1
|
Liu Y, Chen Y, Yang Z, Lin Y, Fu S, Chen J, Xu L, Liu T, Niu B, Huang Q, Liu H, Zheng C, Liao M, Jia W. Evolution and Antigenic Differentiation of Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis 2024; 30:1218-1222. [PMID: 38640498 PMCID: PMC11138980 DOI: 10.3201/eid3006.230530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
We characterized the evolution and molecular characteristics of avian influenza A(H7N9) viruses isolated in China during 2021-2023. We systematically analyzed the 10-year evolution of the hemagglutinin gene to determine the evolutionary branch. Our results showed recent antigenic drift, providing crucial clues for updating the H7N9 vaccine and disease prevention and control.
Collapse
MESH Headings
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- China/epidemiology
- Animals
- Evolution, Molecular
- Influenza in Birds/virology
- Influenza in Birds/epidemiology
- Phylogeny
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Birds/virology
- Antigenic Variation
Collapse
|
2
|
He J, Deng J, Wen X, Yan M, Liu Y, Zhou Y, Du X, Yang H, Peng X. Isolation and genetic characteristics of Novel H4N1 Avian Influenza viruses in ChongQing, China. Virol J 2024; 21:85. [PMID: 38600529 PMCID: PMC11008002 DOI: 10.1186/s12985-024-02352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Avian influenza viruses (AIVs) constitute significant zoonotic pathogens encompassing a broad spectrum of subtypes. Notably, the H4 subtype of AIVs has a pronounced ability to shift hosts. The escalating prevalence of the H4 subtype heightens the concern for its zoonotic potential, signaling an urgent need for vigilance. METHODS During the period from December 2021 to November 2023, we collected AIV-related environmental samples and assessed them using a comprehensive protocol that included nucleic acid testing, gene sequencing, isolation culture, and resequencing. RESULTS In this study, a total of 934 environmental samples were assessed, revealing a remarkably high detection rate (43.66%, 289/662) of AIV in the live poultry market. Notably, the H4N1 subtype AIV (cs2301) was isolated from the live poultry market and its complete genome sequence was successfully determined. Subsequent analysis revealed that cs2301, resulting from a reassortment event between wild and domesticated waterfowl, exhibits multiple mutations and demonstrates potential for host transfer. CONCLUSIONS Our research once again demonstrates the significant role of wild and domesticated waterfowl in the reassortment process of avian influenza virus, enriching the research on the H4 subtype of AIV, and emphasizing the importance of proactive monitoring the environment related to avian influenza virus.
Collapse
Affiliation(s)
- Jinyue He
- The affiliated Yongchuan hospital of Chongqing medical university, 402160, Yongchuan, China
| | - Jing Deng
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China.
| | - Xianxian Wen
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - Mengyuan Yan
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - Yang Liu
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - Yunqiu Zhou
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - XuBin Du
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - Han Yang
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China
| | - Xiaobin Peng
- Chongqing Changshou District Center for Disease Control and Prevention, 401220, Changshou, China.
| |
Collapse
|
3
|
Jackson LA, Stapleton JT, Walter EB, Chen WH, Rouphael NG, Anderson EJ, Neuzil KM, Winokur PL, Smith MJ, Schmader KE, Swamy GK, Thompson AB, Mulligan MJ, Rostad CA, Cross K, Tsong R, Wegel A, Roberts PC. Immunogenicity and safety of varying dosages of a fifth-wave influenza A/H7N9 inactivated vaccine given with and without AS03 adjuvant in healthy adults. Vaccine 2024; 42:295-309. [PMID: 38105137 PMCID: PMC10790638 DOI: 10.1016/j.vaccine.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Human infections with the avian influenza A(H7N9) virus were first reported in China in 2013 and continued to occur in annual waves. In the 2016/2017 fifth wave, Yangtze River Delta (YRD) lineage viruses, which differed antigenically from those of earlier waves, predominated. METHODS In this phase 2 double-blinded trial we randomized 720 adults ≥ 19 years of age to receive two injections of a YRD lineage inactivated A/Hong Kong/125/2017 fifth-wave H7N9 vaccine, given 21 days apart, at doses of 3.75, 7.5, and 15 µg of hemagglutinin (HA) with AS03A adjuvant and at doses of 15 and 45 µg of HA without adjuvant. RESULTS Two doses of adjuvanted vaccine were required to induce HA inhibition (HI) antibody titers ≥ 40 in most participants. After two doses of the 15 µg H7N9 formulation, given with or without AS03 adjuvant, the proportion achieving a HI titer ≥ 40 against the vaccine strain at 21 days after the second vaccination was 65 % (95 % CI, 57 %-73 %) and 0 % (95 % CI, 0 %-4%), respectively. Among those who received two doses of the 15 µg adjuvanted formulation the proportion with HI titer ≥ 40 at 21 days after the second vaccination was 76 % (95 % CI, 66 %-84 %) in those 19-64 years of age and 49 % (95 % CI, 37 %-62 %) in those ≥ 65 years of age. Responses to the adjuvanted vaccine formulations did not vary by HA content. Antibody responses declined over time and responses against drifted H7N9 strains were diminished. Overall, the vaccines were well tolerated but, as expected, adjuvanted vaccines were associated with more frequent solicited systemic and local adverse events. CONCLUSIONS AS03 adjuvant improved the immune responses to an inactivated fifth-wave H7N9 influenza vaccine, particularly in younger adults, but invoked lower responses to drifted H7N9 strains. These findings may inform future influenza pandemic preparedness strategies.
Collapse
Affiliation(s)
- Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
| | - Jack T Stapleton
- Departments of Internal Medicine and Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan J Anderson
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia L Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Smith
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine and GRECC, Durham VA Health Care System, Durham, NC, USA
| | - Geeta K Swamy
- Duke Human Vaccine Institute and Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Amelia B Thompson
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Mark J Mulligan
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina A Rostad
- Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Xu SM, Chang LW, Tsai CY, Liu WL, Li D, Li SS, Li XM, Xu PS. Safety, tolerability, and pharmacokinetics of TG-1000, a new molecular entity against influenza virus: first-in-human study. Front Pharmacol 2023; 14:1272466. [PMID: 38027026 PMCID: PMC10646326 DOI: 10.3389/fphar.2023.1272466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background: The cap-snatching mechanism of influenza virus mRNA transcription is strongly suppressed by TG-1000, a prodrug rapidly metabolized into TG-0527, is a potent cap-dependent nucleic acid endonuclease inhibitor. Herein, we aimed to assess the safety, tolerability, and pharmacokinetics of TG-1000 in healthy participants and the effect of food on the pharmacokinetics and safety of TG-1000. Method: The study was divided into 2 parts: Part A [Single Ascending-Dose (SAD) study, 10-160 mg] and Part B [Food-Effect (FE) study, 40 mg] were launched sequentially. The study included 66 participants for both investigations. We administered different TG-1000 capsules or placebo doses per the study protocol and collected blood samples for pharmacokinetic assessments at specific times. In plasma, TG-1000 and its active metabolite TG-0527 were assayed, and PK parameters were determined. Results: In SAD, the increase in AUC was less than the proportional increase in dose over the 20-160 mg dose range, while the increase in Cmax was proportional to the increase in dose. In the 10-160 mg dose range, T1/2, λz and Tmax of TG-0527 were dose-independent; and T1/2 and Tmax were within 33.8-39.4 h and 3.02-6 h, respectively. In FE, the AUC0-inf, AUC0-last, and Cmax of TG-0527 decreased by approximately 17.52%, 18.76%, and 41.35%, respectively, and the Tmax delay was around 1.50 h. No serious adverse events occurred during the studies. Conclusion: Overall, TG-1000 was well tolerated and exhibited an acceptable safety and PK profile, supporting further clinical investigation of TG-1000 for the treatment of influenza.
Collapse
Affiliation(s)
- Su-Mei Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | | | | | - Wan-Li Liu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Min Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ping-Sheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Parsons LM, Zoueva O, Grubbs G, Plant E, Jankowska E, Xie Y, Song H, Gao GF, Ye Z, Khurana S, Cipollo JF. Glycosylation of H4 influenza strains with pandemic potential and susceptibilities to lung surfactant SP-D. Front Mol Biosci 2023; 10:1207670. [PMID: 37383151 PMCID: PMC10296771 DOI: 10.3389/fmolb.2023.1207670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
We recently reported that members of group 1 influenza A virus (IAV) containing H2, H5, H6, and H11 hemagglutinins (HAs) are resistant to lung surfactant protein D (SP-D). H3 viruses, members of group 2 IAV, have high affinity for SP-D, which depends on the presence of high-mannose glycans at glycosite N165 on the head of HA. The low affinity of SP-D for the group 1 viruses is due to the presence of complex glycans at an analogous glycosite on the head of HA, and replacement with high-mannose glycan at this site evoked strong interaction with SP-D. Thus, if members of group 1 IAV were to make the zoonotic leap to humans, the pathogenicity of such strains could be problematic since SP-D, as a first-line innate immunity factor in respiratory tissues, could be ineffective as demonstrated in vitro. Here, we extend these studies to group 2 H4 viruses that are representative of those with specificity for avian or swine sialyl receptors, i.e., those with receptor-binding sites with either Q226 and G228 for avian or recent Q226L and G228S mutations that facilitate swine receptor specificity. The latter have increased pathogenicity potential in humans due to a switch from avian sialylα2,3 to sialylα2,6 glycan receptor preference. A better understanding of the potential action of SP-D against these strains will provide important information regarding the pandemic risk of such strains. Our glycomics and in vitro analyses of four H4 HAs reveal SP-D-favorable glycosylation patterns. Therefore, susceptibilities to this first-line innate immunity defense respiratory surfactant against such H4 viruses are high and align with H3 HA glycosylation.
Collapse
Affiliation(s)
- Lisa M. Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Olga Zoueva
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Viral Products, Silver Spring, MD, United States
| | - Gabrielle Grubbs
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Viral Products, Silver Spring, MD, United States
| | - Ewan Plant
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Viral Products, Silver Spring, MD, United States
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Yijia Xie
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhiping Ye
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Viral Products, Silver Spring, MD, United States
| | - Surender Khurana
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Viral Products, Silver Spring, MD, United States
| | - John F. Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| |
Collapse
|
6
|
Chen Y, Wang F, Yin L, Jiang H, Lu X, Bi Y, Zhang W, Shi Y, Burioni R, Tong Z, Song H, Qi J, Gao GF. Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nat Commun 2022; 13:7603. [PMID: 36494358 PMCID: PMC9734383 DOI: 10.1038/s41467-022-35236-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza infection continues are a persistent threat to public health. The identification and characterization of human broadly neutralizing antibodies can facilitate the development of antibody drugs and the design of universal influenza vaccines. Here, we present structural information for the human antibody PN-SIA28's heterosubtypic binding of hemagglutinin (HA) from circulating and emerging potential influenza A viruses (IAVs). Aside from group 1 and 2 conventional IAV HAs, PN-SIA28 also inhibits membrane fusion mediated by bat-origin H17 and H18 HAs. Crystallographic analyses of Fab alone or in complex with H1, H14, and H18 HA proteins reveal that PN-SIA28 binds to a highly conserved epitope in the fusion domain of different HAs, with the same CDRHs but different CDRLs for different HAs tested, distinguishing it from other structurally characterized anti-stem antibodies. The binding characteristics of PN-SIA28 provides information to support the design of increasingly potent engineered antibodies, antiviral drugs, and/or universal influenza vaccines.
Collapse
Affiliation(s)
- Yulu Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liwei Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihai Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xishan Lu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhai Bi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yi Shi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Roberto Burioni
- grid.15496.3f0000 0001 0439 0892Università Vita-Salute San Raffaele, Milano, 20132 Italy
| | - Zhou Tong
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hao Song
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianxun Qi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - George F. Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
The Origin of Internal Genes Contributes to the Replication and Transmission Fitness of H7N9 Avian Influenza Virus. J Virol 2022; 96:e0129022. [PMID: 36342296 PMCID: PMC9683025 DOI: 10.1128/jvi.01290-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.
Collapse
|
8
|
Petric PP, King J, Graf L, Pohlmann A, Beer M, Schwemmle M. Increased Polymerase Activity of Zoonotic H7N9 Allows Partial Escape from MxA. Viruses 2022; 14:v14112331. [PMID: 36366429 PMCID: PMC9695009 DOI: 10.3390/v14112331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
The interferon-induced myxovirus resistance protein A (MxA) is a potent restriction factor that prevents zoonotic infection from influenza A virus (IAV) subtype H7N9. Individuals expressing antivirally inactive MxA variants are highly susceptible to these infections. However, human-adapted IAVs have acquired specific mutations in the viral nucleoprotein (NP) that allow escape from MxA-mediated restriction but that have not been observed in MxA-sensitive, human H7N9 isolates. To date, it is unknown whether H7N9 can adapt to escape MxA-mediated restriction. To study this, we infected Rag2-knockout (Rag2-/-) mice with a defect in T and B cell maturation carrying a human MxA transgene (MxAtg/-Rag2-/-). In these mice, the virus could replicate for several weeks facilitating host adaptation. In MxAtg/-Rag2-/-, but not in Rag2-/- mice, the well-described mammalian adaptation E627K in the viral polymerase subunit PB2 was acquired, but no variants with MxA escape mutations in NP were detected. Utilizing reverse genetics, we could show that acquisition of PB2 E627K allowed partial evasion from MxA restriction in MxAtg/tg mice. However, pretreatment with type I interferon decreased viral replication in these mice, suggesting that PB2 E627K is not a true MxA escape mutation. Based on these results, we speculate that it might be difficult for H7N9 to acquire MxA escape mutations in the viral NP. This is consistent with previous findings showing that MxA escape mutations cause severe attenuation of IAVs of avian origin.
Collapse
Affiliation(s)
- Philipp P. Petric
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Laura Graf
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Mtambo SE, Kumalo HM. In Silico Drug Repurposing of FDA-Approved Drugs Highlighting Promacta as a Potential Inhibitor of H7N9 Influenza Virus. Molecules 2022; 27:molecules27144515. [PMID: 35889388 PMCID: PMC9321947 DOI: 10.3390/molecules27144515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.
Collapse
|
10
|
Gu J, Yan Y, Zeng Z, Wang W, Gao R, Hu J, Hu S, Wang X, Gu M, Liu X. Characterization of two chicken origin highly pathogenic H7N9 viruses isolated in northern China. Vet Microbiol 2022; 268:109394. [PMID: 35316713 DOI: 10.1016/j.vetmic.2022.109394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/08/2023]
Abstract
Since the national vaccination program was implemented with the H5/H7 bivalent vaccine in poultry in September 2017, the prevalence of H7N9 avian influenza viruses (AIVs) has been controlled effectively in China. However, highly pathogenic H7N9 viruses still exist, causing sporadic outbreaks especially in some regions of northern China. During our routine surveillance in poultry in 2020, we isolated two strains of H7N9 subtype AIV from breeder layer farms in northern China. We found that these two chicken-origin H7N9 isolates were both highly pathogenic (HP) with a four-amino-acid (KRTA) insertion and an I326V mutation (H3 numbering) in the cleavage site of HA to make the motif PEVPKRKRTAR↓GLF. Molecular markers associated with antigenic drift and enhanced pathogenicity in mammals and interspecies transmission were detected in both isolates. Remarkably, both strains gained the F102V and N157D mutations in their HA genes, which have never been reported before. Solid-phase direct binding assay showed that these two isolates both had dual-receptor binding characteristics, while thermal and acid stability assays indicated that they were relatively stable in high-temperature or acidic conditions. In addition, the animal experiments demonstrated that both strains were highly pathogenic to chickens but low pathogenic to mice. These results suggested that the evolution of H7N9 subtype AIV is still continuing, and they pose a potential threat to poultry and public health. Thus, attention should be paid to the importance of continual surveillance of the H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenli Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Yi C, Cai C, Cheng Z, Zhao Y, Yang X, Wu Y, Wang X, Jin Z, Xiang Y, Jin M, Han L, Zhang A. Genome-wide CRISPR-Cas9 screening identifies the CYTH2 host gene as a potential therapeutic target of influenza viral infection. Cell Rep 2022; 38:110559. [PMID: 35354039 DOI: 10.1016/j.celrep.2022.110559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
Host genes critical for viral infection are effective antiviral drug targets with tremendous potential due to their universal characteristics against different subtypes of viruses and minimization of drug resistance. Accordingly, we execute a genome-wide CRISPR-Cas9 screen with multiple rounds of survival selection. Enriched in this screen are several genes critical for host sialic acid biosynthesis and transportation, including the cytohesin 2 (CYTH2), tetratricopeptide repeat protein 24 (TTC24), and N-acetylneuraminate synthase (NANS), which we confirm are responsible for efficient influenza viral infection. Moreover, we reveal that CYTH2 is required for the early stage of influenza virus infection by mediating endosomal trafficking. Furthermore, CYTH2 antagonist SecinH3 blunts influenza virus infection in vivo. In summary, these data suggest that CYTH2 is an attractive target for developing host-directed antiviral drugs and therapeutics against influenza virus infection.
Collapse
Affiliation(s)
- Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Cong Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ze Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yifan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yue Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaoping Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Zehua Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200000, China
| | - Meilin Jin
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Sączyńska V, Romanik-Chruścielewska A, Florys-Jankowska K, Cecuda-Adamczewska V, Kęsik-Brodacka M. Chitosan-based formulation of hemagglutinin antigens for oculo-nasal booster vaccination of chickens against influenza viruses. Vet Immunol Immunopathol 2022; 247:110406. [DOI: 10.1016/j.vetimm.2022.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
|
13
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
14
|
Tang H, Kang J, Shen C, Wang Y, Robertson ID, Cai C, Edwards J, Huang B, Bruce M. Benefit-cost analysis of a H7N9 vaccination program in poultry in Guangxi, China. Prev Vet Med 2022; 200:105580. [PMID: 35032782 DOI: 10.1016/j.prevetmed.2022.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
China launched a H7N9 vaccination program in poultry, starting from the Guangxi and Guangdong provinces in July 2017, followed by other provinces in September 2017, as a response to a steep increase of H7N9 influenza human infections from September 2016. Since then, H5-H7 bivalent vaccine has been used in the nationwide avian influenza compulsory vaccination program to replace the existing H5N1 vaccine. However, the economic returns of the H7N9 vaccination program in China have never been adequately assessed. This study was designed to evaluate the economic value of the H7N9 vaccination program in Guangxi by assessing the benefits and costs of the program compared to not vaccinating against H7N9. A benefit-cost analysis (BCA) was undertaken to evaluate the adoption of a vaccination program against H7N9 in each of three consecutive years from July 2017 to June 2020 with the baseline scenario (the absence of H7N9 vaccination in the 12-month period July 2016 to June 2017). Both animal and public health perspectives were included in the BCA framework and took account of both the private and public sectors. Benefit-Cost Ratio (BCR) of the three-year H7N9 vaccination program was 18.6 (90 %PI: 15.4; 21.8), and total Net Present Values reached to CNY 1.63 billion (90 %PI: 1.37 billion; 1.89 billion). The extra revenue generated by the yellow broiler industry comprised 93.8 % of the total benefits after adoption of H7N9 vaccination program in Guangxi. While cost-savings in public health and animal health expenditure avoided were 3.6 % and 2.6 %, respectively. Total costs arising from adoption of the revised vaccination program over the three years were CNY 12.46 million (90 %PI: 11.49 million; 14.14 million), CNY 34.87 million (90 %PI: 31.88 million; 40.06 million), and CNY 44.28 million (90 %PI: 39.66 million; 52.27 million), respectively. Sensitivity analysis found the yellow broiler wholesale prices contributed 97.7 % of the variance of the total NPV of three vaccination years. The study results demonstrate the significant economic advantage of implementing a vaccination program against H7N9 in Guangxi. It also offers a new set of evidence to China's H7N9 vaccination policy and debates around economic values of conducting routine avian influenza vaccination.
Collapse
Affiliation(s)
- Hao Tang
- China Animal Health and Epidemiology Centre, Qingdao, China; School of Veterinary Medicine, Murdoch University, Perth, Australia.
| | - Jingli Kang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Chaojian Shen
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Youming Wang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Ian D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, Australia; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - John Edwards
- China Animal Health and Epidemiology Centre, Qingdao, China; School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Baoxu Huang
- China Animal Health and Epidemiology Centre, Qingdao, China
| | - Mieghan Bruce
- School of Veterinary Medicine, Murdoch University, Perth, Australia; Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
15
|
Zhou A, Zhang J, Li H, Xu Q, Chen Y, Li B, Liu W, Su G, Ren X, Lao G, Luo B, Liao M, Qi W. Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice. Virol Sin 2022; 37:38-47. [PMID: 35234617 PMCID: PMC8922421 DOI: 10.1016/j.virs.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
|
16
|
Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spectr 2021; 9:e0068721. [PMID: 34585985 PMCID: PMC8557892 DOI: 10.1128/spectrum.00687-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H7N9 avian influenza virus (AIV) is an emerging zoonotic pathogen, and it is necessary to develop a differentiating infected from vaccinated animals (DIVA) vaccine for the purpose of eradication. H7N9 subtype AIV hemagglutinin subunit 2 glycoprotein (HA2) peptide chips and antisera of different AIV subtypes were used to screen H7N9 AIV-specific epitopes. A selected specific epitope in the HA2 protein of H7N9 AIV strain A/Chicken/Huadong/JD/17 (JD/17) was replaced with an epitope from an H3N2 subtype AIV strain by reverse genetics. The protection and serological DIVA characteristics of the recombinant H7N9 AIV strain were evaluated. The results showed that a specific epitope on the HA2 protein of H7N9 AIV, named the H7-12 peptide, was successfully screened. The recombinant H7N9 AIV with a modified epitope in the HA2 protein was rescued and named A/Chicken/Huadong/JD-cHA/17 (JD-cHA/17). The HA titer of JD-cHA/17 was 10 log2, and the 50% egg infective dose (EID50) titer was 9.67 log10 EID50/ml. Inactivated JD-cHA/17 induced a hemagglutination inhibition (HI) antibody titer similar that of the parent strain and provided 100% protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. A peptide chip coated with H7-12 peptide was successfully applied to detect the seroconversion of chickens infected or vaccinated with JD/17, while there was no reactivity with antisera of chickens vaccinated with JD-cHA/17. Therefore, the marked vaccine candidate JD-cHA/17 can be used as a DIVA vaccine against H7N9 avian influenza when combined with an H7-12 peptide chip, making it a useful tool for stamping out the H7N9 AIV. IMPORTANCE DIVA vaccine is a useful tool for eradicating avian influenza, especially for highly pathogenic avian influenza. Several different DIVA strategies have been proposed for avian influenza inactivated whole-virus vaccine, involving the neuraminidase (NA), nonstructural protein 1 (NS1), matrix protein 2 ectodomain (M2e), or HA2 gene. However, virus reassortment, residual protein in a vaccine component, or reduced vaccine protection may limit the application of these DIVA strategies. Here, we constructed a novel chimeric H7N9 AIV, JD-cHA/17, that expressed the entire HA protein with substitution of an H3 AIV epitope in HA2. The chimeric H7N9 recombinant vaccine provides full clinical protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. Combined with a short-peptide-based microarray chip containing the H7N9 AIV epitope in HA2, our finding is expected to be useful as a marker vaccine designed for avian influenza.
Collapse
|
17
|
Molecular epidemiologic characteristics of hemagglutinin from five waves of avian influenza A (H7N9) virus infection, from 2013 to 2017, in Zhejiang Province, China. Arch Virol 2021; 166:3323-3332. [PMID: 34595553 PMCID: PMC8616886 DOI: 10.1007/s00705-021-05233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
There have been five waves of influenza A (H7N9) epidemics in Zhejiang Province between 2013 and 2017. Although the epidemiological characteristics of the five waves have been reported, the molecular genetics aspects, including the phylogeny, evolution, and mutation of hemagglutinin (HA), have not been systematically investigated. A total of 154 H7N9 samples from Zhejiang Province were collected between 2013 and 2017 and sequenced using an Ion Torrent Personal Genome Machine. The starting dates of the waves were 16 March 2013, 1 July 2013, 1 July 2014, 1 July 2015, and 1 July 2016. Single-nucleotide polymorphisms (SNPs) and amino acid mutations were counted after the HA sequences were aligned. The evolution of H7N9 matched the temporal order of the five waves, among which wave 3 played an important role. The 55 SNPs and 14 amino acid mutations with high frequency identified among the five waves revealed the dynamic occurrence of mutation in the process of viral dissemination. Wave 3 contributed greatly to the subsequent epidemic of waves 4 and 5 of H7N9. Compared with wave 1, wave 5 was characterized by more mutations, including A143V and R148K, two mutations that have been reported to weaken the immune response. In addition, some amino acid mutations were observed in wave 5 that led to more lineages. It is necessary to strengthen the surveillance of subsequent H7N9 influenza outbreaks.
Collapse
|
18
|
Substitution of I222L-E119V in neuraminidase from highly pathogenic avian influenza H7N9 virus exhibited synergistic resistance effect to oseltamivir in mice. Sci Rep 2021; 11:16293. [PMID: 34381119 PMCID: PMC8358046 DOI: 10.1038/s41598-021-95771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
That the high frequency and good replication capacity of strains with reduced susceptibility to neuraminidase inhibitors (NAIs) in highly pathogenic avian influenza H7N9 (HPAI H7N9) virus made it a significance to further study its drug resistance. HPAI H7N9 viruses bearing NA I222L or E119V substitution and two mutations of I222L-E119V as well as their NAIs-sensitive counterpart were generated by reverse genetics for NA inhibition test and replication capability evaluation in vitro. The attenuated H7N9/PR8 recombinant viruses were developed to study the pathogenicity and drug resistance brought by the above substitutions to mice. The IC50 fold change of oseltamivir to HPAI H7N9 with NA222L-119V is 306.34 times than that of its susceptible strain, and 3.5 times than the E119V mutant virus. HPAI H7N9 bearing NA222L-119V had good replication ability with peak value of more than 6log10 TCID50/ml in MDCK cells. H7N9/PR8 virus bearing NA222L-119V substitutions leaded to diffuse pneumonia, significant weight loss and fatality in mice. NA E119V made H7N9/PR8 virus resistant to oseltamivir, and I222L-E119V had synergistic resistance to oseltamivir in mice. Due to the good fitness of drug resistant strains of HPAI H7N9 virus, it is necessary to strengthen drug resistance surveillance and new drug research.
Collapse
|
19
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
20
|
Hu Z, Zhao J, Shi L, Hu J, Hu S, Liu X. Identification of the dominant non-neutralizing epitope in the haemagglutinin of H7N9 avian influenza virus. Virus Res 2021; 298:198409. [PMID: 33819520 DOI: 10.1016/j.virusres.2021.198409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
H7N9 avian influenza vaccines induce high levels of non-neutralizing (nonNeu) antibodies against the haemagglutinin (HA). However, the antigenic epitopes underlying this particular antibody response are still undefined. In this study, a panel of 13 monoclonal antibodies (mAbs) against the HA protein of H7N9 virus was generated and 12 of them had no hemagglutination inhibition and virus neutralizing activities. One linear epitope in the stalk (373-TAA-375) recognized by three mAbs and one conformational epitope in the head (220Q-225S-227G) targeted by one mAb were identified using peptide-based enzyme-linked immunosorbent assay (ELISA) and biopanning of phage display random peptide library. In addition, competition ELISA revealed that the mAb targeting the head epitope strongly inhibited HA-binding of chicken nonNeu anti-H7N9 sera, whereas lower inhibition was observed for chicken neutralizing antisera, indicating the immunodominance of this epitope in the elicitation of nonNeu antibodies. Moreover, the stalk epitope is conserved among the H1-H17 subtypes and the mAb recognizing this epitope exhibited cross-reactivity with different subtypes. In conclusion, two novel nonNeu epitopes in H7N9 HA were identified, and an epitope in the head was identified as an immunodominant epitope underlying the induction of nonNeu H7N9 antibodies. Our results add new knowledge to the molecular basis for antibody immunity against H7N9 vaccines and provide useful implications for vaccine design and modification.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
22
|
Fukuyama S, Iwatsuki-Horimoto K, Kiso M, Nakajima N, Gregg RW, Katsura H, Tomita Y, Maemura T, da Silva Lopes TJ, Watanabe T, Shoemaker JE, Hasegawa H, Yamayoshi S, Kawaoka Y. Pathogenesis of Influenza A(H7N9) Virus in Aged Nonhuman Primates. J Infect Dis 2021; 222:1155-1164. [PMID: 32433769 DOI: 10.1093/infdis/jiaa267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
The avian influenza A(H7N9) virus has caused high mortality rates in humans, especially in the elderly; however, little is known about the mechanistic basis for this. In the current study, we used nonhuman primates to evaluate the effect of aging on the pathogenicity of A(H7N9) virus. We observed that A(H7N9) virus infection of aged animals (defined as age 20-26 years) caused more severe symptoms than infection of young animals (defined as age 2-3 years). In aged animals, lung inflammation was weak and virus infection was sustained. Although cytokine and chemokine expression in the lungs of most aged animals was lower than that in the lungs of young animals, 1 aged animal showed severe symptoms and dysregulated proinflammatory cytokine and chemokine production. These results suggest that attenuated or dysregulated immune responses in aged animals are responsible for the severe symptoms observed among elderly patients infected with A(H7N9) virus.
Collapse
Affiliation(s)
- Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Robert W Gregg
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hiroaki Katsura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuriko Tomita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tiago Jose da Silva Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jason E Shoemaker
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Highly pathogenic avian influenza A/Guangdong/17SF003/2016 is immunogenic and induces cross-protection against antigenically divergent H7N9 viruses. NPJ Vaccines 2021; 6:30. [PMID: 33637737 PMCID: PMC7910538 DOI: 10.1038/s41541-021-00295-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 01/18/2023] Open
Abstract
Avian influenza A(H7N9) epidemics have a fatality rate of approximately 40%. Previous studies reported that low pathogenic avian influenza (LPAI)-derived candidate vaccine viruses (CVVs) are poorly immunogenic. Here, we assess the immunogenicity and efficacy of a highly pathogenic avian influenza (HPAI) A/Guangdong/17SF003/2016 (GD/16)-extracted hemagglutinin (eHA) vaccine. GD/16 eHA induces robust H7-specific antibody responses in mice with a marked adjuvant antigen-sparing effect. Mice immunized with adjuvanted GD/16 eHA are protected from the lethal LPAI and HPAI H7N9 challenges, in stark contrast to low antibody titers and high mortality in mice receiving adjuvanted LPAI H7 eHAs. The protection correlates well with the magnitude of the H7-specific antibody response (IgG and microneutralization) or HA group 2 stem-specific IgG. Inclusion of adjuvanted GD/16 eHA in heterologous prime-boost improves the immunogenicity and protection of LPAI H7 HAs in mice. Our findings support the inclusion of GD/16-derived CVV in the pandemic preparedness vaccine stockpile.
Collapse
|
24
|
Efficacy of a Cap-Dependent Endonuclease Inhibitor and Neuraminidase Inhibitors against H7N9 Highly Pathogenic Avian Influenza Virus Causing Severe Viral Pneumonia in Cynomolgus Macaques. Antimicrob Agents Chemother 2021; 65:AAC.01825-20. [PMID: 33257455 DOI: 10.1128/aac.01825-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
H7N9 highly pathogenic avian influenza virus (HPAIV) infection in a human was first reported in 2017. A/duck/Japan/AQ-HE29-22/2017 (H7N9) (Dk/HE29-22), found in imported duck meat at an airport in Japan, possesses a hemagglutinin with a multibasic cleavage site, indicating high pathogenicity in chickens, as in the case of other H7 HPAIVs. In the present study, we examined the pathogenicity of Dk/HE29-22 and the effectiveness of a cap-dependent endonuclease inhibitor (baloxavir) and neuraminidase inhibitors (oseltamivir and zanamivir) against infection with this strain in a macaque model (n = 3 for each group). All of the macaques infected with Dk/HE29-22 showed severe signs of disease and pneumonia even after the virus had disappeared from lung samples. Virus titers in macaques treated with baloxavir were significantly lower than those in the other treated groups. After infection, levels of interferon alpha and beta (IFN-α and IFN-β) in the blood of macaques in the baloxavir group were the highest among the groups, whereas levels of tumor necrosis factor alpha (TNF-α) and interleukin 13 (IL-13) were slightly increased in the untreated group. In addition, immune checkpoint proteins, including programmed death 1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), were expressed at high levels in the untreated group, especially in one macaque that showed severe signs of disease, indicating that negative feedback responses against vigorous inflammation may contribute to disease progression. In the group treated with baloxavir, the percentages of PD-1-, CTLA-4-, and TIGIT-positive T lymphocytes were lower than those in the untreated group, indicating that reduction in virus titers may prevent expression of immune checkpoint molecules from downregulation of T cell responses.
Collapse
|
25
|
Gong W, Huang K, Zhang Y, He X, Li C, Mao H, Wei Y, Zou Z, Jin M. Transcriptome Profiles of Highly Pathogenic Pure Avian H7N9 Virus-Infected Lungs of BALB/c Mice. Front Vet Sci 2020; 7:603584. [PMID: 33409298 PMCID: PMC7779551 DOI: 10.3389/fvets.2020.603584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Avian influenza A (H7N9) viruses emerged in China in 2013 and caused a zoonotic disease associated with a high case-fatality ratio of more than 30%. Transcriptional profiles obtained using animal models reveal host responses to the disease, thereby providing insights into disease pathogenesis. Therefore, we aimed to characterize the host responses of the H7N9 virus infected-mouse lungs in this study. First, we isolated an avian-originated H7N9 strain, which was shown to be highly pathogenic to both chickens and mice. Genomic analysis results suggested that a 12-nucleotide-insertion was present at the hemagglutinin cleavage site, and both the hemagglutinin and neuraminidase genes belonged to the Yangtze River Delta lineage. RNA sequencing results revealed 566 differentially expressed genes in the H7N9-infected lungs. Moreover, transcriptome analysis revealed that over-activated antiviral signals and intense interferon-stimulated gene products possibly contributed to the high virulence of the virus in mice. Importantly, lung concentrations of inflammatory cytokines, including interleukin-1β and interleukin-6, interferon-β, and tumor necrosis factor-α, were upregulated in response to H7N9 virus infection. Overall, the present study provided a comprehensive understanding of H7N9 virus pathogenicity and correlated host immune responses.
Collapse
Affiliation(s)
- Wenxiao Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Yufei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xinglin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Yanming Wei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
26
|
Wu XX, Zhao LZ, Tang SJ, Weng TH, Wu WG, Yao SH, Wu HB, Cheng LF, Wang J, Hu FY, Wu NP, Yao HP, Zhang FC, Li LJ. Novel pathogenic characteristics of highly pathogenic avian influenza virus H7N9: viraemia and extrapulmonary infection. Emerg Microbes Infect 2020; 9:962-975. [PMID: 32267217 PMCID: PMC7301721 DOI: 10.1080/22221751.2020.1754135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The H7N9 virus mutated in 2017, resulting in new cases of highly pathogenic avian influenza (HPAI) H7N9 virus infection. H7N9 was found in a viraemic patient in Guangdong province, China. The present study aimed to clarify the pathogenic characteristics of HPAI H7N9. Virus was isolated from the plasma and sputum of the patient with HPAI H7N9. Liquid phase chip technology was used to detect the plasma cytokines from the infected patient and healthy controls. Mice were infected with strains A/Guangdong/GZ8H002/2017(H7N9) and A/Zhejiang/DTID-ZJU01/2013(H7N9) to observe the virus’s pathogenic characteristics. Serum and brain tissue were collected at 2, 4, and 6 days after infection. The viruses in serum and brain tissue were detected and isolated. The two strains were infected into A549 cells, exosomes were extracted, and virus genes in the exosomes were assessed. Live virus was isolated from the patient’s plasma. An acute cytokine storm was detected during the whole course of the disease. In animal experiments, A/Guangdong/GZ8H002/2017(H7N9) was more pathogenic than A/Zhejiang /DTID-ZJU01/2013(H7N9) and resulted in the death of mice. Live virus was isolated from infected mouse serum. Virus infection was also detected in the brain of mice. Under viral stress, A549 cells secreted exosomes containing the entire viral genome. The viraemic patient was confirmed to have an HPAI H7N9 infection. A/Guangdong/GZ8H002/2017(H7N9) showed significantly enhanced toxicity. Patient deaths might result from cytokine storms and brain infections. Extrapulmonary tissue infection might occur via the exosome pathway. The determined pathogenic characteristics of HPAI H7N9 will contribute to its future treatment.
Collapse
Affiliation(s)
- Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ling-Zhai Zhao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Song-Jia Tang
- Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei-Gen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shu-Hao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, People's Republic of China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian Wang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feng-Yu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fu-Chun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
27
|
Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun 2020; 11:5909. [PMID: 33219213 PMCID: PMC7679419 DOI: 10.1038/s41467-020-19671-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
We have surveyed avian influenza virus (AIV) genomes from live poultry markets within China since 2014. Here we present a total of 16,091 samples that were collected from May 2016 to February 2019 in 23 provinces and municipalities in China. We identify 2048 AIV-positive samples and perform next generation sequencing. AIV-positive rates (12.73%) from samples had decreased substantially since 2016, compared to that during 2014–2016 (26.90%). Additionally, H9N2 has replaced H5N6 and H7N9 as the dominant AIV subtype in both chickens and ducks. Notably, novel reassortants and variants continually emerged and disseminated in avian populations, including H7N3, H9N9, H9N6 and H5N6 variants. Importantly, almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections. In summary, our nation-wide surveillance highlights substantial changes in the circulation of AIVs since 2016, which greatly impacts the prevention and control of AIVs in China and worldwide. In this study, the authors present a genomic surveillance of avian influenza genomes sampled from live poultry markets in China. They report that a number of variants have emerged since 2016 that pose an increased risk to humans. They highlight the importance of continuous genome surveillance of circulating influenza strains.
Collapse
|
28
|
The Effects of Genetic Variation on H7N9 Avian Influenza Virus Pathogenicity. Viruses 2020; 12:v12111220. [PMID: 33126529 PMCID: PMC7693985 DOI: 10.3390/v12111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.
Collapse
|
29
|
Wang Y, Lv Y, Niu X, Dong J, Feng P, Li Q, Xu W, Li J, Li C, Li J, Luo J, Li Z, Liu Y, Tan YJ, Pan W, Chen L. L226Q Mutation on Influenza H7N9 Virus Hemagglutinin Increases Receptor-Binding Avidity and Leads to Biased Antigenicity Evaluation. J Virol 2020; 94:e00667-20. [PMID: 32796071 PMCID: PMC7527056 DOI: 10.1128/jvi.00667-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Since the first outbreak in 2013, the influenza A (H7N9) virus has continued emerging and has caused over five epidemic waves. Suspected antigenic changes of the H7N9 virus based on hemagglutination inhibition (HI) assay during the fifth outbreak have prompted the update of H7N9 candidate vaccine viruses (CVVs). In this study, we comprehensively compared the serological cross-reactivities induced by the hemagglutinins (HAs) of the earlier CVV A/Anhui/1/2013 (H7/AH13) and the updated A/Guangdong/17SF003/2016 (H7/GD16). We found that although H7/GD16 showed poor HI cross-reactivity to immune sera from mice and rhesus macaques vaccinated with either H7/AH13 or H7/GD16, the cross-reactive neutralizing antibodies between H7/AH13 and H7/GD16 were comparably high. Passive transfer of H7/AH13 immune sera also provided complete protection against the lethal challenge of H7N9/GD16 virus in mice. Analysis of amino acid mutations in the HAs between H7/AH13 and H7/GD16 revealed that L226Q substitution increases the HA binding avidity to sialic acid receptors on red blood cells, leading to decreased HI titers against viruses containing HA Q226 and thus resulting in a biased antigenic evaluation based on HI assay. These results suggest that amino acids located in the receptor-binding site could mislead the evaluation of antigenic variation by solely impacting the receptor-binding avidity to red blood cells without genuine contribution to antigenic drift. Our study highlighted that viral receptor-binding avidity and combination of multiple serological assays should be taken into consideration in evaluating and selecting a candidate vaccine virus of H7N9 and other subtypes of influenza viruses.IMPORTANCE The HI assay is a standard method for profiling the antigenic characterization of influenza viruses. Suspected antigenic changes based on HI divergency in H7N9 viruses during the 2016-2017 wave prompted the recommendation of new H7N9 candidate vaccine viruses (CVVs). In this study, we found that the L226Q substitution in HA of A/Guangdong/17SF003/2016 (H7/GD16) increased the viral receptor-binding avidity to red blood cells with no impact on the antigenicity of H7N9 virus. Although immune sera raised by an earlier vaccine strain (H7/AH13) showed poor HI titers against H7/GD16, the H7/AH13 immune sera had potent cross-neutralizing antibody titers against H7/GD16 and could provide complete passive protection against H7N9/GD16 virus challenge in mice. Our study highlights that receptor-binding avidity might lead to biased antigenic evaluation by using the HI assay. Other serological assays, such as the microneutralization (MN) assay, should be considered a complementary indicator for analysis of antigenic variation and selection of influenza CVVs.
Collapse
Affiliation(s)
- Yang Wang
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunhua Lv
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ji Dong
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Feng
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinming Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Xu
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiashun Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chufang Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixia Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yichu Liu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Weiqi Pan
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Xu Y, Peng R, Zhang W, Qi J, Song H, Liu S, Wang H, Wang M, Xiao H, Fu L, Fan Z, Bi Y, Yan J, Shi Y, Gao GF. Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Rep 2020; 29:2217-2228.e5. [PMID: 31747596 DOI: 10.1016/j.celrep.2019.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/23/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,600 human infections, posing a threat to public health. An emerging concern is whether H7N9 AIVs will cause pandemics among humans. Molecular analysis of hemagglutinin (HA), which is a critical determinant of interspecies transmission, shows that the current H7N9 AIVs are still dual-receptor tropic, indicating limited human-to-human transmission potency. Mutagenesis and structural studies reveal that a G186V substitution is sufficient for H7N9 AIVs to acquire human receptor-binding capacity, and a Q226L substitution would favor binding to both avian and human receptors only when paired with A138/V186/P221 hydrophobic residues. These data suggest a different evolutionary route of H7N9 viruses compared to other AIV-subtype HAs.
Collapse
Affiliation(s)
- Ying Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China
| | - Zheng Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China
| | - Jinghua Yan
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| |
Collapse
|
31
|
Tang J, Zhang SX, Zhang J, Li XY, Zhou JF, Zou SM, Bo H, Xin L, Yang L, Liu J, Huang WJ, Dong J, Wang DY. Profile and generation of reduced neuraminidase inhibitor susceptibility in highly pathogenic avian influenza H7N9 virus from human cases in Mainland of China, 2016-2019. Virology 2020; 549:77-84. [PMID: 32853849 DOI: 10.1016/j.virol.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Human infections with highly pathogenic avian influenza (HPAI) H7N9 virus were detected in late 2016. We examined the drug resistance profile of 30 HPAI H7N9 isolates from Mainland of China (2016-2019). Altogether, 23% (7/30) carried neuraminidase inhibitors (NAIs) - resistance mutations, and 13% (4/30) displayed reduced susceptibility to NAIs in neuraminidase (NA) inhibition test. An HPAI H7N9 reassortment virus we prepared was passaged with NAIs for 10 passages. Passage with zanamivir induced an E119G substitution in NA, whereas passage with oseltamivir induced R292K and E119V substitutions that simulated that seen in oseltamivir -treated HPAI H7N9 cases, indicating that the high frequency of resistant strains in the HPAI H7N9 isolates is related to NAIs use. In presence of NAIs, R238I, A146E, G151E and G234T substitutions were found in HA1 region of HA. No amino acid mutations were found in the internal genes of the recombinant virus.
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Shu-Xia Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, China.
| |
Collapse
|
32
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
33
|
Hu Z, Shi L, Xu N, Wang X, Hu J, Zhao J, Liu X, Hu S, Gu M, Cao Y, Liu X. Induction of cross-group broadly reactive antibody response by natural H7N9 avian influenza virus infection and immunization with inactivated H7N9 vaccine in chickens. Transbound Emerg Dis 2020; 67:3041-3048. [PMID: 32602258 DOI: 10.1111/tbed.13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Pre-existing immunity against the conserved haemagglutinin (HA) stalk underlies the elicitation of cross-group antibody induced by natural H7N9 virus infection and immunization in humans. However, whether broadly reactive antibodies can be induced by H7N9 infection and immunization in the absence of pre-existing stalk-specific immunity is unclear. In this study, antibody response induced by H7N9 virus infection and immunization with inactivated and viral-vectored H7N9 vaccines in naïve chickens was analysed. The results showed that H7N9 infection and immunization with inactivated vaccine resulted in potent induction of haemagglutination-inhibition (HI), virus neutralization (VN) and HA-binding antibodies, whereas Newcastle disease virus (NDV)-vectored H7N9 vaccine induced marginal HI and VN titres but high levels of HA-binding antibody. In addition, H7N9 infection and immunization induced stalk-specific antibodies in naïve chickens and these antibodies recognized different epitopes in the stalk. Virus infection and immunization with inactivated vaccine elicited antibodies cross-reactive with both group 1 and group 2 HAs, while antibodies induced by NDV-H7N9 vaccination showed a narrower cross-reactivity within group 2. Moreover, only homologous neutralizing activity of the sera against H7N9 virus was observed, and cross-binding antibodies did not show heterosubtypic neutralizing activity. Our results indicated that cross-group binding but non-neutralizing antibodies primarily targeting the stalk can be induced by natural H7N9 infection and immunization with inactivated vaccine in naïve chickens. This suggests that at least in a naïve chicken model, pre-existing stalk-specific immunity is not required for induction of broadly reactive antibodies. Additionally, H7N9-based immunogens may be explored as vaccine candidates or as a prime component to induce broadly protective influenza immunity.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Naiqing Xu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol 2020; 30:2196-2203.e3. [PMID: 32416074 PMCID: PMC7211627 DOI: 10.1016/j.cub.2020.05.023] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023]
Abstract
The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xing Chen
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanran Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Peihan Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alice C Hughes
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China.
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Ji'nan 250014, China.
| |
Collapse
|
35
|
Landreth S, Lu Y, Pandey K, Zhou Y. A Replication-Defective Influenza Virus Vaccine Confers Complete Protection against H7N9 Viral Infection in Mice. Vaccines (Basel) 2020; 8:E207. [PMID: 32370136 PMCID: PMC7349114 DOI: 10.3390/vaccines8020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Avian influenza H7N9 viruses continue to pose a great threat to public health, which is evident by their high case-fatality rates. Although H7N9 was first isolated in humans in China in 2013, to date, there is no commercial vaccine available against this particular strain. Our previous studies developed a replication-defective influenza virus through mutation of the hemagglutinin (HA) cleavage site from a trypsin-sensitive to an elastase-sensitive motif. In this study, we report the development of a reassortant mutant influenza virus derived from the human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], which is the QVT virus. The HA gene of this virus possesses three mutations at the cleavage site, Lys-Gly-Arg were mutated to Gln-Thr-Val at amino acid (aa) positions 337, 338, and 339, respectively. We report this virus to rely on elastase in vitro, possess unaltered replication abilities when elastase was provided compared to the wild type virus in vitro, and to be non-virulent and replication-defective in mice. In addition, we report this virus to induce significant levels of antibodies and IFN-γ and IL-5 secreting cells, and to protect mice against a lethal challenge of the BC15 (H7N9) virus. This protection is demonstrated through the lack of body weight loss, 100% survival rate, and the prevention of BC15 (H7N9) viral replication as well as the reduction of proinflammatory cytokines induced in the mouse lung associated with the influenza disease. Therefore, these results provide strong evidence for the use of this reassortant mutant H7N9 virus as a replication-defective virus vaccine candidate against H7N9 viruses.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yao Lu
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
| | - Kannupriya Pandey
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yan Zhou
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
36
|
Cheng Q, Sun Z, Zhao G, Xie L. Nomogram for the Individualized Prediction of Survival Among Patients with H7N9 Infection. Risk Manag Healthc Policy 2020; 13:255-269. [PMID: 32256136 PMCID: PMC7094003 DOI: 10.2147/rmhp.s242168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Until recently, almost all of these studies have identified multiple risk factors but did not offer practical instruments for routine use in predicting individualized survival in human H7N9 infection cases. The objective of this study is to create a practical instrument for use in predicting an individualized survival probability of H7N9 patients. Methods A matched case–control study (1:2 ratios) was performed in Zhejiang Province between 2013 and 2019. We reviewed specific factors and outcomes regarding patients with H7N9 virus infection (VI) to determine relationships and developed a nomogram to calculate individualized survival probability. This tool was used to predict each individual patient’s probability of survival based on results obtained from the multivariable Cox proportional hazard regression analysis. Results We examined 227 patients with H7N9 VI enrolled in our study. Stepwise selection was applied to the data, which resulted in a final model with 8 independent predictors [including initial PaO2/FiO2 ratio ≤300 mmHg, age ≥60 years, chronic diseases, poor hand hygiene, time from illness onset to the first medical visit, incubation period ≤5 days, peak C-reactive protein ≥120 mg/L], and initial bilateral lung infection. The concordance index of this nomogram was 0.802 [95% confidence interval (CI): 0.694–0.901] and 0.793 (95% CI: 0.611–0.952) for the training and validation sets, respectively, which indicates adequate discriminatory power. The calibration curves for the survival showed optimal agreement between nomogram prediction and actual observation in the training and validation sets, respectively. Conclusion We established and validated a novel nomogram that can accurately predict the survival probability of patients with H7N9 VI. This nomogram can serve an important role in counseling patients with H7N9 VI and guide treatment decisions.
Collapse
Affiliation(s)
- Qinglin Cheng
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, People's Republic of China.,School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310021, People's Republic of China
| | - Zhou Sun
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, People's Republic of China
| | - Gang Zhao
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, People's Republic of China
| | - Li Xie
- Division of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, People's Republic of China
| |
Collapse
|
37
|
Shi L, Hu Z, Hu J, Liu D, He L, Liu J, Gu H, Gan J, Wang X, Liu X. Single Immunization with Newcastle Disease Virus-Vectored H7N9 Vaccine Confers a Complete Protection Against Challenge with Highly Pathogenic Avian Influenza H7N9 Virus. Avian Dis 2020; 63:61-67. [PMID: 31251520 DOI: 10.1637/11965-090118-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
In the fifth wave of the H7N9 avian influenza epidemic, highly pathogenic avian influenza (HPAI) A (H7N9) viruses have emerged and pose a great challenge to public health and the poultry industry. In addition, there are apparent genetic and antigenic variations between the classical H7N9 avian influenza virus and the newly-emerged H7N9 virus. Therefore, an antigenic-match vaccine is required for the prevention and control of H7N9 avian influenza in poultry in China. In this study, a recombinant Newcastle disease virus (NDV)-vectored vaccine expressing the HA derived from a prevailing HPAI H7N9 virus (GD15) was generated using reverse genetics. The recombinant virus (rAI4HA) showed virus yield and growth capacity in chicken embryos comparable to the parental virus (rAI4). Expression of the HA protein was detected in chicken embryo fibroblasts inoculated with rAI4HA. A chicken immunization study demonstrated that both rAI4HA and rAI4 induced similar anti-NDV hemagglutination inhibition (HI) antibody titers at weeks 2, 3, and 4 after a single immunization. However, rAI4HA-immunized chickens had a low seroconversion rate (20%) and negative HI titers against H7N9. Additionally, rAI4HA elicited high levels of H7N9-specifc IgY antibody as measured by ELISA. More importantly, the recombinant vaccine provided a complete protection against a lethal challenge with HPAI H7N9 virus and significantly inhibited virus shedding after a single immunization. Our results suggest that the recombinant NDV-vectored H7N9 vaccine expressing the antigenic-match HA can confer a complete protection against HPAI H7N9 challenge after a single immunization.
Collapse
Affiliation(s)
- Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Lihong He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Han Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Junji Gan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China, .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China, .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China, .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China,
| |
Collapse
|
38
|
Development of a colloidal gold-based immunochromatographic strip test using two monoclonal antibodies to detect H7N9 avian influenza virus. Virus Genes 2020; 56:396-400. [PMID: 32034616 DOI: 10.1007/s11262-020-01742-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
H7N9 low pathogenic avian influenza viruses (AIVs) emerged in China in 2013 and mutated into highly pathogenic strains in 2017, causing disease in infected birds and humans. Thus, the development of rapid, specific, and sensitive detection methods is urgently required. Herein, two specific monoclonal antibodies against H7N9 AIV were produced to develop a colloidal gold-based immunochromatographic test strip to detect H7N9 AIV. High specificity, repeatability, and sensitivity were achieved, with a detection limit of two hemagglutinin units or 102.55 50% tissue culture infective dose. This assay may represent a powerful tool to rapidly detect H7N9 influenza viruses in the future.
Collapse
|
39
|
Wu X, Xiao L, Li L. Research progress on human infection with avian influenza H7N9. Front Med 2020; 14:8-20. [PMID: 31989396 PMCID: PMC7101792 DOI: 10.1007/s11684-020-0739-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2–6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.
Collapse
Affiliation(s)
- Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
40
|
Hu Z, Zhao J, Zhao Y, Fan X, Hu J, Shi L, Wang X, Liu X, Hu S, Gu M, Cao Y, Liu X. Hemagglutinin-Specific Non-neutralizing Antibody Is Essential for Protection Provided by Inactivated and Viral-Vectored H7N9 Avian Influenza Vaccines in Chickens. Front Vet Sci 2020; 6:482. [PMID: 31998763 PMCID: PMC6962174 DOI: 10.3389/fvets.2019.00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 02/03/2023] Open
Abstract
Hemagglutination inhibition (HI) and virus neutralization antibody (nAb) do not always correlate with the protection of H7 avian influenza vaccines in mammals and humans. The contribution of different classes of antibodies induced by H7N9 vaccines to protection is poorly characterized in chickens. In this study, antibody responses induced by both inactivated and viral-vectored H7N9 vaccines in chickens were dissected. Chickens immunized with inactivated H7N9 vaccine showed 50% seroconversion rate and low HI and nAb titers at week 3 post immunization. However, inactivated H7N9 vaccine elicited 100% seroconversion rate in terms of high levels of HA-binding IgG antibody determined by ELISA. Despite inducing low levels of nAb, inactivated H7N9 vaccine conferred full protection against H7N9 challenge in chickens and markedly inhibited virus shedding. Similarly, Newcastle disease virus (NDV)-vectored H7N9 vaccine induced marginal HI and nAb titers but high level of IgG antibody against H7N9 virus. In addition, NDV-H7N9 vaccine also provided complete protection against H7N9 challenge. Chicken antisera had a high IgG/VN ratio, indicating that a larger proportion of serum antibodies were non-neutralizing antibody (non-nAb). More importantly, passive transfer challenge experiment showed that non-neutralizing antisera provided partial protection (37.5%) of chickens against H7N9 challenge, without significant difference from that provided by neutralizing antisera. In conclusion, our results suggest that antibodies measured by the traditional HI and virus neutralization assays do not correlate with the protection of inactivated and viral-vectored H7N9 vaccines in chickens, and HA-binding non-nAb also contributes to the protection against H7N9 infection. Total binding antibody can be used as a key correlate to the protection of H7N9 vaccine.
Collapse
Affiliation(s)
- Zenglei Hu
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yiheng Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xuelian Fan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
41
|
Ultrasensitive SERS determination of avian influenza A H7N9 virus via exonuclease III-assisted cycling amplification. Talanta 2019; 205:120137. [DOI: 10.1016/j.talanta.2019.120137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023]
|
42
|
Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil. Viruses 2019; 11:v11111066. [PMID: 31731678 PMCID: PMC6893572 DOI: 10.3390/v11111066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Viral neuraminidase inhibitors show limited efficacy in mice infected with H7N9 influenza A viruses isolated from humans. Although baloxavir marboxil protected mice from lethal challenge infection with a low pathogenic avian influenza H7N9 virus isolated from a human, its efficacy in mice infected with a recent highly pathogenic version of H7N9 human isolates is unknown. Here, we examined the efficacy of baloxavir marboxil in mice infected with a highly pathogenic human H7N9 virus, A/Guangdong/17SF003/2016. Treatment of infected mice with a single 1.5 mg/kg dose of baloxavir marboxil protected mice from the highly pathogenic human H7N9 virus infection as effectively as oseltamivir treatment at 50 mg/kg twice a day for five days. Daily treatment for five days at 15 or 50 mg/kg of baloxavir marboxil showed superior therapeutic efficacy, largely preventing virus replication in respiratory organs. These results indicate that baloxavir marboxil is a valuable candidate treatment for human patients suffering from highly pathogenic H7N9 virus infection.
Collapse
|
43
|
Sakai-Tagawa Y, Yamayoshi S, Kawaoka Y. Sensitivity of Commercially Available Influenza Rapid Diagnostic Tests in the 2018-2019 Influenza Season. Front Microbiol 2019; 10:2342. [PMID: 31681207 PMCID: PMC6797548 DOI: 10.3389/fmicb.2019.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epidemics of seasonal influenza caused by H1N1pdm09, H3N2, and type B viruses occur throughout the world. Sporadic human H5 and H7N9 virus infections are also reported in particular regions. To treat influenza patients effectively with antivirals, sensitive and broad-reactive influenza rapid diagnostic tests (IRDTs) are required. Here, we tested the sensitivity of 23 IRDTs during the 2018-2019 influenza season for their ability to detect H1N1pdm09, H3N2, H5N1, H5N6, H7N9, and Victoria- and Yamagata-lineage type B viruses. All IRDTs detected all influenza A and B viruses tested but with different sensitivities. Several IRDTs detected the H5 and H7 viruses and the seasonal viruses with similar sensitivity. Such IRDTs might be useful for diagnosing patients infected with H5 and H7 viruses.
Collapse
Affiliation(s)
- Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, United States
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Li J, Chen C, Wei J, Huang H, Peng Y, Bi Y, Liu Y, Yang Y. Delayed peak of human infections and ongoing reassortment of H7N9 avian influenza virus in the newly affected western Chinese provinces during Wave Five. Int J Infect Dis 2019; 88:80-87. [PMID: 31499209 DOI: 10.1016/j.ijid.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Eight additional provinces in western China reported human infections for the first time during the fifth wave of human H7N9 infections. The aim of this study was to analyze the epidemiological and virological characteristics of this outbreak. METHODS The epidemiological data of H7N9 cases from the newly affected western Chinese provinces were collected and analyzed. Full-length genome sequences of H7N9 virus were downloaded from the GenBank and GISAID databases, and phylogenetic, genotyping, and genetic analyses were conducted. RESULTS The peak of human infections in the newly affected western Chinese provinces was delayed by 4 months compared to the eastern Chinese provinces, and both low pathogenic (LP) and highly pathogenic (HP) H7N9-infected cases were found. The LP- and HP-H7N9 virus belonged to 10 different genotypes (including four new genotypes), of which G11 and G3 were the dominant genotypes, respectively. Almost all of these viruses originated from eastern and southern China and were most probably imported from neighboring provinces. Genetic characteristics of the circulating viruses were similar to those of the viruses from previously affected provinces during Wave Five. CONCLUSIONS A delayed peak of human infections was observed in the newly affected western Chinese provinces, and reassortment has been ongoing since the introduction of H7N9 viruses. This study highlights the importance of continued surveillance of the circulation and evolution of H7N9 virus in western China.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chuming Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
Nakayama M, Uchida Y, Shibata A, Kobayashi Y, Mine J, Takemae N, Tsunekuni R, Tanikawa T, Harada R, Osaka H, Saito T. A novel H7N3 reassortant originating from the zoonotic H7N9 highly pathogenic avian influenza viruses that has adapted to ducks. Transbound Emerg Dis 2019; 66:2342-2352. [PMID: 31293102 DOI: 10.1111/tbed.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
The first human case of zoonotic H7N9 avian influenza virus (AIV) infection was reported in March 2013 in China. This virus continues to circulate in poultry in China while mutating to highly pathogenic AIVs (HPAIVs). Through monitoring at airports in Japan, a novel H7N3 reassortant of the zoonotic H7N9 HPAIVs, A/duck/Japan/AQ-HE30-1/2018 (HE30-1), was detected in a poultry meat product illegally brought by a passenger from China into Japan. We analysed the genetic, pathogenic and antigenic characteristics of HE30-1 by comparing it with previous zoonotic H7N9 AIVs and their reassortants. Phylogenetic analysis of the entire HE30-1 genomic sequence revealed that it comprised at least three different sources; the HA (H7), PB1, PA, NP, M and NS segments of HE30-1 were directly derived from H7N9 AIVs, whereas the NA (N3) and PB2 segments of HE30-1 were unrelated to zoonotic H7N9. Experimental infection revealed that HE30-1 was lethal in chickens but not in domestic or mallard ducks. HE30-1 was shed from and replicated in domestic and mallard ducks and chickens, whereas previous zoonotic H7N9 AIVs have not adapted well to ducks. This finding suggests the possibility that HE30-1 may disseminate to remote area by wild bird migration once it establishes in wild bird population. A haemagglutination-inhibition assay indicated that antigenic drift has occurred among the reassortants of zoonotic H7N9 AIVs; HE30-1 showed similar antigenicity to some of those H7N9 AIVs, suggesting it might be prevented by the H5/H7 inactivated vaccine that was introduced in China in 2017. Our study reports the emergence of a new reassortant of zoonotic H7N9 AIVs with novel viral characteristics and warns of the challenge we still face to control the zoonotic H7N9 AIVs and their reassortants.
Collapse
Affiliation(s)
- Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Yoshifumi Kobayashi
- Pathological and Physiochemical Examination Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Harada
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Hiroyuki Osaka
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
46
|
Yang Y, Shen C, Li J, Zou R, Wong G, Peng L, Yang L, Fang S, Li J, Li X, Wu W, Jiang X, Zeng L, Lan J, Bi Y, Gao GF, Yuan J, Liu Y. Clinical and virological characteristics of human infections with H7N9 avian influenza virus in Shenzhen, China, 2013-2017. J Infect 2019; 79:389-399. [PMID: 31374221 DOI: 10.1016/j.jinf.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec City G1V 0A6, Canada
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaohe Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiao Jiang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Lijiao Zeng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jianfeng Lan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
47
|
Sun X, Belser JA, Yang H, Pulit-Penaloza JA, Pappas C, Brock N, Zeng H, Creager HM, Stevens J, Maines TR. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology 2019; 535:232-240. [PMID: 31325838 DOI: 10.1016/j.virol.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that despite no airborne transmissibility increase compared to low pathogenic avian influenza viruses, select human isolates of highly pathogenic avian influenza A(H7N9) virus exhibit greater virulence in animal models and a lower threshold pH for fusion. In the current study, we utilized both in vitro and in vivo approaches to identify key residues responsible for hemagglutinin (HA) intracellular cleavage, acid stability, and virulence in mice. We found that the four amino acid insertion (-KRTA-) at the HA cleavage site of A/Taiwan/1/2017 virus is essential for HA intracellular cleavage and contributes to disease in mice. Furthermore, a lysine to glutamic acid mutation at position HA2-64 increased the threshold pH for HA activation, reduced virus stability, and replication in mice. Identification of a key residue responsible for enhanced acid stability of A(H7N9) viruses is of great significance for future surveillance activities and improvements in vaccine stability.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
48
|
Tang J, Zhang J, Zhou J, Zhu W, Yang L, Zou S, Wei H, Xin L, Huang W, Li X, Cheng Y, Wang D. Highly pathogenic avian influenza H7N9 viruses with reduced susceptibility to neuraminidase inhibitors showed comparable replication capacity to their sensitive counterparts. Virol J 2019; 16:87. [PMID: 31266524 PMCID: PMC6604316 DOI: 10.1186/s12985-019-1194-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human infection with avian influenza H7N9 virus was first reported in 2013. Since the fifth epidemic, a highly pathogenic avian influenza (HPAI) H7N9 virus has emerged and caused 33 human infections. Several potential NAI resistance sites have been found in human cases. However, the drug susceptibility and replication ability of HPAI H7N9 virus with such substitutions have not yet been studied. METHODS Thirty-three HPAI H7N9 virus strains were isolated from human cases in China, and then sequences were analyzed to identify potential NAI resistance sites. Recombinant influenza viruses were generated to evaluate the effect of NA amino acid substitutions on NAI (oseltamivir or zanamivir) susceptibility and viral replication efficiency in MDCK cells. RESULTS Four potential NAI resistance sites, R292 K, E119V, A246T or H274Y, were screened. All four substitutions conferred either reduced or highly reduced susceptibility to oseltamivir or zanamivir. 292 K not only highly reduced the susceptibility of HPAI H7N9 to oseltamivir but also induced an increase in the IC50 of zanamivir. 119 V or 274Y conferred reduced susceptibility of HPAI H7N9 to oseltamivir. Additionally, 246 T conferred reduced susceptibility to zanamivir. All tested NAI-resistant viruses were capable of replication in MDCK cells. The virus yields of rg006-NA292K were lower than those of rg006-NA292R at 24, 48, 72 and 96 h postinfection (P<0.05). Rg006-NA119V, rg006-NA246T or rg006-NA274Y showed comparable replication capacity to wild-type virus (except for rg006-NA274Y at 96 h, P<0.05). CONCLUSIONS All 4 amino acid substitutions (R292 K, E119V, A246T or H274Y) in NA reduced the susceptibility of HPAI H7N9 to NAIs. The NAI-resistant mutations in HPAI H7N9, in most cases, did not reduce the replication ability of the virus in mammalian cells. Special attention needs to be paid to these mutations, and the development of new anti-H7N9 drugs is of great importance.
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention Chinese Centers for Disease Control and Prevention Key Laboratory for Medical Virology, National Health Commission, NO.155 Changbai road, Changping District, Beijing, 102206 People’s Republic of China
| |
Collapse
|
49
|
Bao L, Bi Y, Wong G, Qi W, Li F, Lv Q, Wang L, Liu F, Yang Y, Zhang C, Liu WJ, Quan C, Jia W, Liu Y, Liu W, Liao M, Gao GF, Qin C. Diverse biological characteristics and varied virulence of H7N9 from Wave 5. Emerg Microbes Infect 2019; 8:94-102. [PMID: 30866763 PMCID: PMC6456849 DOI: 10.1080/22221751.2018.1560234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There was a substantial increase with infections of H7N9 avian influenza virus (AIV) in humans during Wave 5 (2016-2017). To investigate whether H7N9 had become more infectious/transmissible and pathogenic overall, we characterized the receptor binding and experimentally infected ferrets with highly pathogenic (HP)- and low pathogenic (LP)-H7N9 isolates selected from Wave 5, and compared their pathogenicity and transmissibility with a Wave 1 isolate from 2013. Studies show that A/Anhui/1/2013 (LP) and A/Chicken/Heyuan/16876/2016 (HP) were highly virulent in ferrets, A/Guangdong/Th008/2017 (HP) and A/Chicken/Huizhou/HZ-3/2017 (HP) had moderate virulence and A/Shenzhen/Th001/2016 (LP) was of low virulence in ferrets. Transmission was observed only in ferrets infected with A/Anhui/1/2013 and A/Chicken/Heyuan/16876/2016, consistent with the idea that sicker ferrets had a higher probability to transmit virus to naive animals. Given the Varied virulence and transmissibility observed in circulating H7N9 viruses from Wave 5, we conclude that the current public health risk of H7N9 has not substantially increased compared to 2013 and the circulating viruses are quite diverse.
Collapse
Affiliation(s)
- Linlin Bao
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Yuhai Bi
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Gary Wong
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,d Département de microbiologie-infectiologie et d'immunologie , Université Laval , Québec City , Canada
| | - Wenbao Qi
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - Fengdi Li
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Qi Lv
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Liang Wang
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Fei Liu
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Yang Yang
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China
| | - Cheng Zhang
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - William J Liu
- f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Chuansong Quan
- f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Weixin Jia
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - Yingxia Liu
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China
| | - Wenjun Liu
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ming Liao
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - George F Gao
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China.,f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Chuan Qin
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| |
Collapse
|
50
|
Human-Derived A/Guangdong/Th005/2017 (H7N9) Exhibits Extremely High Replication in the Lungs of Ferrets and Is Highly Pathogenic in Chickens. Viruses 2019; 11:v11060494. [PMID: 31146467 PMCID: PMC6630577 DOI: 10.3390/v11060494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023] Open
Abstract
After a series of studies on the pathogenicity of several H7N9 strains from 2013 to 2018, we wanted to dynamically track the pathogenicity of A/Guangdong/Th005/2017 in ferrets and poultry. The pathogenicity and transmissibility of Th005, especially the distribution and replication in tissues, were studied in ferrets. We also aimed to assess the level of Th005 pathogenicity in chickens. The results showed that the pathogenicity of Th005 was significantly increased in ferrets and chickens, especially compared with the Anhui strain. The replication of Th005 in the lung tissues of ferrets was 100-fold higher than that of the Anhui strain. Th005 pathogenicity reached an intravenous pathogenicity index (IVPI) score of 3 in avian models. Continuously high titres of viruses could be detected in the cloacal cavity of chickens infected with Th005. Th005 remained highly pathogenic in mice and chickens after passaging in ferrets. High expression of both the α2,6- and α2,3-sialic acid residues in cells in vitro was beneficial to Th005 replication, which was enhanced compared to the Anhui strain. China needs to strengthen its surveillance of virulent influenza virus strains, such as Th005, which continues to increase in pathogenicity.
Collapse
|