1
|
Cleveland CW, Davis BW, Khatri K, Pomés A, Chapman MD, Brackett NF. Genetic diversity of the major cat allergen, Fel d 1. PNAS NEXUS 2024; 3:pgae447. [PMID: 39600803 PMCID: PMC11577610 DOI: 10.1093/pnasnexus/pgae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024]
Abstract
Cat allergy affects ∼15% of the US population and can cause severe symptoms, including asthma. The major cat allergen, Fel d 1, drives IgE antibody responses. We conducted a comparative analysis of Fel d 1 genes, CH1 and CH2, and investigated structural features of Fel d 1 homologs across the family Felidae. The CH1 and CH2 domestic cat DNA references were used to identify homologous sequences in domestic and exotic cat genomes. Variability of these sequences within or across cat species was analyzed. Comprehensive alignments of Fel d 1 sequences and homologs from 276 domestic or exotic cats identified >100 unique, dissimilar substitutions in the protein sequences across Felidae. Selective pressure analyses of 37 exotic cat species revealed that Fel d 1 experienced positive selection, or greater variability over time, in CH1 and CH2. Linear regression of the mean pairwise identities of Fel d 1 DNA or protein sequences indicated that the genes largely reflected the evolution of Felidae. The Fel d 1 genes are highly variable (41 and 58% of the amino acid residues encoded by CH1 and CH2, respectively), suggesting that the biological function of Fel d 1, which is currently unknown, may vary among cat species and/or that Fel d 1 may be nonessential for cats. This is supported by Fel d 1 homology to nonessential proteins and recent evidence of healthy cats with CRISPR-edited CH2 genes. Fel d 1 variability could confer an evolutionary advantage for cats by allowing the allergen to bind different physiological ligands.
Collapse
Affiliation(s)
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Pomés
- InBio, Charlottesville, 700 Harris St, VA 22903, USA
| | | | | |
Collapse
|
2
|
Kwon H, Ko S, Ha K, Lee JK, Choi Y. Assessing the predictive ability of computational epitope prediction methods on Fel d 1 and other allergens. PLoS One 2024; 19:e0306254. [PMID: 39178274 PMCID: PMC11343462 DOI: 10.1371/journal.pone.0306254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 08/25/2024] Open
Abstract
While computational epitope prediction methods have found broad application, their use, specifically in allergy-related contexts, remains relatively less explored. This study benchmarks several publicly available epitope prediction tools, focusing on the allergenic IgE and T-cell epitopes of Fel d 1, an extensively studied allergen. Using a variety of tools accessible via the Immune Epitope Database (IEDB) and other resources, we evaluate their ability to identify the known linear IgE and T-cell epitopes of Fel d 1. Our results show a limited effectiveness for B-cell epitope prediction methods, with most performing only marginally better than random selection. We also explored the general predictive abilities on other allergens, and the results were largely random. When predicting T-cell epitopes, ProPred successfully identified all known Fel d 1 T-cell epitopes, whereas the IEDB approach missed two known epitopes and demonstrated a tendency to over-predict. However, when applied to a larger test set, both methods performed only slightly better than random selection. Our findings show the limitations of current computational epitope prediction methods in accurately identifying allergenic epitopes, emphasizing the need for methodological advancements in allergen research.
Collapse
Affiliation(s)
- Hyeji Kwon
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Republic of Korea
| | - Soobon Ko
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong, Republic of Korea
| | - Jungjoon K. Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| |
Collapse
|
3
|
Zheng W, Xu YF, Hu ZM, Li K, Xu ZQ, Sun JL, Wei JF. Artificial intelligence-driven design of the assembled major cat allergen Fel d 1 to improve its spatial folding and IgE-reactivity. Int Immunopharmacol 2024; 128:111488. [PMID: 38185034 DOI: 10.1016/j.intimp.2024.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Cat-derived allergens are considered as one of the most common causes of allergic diseases worldwide. Fel d 1 is a major cat allergen and plays an important role in immunoglobulin E (IgE)-reaction diagnosis. However, the two separate chains of Fel d 1 exhibited lower IgE-reactivity than its complete molecule of an assembled form, which makes it difficult to efficiently prepare and limits the application of Fel d 1 in molecular diagnosis of cat allergy. METHODS We first applied artificial intelligence (AI) based tool AlphaFold2 to build the 3-dimensional structures of Fel d 1 with different connection modes between two chains, which were evaluated by ERRAT program and were expressed in Escherichia coli. We then calculated the expression ratios of soluble form/inclusion bodies form of optimized Fel d 1. The Circular Dichroism (CD), High Performance Liquid Chromatography-Size Exclusion Chromatography (HPLC-SEC) and reducing/non-reducing SDS-PAGE were performed to characterize the folding status and dimerization of the optimized fusion Fel d 1. The improvement of specific-IgE reactivity to optimized fusion Fel d 1 was investigated by enzyme linked immunosorbent assay (ELISA). RESULTS Among several linkers, 2 × GGGGS got the highest scores, with an overall quality factor of 100. The error value of the residues around the junction of 2 × GGGGS was lower than others. It exhibited highest proportion of soluble protein than other Fel d 1 constructs with ERRAT (GGGGS, KK as well as direct fusion Fel d 1). The results of CD and HPLC-SEC showed the consistent folding and dimerization of two fused subunits between the optimized fusion Fel d 1 and previously well-defined direct fusion Fel d 1. The overall IgE-binding absorbance of optimized fusion Fel d 1 tested by ELISA was improved compared with that of the direct fusion Fel d 1. CONCLUSION We firstly provided an AI-design strategy to optimize the Fel d 1, which could spontaneously fold into its native-like structure without additional refolding process or eukaryotic folding factors. The improved IgE-binding activity and simplified preparation method could greatly facilitate it to be a robust allergen material for molecular diagnosis of cat allergy.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Fei Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Ming Hu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Li
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Matsuura R, Kawamura A, Ota R, Fukushima T, Fujimoto K, Kozaki M, Yamashiro M, Somei J, Matsumoto Y, Aida Y. TiO 2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity. TOXICS 2023; 11:718. [PMID: 37624223 PMCID: PMC10458468 DOI: 10.3390/toxics11080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Allergies to dogs and cats can cause enormous damage to human health and the economy. Dog and cat allergens are mainly found in dog and cat dander and are present in small particles in the air and in carpets in homes with dogs and cats. Cleaning houses and washing pets are the main methods for reducing allergens in homes; however, it is difficult to eliminate them completely. Therefore, we aimed to investigate whether a TiO2 photocatalyst could degrade dog and cat allergens. Under wet conditions, exposure to the TiO2 photocatalyst for 24 h degraded Can f1, which is a major dog allergen extracted from dog dander, by 98.3%, and Fel d1, which is a major cat allergen extracted from cat dander, by 93.6-94.4%. Furthermore, under dry conditions, the TiO2 photocatalyst degraded Can f1 and Fel d1 by 92.8% and 59.2-68.4%, respectively. The TiO2 photocatalyst abolished the binding of dog and cat allergens to human IgE by 104.6% and 108.6%, respectively. The results indicated that the TiO2 photocatalyst degraded dog and cat allergens, causing a loss in their allergenicity. Our results suggest that TiO2 photocatalysis can be useful for removing indoor pet allergens and improving the partnership between humans and pets.
Collapse
Affiliation(s)
- Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (R.M.)
| | - Arisa Kawamura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (R.M.)
| | - Rizo Ota
- Inuyama Animal General Medical Center, 29 Oomishita, Haguro, Inuyama 484-0894, Japan
| | - Takashi Fukushima
- Kaltech Corporation, Hirotake Bldg. 3-3-7 Bakuromachi, Chuo-ku, Osaka 541-0059, Japan
| | - Kazuhiro Fujimoto
- Kaltech Corporation, Hirotake Bldg. 3-3-7 Bakuromachi, Chuo-ku, Osaka 541-0059, Japan
| | - Masato Kozaki
- Kaltech Corporation, Hirotake Bldg. 3-3-7 Bakuromachi, Chuo-ku, Osaka 541-0059, Japan
| | - Misaki Yamashiro
- Kaltech Corporation, Hirotake Bldg. 3-3-7 Bakuromachi, Chuo-ku, Osaka 541-0059, Japan
| | - Junichi Somei
- Kaltech Corporation, Hirotake Bldg. 3-3-7 Bakuromachi, Chuo-ku, Osaka 541-0059, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (R.M.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (R.M.)
| |
Collapse
|
5
|
Durairaj R, Pageat P, Bienboire-Frosini C. Impact of Semiochemicals Binding to Fel d 1 on Its 3D Conformation and Predicted B-Cell Epitopes Using Computational Approaches. Int J Mol Sci 2023; 24:11685. [PMID: 37511444 PMCID: PMC10380945 DOI: 10.3390/ijms241411685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The major cat allergen Fel d 1 is a tetrameric glycoprotein from the secretoglobin superfamily. Fel d 1's biological role is unknown, but it has been previously shown that it participates in semiochemical binding/transportation. Fel d 1 has linear epitopes, but its conformational epitope sites remain unclear. In this study, we predicted the B-cell epitopes of Fel d 1 and explored semiochemical dynamics with epitopes using bioinformatics tools. The epitope residues were tabulated for chains 1 and 2 and the heterodimers of Fel d 1. The residual interactions of Fel d 1 with IgE were evaluated, and the prominent epitope sites were predicted. The molecular dynamics simulation (MDS) of Fel d 1 was performed with seven reported semiochemicals to evaluate the Fel d 1-ligand complex stability and decipher the semiochemical effect on Fel d 1 conformational epitopes. Fel d 1-lauric acid, Fel d 1-oleic acid, and Fel d 1-progesterone showed more stability and less fluctuation than other compounds. Fel d 1-linoleic acid and Fel d 1-pregnenolone displayed the most unstable complex with fluctuations. The effects of conformational changes on epitopes are discussed. All the ligand complexes drive substantial fluctuation towards the functionally exposed IgE-binding epitopes. Fel d 1 could be examined for its ligand-binding and conformational changes caused by mutations of B-cell epitopes.
Collapse
Affiliation(s)
- Rajesh Durairaj
- Department of Bioinformatics and Chemical Communication (D-BICC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| | - Patrick Pageat
- Research and Education Board, Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| |
Collapse
|
6
|
Janssen-Weets B, Kerff F, Swiontek K, Kler S, Czolk R, Revets D, Kuehn A, Bindslev-Jensen C, Ollert M, Hilger C. Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties. FRONTIERS IN ALLERGY 2022; 3:958711. [PMID: 35991307 PMCID: PMC9385959 DOI: 10.3389/falgy.2022.958711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Allergens from furry animals frequently cause sensitization and respiratory allergic diseases. Most relevant mammalian respiratory allergens belong either to the protein family of lipocalins or secretoglobins. Their mechanism of sensitization remains largely unresolved. Mammalian lipocalin and secretoglobin allergens are associated with a function in chemical communication that involves abundant secretion into the environment, high stability and the ability to transport small volatile compounds. These properties are likely to contribute concomitantly to their allergenic potential. In this study, we aim to further elucidate the physiological function of lipocalin and secretoglobin allergens and link it to their sensitizing capacity, by analyzing their ligand-binding characteristics. We produced eight major mammalian respiratory allergens from four pet species in E.coli and compared their ligand-binding affinities to forty-nine ligands of different chemical classes by using a fluorescence-quenching assay. Furthermore, we solved the crystal-structure of the major guinea pig allergen Cav p 1, a typical lipocalin. Recombinant lipocalin and secretoglobin allergens are of high thermal stability with melting temperatures ranging from 65 to 90°C and strongly bind ligands with dissociation constants in the low micromolar range, particularly fatty acids, fatty alcohols and the terpene alcohol farnesol, that are associated with potential semiochemical and/or immune-modulating functions. Through the systematic screening of respiratory mammalian lipocalin and secretoglobin allergens with a large panel of potential ligands, we observed that total amino acid composition, as well as cavity shape and volume direct affinities to ligands of different chemical classes. Therefore, we were able to categorize lipocalin allergens over their ligand-binding profile into three sub-groups of a lipocalin clade that is associated with functions in chemical communication, thus strengthening the function of major mammalian respiratory allergens as semiochemical carriers. The promiscuous binding capability of hydrophobic ligands from environmental sources warrants further investigation regarding their impact on a molecule's allergenicity.
Collapse
Affiliation(s)
- Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Frédéric Kerff
- Laboratory of Crystallography, Center for Protein Engineering-InBioS, University of Liège, Liège, Belgium
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Kler
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- *Correspondence: Christiane Hilger
| |
Collapse
|
7
|
Hasan-Abad AM, Mohammadi M, Mirzaei H, Mehrabi M, Motedayyen H, Arefnezhad R. Impact of oligomerization on the allergenicity of allergens. Clin Mol Allergy 2022; 20:5. [PMID: 35488339 PMCID: PMC9052586 DOI: 10.1186/s12948-022-00172-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Type I hypersensitivity (allergic reaction) is an unsuitable or overreactive immune response to an allergen due to cross-link immunoglobulin E (IgE) antibodies bound to its high-affinity IgE receptors (FcεRIs) on effector cells. It is needless to say that at least two epitopes on allergens are required to the successful and effective cross-linking. There are some reports pointing to small proteins with only one IgE epitope could cross-link FcεRI-bound IgE through homo-oligomerization which provides two same IgE epitopes. Therefore, oligomerization of allergens plays an indisputable role in the allergenic feature and stability of allergens. In this regard, we review the signaling capacity of the B cell receptor (BCR) complex and cross-linking of FcεRI which results in the synthesis of allergen-specific IgE. This review also discusses the protein-protein interactions involved in the oligomerization of allergens and provide some explanations about the oligomerization of some well-known allergens, such as calcium-binding allergens, Alt a 1, Bet v 1, Der p 1, Per a3, and Fel d 1, along with the effects of their concentrations on dimerization.
Collapse
Affiliation(s)
- Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mohammadi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Brackett NF, Davis BW, Adli M, Pomés A, Chapman MD. Evolutionary Biology and Gene Editing of Cat Allergen, Fel d 1. CRISPR J 2022; 5:213-223. [PMID: 35343817 DOI: 10.1089/crispr.2021.0101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Allergy to domestic cat affects up to 15% of the population, and sensitization to cat allergen is associated with asthma. Despite the pervasiveness of cat allergic disease, current treatments have limited impact. Here, we present a bioinformatics analysis of the major cat allergen, Fel d 1, and demonstrate proof of principle for CRISPR gene editing of the allergen. Sequence and structural analyses of Fel d 1 from 50 domestic cats identified conserved coding regions in genes CH1 and CH2 suitable for CRISPR editing. Comparative analyses of Fel d 1 and orthologous sequences from eight exotic felid species determined relatively low-sequence identities for CH1 and CH2, and implied that the allergen may be nonessential for cats, given the apparent lack of evolutionary conservation. In vitro knockouts of domestic cat Fel d 1 using CRISPR-Cas9 yielded editing efficiencies of up to 55% and found no evidence of editing at predicted potential off-target sites. Taken together, our data indicate that Fel d 1 is both a rational and viable candidate for gene deletion, which may profoundly benefit cat allergy sufferers by removing the major allergen at the source.
Collapse
Affiliation(s)
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
9
|
Brackett NF, Pomés A, Chapman MD. New Frontiers: Precise Editing of Allergen Genes Using CRISPR. FRONTIERS IN ALLERGY 2022; 2:821107. [PMID: 35386981 PMCID: PMC8974684 DOI: 10.3389/falgy.2021.821107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/14/2022] Open
Abstract
Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) technology offers the unique potential for unequivocally deleting allergen genes at the source. Compared to prior gene editing approaches, CRISPR boasts substantial improvements in editing efficiency, throughput, and precision. CRISPR has demonstrated success in several clinical applications such as sickle cell disease and β-thalassemia, and preliminary knockout studies of allergenic proteins using CRISPR editing show promise. Given the advantages of CRISPR, as well as specific DNA targets in the allergen genes, CRISPR gene editing is a viable approach for tackling allergy, which may lead to significant disease improvement. This review will highlight recent applications of CRISPR editing of allergens, particularly cat allergen Fel d 1, and will discuss the advantages and limitations of this approach compared to existing treatment options.
Collapse
|
10
|
Abstract
PRACTICAL RELEVANCE Human allergy to cats affects a substantial and growing proportion of the global population, and cat allergy is regarded as the third most common cause of human respiratory allergies, and the second most common indoor cause. Veterinarians will frequently encounter owners who are cat-allergic, and having an understanding of this disease and the methods available to help control the allergy will assist them in giving appropriate advice, alongside human healthcare professionals. AIM The aim of this review is to summarise currently available data on the prevalence, causes, symptoms and control of human allergy to cats. In terms of managing cat allergy, the emphasis is on reviewing current and emerging modalities to reduce environmental exposure to cat allergens rather than on pharmacotherapy or immunotherapy, as it is in these areas in particular that the veterinarian may be able to offer help and advice to complement that of human healthcare professionals. EVIDENCE BASE The information in this review is drawn from the current and historical literature on human allergy to cats, and approaches to reduce exposure to cat allergens and manage symptoms of cat allergy.
Collapse
|
11
|
Aalberse RC. Recombinant allergens need a reality check. J Allergy Clin Immunol 2021; 149:901-903. [PMID: 34653518 DOI: 10.1016/j.jaci.2021.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Rob C Aalberse
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands; Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Zhang C, Recacha R, Ruddock LW, Moilanen A. Efficient soluble production of folded cat allergen Fel d 1 in Escherichia coli. Protein Expr Purif 2020; 180:105809. [PMID: 33338588 DOI: 10.1016/j.pep.2020.105809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
The major cat allergen Fel d 1 is one of the most common and potent causes of animal related allergy. Medical treatment of cat allergy has relied on immunotherapy carried out with cat dander extract. This approach has been problematic, mainly due to inconsistent levels of the major allergen in the produced extracts. Recombinant DNA technology has been proposed as an alternative method to produce more consistent pharmaceuticals for immunotherapy and diagnostics of allergy. Current approaches to produce recombinant Fel d 1 (recFel d 1) in the cytoplasm of Escherichia coli have however resulted in protein folding deficiencies and insoluble inclusion body formation, requiring elaborate in vitro processing to acquire folded material. In this study, we introduce an efficient method for cytoplasmic production of recFel d 1 that utilizes eukaryotic folding factors to aid recFel d 1 to fold and be produced in the soluble fraction of E. coli. The solubly expressed recFel d 1 is shown by biophysical in vitro experiments to contain structural disulfides, is extremely stable, and has a sensitivity for methionine sulfoxidation. The latter is discussed in the context of functional relevance.
Collapse
Affiliation(s)
- Chi Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
13
|
Ligabue-Braun R. Hello, kitty: could cat allergy be a form of intoxication? J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200051. [PMID: 33456448 PMCID: PMC7781471 DOI: 10.1590/1678-9199-jvatitd-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The relationship between slow loris (Nycticebus spp.) venom (BGE protein) and the major cat allergen (Fel d 1) from domestic cat (Felis catus) is known for about two decades. Along this time, evidence was accumulated regarding convergences between them, including their almost identical mode of action. Methods Large-scale database mining for Fel d 1 and BGE proteins in Felidae and Nycticebus spp., alignment, phylogeny proposition and molecular modelling, associated with directed literature review were assessed. Results Fel d 1 sequences for 28 non-domestic felids were identified, along with two additional loris BGE protein sequences. Dimer interfaces are less conserved among sequences, and the chain 1 shows more sequence similarity than chain 2. Post-translational modification similarities are highly probable. Conclusions Fel d 1 functions beyond allergy are discussed, considering the great conservation of felid orthologs of this protein. Reasons for toxicity being found only in domestic cats are proposed in the context of domestication. The combination of the literature review, genome-derived sequence data, and comparisons with the venomous primate slow loris may point to domestic cats as potentially poisonous mammals.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
The Major Cat Allergen Fel d 1 Binds Steroid and Fatty Acid Semiochemicals: A Combined In Silico and In Vitro Study. Int J Mol Sci 2020. [PMID: 32085519 DOI: 10.3390/ijms21041365.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major cat allergen Fel d 1 is a tetrameric glycoprotein of the secretoglobin superfamily. Structural aspects and allergenic properties of this protein have been investigated, but its physiological function remains unclear. Fel d 1 is assumed to bind lipids and steroids like the mouse androgen-binding protein, which is involved in chemical communication, either as a semiochemical carrier or a semiochemical itself. This study focused on the binding activity of a recombinant model of Fel d 1 (rFel d 1) towards semiochemical analogs, i.e., fatty acids and steroids, using both in silico calculations and fluorescence measurements. In silico analyses were first adopted to model the interactions of potential ligands, which were then tested in binding assays using the fluorescent reporter N-phenyl-1-naphthylamine. Good ligands were fatty acids, such as the lauric, oleic, linoleic, and myristic fatty acids, as well as steroids like androstenone, pregnenolone, and progesterone, that were predicted by in silico molecular models to bind into the central and surface cavities of rFel d 1, respectively. The lowest dissociation constants were shown by lauric acid (2.6 µM) and androstenone (2.4 µM). The specific affinity of rFel d 1 to semiochemicals supports a function of the protein in cat's chemical communication, and highlights a putative role of secretoglobins in protein semiochemistry.
Collapse
|
15
|
Bienboire-Frosini C, Durairaj R, Pelosi P, Pageat P. The Major Cat Allergen Fel d 1 Binds Steroid and Fatty Acid Semiochemicals: A Combined In Silico and In Vitro Study. Int J Mol Sci 2020; 21:ijms21041365. [PMID: 32085519 PMCID: PMC7073184 DOI: 10.3390/ijms21041365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The major cat allergen Fel d 1 is a tetrameric glycoprotein of the secretoglobin superfamily. Structural aspects and allergenic properties of this protein have been investigated, but its physiological function remains unclear. Fel d 1 is assumed to bind lipids and steroids like the mouse androgen-binding protein, which is involved in chemical communication, either as a semiochemical carrier or a semiochemical itself. This study focused on the binding activity of a recombinant model of Fel d 1 (rFel d 1) towards semiochemical analogs, i.e., fatty acids and steroids, using both in silico calculations and fluorescence measurements. In silico analyses were first adopted to model the interactions of potential ligands, which were then tested in binding assays using the fluorescent reporter N-phenyl-1-naphthylamine. Good ligands were fatty acids, such as the lauric, oleic, linoleic, and myristic fatty acids, as well as steroids like androstenone, pregnenolone, and progesterone, that were predicted by in silico molecular models to bind into the central and surface cavities of rFel d 1, respectively. The lowest dissociation constants were shown by lauric acid (2.6 µM) and androstenone (2.4 µM). The specific affinity of rFel d 1 to semiochemicals supports a function of the protein in cat’s chemical communication, and highlights a putative role of secretoglobins in protein semiochemistry.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
- Correspondence: ; Tel.: +33-490-75-57-00
| | - Rajesh Durairaj
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 3430 Tulln, Austria;
| | - Patrick Pageat
- Department of Chemical Ecology (D-EC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
| |
Collapse
|
16
|
Scheib H, Nekaris KAI, Rode-Margono J, Ragnarsson L, Baumann K, Dobson JS, Wirdateti W, Nouwens A, Nijman V, Martelli P, Ma R, Lewis RJ, Kwok HF, Fry BG. The Toxicological Intersection between Allergen and Toxin: A Structural Comparison of the Cat Dander Allergenic Protein Fel d1 and the Slow Loris Brachial Gland Secretion Protein. Toxins (Basel) 2020; 12:toxins12020086. [PMID: 32012831 PMCID: PMC7076782 DOI: 10.3390/toxins12020086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
Slow lorises are enigmatic animal that represent the only venomous primate lineage. Their defensive secretions have received little attention. In this study we determined the full length sequence of the protein secreted by their unique brachial glands. The full length sequences displayed homology to the main allergenic protein present in cat dander. We thus compared the molecular features of the slow loris brachial gland protein and the cat dander allergen protein, showing remarkable similarities between them. Thus we postulate that allergenic proteins play a role in the slow loris defensive arsenal. These results shed light on these neglected, novel animals.
Collapse
Affiliation(s)
- Holger Scheib
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | - K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Johanna Rode-Margono
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- The North of England Zoological Society / Chester Zoo, Chester CH2 1LH, UK
| | - Lotten Ragnarsson
- Institute for Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia; (L.R.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | | | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia;
| | - Vincent Nijman
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Rui Ma
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR;
| | - Richard J. Lewis
- Institute for Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia; (L.R.)
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR;
- Correspondence: (H.F.K.); (B.G.F.)
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
- Correspondence: (H.F.K.); (B.G.F.)
| |
Collapse
|
17
|
Chan SK, Pomés A, Hilger C, Davies JM, Mueller G, Kuehn A, Lopata AL, Gadermaier G, van Hage M, Raulf M, Goodman RE. Keeping Allergen Names Clear and Defined. Front Immunol 2019; 10:2600. [PMID: 31798576 PMCID: PMC6878850 DOI: 10.3389/fimmu.2019.02600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
The World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee was established in 1986 by leading allergists to standardize names given to proteins that cause IgE-mediated reactions in humans. The Sub-Committee's objective is to assign unique names to allergens based on a critical analysis of confidentially submitted biochemical and clinical data from researchers, often prior to publication to preserve consistency. The Sub-Committee maintains and revises the database as the understanding of allergens evolves. This report summarizes recent developments that led to updates in classification of cockroach group 1 and 5 allergens to animal as well as environmental and occupational allergens. Interestingly, routes, doses, and frequency of exposure often affects allergenicity as does the biochemical properties of the proteins and similarity to self and other proteins. Information required by the Sub-Committee now is more extensive than previously as technology has improved. Identification of new allergens requires identification of the amino acid sequence and physical characteristics of the protein as well as demonstration of IgE binding from subjects verified by described clinical histories, proof of the presence of the protein in relevant exposure substances, and demonstration of biological activity (skin prick tests, activation of basophils, or mast cells). Names are assigned based on taxonomy with the abbreviation of genus and species and assignment of a number, which reflects the priority of discovery, but more often now, the relationships with homologous proteins in related species.
Collapse
Affiliation(s)
- Sanny K Chan
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Anna Pomés
- INDOOR Biotechnologies, Inc. Charlottesville, VA, United States
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Janet M Davies
- Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Geoffrey Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andreas L Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | | | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Monika Raulf
- Institute of Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universitat Bochum, Bochum, Germany
| | - Richard E Goodman
- Food Allergy Research and Resource Program, Deptartment of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, OR, United States
| |
Collapse
|
18
|
Thoms F, Jennings GT, Maudrich M, Vogel M, Haas S, Zeltins A, Hofmann-Lehmann R, Riond B, Grossmann J, Hunziker P, Fettelschoss-Gabriel A, Senti G, Kündig TM, Bachmann MF. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. J Allergy Clin Immunol 2019; 144:193-203. [PMID: 31056187 DOI: 10.1016/j.jaci.2019.01.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cat allergy in human subjects is usually caused by the major cat allergen Fel d 1 and is found in approximately 10% of the Western population. Currently, there is no efficient and safe therapy for cat allergy available. Allergic patients usually try to avoid cats or treat their allergy symptoms. OBJECTIVE We developed a new strategy to treat Fel d 1-induced allergy in human subjects by immunizing cats against their own major allergen, Fel d 1. METHODS A conjugate vaccine consisting of recombinant Fel d 1 and a virus-like particle derived from the cucumber mosaic virus containing the tetanus toxin-derived universal T-cell epitope tt830-843 (CuMVTT) was used to immunize cats. A first tolerability and immunogenicity study, including a boost injection, was conducted by using the Fel-CuMVTT vaccine alone or in combination with an adjuvant. RESULTS The vaccine was well tolerated and had no overt toxic effect. All cats induced a strong and sustained specific IgG antibody response. The induced anti-Fel d 1 antibodies were of high affinity and exhibited a strong neutralization ability tested both in vitro and in vivo. A reduction in the endogenous allergen level and a reduced allergenicity of tear samples, were observed. CONCLUSION Vaccination of cats with Fel-CuMVTT induces neutralizing antibodies and might result in reduced symptoms of allergic cat owners. Both human subjects and animals could profit from this treatment because allergic cat owners would reduce their risk of developing chronic diseases, such as asthma, and become more tolerant of their cats, which therefore could stay in the households and not need to be relinquished to animal shelters.
Collapse
Affiliation(s)
- Franziska Thoms
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; HypoPet AG, Zurich, Switzerland.
| | - Gary T Jennings
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; HypoPet AG, Zurich, Switzerland
| | - Melanie Maudrich
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland
| | - Monique Vogel
- Department of Immunology, Inselspital, University of Bern, Bern, Switzerland
| | - Stefanie Haas
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; HypoPet AG, Zurich, Switzerland
| | - Andris Zeltins
- Latvian Biomedical Research & Study Centre, Riga, Latvia
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Peter Hunziker
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, Zurich University Hospital, Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Gabriela Senti
- Clinical Trials Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Martin F Bachmann
- HypoPet AG, Zurich, Switzerland; Department of Immunology, Inselspital, University of Bern, Bern, Switzerland; Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Bastien BC, Gardner C, Satyaraj E. Influence of time and phenotype on salivary Fel d1 in domestic shorthair cats. J Feline Med Surg 2019; 21:867-874. [PMID: 31135257 PMCID: PMC6764004 DOI: 10.1177/1098612x19850973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives Fel d1 is a major allergen that may affect humans sensitive to cat allergens,
and it can be detected in the saliva and on the hair of cats. We studied the
variability of salivary Fel d1 in typical house cats (ie, neutered domestic
shorthair cats) and the factors that could be associated with that
variability. Methods Saliva samples were collected from 64 cats, twice daily, every other day, for
a year, at two locations (Missouri, USA, and Ontario, Canada). Salivary Fel
d1 levels were measured using an immunoassay. Correlations and linear
mixed-effects model analyses were run to assess which factors significantly
affected the Fel d1 levels. Results Salivary Fel d1 levels varied significantly both within and among cats. Cat
averages over the year ranged from 0.4–35 µg/ml, and a higher average
correlated with a higher SD (P <0.001). The first
collection of the day tended to be higher than the afternoon collection
(P <0.001). Sex, coat color or body size did not
relate to cats’ average Fel d1 production, but older cats tended to have
lower salivary Fel d1 levels (P <0.001). Fel d1 levels
from four samples were reliable in identifying cats producing stable low
levels of Fel d1. Conclusions and relevance We observed a wide and continuous range of salivary Fel d1 production in
domestic shorthair cats. In particular, a subset of cats had stable low
levels throughout the course of the year, and they can be identified by
analyzing a few saliva samples rather than their physical appearance.
Collapse
|
20
|
Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches. PLoS One 2018. [PMID: 29771985 DOI: 10.1371/journal.pone.0197618.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.
Collapse
|
21
|
Durairaj R, Pageat P, Bienboire-Frosini C. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches. PLoS One 2018; 13:e0197618. [PMID: 29771985 PMCID: PMC5957422 DOI: 10.1371/journal.pone.0197618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/05/2018] [Indexed: 11/19/2022] Open
Abstract
The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.
Collapse
Affiliation(s)
- Rajesh Durairaj
- Department of Behavioral and Physiological Mechanisms of Adaptation (D-MPCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| | - Patrick Pageat
- Department of Semiochemicals Identification and Analogs Design (D-ISCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| | - Cécile Bienboire-Frosini
- Department of Behavioral and Physiological Mechanisms of Adaptation (D-MPCA), Research Institute in Semiochemistry and Applied Ethology (IRSEA), APT, France
| |
Collapse
|
22
|
Bonnet B, Messaoudi K, Jacomet F, Michaud E, Fauquert JL, Caillaud D, Evrard B. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018. [PMID: 29643919 DOI: 10.1186/s13223-018-0239-8.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Main body Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.
Collapse
Affiliation(s)
- B Bonnet
- 1Laboratoire d'Immunologie, ECREIN, UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.,2Service d'Immunologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - K Messaoudi
- 3Laboratoire de Biochimie, CHU Angers, Angers, France
| | - F Jacomet
- 4Laboratoire d'Immunologie, CHU Poitiers, Poitiers, France
| | - E Michaud
- 5Service de Pédiatrie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - J L Fauquert
- 5Service de Pédiatrie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - D Caillaud
- 6Service de Pneumologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - B Evrard
- 1Laboratoire d'Immunologie, ECREIN, UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.,2Service d'Immunologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Bonnet B, Messaoudi K, Jacomet F, Michaud E, Fauquert JL, Caillaud D, Evrard B. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen. Allergy Asthma Clin Immunol 2018; 14:14. [PMID: 29643919 PMCID: PMC5891966 DOI: 10.1186/s13223-018-0239-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Main body Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.
Collapse
Affiliation(s)
- B Bonnet
- 1Laboratoire d'Immunologie, ECREIN, UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.,2Service d'Immunologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - K Messaoudi
- 3Laboratoire de Biochimie, CHU Angers, Angers, France
| | - F Jacomet
- 4Laboratoire d'Immunologie, CHU Poitiers, Poitiers, France
| | - E Michaud
- 5Service de Pédiatrie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - J L Fauquert
- 5Service de Pédiatrie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - D Caillaud
- 6Service de Pneumologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - B Evrard
- 1Laboratoire d'Immunologie, ECREIN, UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.,2Service d'Immunologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
WHO/IUIS Allergen Nomenclature: Providing a common language. Mol Immunol 2018; 100:3-13. [PMID: 29625844 DOI: 10.1016/j.molimm.2018.03.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022]
Abstract
A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G. Marsh developed a nomenclature based on the Linnaean taxonomy, and further established the World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee in 1986. Its stated aim was to standardize the names given to the antigens (allergens) that caused IgE-mediated allergies in humans. The Sub-Committee first published a revised list of allergen names in 1986, which continued to grow with rare publications until 1994. Between 1994 and 2007 the database was a text table online, then converted to a more readily updated website. The allergen list became the Allergen Nomenclature database (www.allergen.org), which currently includes approximately 880 proteins from a wide variety of sources. The Sub-Committee includes experts on clinical and molecular allergology. They review submissions of allergen candidates, using evidence-based criteria developed by the Sub-Committee. The review process assesses the biochemical analysis and the proof of allergenicity submitted, and aims to assign allergen names prior to publication. The Sub-Committee maintains and revises the database, and addresses continuous challenges as new "omics" technologies provide increasing data about potential new allergens. Most journals publishing information on new allergens require an official allergen name, which involves submission of confidential data to the WHO/IUIS Allergen Nomenclature Sub-Committee, sufficient to demonstrate binding of IgE from allergic subjects to the purified protein.
Collapse
|
25
|
Turkeltaub PC, Cheon J, Friedmann E, Lockey RF. The Influence of Asthma and/or Hay Fever on Pregnancy: Data from the 1995 National Survey of Family Growth. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:1679-1690. [PMID: 28550983 DOI: 10.1016/j.jaip.2017.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/19/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Asthma is associated with adverse pregnancy outcomes. At the same time there is a worldwide increase in asthma and hay fever. OBJECTIVE This study addresses whether asthma and/or hay fever adversely influence pregnancy outcomes. METHODS Data from the 1995 National Survey of Family Growth that include a history of diagnosed asthma, hay fever, and adverse pregnancy outcomes in 10,847 women representative of the US population aged 15 to 44 years were analyzed. RESULTS Women with the allergic phenotypes asthma and hay fever and hay fever only had no significant increase in adverse pregnancy outcomes (spontaneous pregnancy loss, preterm birth, infant low birth weight), whereas women with the nonatopic phenotype asthma only (without hay fever) did. The study did not evaluate endotypes. CONCLUSIONS This study provides new data that the allergic phenotypes, asthma and hay fever and hay fever only, are compatible with healthy pregnancy, whereas the nonatopic asthma phenotype, asthma only, adversely impacts pregnancy.
Collapse
Affiliation(s)
| | - Jooyoung Cheon
- Sungshin Women's University College of Nursing, Seoul, Korea
| | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
27
|
Pomés A, Chapman MD, Wünschmann S. Indoor Allergens and Allergic Respiratory Disease. Curr Allergy Asthma Rep 2016. [PMID: 27184001 DOI: 10.1007/s11882-016-0622-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
28
|
The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen. PLoS One 2015. [PMID: 26134118 DOI: 10.1371/journal.pone.0132311.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy.
Collapse
|
29
|
Ligabue-Braun R, Sachett LG, Pol-Fachin L, Verli H. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen. PLoS One 2015; 10:e0132311. [PMID: 26134118 PMCID: PMC4489793 DOI: 10.1371/journal.pone.0132311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liana Guimarães Sachett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Laércio Pol-Fachin
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
30
|
Pomés A, Chruszcz M, Gustchina A, Minor W, Mueller GA, Pedersen LC, Wlodawer A, Chapman MD. 100 Years later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. J Allergy Clin Immunol 2015; 136:29-37.e10. [PMID: 26145985 PMCID: PMC4502579 DOI: 10.1016/j.jaci.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/21/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases.
Collapse
Affiliation(s)
- Anna Pomés
- Basic Research, INDOOR Biotechnologies, Charlottesville, Va.
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
| | - Alla Gustchina
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Md
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physic, University of Virginia, Charlottesville, Va
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Md
| | | |
Collapse
|
31
|
Affiliation(s)
- S. Scheurer
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Vieths
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
32
|
Hentges F, Léonard C, Arumugam K, Hilger C. Immune responses to inhalant Mammalian allergens. Front Immunol 2014; 5:234. [PMID: 24904583 PMCID: PMC4033121 DOI: 10.3389/fimmu.2014.00234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
In Europe and the USA, at least one person in four is exposed every day to inhalant allergens of mammalian origin, a considerable number is regularly exposed for professional reasons and almost everyone is occasionally exposed to inhalant allergens from pets or domestic animals. The production of IgE to these inhalant allergens, often complicated by asthma and rhinitis, defines the atopic status. However, the immune response to these allergens largely imprints the cellular immune compartment and also drives non-IgE humoral immune responses in the allergic and non-allergic population. During the recent years, it has become clear that IgE antibodies recognize mammalian allergens that belong to three protein or glycoprotein families: the secretoglobins, the lipocalins, and the serum albumins. In this article, we review the humoral and cellular immune responses to the major members of these families and try to define common characteristics and also distinctive features.
Collapse
Affiliation(s)
- François Hentges
- Laboratory of Immunogenetics and Allergology, CRP-Santé , Luxembourg , Luxembourg
| | - Cathy Léonard
- Laboratory of Immunogenetics and Allergology, CRP-Santé , Luxembourg , Luxembourg
| | - Karthik Arumugam
- Laboratory of Retrovirology, CRP-Santé , Luxembourg , Luxembourg
| | - Christiane Hilger
- Laboratory of Immunogenetics and Allergology, CRP-Santé , Luxembourg , Luxembourg
| |
Collapse
|
33
|
Abstract
As investigations into the innate immune responses that lead to allergic sensitization become better defined, there is a need to determine how allergens could interact with pattern recognition receptors that bind non-proteinaceous moieties. Many important allergens are not covalently bound to lipid or carbohydrate, but have structures belonging to lipid, glycan and glycolipid-binding families. These include ML-domain proteins, lipopolysaccharide-binding/cell permeability-increasing proteins, von Ebner gland lipocalins, salivary lipocalins/major urinary proteins, plant pathogenesis-related proteins PR-5 and -10, uteroglobins, non-specific lipid transfer proteins, large lipid transfer proteins and proteins with chitin and other carbohydrate-binding modules. The binding expected is overviewed with regard to importance of the allergens and their ability to elicit responses proposed from experimental models. The evidence compiled showing that allergens from the same source sensitize for different types of adaptive immune responses supports the concept that individual allergens within these sources have their own distinctive interactions with innate immunity.
Collapse
|
34
|
Abstract
Exposure to animal allergens is a major risk factor for sensitization and allergic diseases. Besides mites and cockroaches, the most important animal allergens are derived from mammals. Cat and dog allergies affect the general population; whereas, allergies to rodents or cattle is an occupational problem. Exposure to animal allergens is not limited to direct contact to animals. Based on their aerodynamic properties, mammalian allergens easily become airborne, attach to clothing and hair, and can be spread from one environment to another. For example, the major cat allergen Fel d 1 was frequently found in homes without pets and in public buildings, including schools, day-care centers, and hospitals. Allergen concentrations in a particular environment showed high variability depending on numerous factors. Assessment of allergen exposure levels is a stepwise process that involves dust collection, allergen quantification, and data analysis. Whereas a number of different dust sampling strategies are used, ELISA assays have prevailed in the last years as the standard technique for quantification of allergen concentrations. This review focuses on allergens arising from domestic, farm, and laboratory animals and describes the ubiquity of mammalian allergens in the human environment. It includes an overview of exposure assessment studies carried out in different indoor settings (homes, schools, workplaces) using numerous sampling and analytical methods and summarizes significant factors influencing exposure levels. However, methodological differences among studies have contributed to the variability of the findings and make comparisons between studies difficult. Therefore, a general standardization of methods is needed and recommended.
Collapse
Affiliation(s)
- Eva Zahradnik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA) , Bochum , Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA) , Bochum , Germany
| |
Collapse
|
35
|
Zahradnik E, Raulf M. Animal allergens and their presence in the environment. Front Immunol 2014; 5:76. [PMID: 24624129 PMCID: PMC3939690 DOI: 10.3389/fimmu.2014.00076] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/12/2014] [Indexed: 12/15/2022] Open
Abstract
Exposure to animal allergens is a major risk factor for sensitization and allergic diseases. Besides mites and cockroaches, the most important animal allergens are derived from mammals. Cat and dog allergies affect the general population; whereas, allergies to rodents or cattle is an occupational problem. Exposure to animal allergens is not limited to direct contact to animals. Based on their aerodynamic properties, mammalian allergens easily become airborne, attach to clothing and hair, and can be spread from one environment to another. For example, the major cat allergen Fel d 1 was frequently found in homes without pets and in public buildings, including schools, day-care centers, and hospitals. Allergen concentrations in a particular environment showed high variability depending on numerous factors. Assessment of allergen exposure levels is a stepwise process that involves dust collection, allergen quantification, and data analysis. Whereas a number of different dust sampling strategies are used, ELISA assays have prevailed in the last years as the standard technique for quantification of allergen concentrations. This review focuses on allergens arising from domestic, farm, and laboratory animals and describes the ubiquity of mammalian allergens in the human environment. It includes an overview of exposure assessment studies carried out in different indoor settings (homes, schools, workplaces) using numerous sampling and analytical methods and summarizes significant factors influencing exposure levels. However, methodological differences among studies have contributed to the variability of the findings and make comparisons between studies difficult. Therefore, a general standardization of methods is needed and recommended.
Collapse
Affiliation(s)
- Eva Zahradnik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA) , Bochum , Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA) , Bochum , Germany
| |
Collapse
|
36
|
Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods 2014; 66:3-21. [PMID: 23891546 PMCID: PMC3969231 DOI: 10.1016/j.ymeth.2013.07.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
The structure determination of major allergens is a prerequisite for analyzing surface exposed areas of the allergen and for mapping conformational epitopes. These may be determined by experimental methods including crystallographic and NMR-based approaches or predicted by computational methods. In this review we summarize the existing structural information on allergens and their classification in protein fold families. The currently available allergen-antibody complexes are described and the experimentally obtained epitopes compared. Furthermore we discuss established methods for linear and conformational epitope mapping, putting special emphasis on a recently developed approach, which uses the structural similarity of proteins in combination with the experimental cross-reactivity data for epitope prediction.
Collapse
Affiliation(s)
- Fabio Dall'antonia
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Tea Pavkov-Keller
- ACIB (Austrian Centre of Industrial Biotechnology), Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biosciences, University of Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Austria.
| |
Collapse
|
37
|
Thomas WR. Molecular mimicry as the key to the dominance of the house dust mite allergen Der p 2. Expert Rev Clin Immunol 2014; 5:233-7. [DOI: 10.1586/eci.09.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Abstract
Activation of receptors of the innate immune system is a critical step in the initiation of immune responses. It has been shown that dominant allergens have properties that could allow them to interact with toll-like and C-type lectin receptors to favour Th2-biased responses and many bind lipids and glycans that could associate with ligands to mimic pathogen-associated microbial patterns. In accord with the proposed allergen-specific innate interactions it has been shown that the immune responses to different allergens and antigens from the same source are not necessarily coordinately regulated.
Collapse
Affiliation(s)
- W R Thomas
- Centre for Child Health Research, University of Western Australia, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia.
| |
Collapse
|
39
|
Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy 2013; 43:164-76. [PMID: 23331558 DOI: 10.1111/cea.12016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prevalence of atopy and allergic disease continues to escalate worldwide. Defining immune mechanisms that suppress the underlying Th2-driven inflammatory process is critical for the rational design of new treatments to prevent or attenuate disease. Allergen immunotherapy has provided a useful framework for evaluating changes in the immune response that occur during the development of tolerance. Despite this, elucidating the phenotypic and functional properties of regulatory cells, has proven challenging in humans with allergic disease. This article provides an overview of our current understanding of the immune pathways that orchestrate allergen tolerance, with an emphasis on emerging concepts related to human disease. A variety of regulatory cell types, including IL-10-secreting T and B cells, play a pivotal role in suppressing allergic responses to inhaled, ingested and injected allergens. These cells may inhibit Th2 effectors directly, or else indirectly, through other cell types and mediators. Protective antibodies, including IgG4, Fc sialylated IgG, and IgA, have the capacity to modulate the response by preventing allergen binding to surface-bound IgE, or inhibiting dendritic cell maturation. Immune cell plasticity may augment suppression of Th2 cells by T regulatory cells, through mechanisms that involve T cell conversion, or else unconventional roles of classical effector cells. These actions depend upon external cues provided by the in vivo milieu. As such, specific anatomical sites may preferentially favour tolerance induction. Recent scientific advances now allow a global analysis of immune parameters that capture novel markers of tolerance induction in allergic patients. Such markers could provide new molecular targets for assessing tolerance, and for designing treatments that confer long-lasting protection in a safe and efficacious fashion.
Collapse
Affiliation(s)
- J Wisniewski
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1355, USA
| | | | | |
Collapse
|
40
|
Hilger C, Kler S, Arumugam K, Revets D, Muller CP, Charpentier C, Lehners C, Morisset M, Hentges F. Identification and isolation of a Fel d 1-like molecule as a major rabbit allergen. J Allergy Clin Immunol 2013; 133:759-66. [PMID: 23763973 DOI: 10.1016/j.jaci.2013.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/10/2013] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rabbits are increasingly kept as domestic pets. Several rabbit allergens have been characterized. However, their sequences are still elusive, and none of these molecules are available for diagnosis. OBJECTIVE We sought to isolate major allergens from the rabbit Oryctolagus cuniculus and to investigate their importance in sensitized patients. METHODS Proteins were extracted from rabbit hair, and IgE-reactive proteins were purified by using sequential chromatography. Allergens were characterized by means of N-terminal sequencing and mass spectrometry. IgE reactivity to a new allergen was analyzed in sera of 35 patients sensitized to rabbits in a domestic setting. A model of the crystal structure of the isolated proteins was constructed. RESULTS A new IgE-reactive allergen, Ory c 3, was identified as rabbit lipophilin. The molecule that belongs to the secretoglobin family is a heterodimer of 18 to 19 kDa composed of 2 polypeptide chains, CL2 and AL. CL2 has a predicted N-linked glycosylation site confirmed by using mass spectrometry. Of the 35 patients with rabbit allergy studied, 27 (77%) had IgE to both the glycosylated and deglycosylated Ory c 3 heterodimer. Allergenicity of Ory c 3 was confirmed by using skin prick tests and the basophil activation assay. Modeling of the structure revealed a marked homology to Fel d 1, the major cat allergen. However, no IgE cross-reactivity was detected between Fel d 1 and Ory c 3. CONCLUSION The rabbit lipophilin heterodimer AL-CL2 has been identified as a major rabbit allergen. After Fel d 1, Ory c 3 is the second mammalian secretoglobin shown to be a major allergen.
Collapse
Affiliation(s)
- Christiane Hilger
- Laboratory of Immunogenetics and Allergology, CRP-Santé, Luxembourg.
| | - Stéphanie Kler
- Laboratory of Immunogenetics and Allergology, CRP-Santé, Luxembourg
| | | | | | | | | | - Christiane Lehners
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg
| | - François Hentges
- Laboratory of Immunogenetics and Allergology, CRP-Santé, Luxembourg; National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg
| |
Collapse
|
41
|
Pei Y, Geng S, Liu L, Yan F, Guan H, Hou J, Chen Y, Wang B, An X. Fel d 1-airway inflammation prevention and treatment by co-immunization vaccine via induction of CD4+CD25-Foxp3+ Treg cells. Hum Vaccin Immunother 2013; 9:1019-31. [PMID: 23324570 DOI: 10.4161/hv.23518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pet allergens are major causes for asthma and allergic rhinitis. Fel d 1 protein, a key pet allergen from domestic cat, can sensitize host and trigger asthma attack. In this study, we report that co-immunization with recombinant Fel d 1 protein (rFel d 1) plus plasmid DNA that contains Fe1 d 1 gene was effective in preventing and treating the natural Fel d 1 (nFel d 1) induced allergic airway inflammation in mice. A population of T regulatory cells (iTreg) exhibiting a CD4+CD25-Foxp3+ phenotype and expressing IL-10 and TGF-β was induced by this co-immunization strategy. Furthermore, after adoptive transfers of the iTreg cells, mice that were pre-sensitized and challenged with nFel d 1 exhibited less signs of allergic inflammation, AHR and a reduced allergic immune response. These data indicate that co-immunization with DNA and protein mixture vaccine may be an effective treatment for cat allergy.
Collapse
Affiliation(s)
- Yechun Pei
- State Key Laboratory for Agro-Biotechnology; China Agricultural University; Beijing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
MHC class II-restricted presentation of the major house dust mite allergen Der p 1 Is GILT-dependent: implications for allergic asthma. PLoS One 2013; 8:e51343. [PMID: 23326313 PMCID: PMC3543425 DOI: 10.1371/journal.pone.0051343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is known to reduce disulfide bonds present in proteins internalized by antigen presenting cells, facilitating optimal processing and presentation of peptides on Major Histocompatibility Complex class II molecules, as well as the subsequent activation of CD4-positive T lymphocytes. Here, we show that GILT is required for class II-restricted processing and presentation of immunodominant epitopes from the major house dust mite allergen Der p 1. In the absence of GILT, CD4-positive T cell responses to Der p 1 are significantly reduced, resulting in mitigated allergic airway inflammation in response to Der p 1 and house dust mite extracts in a murine model of asthma.
Collapse
|
43
|
Commins SP, Kelly LA, Rönmark E, James HR, Pochan SL, Peters EJ, Lundbäck B, Nganga LW, Cooper PJ, Hoskins JM, Eapen SS, Matos LA, McBride DC, Heymann PW, Woodfolk JA, Perzanowski MS, Platts-Mills TAE. Galactose-α-1,3-galactose-specific IgE is associated with anaphylaxis but not asthma. Am J Respir Crit Care Med 2012; 185:723-30. [PMID: 22281828 DOI: 10.1164/rccm.201111-2017oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose (α-gal) are common in the southeastern United States. These antibodies, which are induced by ectoparasitic ticks, can give rise to positive skin tests or serum assays with cat extract. OBJECTIVES To evaluate the relationship between IgE antibodies to α-gal and asthma, and compare this with the relationship between asthma and IgE antibodies to Fel d 1 and other protein allergens. METHODS Patients being investigated for recurrent anaphylaxis, angioedema, or acute urticaria underwent spirometry, exhaled nitric oxide, questionnaires, and serum IgE antibody assays. The results were compared with control subjects and cohorts from the emergency department in Virginia (n = 130), northern Sweden (n = 963), and rural Kenya (n = 131). MEASUREMENTS AND MAIN RESULTS Patients in Virginia with high-titer IgE antibodies to α-gal had normal lung function, low levels of exhaled nitric oxide, and low prevalence of asthma symptoms. Among patients in the emergency department and children in Kenya, there was no association between IgE antibodies to α-gal and asthma (odds ratios, 1.04 and 0.75, respectively). In Sweden, IgE antibodies to cat were closely correlated with IgE antibodies to Fel d 1 (r = 0.83) and to asthma (P < 0.001). CONCLUSIONS These results provide a model of an ectoparasite-induced specific IgE response that can increase total serum IgE without creating a risk for asthma, and further evidence that the main allergens that are causally related to asthma are those that are inhaled.
Collapse
Affiliation(s)
- Scott P Commins
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thomas WR. The advent of recombinant allergens and allergen cloning. J Allergy Clin Immunol 2011; 127:855-9. [DOI: 10.1016/j.jaci.2010.12.1084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023]
|
45
|
Madhurantakam C, Nilsson OB, Uchtenhagen H, Konradsen J, Saarne T, Högbom E, Sandalova T, Grönlund H, Achour A. Crystal structure of the dog lipocalin allergen Can f 2: implications for cross-reactivity to the cat allergen Fel d 4. J Mol Biol 2010; 401:68-83. [PMID: 20621650 DOI: 10.1016/j.jmb.2010.05.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/25/2022]
Abstract
The dog lipocalin allergen Can f 2 is an important cause of allergic sensitization in humans worldwide. Here, the first crystal structure of recombinant rCan f 2 at 1.45 A resolution displays a classical lipocalin fold with a conserved Gly-Xaa-Trp motif, in which Trp19 stabilizes the overall topology of the monomeric rCan f 2. Phe38 and Tyr84 localized on the L1 and L5 loops, respectively, control access to the highly hydrophobic calyx. Although the rCan f 2 calyx is nearly identical with the aero-allergens MUP1, Equ c 1 and A2U from mouse, horse and rat, respectively, no IgE cross-reactivity was found using sera from five mono-sensitized subjects. However, clear IgE cross-reactivity was demonstrated between Can f 2 and the cat allergen Fel d 4, although they share less than 22% sequence identity. This suggests a role for these allergens in co-sensitization between cat- and dog-allergic patients.
Collapse
Affiliation(s)
- Chaithanya Madhurantakam
- Centre for Infectious Medicine, F59, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pomés A. Relevant B cell epitopes in allergic disease. Int Arch Allergy Immunol 2009; 152:1-11. [PMID: 19940500 DOI: 10.1159/000260078] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 3-dimensional structure of an allergen defines the accessible parts on the surface of the molecule or epitopes that interact with antibodies. Mapping the antigenic determinants for IgE antibody binding has been pursued through strategies based on the use of overlapping synthetic peptides, recombinant allergenic fragments or unfolded allergens. These approaches led to the identification of mostly linear epitopes and are useful for food allergens that undergo digestion or food processing. For inhaled allergens, conformational epitopes appear to be the primary targets of IgE responses. Knowledge of the molecular structure of allergens alone and in complex with antibodies that interfere with IgE antibody binding is important to understand the immune recognition of B cell-antigenic determinants on allergens and the design of recombinant allergens for immunotherapy. Starting with the molecular cloning and expression of allergens, and with the advent of X-ray crystallography and nuclear magnetic resonance techniques, we have been able to visualize conformational epitopes on allergens.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, Va., USA.
| |
Collapse
|
47
|
Perovic I, Milovanovic M, Stanic D, Burazer L, Petrovic D, Milcic-Matic N, Gafvelin G, van Hage M, Jankov R, Velickovic TC. Allergenicity and immunogenicity of the major mugwort pollen allergen Art v 1 chemically modified by acetylation. Clin Exp Allergy 2009; 39:435-46. [DOI: 10.1111/j.1365-2222.2008.03158.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Pomés A. Allergen structures and biologic functions: the cutting edge of allergy research. Curr Allergy Asthma Rep 2008; 8:425-32. [PMID: 18682111 DOI: 10.1007/s11882-008-0082-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Studies of structure and function of allergens using state-of-the-art technologies have led to a better understanding of allergenicity, including aspects related to cross-reactivity, allergen nomenclature, and the identification of antigenic determinants. This information is being applied to the design and production of allergy vaccines, some of which already have proven efficacy and safety in clinical trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, 1216 Harris Street, Charlottesville, VA 22903, USA.
| |
Collapse
|
49
|
Li M, Gustchina A, Alexandratos J, Wlodawer A, Wünschmann S, Kepley CL, Chapman MD, Pomés A. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem 2008; 283:22806-14. [PMID: 18519566 DOI: 10.1074/jbc.m800937200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab' fragment of a monoclonal antibody 7C11 was solved at 2.8-angstroms resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-pi interactions exist between Lys-65, Arg-83, and Lys-132 in Bla g 2 and several tyrosines in 7C11. In the complex with Fab', Bla g 2 forms a dimer, which is stabilized by a quasi-four-helix bundle comprised of an alpha-helix and a helical turn from each allergen monomer, exhibiting a novel dimerization mode for an aspartic protease. A disulfide bridge between C51a and C113, unique to the aspartic protease family, connects the two helical elements within each Bla g 2 monomer, thus facilitating formation of the bundle. Mutation of these cysteines, as well as the residues Asn-52, Gln-110, and Ile-114, involved in hydrophobic interactions within the bundle, resulted in a protein that did not dimerize. The mutant proteins induced less beta-hexosaminidase release from mast cells than the wild-type Bla g 2, suggesting a functional role of dimerization in allergenicity. Because 7C11 shares a binding epitope with IgE, the information gained by analysis of the crystal structure of its complex provided guidance for site-directed mutagenesis of the allergen epitope. We have now identified key residues involved in IgE antibody binding; this information will be useful for the design of vaccines for immunotherapy.
Collapse
Affiliation(s)
- Mi Li
- Macromolecular Crystallography Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|