to achieve a sustained virological response (SVR). The first therapies were based on IFNα; then, IFNα plus ribavirin (IFN-RBV); and then, pegylated-IFNα-RBV (PEGIFNα-RIV) to improve cytokine pharmacokinetics. However, the maximum SVR was 60%, and several significant side effects were observed, decreasing patients' treatment adherence. The development of direct-acting antivirals (DAAs) significantly enhanced the SVR (>90%), and the compounds were able to inhibit HCV replication without significant side effects, even in paediatric populations. The management of coinfected HBV-HCV and HCV-HIV patients has also improved based on DAA and PEG-IFNα-RBV (HBV-HCV). CD4 cells are crucial for an effective antiviral response. The IFNλ3, IL28B, TNF-α, IL-10, TLR-3, and TLR-9 gene polymorphisms are involved in viral clearance, therapeutic responses, and hepatic pathologies. Future research should focus on searching for strategies to circumvent resistance-associated substitution (RAS) to DAAs, develop new therapeutic schemes for different medical conditions, including organ transplant, and develop vaccines for long-lasting cellular and humoral responses with cross-protection against different HCV genotypes. The goal is to minimise the probability of HCV infection, HCV chronicity and hepatic carcinoma.
Collapse
Affiliation(s)
- Christian Medina
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Alexis Hipólito García
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Francis Isamarg Crespo
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Félix Isidro Toro
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Soriuska José Mayora
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, 779 00 Olomouc, Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Carriquí-Madroñal B, Lasswitz L, von Hahn T, Gerold G. Genetic and pharmacological perturbation of hepatitis-C virus entry. Curr Opin Virol 2023; 62:101362. [PMID: 37678113 DOI: 10.1016/j.coviro.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Hepatitis-C virus (HCV) chronically infects 58 million individuals worldwide with variable disease outcome. While a subfraction of individuals exposed to the virus clear the infection, the majority develop chronic infection if untreated. Another subfraction of chronically ill proceeds to severe liver disease. The underlying causes of this interindividual variability include genetic polymorphisms in interferon genes. Here, we review available data on the influence of genetic or pharmacological perturbation of HCV host dependency factors on the clinically observed interindividual differences in disease outcome. We focus on host factors mediating virus entry into human liver cells. We assess available data on genetic variants of the major entry factors scavenger receptor class-B type I, CD81, claudin-1, and occludin as well as pharmacological perturbation of these entry factors. We review cell culture experimental and clinical cohort study data and conclude that entry factor perturbation may contribute to disease outcome of hepatitis C.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Department of Gastroenterology, Hepatology and Interventional Endoscopy, Asklepios Hospital Barmbek, Semmelweis University, Campus Hamburg, 22307 Hamburg, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Arandhara VL, McClure CP, Tarr AW, Chappell S, Morgan K, Baumert TF, Irving WL, Ball JK. Scavenger receptor class B type I genetic variants associated with disease severity in chronic hepatitis C virus infection. J Med Virol 2023; 95:e28331. [PMID: 36415047 PMCID: PMC10100136 DOI: 10.1002/jmv.28331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Analysis of host genetic polymorphisms is an increasingly important tool for understanding and predicting pathogenesis and treatment response of viral diseases. The gene locus of scavenger receptor class B type I (SR-BI), encoding a cell entry factor and receptor for hepatitis C virus (HCV), contains several genetic polymorphisms. We applied a probe extension assay to determine the frequency of six single nucleotide polymorphisms (SNPs) within the SR-BI gene locus in 374 individuals with history of HCV infection. In addition, SR-BI messenger RNA (mRNA) levels were analyzed in liver biopsy specimens of chronically infected HCV subjects. The rs5888 variant allele T was present at a higher frequency in subjects with advanced fibrosis (χ2 , p = 0.016) and after adjusting for age, duration of infection and alcohol intake as confounding factors. Haplotype analysis of SNP frequencies showed that a haplotype consisting of rs61932577 variant allele C and rs5888 variant allele T was associated with an increased risk of advanced liver fibrosis (defined by an Ishak score 4-6) (adjusted odds ratio 2.81; 95% confidence interval 1.06-7.46. p = 0.038). Carriers of the rs5888 variant allele T displayed reduced SR-BI mRNA expression in liver biopsy specimens. In conclusion the rs5888 polymorphism variant is associated with decreased SR-BI expression and an increased risk of development of advanced fibrosis in chronic HCV infection. These findings provide further evidence for a role of SR-BI in HCV pathogenesis and provides a genetic marker for prediction of those infected individuals at greater risk of developing severe disease.
Collapse
Affiliation(s)
- Victoria L Arandhara
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Charles Patrick McClure
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kevin Morgan
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Inserm, Strasbourg, France.,IHU Strasbourg, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - William L Irving
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Wolfisberg R, Thorselius CE, Salinas E, Elrod E, Trivedi S, Nielsen L, Fahnøe U, Kapoor A, Grakoui A, Rice CM, Bukh J, Holmbeck K, Scheel TKH. Neutralization and receptor use of infectious culture-derived rat hepacivirus as a model for HCV. Hepatology 2022; 76:1506-1519. [PMID: 35445423 PMCID: PMC9585093 DOI: 10.1002/hep.32535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Lack of tractable immunocompetent animal models amenable to robust experimental challenge impedes vaccine efforts for HCV. Infection with rodent hepacivirus from Rattus norvegicus (RHV-rn1) in rats shares HCV-defining characteristics, including liver tropism, chronicity, and pathology. RHV in vitro cultivation would facilitate genetic studies on particle production, host factor interactions, and evaluation of antibody neutralization guiding HCV vaccine approaches. APPROACH AND RESULTS We report an infectious reverse genetic cell culture system for RHV-rn1 using highly permissive rat hepatoma cells and adaptive mutations in the E2, NS4B, and NS5A viral proteins. Cell culture-derived RHV-rn1 particles (RHVcc) share hallmark biophysical characteristics of HCV and are infectious in mice and rats. Culture adaptive mutations attenuated RHVcc in immunocompetent rats, and the mutations reverted following prolonged infection, but not in severe combined immunodeficiency (SCID) mice, suggesting that adaptive immune pressure is a primary driver of reversion. Accordingly, sera from RHVcc-infected SCID mice or the early acute phase of immunocompetent mice and rats were infectious in culture. We further established an in vitro RHVcc neutralization assay, and observed neutralizing activity of rat sera specifically from the chronic phase of infection. Finally, we found that scavenger receptor class B type I promoted RHV-rn1 entry in vitro and in vivo. CONCLUSIONS The RHV-rn1 infectious cell culture system enables studies of humoral immune responses against hepacivirus infection. Moreover, recapitulation of the entire RHV-rn1 infectious cycle in cell culture will facilitate reverse genetic studies and the exploration of tropism and virus-host interactions.
Collapse
Affiliation(s)
- Raphael Wolfisberg
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Caroline E. Thorselius
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Eduardo Salinas
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth Elrod
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Louise Nielsen
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Arash Grakoui
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Jens Bukh
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
5
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Powers HR, Sahoo D. SR-B1's Next Top Model: Structural Perspectives on the Functions of the HDL Receptor. Curr Atheroscler Rep 2022; 24:277-288. [PMID: 35107765 PMCID: PMC8809234 DOI: 10.1007/s11883-022-01001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The binding of high-density lipoprotein (HDL) to its primary receptor, scavenger receptor class B type 1 (SR-B1), is critical for lowering plasma cholesterol levels and reducing cardiovascular disease risk. This review provides novel insights into how the structural elements of SR-B1 drive efficient function with an emphasis on bidirectional cholesterol transport. RECENT FINDINGS We have generated a new homology model of full-length human SR-B1 based on the recent resolution of the partial structures of other class B scavenger receptors. Interrogating this model against previously published observations allows us to generate structurally informed hypotheses about SR-B1's ability to mediate HDL-cholesterol (HDL-C) transport. Furthermore, we provide a structural perspective as to why human variants of SR-B1 may result in impaired HDL-C clearance. A comprehensive understanding of SR-B1's structure-function relationships is critical to the development of therapeutic agents targeting SR-B1 and modulating cardiovascular disease risk.
Collapse
Affiliation(s)
- Hayley R. Powers
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| | - Daisy Sahoo
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Cardiovascular Center, H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
7
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
8
|
Interdependent Impact of Lipoprotein Receptors and Lipid-Lowering Drugs on HCV Infectivity. Cells 2021; 10:cells10071626. [PMID: 34209751 PMCID: PMC8303410 DOI: 10.3390/cells10071626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
The HCV replication cycle is tightly associated with host lipid metabolism: Lipoprotein receptors SR-B1 and LDLr promote entry of HCV, replication is associated with the formation of lipid-rich membranous organelles and infectious particle assembly highjacks the very-low-density lipoprotein (VLDL) secretory pathway. Hence, medications that interfere with the lipid metabolism of the cell, such as statins, may affect HCV infection. Here, we study the interplay between lipoprotein receptors, lipid homeostasis, and HCV infection by genetic and pharmacological interventions. We found that individual ablation of the lipoprotein receptors SR-B1 and LDLr did not drastically affect HCV entry, replication, or infection, but double lipoprotein receptor knock-outs significantly reduced HCV infection. Furthermore, we could show that this effect was neither due to altered expression of additional HCV entry factors nor caused by changes in cellular cholesterol content. Strikingly, whereas lipid-lowering drugs such as simvastatin or fenofibrate did not affect HCV entry or infection of immortalized hepatoma cells expressing SR-B1 and/or LDLr or primary human hepatocytes, ablation of these receptors rendered cells more susceptible to these drugs. Finally, we observed no significant differences between statin users and control groups with regards to HCV viral load in a cohort of HCV infected patients before and during HCV antiviral treatment. Interestingly, statin treatment, which blocks the mevalonate pathway leading to decreased cholesterol levels, was associated with mild but appreciable lower levels of liver damage markers before HCV therapy. Overall, our findings confirm the role of lipid homeostasis in HCV infection and highlight the importance of the mevalonate pathway in the HCV replication cycle.
Collapse
|
9
|
Huang L, Li H, Ye Z, Xu Q, Fu Q, Sun W, Qi W, Yue J. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLs-mediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg Microbes Infect 2021; 10:1257-1271. [PMID: 34102949 PMCID: PMC8238074 DOI: 10.1080/22221751.2021.1941276] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is an important pathogen that causes human and animal infectious diseases in Asia. So far, no effective antiviral agents are available to treat JEV infection. Here, we found that LDLR is a host factor required for JEV entry. Berbamine significantly decreases the level of LDLR at the plasma membrane by inducing the secretion of LDLR via extracellular vesicles (EVs), thereby inhibiting JEV infection. Mechanistically, berbamine blocks TRPMLs (Ca2+ permeable non-selective cation channels in endosomes and lysosomes) to compromise the endolysosomal trafficking of LDLR. This leads to the increased secretion of LDLR via EVs and the concomitant decrease in its level at the plasma membrane, thereby rendering cells resistant to JEV infection. Berbamine also protects mice from the lethal challenge of JEV. In summary, these results indicate that berbamine is an effective anti-JEV agent by preventing JEV entry.
Collapse
Affiliation(s)
- Lihong Huang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Huanan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Qiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qiang Fu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Wei Sun
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China.,City University of Hong Kong Chengdu Research Institute, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Zhang Z, Zhou Q, Liu R, Liu L, Shen WJ, Azhar S, Qu YF, Guo Z, Hu Z. The adaptor protein GIPC1 stabilizes the scavenger receptor SR-B1 and increases its cholesterol uptake. J Biol Chem 2021; 296:100616. [PMID: 33811857 PMCID: PMC8093464 DOI: 10.1016/j.jbc.2021.100616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein (HDL) receptor, is a membrane glycoprotein that mediates selective uptake of HDL-cholesterol and cholesterol ester (CE) into cells. SR-B1 is subject to posttranslational regulation; however, the underlying mechanisms still remain obscure. Here, we identified a novel SR-B1-interacting protein, GIPC1 (GAIP-interacting protein, C terminus 1) that interacts with SR-B1 and stabilizes SR-B1 by negative regulation of its proteasomal and lysosomal degradation pathways. The physiological interaction between SR-B1 and GIPC1 was supported by co-immunoprecipitation of wild-type and mutant GIPC1 constructs in SR-B1 ± GIPC1 overexpressing cells, in native liver cells, and in mouse liver tissues. Overexpression of GIPC1 increased endogenous SR-B1 protein levels, subsequently increasing selective HDL-cholesterol/CE uptake and cellular triglyceride (TG) and total cholesterol (TC) levels, whereas silencing of GIPC1 in the mouse liver was associated with blunted hepatic SR-B1 levels, elevated plasma TG and TC, and attenuated hepatic TG and TC content. A positive correlation was identified between GIPC1 and SR-B1 expression, and both expressions of GIPC1 and SR-B1 from human liver samples were inversely correlated with body mass index (BMI) from human subjects. We therefore conclude that GIPC1 plays a key role in the stability and function of SR-B1 and can also effectively regulate hepatic lipid and cholesterol metabolism. These findings expand our knowledge of the regulatory roles of GIPC1 and suggest that GIPC1 exerts a major effect on cell surface receptors such as SR-B1 and its associated hepatic lipid and cholesterol metabolic processes.
Collapse
Affiliation(s)
- Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
11
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Alberione MP, Moeller R, Kirui J, Ginkel C, Doepke M, Ströh LJ, Machtens JP, Pietschmann T, Gerold G. Single-nucleotide variants in human CD81 influence hepatitis C virus infection of hepatoma cells. Med Microbiol Immunol 2020; 209:499-514. [PMID: 32322956 PMCID: PMC7176029 DOI: 10.1007/s00430-020-00675-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
An estimated number of 71 million people are living with chronic hepatitis C virus (HCV) infection worldwide and 400,000 annual deaths are related to the infection. HCV entry into the hepatocytes is complex and involves several host factors. The tetraspanin human CD81 (hCD81) is one of the four essential entry factors and is composed of one large extracellular loop, one small extracellular loop, four transmembrane domains, one intracellular loop and two intracellular tails. The large extracellular loop interacts with the E2 glycoprotein of HCV. Regions outside the large extracellular loop (backbone) of hCD81 have a critical role in post-binding entry steps and determine susceptibility of hepatocytes to HCV. Here, we investigated the effect of five non-synonymous single-nucleotide variants in the backbone of hCD81 on HCV susceptibility. We generated cell lines that stably express the hCD81 variants and infected the cells using HCV pseudoparticles and cell culture-derived HCV. Our results show that all the tested hCD81 variants support HCV pseudoparticle entry with similar efficiency as wild-type hCD81. In contrast, variants A54V, V211M and M220I are less supportive to cell culture-derived HCV infection. This altered susceptibility is HCV genotype dependent and specifically affected the cell entry step. Our findings identify three hCD81 genetic variants that are impaired in their function as HCV host factors for specific viral genotypes. This study provides additional evidence that genetic host variation contributes to inter-individual differences in HCV infection and outcome.
Collapse
Affiliation(s)
- María Pía Alberione
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Jared Kirui
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Corinne Ginkel
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Mandy Doepke
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany.
- Department of Clinical Microbiology, Virology and Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|
14
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
15
|
Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, Ruckert C, Ebel GD, Morrison TE. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. eLife 2019; 8:e49163. [PMID: 31596239 PMCID: PMC6839921 DOI: 10.7554/elife.49163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Bennett J Davenport
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Kelsey C Haist
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Mary K McCarthy
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Nicholas A May
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Alexis Robison
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Claudia Ruckert
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Thomas E Morrison
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
16
|
Huang J, Yin H, Yin P, Jian X, Song S, Luan J, Zhang L. SR-BI Interactome Analysis Reveals a Proviral Role for UGGT1 in Hepatitis C Virus Entry. Front Microbiol 2019; 10:2043. [PMID: 31551978 PMCID: PMC6743029 DOI: 10.3389/fmicb.2019.02043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) entry is mediated by multiple co-receptors including scavenger receptor class B, type I (SR-BI). To elucidate the interactome of human SR-BI, we performed immunoprecipitation (IP) experiment coupled with mass spectrometry (MS) analysis. UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1), a key component of calnexin cycle involved in protein glycosylation, was identified as a SR-BI-interacting protein. Silencing UGGT1 or N-glycosylation inhibitor treatment reduced SR-BI protein level. Further study demonstrated that human SR-BI was N-glycosylated at nine asparagines. Moreover, HCV entry and infection were reduced by the absence of UGGT1. Interestingly, silencing SR-BI reduced protein stability of UGGT1 and protein quality control function mediated by UGGT1. Our finding not only identified UGGT1 as a HCV host factor, but also identified a UGGT1-mediated protein folding function for SR-BI.
Collapse
Affiliation(s)
- Jiazhao Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peiqi Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Jian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junwen Luan
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Çaykara B, Alsaadoni H, Hanım Pençe H, Pençe S, Yılmaz Aydoğan H, Şabançelebi S, Yıldız A. Effects of SR-BI rs5888 and rs4238001 variations on hypertension. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2018-0394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Background
Scavenger receptor class B, type I (SR-BI), involved in reverse cholesterol pathway, is a multilipoprotein receptor and capable of binding HDL, LDL and VLDL. SR-BI may contribute to the development of hypertension due to accumulation of cholesterol in the vessel wall via transporting lipoproteins. Therefore, it was aimed to investigate the relationship between SR-BI rs5888 and rs4238001 variants in the patient with hypertension.
Materials and methods
Seventy three subjects diagnosed with hypertension and 76 healthy subjects constituted the patient and control group, respectively. Genomic DNA was isolated from peripheral blood samples and a real-time quantitative polymerase chain reaction protocol was performed to detect variations of rs5888 and rs4238001. The results were analyzed with the SPSS 22 program and p < 0.05 was considered statistically significant.
Results and discussion
SR-BI rs4238001 variation did not show significant difference between patient and control group (p > 0.05). In the SR-BI rs5888 variation; normal homozygous CC and heterozygous CT carriers had an average 2-fold lower risk of hypertension than those carrying the TT genotype (p < 0.05).
Conclusion
SR-BI rs5888 TT variant may increase hypertension risk by reducing lipid transport to the liver from the vessel wall.
Collapse
|
18
|
Ou M, Huang R, Luo Q, Xiong L, Chen K, Wang Y. Characterisation of scavenger receptor class B type 1 in rare minnow (Gobiocypris rarus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:614-622. [PMID: 30991152 DOI: 10.1016/j.fsi.2019.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Scavenger receptor class B type 1 (SRB1) is a transmembrane protein belonging to the scavenger receptors (SRs) family and it plays an important role in viral entry. Not much is known on SRB1 in teleost fish. Grass carp reovirus (GCRV) cause huge economic losses in grass carp industry. In this study, rare minnow (Gobiocypris rarus) was used as a model fish to investigate the mechanism of GCRV infection, which is sensitive to GCRV. The structure of SRB1 gene in G. rarus (GrSRB1) was cloned and elucidated. GrSRB1 is composed of 13 exons and 12 introns, and its full-length cDNA is 2296 bp in length, with 1521 bp open reading frame (ORF) that encodes a 506 amino acid protein. The GrSRB1 protein is predicted to contain a typical CD36 domain and two transmembrane regions. In G. rarus, GrSRB1 is expressed strongly in the liver (L), intestines (I), brain (B) and muscle (M), while it is expressed poorly in the heart (H), middle kidney (MK), head kidney (HK) and gills (G). After infection with GCRV, GrSRB1 expression was up-regulated in main immune tissues during the early infection period. Moreover, co-immunoprecipitation assays revealed that GrSRB1 could interact with the outer capsid protein of GCRV (VP5 and VP7). These results suggest that GrSRB1 could be a receptor for GCRV. We have managed to characterize the GrSRB1 gene and provide evidence for its potential functions for GCRV entry into host cells.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
19
|
Guest JD, Pierce BG. Computational Modeling of Hepatitis C Virus Envelope Glycoprotein Structure and Recognition. Front Immunol 2018; 9:1117. [PMID: 29892287 PMCID: PMC5985375 DOI: 10.3389/fimmu.2018.01117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major global health concern, and though therapeutic options have improved, no vaccine is available despite decades of research. As HCV can rapidly mutate to evade the immune response, an effective HCV vaccine must rely on identification and characterization of sites critical for broad immune protection and viral neutralization. This knowledge depends on structural and mechanistic insights of the E1 and E2 envelope glycoproteins, which assemble as a heterodimer on the surface of the virion, engage coreceptors during host cell entry, and are the primary targets of antibodies. Due to the challenges in determining experimental structures, structural information on E1 and E2 and their interaction is relatively limited, providing opportunities to model the structures, interactions, and dynamics of these proteins. This review highlights efforts to model the E2 glycoprotein structure, the assembly of the functional E1E2 heterodimer, the structure and binding of human coreceptors, and recognition by key neutralizing antibodies. We also discuss a comparison of recently described models of full E1E2 heterodimer structures, a simulation of the dynamics of key epitope sites, and modeling glycosylation. These modeling efforts provide useful mechanistic hypotheses for further experimental studies of HCV envelope assembly, recognition, and viral fitness, and underscore the benefit of combining experimental and computational modeling approaches to reveal new insights. Additionally, computational design approaches have produced promising candidates for epitope-based vaccine immunogens that specifically target key epitopes, providing a possible avenue to optimize HCV vaccines versus using native glycoproteins. Advancing knowledge of HCV envelope structure and immune recognition is highly applicable toward the development of an effective vaccine for HCV and can provide lessons and insights relevant to modeling and characterizing other viruses.
Collapse
Affiliation(s)
- Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
20
|
Nafari M, Irani S, Vaziri F, Gharibzadeh S, Sakhaee F, Khazeni M, Kalhor N, Jamnani FR, Siadat SD, Fateh A. Correlation of CD81 and SCARB1 polymorphisms on virological responses in Iranian patients with chronic hepatitis C virus genotype 1. INFECTION GENETICS AND EVOLUTION 2018; 62:296-303. [PMID: 29715527 DOI: 10.1016/j.meegid.2018.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
Abstract
The cluster of differentiation 81 (CD81) and scavenger receptor class B member 1 (SCARB1) plays an important role in the entry of hepatitis C virus (HCV). We assessed the correlation of five single nucleotide polymorphisms (SNPs) of CD81 (rs800136, rs2651842, rs2522012, rs800146, and rs708564) and SCARB1 rs10846744 polymorphisms with treatment responses in 395 treatment-naïve patients with chronic HCV (CHC) genotype 1 treated with pegylated interferon-α and ribavirin (pegIFN-α/RBV). The frequency of rapid virologic response (RVR), complete early virologic response (cEVR) and sustained virologic response (SVR) were 57.2%, 55.2%, and 58.2%, respectively. RVR, cEVR, and SVR were significantly associated with CD81 rs800136 (CC), CD81 rs2651842 (AA), CD81 rs708564 (TT), and SCARB1 rs10846744 (CC). High rates of RVR, cEVR, and SVR were reported for the CD81 rs800136 (CC), CD81 rs2651842 (AA), and CD81 rs708564 (TT) genotypes when correlated with higher levels of low-density lipoprotein (LDL) and lower levels of high-density lipoprotein (HDL) as well as lower levels of HDL and LDL in the SCARB1 rs10846744 (CC) genotype. In addition, patients with GG genotype had higher fasting blood glucose (FBS) level than those with CC genotype. In conclusion, CD81 and SCARB1 SNPs may serve as powerful predictor factors for treatment responses in CHC patients, and this effect is correlated with serum lipoprotein and FBS levels.
Collapse
Affiliation(s)
- Milad Nafari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran; Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Khazeni
- Department of Virology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kalhor
- Stem Cell Laboratory, The Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Fatemeh Rahimi Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
NHERF1 and NHERF2 regulation of SR-B1 stability via ubiquitination and proteasome degradation. Biochem Biophys Res Commun 2017; 490:1168-1175. [DOI: 10.1016/j.bbrc.2017.06.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
22
|
Effect of IL15 rs10833 and SCARB1 rs10846744 on virologic responses in chronic hepatitis C patients treated with pegylated interferon-α and ribavirin. Gene 2017; 630:28-34. [PMID: 28827115 DOI: 10.1016/j.gene.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/22/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
The scavenger receptor type B class I (SCARBI) is known to be involved in the entry of hepatitis C virus (HCV) into the host, while interleukin-15 (IL15) is an important cytokine in both the innate and acquired immune responses against HCV infection. We investigated the association of IL15 rs10833 or SCARB1 rs10846744 polymorphisms with treatment responses in patients with chronic HCV (CHC). SCARB1 rs10846744 and IL15 rs10833 were identified in 365 treatment-naïve CHC patients through genotyping by TaqMan® Real-Time PCR and PCR-restriction fragment length polymorphism (RFLP), respectively. Of these 365 CHC treatment-naïve patients, rapid virological response (RVR), complete early virological response (cEVR), and sustained virological response (SVR) were observed in 53.2%, 76.4%, and 66.0% of the patients, respectively. Multivariate logistic regression analysis revealed that RVR was associated with sex (P=0.016), aspartate aminotransferase (AST) (P=0.026), IL15 rs10833 (AA) genotype (P<0.001), and SCARB1 rs10846744 (CC) genotype (P<0.001), while there was a relationship between alanine aminotransferase (ALT) (P=0.013) and IL15 rs10833 (AA) genotype (P<0.001) with cEVR. Age (<40years) (P=0.001), AST (P=0.029), ALP (P=0.028), HCV genotypes (P=0.005), HCV viral load (P=0.026), IL15 rs10833 (AA) genotype (P<0.001), and SCARB1 rs10846744 (CC) genotype (P=0.001) were strongly associated with SVR. In conclusion, the SCARB1 rs10846744 (CC) and IL15 rs10833 (AA) genotypes can be considered as powerful predictors of treatment responses in CHC patients treated with an interferon-based therapy.
Collapse
|
23
|
Colpitis CC, Baumert TF. SCARB1 variants and HCV infection: Host susceptibility is lost in translation. J Hepatol 2017; 67:211-213. [PMID: 28478119 PMCID: PMC7613423 DOI: 10.1016/j.jhep.2017.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Che C. Colpitis
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Division of Infection and Immunity, University College London, London, UK,Corresponding authors: Prof. Thomas F. Baumert, MD; Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France; phone: ++33 3 68 85 37 03, fax: ++33 3 68 85 37 24, and Dr. Che C. Colpitts; Division of Infection and Immunity, University College London, 90 Gower Street, London, UK WC1E 6BT;
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD; Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France; phone: ++33 3 68 85 37 03, fax: ++33 3 68 85 37 24, and Dr. Che C. Colpitts; Division of Infection and Immunity, University College London, 90 Gower Street, London, UK WC1E 6BT;
| |
Collapse
|