1
|
Gerba CP, Boone S, Nims RW, Maillard JY, Sattar SA, Rubino JR, McKinney J, Ijaz MK. Mechanisms of action of microbicides commonly used in infection prevention and control. Microbiol Mol Biol Rev 2024; 88:e0020522. [PMID: 38958456 PMCID: PMC11426018 DOI: 10.1128/mmbr.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.
Collapse
Affiliation(s)
- Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Stephanie Boone
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Syed A Sattar
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| |
Collapse
|
2
|
Kramer A, Seifert J, Abele-Horn M, Arvand M, Biever P, Blacky A, Buerke M, Ciesek S, Chaberny I, Deja M, Engelhart S, Eschberger D, Gruber B, Hedtmann A, Heider J, Hoyme UB, Jäkel C, Kalbe P, Luckhaupt H, Novotny A, Papan C, Piechota H, Pitten FA, Reinecke V, Schilling D, Schulz-Schaeffer W, Sunderdiek U. S2k-Guideline hand antisepsis and hand hygiene. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc42. [PMID: 39391860 PMCID: PMC11465089 DOI: 10.3205/dgkh000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The consensus-based guideline "hand antisepsis and hand hygiene" for Germany has the following sections: Prevention of nosocomial infections by hygienic hand antisepsis, prevention of surgical site infections by surgical hand antisepsis, infection prevention in the community by hand antisepsis in epidemic or pandemic situations, hand washing, selection of alcohol-based hand rubs and wash lotions, medical gloves and protective gloves, preconditions for hand hygiene, skin protection and skin care, quality assurance of the implementation of hand hygiene measures and legal aspects. The guideline was developed by the German Society for Hospital Hygiene in cooperation with 22 professional societies, 2 professional organizations, the German Care Council, the Federal Working Group for Self-Help of People with Disabilities and Chronic Illness and their Family Members, the General Accident Insurance Institution Austria and the German-speaking Interest Group of Infection Prevention Experts and Hospital Hygiene Consultants.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Mardjan Arvand
- Robert Koch Institute, Department Infectious Diseases, Unit Hospital Hygiene, Infection Prevention and Control, Berlin, Germany
| | - Paul Biever
- German Society for Internal Intensive Care and Emergency Medicine, Berlin, Germany
| | | | | | | | - Iris Chaberny
- German Society for Hygiene and Microbiology, Münster, Germany
| | - Maria Deja
- German Society of Anaesthesiology and Intensive Care Medicine, München, Germany
| | - Steffen Engelhart
- Society of Hygiene, Environmental and Public Health Sciences, Freiburg, Germany
| | - Dieter Eschberger
- Vienna Regional Office of the Austrian Workers' Compensation Insurance, Vienna, Austria
| | | | - Achim Hedtmann
- Professional Association of Orthopaedic and Trauma Specialists (BVOU), German Society for Orthopaedics and Trauma, Berlin, Germany
| | - Julia Heider
- German Society for Oral, Maxillofacial and Facial Surgery, Hofheim am Taunus, Germany
| | - Udo B. Hoyme
- Working Group for Infections and Infectious Immunology in the German Society for Gynecology and Obstetrics, Freiburg, Germany
| | - Christian Jäkel
- Dr. Jäkel, Medical Law, Pharmaceuticals Law, Medical Devices Law, Luebben, Germany
| | - Peter Kalbe
- Professional Association of German Surgery, Berlin, Germany
| | - Horst Luckhaupt
- German Society of Oto-Rhino-Laryngology, Head and Neck Surgery, Bonn, Germany
| | | | - Cihan Papan
- German Society for Pediatric Infectious Diseases, Berlin, Germany
| | | | | | - Veronika Reinecke
- German-speaking Interest Group of Experts for Infection Prevention and Consultants for Hospital Hygiene, Zurich, Switzerland
| | - Dieter Schilling
- German Society for Digestive and Metabolic Diseases, Berlin, Germany
| | - Walter Schulz-Schaeffer
- Department of Neuropathology, Medical Faculty of the Saarland University, Homburg/Saar, Germany
| | - Ulrich Sunderdiek
- German X-ray Society and German Society for Interventional Radiology and Minimally Invasive Therapy, Berlin. Germany
| |
Collapse
|
3
|
Wanguyun AP, Oishi W, Sano D. Sensitivity Evaluation of Enveloped and Non-enveloped Viruses to Ethanol Using Machine Learning: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-13. [PMID: 38049702 PMCID: PMC10963467 DOI: 10.1007/s12560-023-09571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023]
Abstract
Viral diseases are a severe public health issue worldwide. During the coronavirus pandemic, the use of alcohol-based sanitizers was recommended by WHO. Enveloped viruses are sensitive to ethanol, whereas non-enveloped viruses are considerably less sensitive. However, no quantitative analysis has been conducted to determine virus ethanol sensitivity and the important variables influencing the inactivation of viruses to ethanol. This study aimed to determine viruses' sensitivity to ethanol and the most important variables influencing the inactivation of viruses exposed to ethanol based on machine learning. We examined 37 peer-reviewed articles through a systematic search. Quantitative analysis was employed using a decision tree and random forest algorithms. Based on the decision tree, enveloped viruses required around ≥ 35% ethanol with an average contact time of at least 1 min, which reduced the average viral load by 4 log10. In non-enveloped viruses with and without organic matter, ≥ 77.50% and ≥ 65% ethanol with an extended contact time of ≥ 2 min were required for a 4 log10 viral reduction, respectively. Important variables were assessed using a random forest based on the percentage increases in mean square error (%IncMSE) and node purity (%IncNodePurity). Ethanol concentration was a more important variable with a higher %IncMSE and %IncNodePurity than contact time for the inactivation of enveloped and non-enveloped viruses with the available organic matter. Because specific guidelines for virus inactivation by ethanol are lacking, data analysis using machine learning is essential to gain insight from certain datasets. We provide new knowledge for determining guideline values related to the selection of ethanol concentration and contact time that effectively inactivate viruses.
Collapse
Affiliation(s)
- Aken Puti Wanguyun
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
4
|
Meister TL, Friesland M, Frericks N, Wetzke M, Haid S, Steinmann J, Todt D, Pietschmann T, Steinmann E. Virucidal activity of oral, hand, and surface disinfectants against respiratory syncytial virus. J Hosp Infect 2023; 141:25-32. [PMID: 37625461 DOI: 10.1016/j.jhin.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is known as a major cause of respiratory tract infection in adults and children. Human-to-human transmission occurs via droplets as well as direct and indirect contact (e.g. contaminated surfaces or hands of medical staff). Therefore, applicable hygiene measures and knowledge about viral inactivation are of utmost importance. AIM To elucidate the disinfection profile of RSV. METHODS The study evaluated the virucidal efficacy of oral rinses specifically designed for children, World Health Organization (WHO)-recommended hand-rub formulations, and ethanol, as well as 2-propanol against RSV in a quantitative suspension test (EN14476). The stability of RSV on stainless steel discs was assessed and its inactivation by different surface disinfectants (EN16777) investigated. FINDINGS All tested oral rinses except one reduced infectious viral titres to the lower limit of quantification. The two WHO-recommended hand-rub formulations as well as 30% ethanol and 2-propanol completely abolished the detection of infectious virus. Infectious RSV was recovered after several days on stainless steel discs. However, RSV was efficiently inactivated by all tested surface disinfectants based on alcohol, aldehyde, or hydrogen peroxide. CONCLUSION Oral rinses, all tested hand-rub formulations as well as surface inactivation reagents were sufficient for RSV inactivation in vitro.
Collapse
Affiliation(s)
- T L Meister
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - M Friesland
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - N Frericks
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - M Wetzke
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - S Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - J Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany; Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - D Todt
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - T Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - E Steinmann
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
5
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Zoonotic Avian Influenza and Mycobacterium tuberculosis. APPLIED BIOSAFETY 2023; 28:135-151. [PMID: 37736423 PMCID: PMC10510692 DOI: 10.1089/apb.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Introduction The Biosafety Research Road Map reviewed the scientific literature on a viral respiratory pathogen, avian influenza virus, and a bacterial respiratory pathogen, Mycobacterium tuberculosis. This project aims at identifying gaps in the data required to conduct evidence-based biorisk assessments, as described in Blacksell et al. One significant gap is the need for definitive data on M. tuberculosis sample aerosolization to guide the selection of engineering controls for diagnostic procedures. Methods The literature search focused on five areas: routes of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination methods. Results The available data regarding biosafety knowledge gaps and existing evidence have been collated and presented in Tables 1 and 2. The guidance sources on the appropriate use of biosafety cabinets for specific procedures with M. tuberculosis require clarification. Detecting vulnerabilities in the biorisk assessment for respiratory pathogens is essential to improve and develop laboratory biosafety in local and national systems.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization (WHO), Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
6
|
Chadwick PR, Trainor E, Marsden GL, Mills S, Chadwick C, O'Brien SJ, Evans CM, Mullender C, Strazds P, Turner S, Weston V, Toleman MS, de Barros C, Kontkowski G, Bak A. Guidelines for the management of norovirus outbreaks in acute and community health and social care settings. J Hosp Infect 2023:S0195-6701(23)00043-9. [PMID: 36796728 DOI: 10.1016/j.jhin.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Affiliation(s)
| | - Eamonn Trainor
- Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK.
| | - Gemma L Marsden
- Healthcare Infection Society, London, UK; Royal College of General Practitioners, London, UK
| | - Samuel Mills
- British Infection Association, Seafield, West Lothian, UK; Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Cariad M Evans
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Pixy Strazds
- Infection Prevention Society, London, UK; St Andrew's Healthcare, Northampton, UK
| | - Sarah Turner
- Infection Prevention Society, London, UK; Stockport Council, Stockport, UK
| | - Valya Weston
- Healthcare Infection Society, London, UK; Infection Prevention Society, London, UK; NHS England, London, UK
| | - Michelle S Toleman
- Healthcare Infection Society, London, UK; Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | - Aggie Bak
- Healthcare Infection Society, London, UK
| |
Collapse
|
7
|
Kampf G. Efficacy of biocidal agents and disinfectants against the monkeypox virus and other orthopoxviruses. J Hosp Infect 2022; 127:101-110. [PMID: 35777702 PMCID: PMC9534168 DOI: 10.1016/j.jhin.2022.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022]
Abstract
The number of human monkeypox virus infections is increasing in many countries. The typical mode of transmission is by direct contact. As orthopoxviruses may stay infectious on inanimate surfaces under laboratory conditions for up to 42 days, disinfection may be relevant in the surroundings of confirmed cases. The aim of this review was to evaluate published data on the antiviral efficacy of biocidal agents and disinfectants against the monkeypox virus and other orthopoxviruses. A Medline search was carried out on 5th June 2022. The terms 'monkeypox virus', 'poxvirus' and 'orthopoxvirus' were used in combination with 'disinfection'. Publications were included and results were extracted where they provided original data on any orthopoxvirus regarding its inactivation by disinfectants. Vaccinia viruses could be inactivated by at least 4 log10 in suspension tests and on artificially contaminated surfaces by 70% ethanol (≤1 min), 0.2% peracetic acid (≤10 min) and 1-10% of a probiotic cleaner (1 h), mostly shown with different types of organic load. Hydrogen peroxide (14.4%) and iodine (0.04-1%) were effective in suspension tests, sodium hypochlorite (0.25-2.5%; 1 min), 2% glutaraldehyde (10 min) and 0.55% orthophthalaldehyde (5 min) were effective on artificially contaminated surfaces. Copper (99.9%) was equally effective against vaccinia virus and monkeypox virus in 3 min. Disinfectants with efficacy data obtained in suspension tests and under practical conditions with different types of organic load resembling compounds of the blood, the respiratory tract and skin lesions are preferred for the inactivation of the monkeypox virus.
Collapse
Affiliation(s)
- G Kampf
- University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
8
|
Kramer A, Arvand M, Christiansen B, Dancer S, Eggers M, Exner M, Müller D, Mutters NT, Schwebke I, Pittet D. Ethanol is indispensable for virucidal hand antisepsis: memorandum from the alcohol-based hand rub (ABHR) Task Force, WHO Collaborating Centre on Patient Safety, and the Commission for Hospital Hygiene and Infection Prevention (KRINKO), Robert Koch Institute, Berlin, Germany. Antimicrob Resist Infect Control 2022; 11:93. [PMID: 35794648 PMCID: PMC9257567 DOI: 10.1186/s13756-022-01134-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The approval of ethanol by the Biocidal Products Regulation has been under evaluation since 2007. This follows concern over alcohol uptake from ethanol-based hand rubs (EBHR). If ethanol is classified as carcinogenic, mutagenic, or reprotoxic by the European Chemicals Agency (ECHA), then this would affect infection prevention and control practices. AIM A review was performed to prove that ethanol is toxicological uncritical and indispensable for hand antisepsis because of its unique activity against non-enveloped viruses and thus the resulting lack of alternatives. Therefore, the following main points are analyzed: The effectiveness of ethanol in hand hygiene, the evidence of ethanol at blood/tissue levels through hand hygiene in healthcare, and the evidence of toxicity of different blood/tissue ethanol levels and the non-comparability with alcoholic consumption and industrial exposure. RESULTS EBHR are essential for preventing infections caused by non-enveloped viruses, especially in healthcare, nursing homes, food industry and other areas. Propanols are effective against enveloped viruses as opposed to non-enveloped viruses but there are no other alternatives for virucidal hand antisepsis. Long-term ingestion of ethanol in the form of alcoholic beverages can cause tumours. However, lifetime exposure to ethanol from occupational exposure < 500 ppm does not significantly contribute to the cancer risk. Mutagenic effects were observed only at doses within the toxic range in animal studies. While reprotoxicity is linked with abuse of alcoholic beverages, there is no epidemiological evidence for this from EBHR use in healthcare facilities or from products containing ethanol in non-healthcare settings. CONCLUSION The body of evidence shows EBHRs have strong efficacy in killing non-enveloped viruses, whereas 1-propanol and 2-propanol do not kill non-enveloped viruses, that pose significant risk of infection. Ethanol absorbed through the skin during hand hygiene is similar to consumption of beverages with hidden ethanol content (< 0.5% v/v), such as apple juice or kefir. There is no risk of carcinogenicity, mutagenicity or reprotoxicity from repeated use of EBHR. Hence, the WHO Task Force strongly recommend retaining ethanol as an essential constituent in hand rubs for healthcare.
Collapse
Affiliation(s)
- Axel Kramer
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany. .,WHO Task Force Alcohol-Based Hand Rub, Zürich, Switzerland. .,Institute of Hygiene and Environmental Medicine University Medicine Greifswald, Walther-Rathenau-Straße 38, 17475, Greifswald, Germany.
| | - Mardjan Arvand
- Division Hospital Hygiene, Infection Prevention and Control, Robert-Koch Institute, Berlin, Germany
| | - Bärbel Christiansen
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Department of Hospital Hygiene, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephanie Dancer
- Department of Microbiology, University Hospital Hairmyres, Glasgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, Stuttgart, Germany
| | - Martin Exner
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Dieter Müller
- Department of Occupational Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Nico T Mutters
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Ingeborg Schwebke
- German Association for the Control of Virus Diseases (DVV e. V.), Berlin, Germany
| | - Didier Pittet
- Infection Control Program and WHO Collaborating Centre on Patient Safety, University of Geneva, Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
9
|
Behrendt P, Friesland M, Wißmann JE, Kinast V, Stahl Y, Praditya D, Hueffner L, Nörenberg PM, Bremer B, Maasoumy B, Steinmann J, Becker B, Paulmann D, Brill FHH, Steinmann J, Ulrich RG, Brüggemann Y, Wedemeyer H, Todt D, Steinmann E. Hepatitis E virus is highly resistant to alcohol-based disinfectants. J Hepatol 2022; 76:1062-1069. [PMID: 35085595 DOI: 10.1016/j.jhep.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide and is mainly transmitted via the fecal-oral route or through consumption of contaminated food products. Due to the lack of efficient cell culture systems for the propagation of HEV, limited data regarding its sensitivity to chemical disinfectants are available. Consequently, preventive and evidence-based hygienic guidelines on HEV disinfection are lacking. METHODS We used a robust HEV genotype 3 cell culture model which enables quantification of viral infection of quasi-enveloped and naked HEV particles. For HEV genotype 1 infections, we used the primary isolate Sar55 in a fecal suspension. Standardized quantitative suspension tests using end point dilution and large-volume plating were performed for the determination of virucidal activity of alcohols (1-propanol, 2-propanol, ethanol), WHO disinfectant formulations and 5 different commercial hand disinfectants against HEV. Iodixanol gradients were conducted to elucidate the influence of ethanol on quasi-enveloped viral particles. RESULTS Naked and quasi-enveloped HEV was resistant to alcohols as well as alcohol-based formulations recommended by the WHO. Of the tested commercial hand disinfectants only 1 product displayed virucidal activity against HEV. This activity could be linked to phosphoric acid as an essential ingredient. Finally, we observed that ethanol and possibly non-active alcohol-based disinfectants disrupt the quasi-envelope structure of HEV particles, while leaving the highly transmissible and infectious naked virions intact. CONCLUSIONS Different alcohols and alcohol-based hand disinfectants were insufficient to eliminate HEV infectivity with the exception of 1 commercial ethanol-based product that included phosphoric acid. These findings have major implications for the development of measures to reduce viral transmission in clinical practice. LAY SUMMARY Hepatitis E virus (HEV) showed a high level of resistance to alcohols and alcohol-based hand disinfectants. The addition of phosphoric acid to alcohol was essential for virucidal activity against HEV. This information should be used to guide improved hygiene measures for the prevention of HEV transmission.
Collapse
Affiliation(s)
- Patrick Behrendt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany.
| | - Martina Friesland
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jan-Erik Wißmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Yannick Stahl
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Lucas Hueffner
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Pia Maria Nörenberg
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Britta Becker
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Dajana Paulmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Florian H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Bremen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany; Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Clinic Nuernberg, Paracelsus Medical University, Nuremberg, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany and German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Insel Riems, Germany
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
10
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
11
|
Chaudhary NK, Guragain B, Rai S, Chaudhary N, Chaudhary R, Sachin KM, Lamichhane-Khadka R, Bhattarai A. Alcohol-Based Sanitizers: An Effective Means for Preventing the Spread of Contagious Viral Diseases Including COVID-19. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The global community is struggling with the highly contagious COVID-19. Returning to \normal life" now poses risks, and the use of appropriate protective measures has become necessary to continue daily life and protect public health. The main protective measures to prevent transmission of COVID-19 are masks, soaps and disinfectants. Because coronavirus is a \lipid-enveloped virus", it is very sensitive to lipid-dissolving chemicals and can therefore be effectively removed by washing hands sufficiently with soap and water. However, using an alcohol-based disinfectant is a more viable option for outdoor use. Alcohol-based disinfectants are inexpensive, immediately effective, easy to use and better tolerated by the skin compared to other disinfectants. WHO recommends disinfectants containing 75% isopropanol or 80% ethanol as highly effective in inactivating the SARS-CoV-2-virus. The current review discusses the role of alcohol-based hand sanitizers (ABHS) in preventing the spread of viruses, their side effects on human health, and suggests the use of alcohol-based sanitizers as potentially effective in combating the current epidemic.
Collapse
Affiliation(s)
- Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Biswash Guragain
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Summi Rai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| | - Nabina Chaudhary
- Dhaka Central International Medical College, Dhaka University , Dhaka Bangladesh
| | - Rahul Chaudhary
- Dhaka Central International Medical College, Dhaka University , Dhaka Bangladesh
| | - KM Sachin
- School of Chemical Sciences, Central University of Gujarat , Gandhinagar , Gujarat India
- Swarrnim Science College, Swarnim Startup and Innovation University , Gandhinagar , Gujarat , India
| | | | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (Tribhuvan University) , Biratnagar , Nepal
| |
Collapse
|
12
|
Sobolik JS, Newman KL, Jaykus LA, Bihn EA, Leon JS. Norovirus transmission mitigation strategies during simulated produce harvest and packing. Int J Food Microbiol 2021; 357:109365. [PMID: 34488004 PMCID: PMC8510003 DOI: 10.1016/j.ijfoodmicro.2021.109365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
In the agricultural setting, core global food safety elements, such as hand hygiene and worker furlough, should reduce the risk of norovirus contamination on fresh produce. However, the effect of these practices has not been characterized. Using a quantitative microbial risk model, we evaluated the individual and combined effect of farm-based hand hygiene and worker furlough practices on the maximum risk of norovirus infection from three produce commodities (open leaf lettuce, vine tomatoes, and raspberries). Specifically, we tested two scenarios where a harvester's and packer's norovirus infection status was: 1) assumed positive; or 2) assigned based on community norovirus prevalence estimates. In the first scenario with a norovirus-positive harvester and packer, none of the individual interventions modeled reduced produce contamination to below the norovirus infectious dose. However, combined interventions, particularly high handwashing compliance (100%) and efficacy (6 log10 virus removal achieved using soap and water for 30 s), reduced produce contamination to <1-82 residual virus. Translating produce contamination to maximum consumer infection risk, 100% handwashing with a 5 log10 virus removal was necessary to achieve an infection risk below the threshold of 0.032 infections per consumption event. When community-based norovirus prevalence estimates were applied to the harvester and packer, the single interventions of 100% handwashing with 3 log10 virus removal (average 0.02 infection risk per consumption event) or furlough of the packer (average 0.03 infection risk per consumption event) reduced maximum infection risk to below the 0.032 threshold for all commodities. Bundled interventions (worker furlough, 100% glove compliance, and 100% handwashing with 1-log10 virus reduction) resulted in a maximum risk of 0.02 per consumption event across all commodities. These results advance the evidence-base for global produce safety standards as effective norovirus contamination and risk mitigation strategies.
Collapse
Affiliation(s)
- Julia S Sobolik
- Emory University, Gangarosa Department of Environmental Health, Atlanta, GA 30322, USA.
| | - Kira L Newman
- Emory University, Hubert Department of Global Health, Atlanta, GA 30322, USA
| | - Lee-Ann Jaykus
- North Carolina State University, Food, Bioprocessing, & Nutrition Sciences, Raleigh, NC 27695, USA
| | - Elizabeth A Bihn
- Cornell University, Department of Food Science, Ithaca, NY 14853, USA
| | - Juan S Leon
- Emory University, Hubert Department of Global Health, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Juszkiewicz M, Walczak M, Woźniakowski G, Szczotka-Bochniarz A. Virucidal Activity of Plant Extracts against African Swine Fever Virus. Pathogens 2021; 10:1357. [PMID: 34832513 PMCID: PMC8624909 DOI: 10.3390/pathogens10111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever is one of the most dangerous and fatal swine diseases, described for the first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine nor treatment available. The only way to hinder further spread of the disease is by culling the affected herds and applying prevention based mainly on proper biosecurity. Due to growing awareness of the potential ASF threat among pig producers, disinfection processes are considered as one of the most important preventive measures. Currently, a variety of chemical compounds are applied for the disinfection of pig farms. Meanwhile, these chemicals may pose a potential risk, due to their toxic, irritant or corrosive effect. The aim of this study was to determine whether any plant-based natural compounds may show a virucidal effect against ASFV, and simultaneously be depleted of some of the side-effects typical for chemical compounds. Ideally, natural virucidal compounds should be safe for both humans and animals, biodegradable, easily available and inexpensive. Fourteen plant extracts were selected and screened for their virucidal effect against ASFV, using the suspension test inspired by the PN-EN 14675:2015 European Standard procedure. The results of our study showed that most of the tested plant extracts were ineffective against ASFV. Some extracts suspended in a hydroglycolic medium exhibited high virus titre reduction, but it was confirmed that the effect resulted from medium composition. However, a 1.05% peppermint extract showed high effectiveness against ASFV, reducing the virus titre by ≥4 log10, thus demonstrating that natural compounds used as virucidal agents could potentially be used in disinfection procedures, being both effective and harmless to humans and animals.
Collapse
Affiliation(s)
- Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
- Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland
| | - Anna Szczotka-Bochniarz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| |
Collapse
|
14
|
Respiratory virus deterrence induced by modified mask filter. PLoS One 2021; 16:e0257827. [PMID: 34591926 PMCID: PMC8483360 DOI: 10.1371/journal.pone.0257827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Airborne transmission of infectious respiratory pathogens is a significant health hazard for the general public as well as healthcare professionals. Face masks have been frequently utilized as safety measures to limit the transmission of these infectious aerosolized particles. However, the efficacy of face masks in reducing respiratory virus infectivity and pathogenicity is unknown. Improving the effectiveness of masks in blocking viruses is urgently needed. In this study, surgical mask filters were modified by coating the filters with 1, 3, or 5 M of sodium dihydrogen phosphate, and subsequently exposed to the aerosolized respiratory influenza viruses (A/H3N2, A/H5N1) generated by a nebulizer set. Mask filter modification significantly reduced the size and counts of filter pores, which enabled entrapment of 40-60% of aerosolized viruses (captured viruses) with more than 90% of the captured viruses losing their infectivity. Upon contact with the coated mask filters, both the captured viruses and the viruses that managed to bypass the filter pore (passed viruses) were found to be inactivated. Passed viruses demonstrated significantly reduced pathogenicity in mice as indicated by significantly reduced lung virus titers, bodyweight loss, and prolonged survival compared to bare control. These findings highlight the potential of modified mask filters for reducing viral activity and pathogenicity, which contributes to improving facial mask efficacy as well as limiting airborne pathogen transmission.
Collapse
|
15
|
Zulqarnain RM, Xin XL, Garg H, Ali R. Interaction aggregation operators to solve multi criteria decision making problem under pythagorean fuzzy soft environment. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-210098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we investigate the multi-criteria decision-making complications under Pythagorean fuzzy soft information. The Pythagorean fuzzy soft set (PFSS) is a proper extension of the Pythagorean fuzzy set (PFS) which discusses the parametrization of the attributes of alternatives. It is also a generalization of the intuitionistic fuzzy soft set (IFSS). The PFSS is used to precisely evaluate the deficiencies, anxiety, and hesitation in decision-making (DM). The most essential determination of the current study is to advance some operational laws along with aggregation operators (AOs) within the Pythagorean fuzzy soft environs such as Pythagorean fuzzy soft interaction weighted average (PFSIWA) and Pythagorean fuzzy soft interaction weighted geometric (PFSIWG) operators with their desirable features. Furthermore, a DM technique has been established based on the developed operators to solve multi-criteria decision-making (MCDM) problems. Moreover, an application of the projected method is presented for the selection of an effective hand sanitizer during the COVID-19 pandemic. A comparative analysis with the merits, effectivity, tractability, along with some available research deduces the effectiveness of this approach.
Collapse
Affiliation(s)
- Rana Muhammad Zulqarnain
- Department of Mathematics, University of Management and Technology, Lahore, Sialkot Campus, Pakistan
| | - Xiao Long Xin
- School of Mathematics, Northwest University, Xi’an, China
- School of Science, Xi’an Polytechnic University, Xi’an, China
| | - Harish Garg
- School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University), Patiala, Punjab, India
| | - Rifaqat Ali
- Department of Mathematics, College of Science and Arts, King Khalid University, Muhayil, Abha, KSA
| |
Collapse
|
16
|
Andal V, Lakshmipathy R, Jose D. Effect of sanitizer on obliteration of SARS -CoV2/COVID 19: A mini review. ACTA ACUST UNITED AC 2021; 55:264-266. [PMID: 34249617 PMCID: PMC8257430 DOI: 10.1016/j.matpr.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Corona virus is a respiratory virus which causes infectious Covid-19 (Corona Virus −2019) disease and globally the virus continues to pose major risks of mortality. It is lucid that close links are the key aspect for transitory of communicable Corona virus. Rapid research is in progress to identify prolific drugs and vaccine for Covid-19 however, it is a time consuming process. Social distancing and Sanitizers are helpful in combating virus and safeguarding the human health. Hand sanitizers are prolific when hands washing with soaps are not possible. Sanitizers are effective antibacterial agents and classified into two types as alcohol based and alcohol free. Among which alcohol based sanitizers are prospective in persuading the public needs. Efficient use of alcohol-based sanitizers during this epidemic season could significantly reduce the propagation of corona virus. This review aims at explaining the interactions of virus with hand sanitizers.
Collapse
Affiliation(s)
- V Andal
- Department of Chemistry, KCG College of Technology, Chennai 600 097, India
| | - R Lakshmipathy
- Department of Chemistry, KCG College of Technology, Chennai 600 097, India
| | - Deepa Jose
- Dept of Electronics and Communication Engineering, KCG College of Technology, Chennai 600 097, India
| |
Collapse
|
17
|
Martín-González N, Vieira Gonçalves L, Condezo GN, San Martín C, Rubiano M, Fallis I, Rubino JR, Ijaz MK, Maillard JY, De Pablo PJ. Virucidal Action Mechanism of Alcohol and Divalent Cations Against Human Adenovirus. Front Mol Biosci 2020; 7:570914. [PMID: 33392252 PMCID: PMC7773831 DOI: 10.3389/fmolb.2020.570914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/25/2020] [Indexed: 01/02/2023] Open
Abstract
Hygiene and disinfection practices play an important role at preventing spread of viral infections in household, industrial and clinical settings. Although formulations based on >70% ethanol are virucidal, there is a currently a need to reformulate products with much lower alcohol concentrations. It has been reported that zinc can increase the virucidal activity of alcohols, although the reasons for such potentiation is unclear. One approach in developing virucidal formulations is to understand the mechanisms of action of active ingredients and formulation excipients. Here, we investigated the virucidal activity of alcohol (40% w/v) and zinc sulfate (0.1% w/v) combinations and their impact on a human adenovirus (HAdV) using, nucleic acid integrity assays, atomic force microscopy (AFM) and transmission electron microscopy (TEM). We observed no difference in virucidal activity (5 log10 reduction in 60 min) against between an ethanol only based formulation and a formulation combining ethanol and zinc salt. Furthermore, TEM imaging showed that the ethanol only formulation produced gross capsid damage, whilst zinc-based formulation or formulation combining both ethanol and zinc did not affect HAdV DNA. Unexpectedly, the addition of nickel salt (5 mM NiCl2) to the ethanol-zinc formulation contributed to a weakening of the capsid and alteration of the capsid mechanics exemplified by AFM imaging, together with structural capsid damage. The addition of zinc sulfate to the ethanol formulation did not add the formulation efficacy, but the unexpected mechanistic synergy between NiCl2 and the ethanol formulation opens an interesting perspective for the possible potentiation of an alcohol-based formulation. Furthermore, we show that AFM can be an important tool for understanding the mechanistic impact of virucidal formulation.
Collapse
Affiliation(s)
| | - Leonam Vieira Gonçalves
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Rubiano
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian Fallis
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Joseph R Rubino
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - M Khalid Ijaz
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Pedro J De Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Singh D, Joshi K, Samuel A, Patra J, Mahindroo N. Alcohol-based hand sanitisers as first line of defence against SARS-CoV-2: a review of biology, chemistry and formulations. Epidemiol Infect 2020; 148:e229. [PMID: 32988431 PMCID: PMC7550876 DOI: 10.1017/s0950268820002319] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
The pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a serious global public health issue. Since the start of the outbreak, the importance of hand-hygiene and respiratory protection to prevent the spread of the virus has been the prime focus for infection control. Health regulatory organisations have produced guidelines for the formulation of hand sanitisers to the manufacturing industries. This review summarises the studies on alcohol-based hand sanitisers and their disinfectant activity against SARS-CoV-2 and related viruses. The literature shows that the type and concentration of alcohol, formulation and nature of product, presence of excipients, applied volume, contact time and viral contamination load are critical factors that determine the effectiveness of hand sanitisers.
Collapse
Affiliation(s)
- D. Singh
- School of Health Sciences, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Premnagar, Dehradun248007, Uttarakhand, India
| | - K. Joshi
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - A. Samuel
- Department of Morphology, Surgery and Experimental Medicine, Universita'Degli Studi di Ferrara, Via Savonarola, 9, 44121Ferrara, FE, Italy
| | - J. Patra
- School of Health Sciences, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Premnagar, Dehradun248007, Uttarakhand, India
| | - N. Mahindroo
- School of Health Sciences, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Premnagar, Dehradun248007, Uttarakhand, India
| |
Collapse
|
19
|
Alcohol abrogates human norovirus infectivity in a pH-dependent manner. Sci Rep 2020; 10:15878. [PMID: 32985508 PMCID: PMC7522253 DOI: 10.1038/s41598-020-72609-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Alcohol-based disinfectants are widely used for the sanitization of microorganisms, especially those that cause infectious diseases, including viruses. However, since the germicidal mechanism of alcohol is lipolysis, alcohol-based disinfectants appear to have a minimal effect on non-enveloped viruses, such as noroviruses. Because there is no cultivation method for human norovirus (HuNoV) in vitro, murine norovirus and feline calicivirus have been used as surrogates for HuNoV to analyze the efficacy of disinfectant regents. Therefore, whether these disinfectants and their conditions are effective against HuNoVs remain unknown. In this study, we report that ethanol or isopropanol alone can sufficiently suppress GII.4 genotype HuNoV replication in human iPSC-derived intestinal epithelial cells. Additionally, pH adjustments and salting-out may contribute toward the virucidal effect of alcohol against other HuNoV genotypes and cancel the impediment of organic substance contamination, respectively. Therefore, similar to sodium hypochlorite, alcohol-based disinfectants containing electrolytes can be used for HuNoV inactivation.
Collapse
|
20
|
Jing JLJ, Pei Yi T, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3326. [PMID: 32403261 PMCID: PMC7246736 DOI: 10.3390/ijerph17093326] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.
Collapse
Affiliation(s)
- Jane Lee Jia Jing
- School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.L.J.J.); (T.P.Y.)
| | - Thong Pei Yi
- School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.L.J.J.); (T.P.Y.)
| | - Rajendran J. C. Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (R.J.C.B.); (J.R.M.)
| | - Jason R. McCarthy
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (R.J.C.B.); (J.R.M.)
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
21
|
Uzuner H, Karadenizli A, Er D, Osmani A. Investigation of the efficacy of alcohol-based solutions on adenovirus serotypes 8, 19 and 37, common causes of epidemic keratoconjunctivitis, after an adenovirus outbreak in hospital. J Hosp Infect 2018; 100:e30-e36. [DOI: 10.1016/j.jhin.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
22
|
Cook N, Bertrand I, Gantzer C, Pinto RM, Bosch A. Persistence of Hepatitis A Virus in Fresh Produce and Production Environments, and the Effect of Disinfection Procedures: A Review. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:253-262. [PMID: 29761412 DOI: 10.1007/s12560-018-9349-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Although information is limited, it is evident that prolonged persistence of infectious Hepatitis A virus (HAV) is a factor in the transmission of the virus via fresh produce. Consequently, data on persistence of the virus on produce, and in environments relevant to production, such as soils, water and surfaces, are required to fully understand the dynamics of transmission of HAV via foods. Furthermore, information on effective disinfection procedures is necessary to implement effective post-harvest control measures. This review summarises current information on HAV persistence in fresh produce and on relevant disinfection procedures. On vegetables, HAV can remain infectious for several days; on frozen berries, it can persist for several months. HAV can remain infectious on surfaces for months, depending on temperature and relative humidity, and can survive desiccation. It can survive for several hours on hands. Washing hands can remove the virus, but further data are required on the appropriate procedure. Chlorination is effective in water, but not when HAV is associated with foodstuffs. Bleach and other sodium hypochlorite disinfectants at high concentrations can reduce HAV on surfaces, but are not suitable for use on fresh produce. There is only limited information on the effects of heating regimes used in the food industry on HAV. HAV is resistant to mild pasteurisation. Some food components, e.g. fats and sugars, can increase the virus' resistance to higher temperatures. HAV is completely eliminated by boiling. Quantitative prevalence data are needed to allow the setting of appropriate disinfection log reduction targets for fresh produce.
Collapse
Affiliation(s)
- N Cook
- Food and Environment Research Agency, York, UK.
- Jorvik Food and Environmental Virology Ltd., York, UK.
| | - I Bertrand
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, 54000, Nancy, France
- CNRS, LCPME, UMR 7564, 54000, Nancy, France
- Institut Jean Barriol, Université de Lorraine, Faculté des Sciences et Technologies, 54506, Vandœuvre-lès-Nancy, France
| | - C Gantzer
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, 54000, Nancy, France
- CNRS, LCPME, UMR 7564, 54000, Nancy, France
- Institut Jean Barriol, Université de Lorraine, Faculté des Sciences et Technologies, 54506, Vandœuvre-lès-Nancy, France
| | - R M Pinto
- University of Barcelona, Barcelona, Spain
| | - A Bosch
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Kampf G. Efficacy of ethanol against viruses in hand disinfection. J Hosp Infect 2018; 98:331-338. [PMID: 28882643 PMCID: PMC7132458 DOI: 10.1016/j.jhin.2017.08.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
Ethanol is used worldwide in healthcare facilities for hand rubbing. It has been reported to have a stronger and broader virucidal activity compared with propanols. The aim of this review was to describe the spectrum of virucidal activity of ethanol in solution or as commercially available products. A systematic search was conducted. Studies were selected when they contained original data on reduction of viral infectivity from suspension tests (49 studies) and contaminated hands (17 studies). Ethanol at 80% was highly effective against all 21 tested, enveloped viruses within 30 s. Murine norovirus and adenovirus type 5 are usually inactivated by ethanol between 70% and 90% in 30 s whereas poliovirus type 1 was often found to be too resistant except for ethanol at 95% (all test viruses of EN 14476). Ethanol at 80% is unlikely to be sufficiently effective against poliovirus, calicivirus (FCV), polyomavirus, hepatitis A virus (HAV) and foot-and-mouth disease virus (FMDV). The spectrum of virucidal activity of ethanol at 95%, however, covers the majority of clinically relevant viruses. Additional acids can substantially improve the virucidal activity of ethanol at lower concentrations against, e.g. poliovirus, FCV, polyomavirus and FMDV although selected viruses such as HAV may still be too resistant. The selection of a suitable virucidal hand rub should be based on the viruses most prevalent in a unit and on the user acceptability of the product under frequent-use conditions.
Collapse
Affiliation(s)
- G Kampf
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Greifswald, Germany.
| |
Collapse
|
24
|
Lee YH, Jang YH, Kim YS, Kim J, Seong BL. Evaluation of green tea extract as a safe personal hygiene against viral infections. J Biol Eng 2018; 12:1. [PMID: 29339972 PMCID: PMC5759362 DOI: 10.1186/s13036-017-0092-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background Viral infections often pose tremendous public health concerns as well as economic burdens. Despite the availability of vaccines or antiviral drugs, personal hygiene is considered as effective means as the first-hand measure against viral infections. The green tea catechins, in particular, epigallocatechin-3-gallate (EGCG), are known to exert potent antiviral activity. In this study, we evaluated the green tea extract as a safe personal hygiene against viral infections. Results Using the influenza virus A/Puerto Rico/8/34 (H1N1) as a model, we examined the duration of the viral inactivating activity of green tea extract (GTE) under prolonged storage at various temperature conditions. Even after the storage for 56 days at different temperatures, 0.1% GTE completely inactivated 106 PFU of the virus (6 log10 reduction), and 0.01% and 0.05% GTE resulted in 2 log10 reduction of the viral titers. When supplemented with 2% citric acid, 0.1% sodium benzoate, and 0.2% ascorbic acid as anti-oxidant, the inactivating activity of GTE was temporarily compromised during earlier times of storage. However, the antiviral activity of the GTE was steadily recovered up to similar levels with those of the same concentrations of GTE without the supplements, effectively prolonging the duration of the virucidal function over extended period. Cryo-EM and DLS analyses showed a slight increase in the overall size of virus particles by GTE treatment. The results suggest that the virucidal activity of GTE is mediated by oxidative crosslinking of catechins to the viral proteins and the change of physical properties of viral membranes. Conclusions The durability of antiviral effects of GTE was examined as solution type and powder types over extended periods at various temperature conditions using human influenza A/H1N1 virus. GTE with supplements demonstrated potent viral inactivating activity, resulting in greater than 4 log10 reduction of viral titers even after storage for up to two months at a wide range of temperatures. These data suggest that GTE-based antiviral agents could be formulated as a safe and environmentally friendly personal hygiene against viral infections.
Collapse
Affiliation(s)
- Yun Ha Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinku Kim
- Department of Biological and Chemical Engineering, College of Science and Technology, Hongik University, Sejong, South Korea.,Peachchem Co. Ltd., Sejong, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
25
|
Duret S, Pouillot R, Fanaselle W, Papafragkou E, Liggans G, Williams L, Van Doren JM. Quantitative Risk Assessment of Norovirus Transmission in Food Establishments: Evaluating the Impact of Intervention Strategies and Food Employee Behavior on the Risk Associated with Norovirus in Foods. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:2080-2106. [PMID: 28247943 PMCID: PMC6032842 DOI: 10.1111/risa.12758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
We developed a quantitative risk assessment model using a discrete event framework to quantify and study the risk associated with norovirus transmission to consumers through food contaminated by infected food employees in a retail food setting. This study focused on the impact of ill food workers experiencing symptoms of diarrhea and vomiting and potential control measures for the transmission of norovirus to foods. The model examined the behavior of food employees regarding exclusion from work while ill and after symptom resolution and preventive measures limiting food contamination during preparation. The mean numbers of infected customers estimated for 21 scenarios were compared to the estimate for a baseline scenario representing current practices. Results show that prevention strategies examined could not prevent norovirus transmission to food when a symptomatic employee was present in the food establishment. Compliance with exclusion from work of symptomatic food employees is thus critical, with an estimated range of 75-226% of the baseline mean for full to no compliance, respectively. Results also suggest that efficient handwashing, handwashing frequency associated with gloving compliance, and elimination of contact between hands, faucets, and door handles in restrooms reduced the mean number of infected customers to 58%, 62%, and 75% of the baseline, respectively. This study provides quantitative data to evaluate the relative efficacy of policy and practices at retail to reduce norovirus illnesses and provides new insights into the interactions and interplay of prevention strategies and compliance in reducing transmission of foodborne norovirus.
Collapse
Affiliation(s)
- Steven Duret
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Régis Pouillot
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Wendy Fanaselle
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Efstathia Papafragkou
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Girvin Liggans
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Laurie Williams
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| | - Jane M. Van Doren
- U.S. Food and Drug AdministrationCenter for Food Safety and Applied NutritionCollege ParkMDUSA
| |
Collapse
|
26
|
Sato J, Miki M, Kubota H, Hitomi J, Tokuda H, Todaka-Takai R, Katayama K. Effects of disinfectants against norovirus virus-like particles predict norovirus inactivation. Microbiol Immunol 2017; 60:609-16. [PMID: 27554301 DOI: 10.1111/1348-0421.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/10/2016] [Accepted: 08/20/2016] [Indexed: 01/18/2023]
Abstract
Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti-NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus-like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration-dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS-PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.
Collapse
Affiliation(s)
- Jun Sato
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Motohiro Miki
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Hiromi Kubota
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan.
| | - Jun Hitomi
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Hajime Tokuda
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Reiko Todaka-Takai
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan.
| |
Collapse
|
27
|
Nardello-Rataj V, Leclercq L. Aqueous solutions of didecyldimethylammonium chloride and octaethylene glycol monododecyl ether: Toward synergistic formulations against enveloped viruses. Int J Pharm 2016; 511:550-559. [PMID: 27452423 DOI: 10.1016/j.ijpharm.2016.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Micellization of di-n-decyldimethylammonium chloride, [DiC10][Cl], and octaethylene glycol monododecyl ether, C12E8, mixtures have been investigated by surface tension and conductivity measurements. From these results, various physicochemical and thermodynamic key parameters (e.g. micellar mole fraction of [DiC10][Cl], interaction parameter, free energy of micellization, etc.) have been evaluated and discussed in detail. The results prove high synergistic effect between the two surfactants. Based on these results, the virucidal activity of an equimolar mixture of [DiC10][Cl] and C12E8 has been investigated. A marked synergism was observed on lipid-containing deoxyribonucleic and ribonucleic acid viruses, such as herpes virus, respiratory syncytial virus, and vaccinia viruses. In contrast, Coxsackievirus (non-enveloped virus) was not inactivated. These results support that the mechanism is based on the extraction of lipids and/or proteins from the envelope inside the mixed micelles. This extraction creates "holes" the size of which increases with concentration up to a specific value which triggers the virus inactivation. Such a mixture could be used to extend the spectrum of virucidal activity of the amphiphiles virucides commonly employed in numerous disinfectant solutions.
Collapse
Affiliation(s)
| | - Loïc Leclercq
- Univ. Lille, CNRS, ENSCL, UMR 8181UCCS Equipe CÿSCO, F-59000 Lille, France.
| |
Collapse
|
28
|
Strategies to Prevent Healthcare-Associated Infections through Hand Hygiene. Infect Control Hosp Epidemiol 2016; 35 Suppl 2:S155-78. [DOI: 10.1017/s0899823x00193900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previously published guidelines provide comprehensive recommendations for hand hygiene in healthcare facilities. The intent of this document is to highlight practical recommendations in a concise format, update recommendations with the most current scientific evidence, and elucidate topics that warrant clarification or more robust research. Additionally, this document is designed to assist healthcare facilities in implementing hand hygiene adherence improvement programs, including efforts to optimize hand hygiene product use, monitor and report back hand hygiene adherence data, and promote behavior change. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates.
Collapse
|
29
|
Ionidis G, Hübscher J, Jack T, Becker B, Bischoff B, Todt D, Hodasa V, Brill FHH, Steinmann E, Steinmann J. Development and virucidal activity of a novel alcohol-based hand disinfectant supplemented with urea and citric acid. BMC Infect Dis 2016; 16:77. [PMID: 26864562 PMCID: PMC4750209 DOI: 10.1186/s12879-016-1410-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 11/16/2022] Open
Abstract
Background Hand disinfectants are important for the prevention of virus transmission in the health care system and environment. The development of broad antiviral spectrum hand disinfectants with activity against enveloped and non-enveloped viruses is limited due to a small number of permissible active ingredients able to inactivate viruses. Methods A new hand disinfectant was developed based upon 69.39 % w/w ethanol and 3.69 % w/w 2-propanol. Different amounts of citric acid and urea were added in order to create a virucidal claim against poliovirus (PV), adenovirus type 5 (AdV) and polyomavirus SV40 (SV40) as non-enveloped test viruses in the presence of fetal calf serum (FCS) as soil load. The exposure time was fixed to 60 s. Results With the addition of 2.0 % citric acid and 2.0 % urea an activity against the three test viruses was achieved demonstrating a four log10 reduction of viral titers. Furthermore, this formulation was able to inactivate PV, AdV, SV40 and murine norovirus (MNV) in quantitative suspension assays according to German and European Guidelines within 60 s creating a virucidal claim. For inactivation of vaccinia virus and bovine viral diarrhea virus 15 s exposure time were needed to demonstrate a 4 log10 reduction resulting in a claim against enveloped viruses. Additionally, it is the first hand disinfectant passing a carrier test with AdV and MNV. Conclusions In conclusion, this new formulation with a low alcohol content, citric acid and urea is capable of inactivating all enveloped and non-enveloped viruses as indicated in current guidelines and thereby contributing as valuable addition to the hand disinfection portfolio.
Collapse
Affiliation(s)
- Georgios Ionidis
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Judith Hübscher
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Thomas Jack
- Oro Clean Chemie AG, Allmendstrasse 21, 8320, Fehraltorf, Switzerland.
| | - Britta Becker
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Birte Bischoff
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
| | - Veronika Hodasa
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Florian H H Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Norderoog 2, 28259, Bremen, Germany.
| |
Collapse
|
30
|
|
31
|
Cusi MG, Fanigliulo D. Virucidal activity of a novel non-alcoholic combination of disinfectants. J Chemother 2015; 28:140-2. [PMID: 26404483 DOI: 10.1179/1973947815y.0000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Maria Grazia Cusi
- a Department of Medical Biotechnologies, University of Siena , Italy
| | | |
Collapse
|
32
|
Ellingson K, Haas JP, Aiello AE, Kusek L, Maragakis LL, Olmsted RN, Perencevich E, Polgreen PM, Schweizer ML, Trexler P, VanAmringe M, Yokoe DS. Strategies to prevent healthcare-associated infections through hand hygiene. Infect Control Hosp Epidemiol 2015; 35:937-60. [PMID: 25026608 DOI: 10.1086/677145] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previously published guidelines provide comprehensive recommendations for hand hygiene in healthcare facilities. The intent of this document is to highlight practical recommendations in a concise format, update recommendations with the most current scientific evidence, and elucidate topics that warrant clarification or more robust research. Additionally, this document is designed to assist healthcare facilities in implementing hand hygiene adherence improvement programs, including efforts to optimize hand hygiene product use, monitor and report back hand hygiene adherence data, and promote behavior change. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates.
Collapse
|
33
|
Ellingson K, Haas JP, Aiello AE, Kusek L, Maragakis LL, Olmsted RN, Perencevich E, Polgreen PM, Schweizer ML, Trexler P, VanAmringe M, Yokoe DS. Strategies to Prevent Healthcare-Associated Infections through Hand Hygiene. Infect Control Hosp Epidemiol 2015. [DOI: 10.1086/651677] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previously published guidelines provide comprehensive recommendations for hand hygiene in healthcare facilities. The intent of this document is to highlight practical recommendations in a concise format, update recommendations with the most current scientific evidence, and elucidate topics that warrant clarification or more robust research. Additionally, this document is designed to assist healthcare facilities in implementing hand hygiene adherence improvement programs, including efforts to optimize hand hygiene product use, monitor and report back hand hygiene adherence data, and promote behavior change. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates.
Collapse
|
34
|
Salvage R, Hull CM, Kelly DE, Kelly SL. Use of 70% alcohol for the routine removal of microbial hard surface bioburden in life science cleanrooms. Future Microbiol 2014; 9:1123-30. [DOI: 10.2217/fmb.14.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Alcohol-based disinfectants are used for the removal of microbial hard surface bioburden in Life science Cleanrooms. Evidence for using formulations containing 70% alcohol has been lost over time but probably originates from historical observations of the activity of 60–70% alcohol. Tradition is no longer adequate to inform contemporary cleaning practice. We evaluated the efficacy of ethanol, isopropanol and trade-specific denatured alcohol 7 against vegetative Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Enterococcus hirae using standardized European Suspension and Hard Surface tests. All three alcohols were effective at lower concentrations than the 70% standard. This constitutes the first evaluation of disinfectant formulations containing ≤70% alcohol using standard methodology. The utility of trade-specific denatured alcohol #7 and evidence-based cleanroom practice warrant further validation.
Collapse
Affiliation(s)
- Richard Salvage
- MEDSA Group Ltd, Unit 2/3 RVB Park, Camffrwd Way, Swansea Enterprise Park, Swansea, SA6 8QD, Wales, UK
| | - Claire M Hull
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Diane E Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
35
|
Dependence of ethanol effects on protein charges. Int J Biol Macromol 2014; 68:169-72. [DOI: 10.1016/j.ijbiomac.2014.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
|
36
|
Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: potent high activity of manuka honey. Arch Med Res 2014; 45:359-65. [PMID: 24880005 DOI: 10.1016/j.arcmed.2014.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/14/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Influenza viruses are a serious threat to human health and cause thousands of deaths annually. Thus, there is an urgent requirement for the development of novel anti-influenza virus drugs. Therefore, the aim of this study was to evaluate the anti-influenza viral activity of honey from various sources. METHODS Antiviral activities of honey samples were evaluated using MDCK cells. To elucidate the possible mechanism of action of honey, plaque inhibition assays were used. Synergistic effects of honey with known anti-influenza virus drugs such as zanamivir or oseltamivir were tested. RESULTS Manuka honey efficiently inhibited influenza virus replication (IC50 = 3.6 ± 1.2 mg/mL; CC50 = 82.3 ± 2.2 mg/mL; selective index = 22.9), which is related to its virucidal effects. In the presence of 3.13 mg/mL manuka honey, the IC50 of zanamivir or oseltamivir was reduced to nearly 1/1000th of their single use. CONCLUSIONS Our results showed that honey, in general, and particularly manuka honey, has potent inhibitory activity against the influenza virus, demonstrating a potential medicinal value.
Collapse
Affiliation(s)
- Ken Watanabe
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ratika Rahmasari
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayaka Matsunaga
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Nobuyuki Kobayashi
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Central Research Center, AVSS Corporation, Nagasaki, Japan.
| |
Collapse
|
37
|
Tung G, Macinga D, Arbogast J, Jaykus LA. Efficacy of commonly used disinfectants for inactivation of human noroviruses and their surrogates. J Food Prot 2013; 76:1210-7. [PMID: 23834796 DOI: 10.4315/0362-028x.jfp-12-532] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human noroviruses (HuNoVs) are the most common cause of acute viral gastroenteritis worldwide and are a leading cause of foodborne disease. Their environmental persistence and purported resistance to disinfection undoubtedly contribute to their success as foodborne disease agents. The purpose of this study was to compare the efficacy of three commonly used disinfectant active ingredients against representative HuNoV strains and cultivable surrogates. Ethanol (50, 70, and 90%), sodium hypochlorite (5, 75, 250, 500, and 1,000 ppm), and a quaternary ammonium compound blend (at 0.1×, 1.0×, and 10× concentrations) were evaluated against two norovirus (NoV) genogroup II strains (GII.2 and GII.4) and two surrogates (feline calicivirus [FCV] and murine norovirus [MNV-1]). Virucidal suspension assays (30-s exposure) were conducted in accordance with ASTM International standard E-1052. Virus inactivation was quantified using reverse transcription quantitative PCR targeting the ORFI-ORFII junction (HuNoV), the RNA polymerase region (MNV-1), or the ORFI region (FCV); infectivity assays were also performed for MNV-1 and FCV. The two HuNoV strains and FCV were relatively resistant to ethanol (<0.5 log inactivation) irrespective of concentration, but MNV-1 was much more susceptible (log inactivation, ∼2.0 log at higher ethanol concentrations). Both HuNoV strains were more resistant to hypochlorite than were either of the animal surrogates, with the human strains requiring ≥500 ppm of hypochlorite to achieve statistically significant reduction (≥3.0 log) in virus concentration. All four viruses were resistant to inactivation (<0.5-log reduction) using the quaternary ammonium compound formulation at all concentrations tested. This study is novel in that it clearly demonstrates the relative ineffectiveness of common active disinfectant ingredients against HuNoV and highlights the fact that the cultivable surrogates do not always mimic HuNoV strains.
Collapse
Affiliation(s)
- Grace Tung
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695-7624, USA
| | | | | | | |
Collapse
|
38
|
Kampf G, Ostermeyer C, Werner HP, Suchomel M. Efficacy of hand rubs with a low alcohol concentration listed as effective by a national hospital hygiene society in Europe. Antimicrob Resist Infect Control 2013; 2:19. [PMID: 23759059 PMCID: PMC3689097 DOI: 10.1186/2047-2994-2-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Some national hospital hygiene societies in Europe such as the French society for hospital hygiene (SFHH) have positive lists of disinfectants. Few hand disinfectants with a rather low concentration of ethanol are listed by one society as effective for hygienic hand disinfection with 3 mL in 30 s including a virucidal activity in 30 s or 60 s, but published data allow having doubts. We have therefore evaluated the efficacy of three commonly used hand disinfectants according to EN 1500 and EN 14476. Methods Products 1 (Aniosgel 85 NPC) and 2 (Aniosrub 85 NPC) were based on 70% ethanol, product 3 (ClinoGel derma+) on 60% ethanol and 15% isopropanol (all w/w). They were tested in 3 laboratories according to EN 1500. Three mL were applied for 30 s and compared to the reference treatment of 2 × 3 mL applications of isopropanol 60% (v/v), on hands artificially contaminated with Escherichia coli. Each laboratory used a cross-over design against the reference alcohol with 15 or 20 volunteers. The virucidal activity of the products was evaluated (EN 14476) in one laboratory against adenovirus and poliovirus in different concentrations (80%, 90%, 97%), with different organic loads (none; clean conditions; phosphate-buffered saline) for up to 3 min. Results Product 1 revealed a mean log10-reduction of 3.87 ± 0.79 (laboratory 1) and 4.38 ± 0.87 (laboratory 2) which was significantly lower compared to the reference procedure (4.62 ± 0.89 and 5.00 ± 0.87). In laboratory 3 product 1 was inferior to the reference disinfection (4.06 ± 0.86 versus 4.99 ± 0.90). Product 2 revealed similar results. Product 3 fulfilled the requirements in one laboratory but failed in the two other. None of the three products was able to reduce viral infectivity of both adenovirus and poliovirus by 4 log10 steps in 3 min according to EN 14476. Conclusions Efficacy data mentioned in a positive list published by a society for hospital hygiene should still be regarded with caution if they quite obviously contradict published data on the same or similar products.
Collapse
Affiliation(s)
- Günter Kampf
- Bode Science Center, Bode Chemie GmbH, Melanchthonstraße 27, Hamburg, 22525, Germany ; Institut für Hygiene und Umweltmedizin, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 49a, Greifswald, 17489, Germany
| | | | - Heinz-Peter Werner
- HygCen International GmbH, Werksgelände 24, Bischofshofen, 5500, Austria
| | - Miranda Suchomel
- Institut für Hygiene und Angewandte Immunologie, Medizinische Universität Wien, Kinderspitalgasse 15, Vienna, 1090, Austria
| |
Collapse
|
39
|
Efficacy of alcohols and alcohol-based hand disinfectants against human enterovirus 71. J Hosp Infect 2013; 83:288-93. [PMID: 23399482 DOI: 10.1016/j.jhin.2012.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 12/16/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND Human enterovirus 71 (HEV71) infections are a significant public health threat in the Asia-Pacific region and occasionally cause severe neurological complications and even death in children. Although good hand hygiene is important for controlling infection, relevant data regarding the efficacy of widely used hand disinfectants against HEV71 are still lacking. AIM To investigate the virucidal activity of alcohols and alcohol-based hand disinfectants against HEV71. METHODS A common alcohol-based hand disinfectant (0.5% chlorhexidine gluconate + 70% isopropanol) as well as different concentrations of isopropanol and ethanol were tested for virucidal activity against HEV71 using the suspension and the fingerpad tests. FINDINGS In suspension tests, 85% and 95% ethanol achieved a mean log10 reduction factor in HEV71 titre of >3 and nearly 6, respectively, within 10 min. By contrast, 70% and 75% ethanol and any concentration of isopropanol (70-95%) produced a factor of <1 in this test after the same exposure time. In fingerpad tests, only 95% ethanol showed a mean log10 reduction factor of >4, while both 75% ethanol and a chlorhexidine gluconate-containing formula were ineffective against HEV71 with a mean log10 reduction factor of <1 after a 30 s exposure time. CONCLUSIONS Widely used alcohol-based hand disinfectants based on 70% ethanol or isopropanol have poor effectiveness against HEV71. Ninety-five percent ethanol is the most effective concentration, but still cannot fully inactivate HEV71 and may be impractical for use in many instances. Hand hygiene with alcohol-based hand disinfectants alone is not recommended for preventing HEV71 transmission.
Collapse
|
40
|
Comparison of virucidal activity of alcohol-based hand sanitizers versus antimicrobial hand soaps in vitro and in vivo. J Hosp Infect 2012; 82:277-80. [PMID: 23009803 DOI: 10.1016/j.jhin.2012.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Three ethanol-based sanitizers were compared with three antimicrobial liquid soaps for their efficacy to inactivate polio-, adeno-, vaccinia- and bovine viral diarrhoea virus (BVDV) as well as feline calicivirus (FCV) and murine norovirus (MNV) as surrogates for human norovirus in a suspension test. Additionally, sanitizers and soaps were examined against MNV in a modified fingerpad method. All sanitizers sufficiently inactivated the test viruses in the suspension test whereas two soaps were active only against vaccinia virus and BVDV. In the modified fingerpad test a povidone-iodine-containing soap was superior to the sanitizers whereas the other two soaps showed no activity.
Collapse
|
41
|
MacCannell T, Umscheid CA, Agarwal RK, Lee I, Kuntz G, Stevenson KB. Guideline for the prevention and control of norovirus gastroenteritis outbreaks in healthcare settings. Infect Control Hosp Epidemiol 2011; 32:939-69. [PMID: 21931246 DOI: 10.1086/662025] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Taranisia MacCannell
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu P, Macinga DR, Fernandez ML, Zapka C, Hsiao HM, Berger B, Arbogast JW, Moe CL. Comparison of the Activity of Alcohol-Based Handrubs Against Human Noroviruses Using the Fingerpad Method and Quantitative Real-Time PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2011; 3:35-42. [PMID: 35255643 DOI: 10.1007/s12560-011-9053-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 02/01/2011] [Indexed: 06/14/2023]
Abstract
Noroviruses (NoV) are the most common cause of acute nonbacterial gastroenteritis in the United States, and human hands play an important role in their transmission. Little is known about the efficacy of hand hygiene agents against these highly infectious pathogens. We investigated the activity of seven commercially available hand hygiene products against human noroviruses by in vivo fingerpad tests. The in vivo activity of alcohol-based handrubs ranged from 0.10 to 3.74 log reduction and was not solely dependent on alcohol concentration. A handrub (VF481) based on 70% ethanol and a blend of other skin care ingredients reduced Norwalk virus (NV) by 3.74 log in 15 s and provided significantly greater NV reduction than all the other products tested (P < 0.001). Furthermore, VF481 was the most effective product tested against the NoV genogroup II strains Snow Mountain virus (GII.2) and a GII.4 strain. These results demonstrate that alcohol by itself is not effective against NoV, but effective formulation of alcohol-based handrubs can achieve significant reduction of norovirus RNA on fingers.
Collapse
Affiliation(s)
- Pengbo Liu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 6043, Atlanta, GA, 30322, USA
| | | | - Marina L Fernandez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 6050, Atlanta, GA, 30322, USA
| | | | - Hui-Mien Hsiao
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 6041, Atlanta, GA, 30322, USA
| | - Brynn Berger
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | | | - Christine L Moe
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 6041, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Park GW, Barclay L, Macinga D, Charbonneau D, Pettigrew CA, Vinjé J. Comparative efficacy of seven hand sanitizers against murine norovirus, feline calicivirus, and GII.4 norovirus. J Food Prot 2010; 73:2232-8. [PMID: 21219741 DOI: 10.4315/0362-028x-73.12.2232] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contaminated hands or inanimate surfaces can act as a source of infection during outbreaks of human norovirus infection. We evaluated the virucidal efficacy of seven hand sanitizers containing various active ingredients, such as ethanol, triclosan, and chlorhexidine, and compared their effectiveness against feline calicivirus (FCV), murine norovirus (MNV), and a GII.4 norovirus fecal extract. We also tested the efficacy of 50, 70, and 90% of ethanol and isopropanol. Reduction of viral infectivity was measured by plaque assay, and the number of genomic copies was determined with a TaqMan real-time reverse transcription PCR assay. Based on the results of a quantitative suspension test, only one ethanol-based product (72% ethanol, pH 2.9) and one triclosan-based product (0.1% triclosan, pH 3.0) reduced the infectivity of both MNV and FCV (by >2.6 and ≥3.4 log units, respectively). Four of the seven products were effective against either MNV or FCV, whereas chlorhexidine was ineffective against both viruses. For these hand sanitizers, no correlation was found between reduced infectivity and decline of viral RNA. Ethanol and isopropanol concentrations ≥70% reduced the infectivity of MNV by ≥2.6 log units, whereas 50 and 70% ethanol reduced the infectivity of FCV by ≥2.2 log units after exposure for 5 min. The susceptibility of FCV to low pH and the relative high susceptibility of MNV to alcohols suggest that both surrogate viruses should be considered for in vitro testing of hand sanitizers.
Collapse
Affiliation(s)
- Geun Woo Park
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Todd ECD, Michaels BS, Holah J, Smith D, Greig JD, Bartleson CA. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 10. Alcohol-based antiseptics for hand disinfection and a comparison of their effectiveness with soaps. J Food Prot 2010; 73:2128-40. [PMID: 21219730 DOI: 10.4315/0362-028x-73.11.2128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alcohol compounds are increasingly used as a substitute for hand washing in health care environments and some public places because these compounds are easy to use and do not require water or hand drying materials. However, the effectiveness of these compounds depends on how much soil (bioburden) is present on the hands. Workers in health care environments and other public places must wash their hands before using antiseptics and/or wearing gloves. However, alcohol-based antiseptics, also called rubs and sanitizers, can be very effective for rapidly destroying some pathogens by the action of the aqueous alcohol solution without the need for water or drying with towels. Alcohol-based compounds seem to be the most effective treatment against gram-negative bacteria on lightly soiled hands, but antimicrobial soaps are as good or better when hands are more heavily contaminated. Instant sanitizers have no residual effect, unlike some antimicrobial soaps that retain antimicrobial activity after the hygienic action has been completed, e.g., after hand washing. Many alcohol-based hand rubs have antimicrobial agents added to them, but each formulation must be evaluated against the target pathogens in the environment of concern before being considered for use. Wipes also are widely used for quick cleanups of hands, other body parts, and surfaces. These wipes often contain alcohol and/or antimicrobial compounds and are used for personal hygiene where water is limited. However, antiseptics and wipes are not panaceas for every situation and are less effective in the presence of more than a light soil load and against most enteric viruses.
Collapse
Affiliation(s)
- Ewen C D Todd
- Department of Advertising, Public Relations and Retailing, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Nahar N, Sultana R, Gurley ES, Hossain MJ, Luby SP. Date palm sap collection: exploring opportunities to prevent Nipah transmission. ECOHEALTH 2010; 7:196-203. [PMID: 20617362 DOI: 10.1007/s10393-010-0320-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/08/2010] [Accepted: 05/03/2010] [Indexed: 05/11/2023]
Abstract
Nipah virus (NiV) infection is a seasonal disease in Bangladesh that coincides with the date palm sap collection season. Raw date palm sap is a delicacy to drink in Bengali culture. If fruit bats that are infected with NiV gain access to the sap for drinking, they might occasionally contaminate the sap through saliva and urine. In February 2007, we conducted a qualitative study in six villages, interviewing 27 date palm sap collectors (gachhis) within the geographical area where NiV outbreaks have occurred since 2001. Gachhis reported that bats pose a challenge to successful collection of quality sap, because bats drink and defecate into the sap which markedly reduces its value. They know some methods to prevent access by bats and other pests but do not use them consistently, because of lack of time and resources. Further studies to explore the effectiveness of these methods and to motivate gachhis to invest their time and money to use them could reduce the risk of human Nipah infection in Bangladesh.
Collapse
Affiliation(s)
- Nazmun Nahar
- Programme on Infectious Diseases and Vaccine Sciences (PIDVS), Health Systems and Infectious Diseases Division (HSID), International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh.
| | | | | | | | | |
Collapse
|
46
|
Steinmann J, Becker B, Bischoff B, Paulmann D, Friesland M, Pietschmann T, Steinmann J, Steinmann E. Virucidal activity of 2 alcohol-based formulations proposed as hand rubs by the World Health Organization. Am J Infect Control 2010; 38:66-8. [PMID: 19900740 DOI: 10.1016/j.ajic.2009.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
Abstract
The virucidal activity of 2 hand rubs proposed by the World Health Organization was studied in a quantitative suspension test for chemical disinfectants and antiseptics in human medicine (EN 14476). These formulations are recommended if no hand rubs with declared microbiological activity are available in health care settings. Formulation I, based on ethanol, inactivated bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV), adenovirus, and murine norovirus as a surrogate for human norovirus. Formulation II, based on isopropyl alcohol, was active only against adenovirus and enveloped viruses, such as BVDV and HCV. Both formulations failed to inactivate poliovirus by 4 log(10) steps within 300 seconds.
Collapse
|
47
|
Abstract
Hand, foot and mouth disease (HFMD) is generally a benign febrile exanthematous childhood disease caused by human enteroviruses. The route of transmission is postulated to be faeco-oral in developing areas but attributed more to respiratory droplet in developed areas. Transmission is facilitated by the prolonged environmental survival of these viruses and their greater resistance to biocides. Serious outbreaks with neurological and cardiopulmonary complications caused by human enterovirus 71 (HEV-71) seem to be commoner in the Asian Pacific region than elsewhere in the world. This geographical predilection is unexplained but could be related to the frequency of intra- and inter-typic genetic recombinations of the virus, the host populations' genetic predisposition, environmental hygiene, and standard of healthcare. Vaccine development could be hampered by the general mildness of the illness and rapid genetic evolution of the virus. Antivirals are not readily available; the role of intravenous immunoglobulin in the treatment of serious complications should be investigated. Monitoring of this disease and its epidemiology in the densely populated Asia Pacific epicentre is important for the detection of emerging epidemics due to enteroviruses.
Collapse
|
48
|
Ouellette GD, Buckley PE, O’Connell KP. Environmental Influences on the Relative Stability of Baculoviruses and Vaccinia Virus: A Review. EMERGING AND ENDEMIC PATHOGENS 2010. [DOI: 10.1007/978-90-481-9637-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Effectiveness of liquid soap and hand sanitizer against Norwalk virus on contaminated hands. Appl Environ Microbiol 2009; 76:394-9. [PMID: 19933337 DOI: 10.1128/aem.01729-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disinfection is an essential measure for interrupting human norovirus (HuNoV) transmission, but it is difficult to evaluate the efficacy of disinfectants due to the absence of a practicable cell culture system for these viruses. The purpose of this study was to screen sodium hypochlorite and ethanol for efficacy against Norwalk virus (NV) and expand the studies to evaluate the efficacy of antibacterial liquid soap and alcohol-based hand sanitizer for the inactivation of NV on human finger pads. Samples were tested by real-time reverse transcription-quantitative PCR (RT-qPCR) both with and without a prior RNase treatment. In suspension assay, sodium hypochlorite concentrations of >or=160 ppm effectively eliminated RT-qPCR detection signal, while ethanol, regardless of concentration, was relatively ineffective, giving at most a 0.5 log(10) reduction in genomic copies of NV cDNA. Using the American Society for Testing and Materials (ASTM) standard finger pad method and a modification thereof (with rubbing), we observed the greatest reduction in genomic copies of NV cDNA with the antibacterial liquid soap treatment (0.67 to 1.20 log(10) reduction) and water rinse only (0.58 to 1.58 log(10) reduction). The alcohol-based hand sanitizer was relatively ineffective, reducing the genomic copies of NV cDNA by only 0.14 to 0.34 log(10) compared to baseline. Although the concentrations of genomic copies of NV cDNA were consistently lower on finger pad eluates pretreated with RNase compared to those without prior RNase treatment, these differences were not statistically significant. Despite the promise of alcohol-based sanitizers for the control of pathogen transmission, they may be relatively ineffective against the HuNoV, reinforcing the need to develop and evaluate new products against this important group of viruses.
Collapse
|
50
|
Available data on notified biocides efficacy under field conditions (compared to sodium hydroxide and sodium carbonate). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.259r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|