1
|
Pinchiaroli J, Saldanha R, Patteson AE, Robertson-Anderson RM, Gurmessa BJ. Scale-dependent interactions enable emergent microrheological stress response of actin-vimentin composites. SOFT MATTER 2024. [PMID: 39495192 DOI: 10.1039/d4sm00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear versus nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites versus single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and long-time stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.
Collapse
Affiliation(s)
- Julie Pinchiaroli
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| | - Renita Saldanha
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | - Alison E Patteson
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | | | - Bekele J Gurmessa
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
2
|
Mostafazadeh N, Peng Z. Microstructure-based nuclear lamina constitutive model. Cytoskeleton (Hoboken) 2024; 81:297-309. [PMID: 38345187 DOI: 10.1002/cm.21835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 08/20/2024]
Abstract
The nuclear lamina is widely recognized as the most crucial component in providing mechanical stability to the nucleus. However, it is still a significant challenge to model the mechanics of this multilayered protein network. We developed a constitutive model of the nuclear lamina network based on its microstructure, which accounts for the deformation phases at the dimer level, as well as the orientational arrangement and density of lamin filaments. Instead of relying on homology modeling in the previous studies, we conducted molecular simulations to predict the force-extension response of a highly accurate lamin dimer structure obtained through X-ray diffraction crystallography experimentation. Furthermore, we devised a semiflexible worm-like chain extension-force model of lamin dimer as a substitute, incorporating phases of initial stretching, uncoiling of the dimer coiled-coil, and transition of secondary structures. Subsequently, we developed a 2D network continuum model for the nuclear lamina by using our extension-force lamin dimer model and derived stress resultants. By comparing with experimentally measured lamina modulus, we found that the lamina network has sharp initial strain-hardening behavior. This also enabled us to carry out finite element simulations of the entire nucleus with an accurate microstructure-based nuclear lamina model. Finally, we conducted simulations of transendothelial transmigration of a nucleus and investigated the impact of varying network density and uncoiling constants on the critical force required for successful transmigration. The model allows us to incorporate the microstructure characteristics of the nuclear lamina into the nucleus model, thereby gaining insights into how laminopathies and mutations affect nuclear mechanics.
Collapse
Affiliation(s)
- Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Pinchiaroli J, Saldanha R, Patteson AE, Robertson-Anderson RM, Gurmessa BJ. Switchable microscale stress response of actin-vimentin composites emerges from scale-dependent interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597906. [PMID: 38895280 PMCID: PMC11185688 DOI: 10.1101/2024.06.07.597906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear versus nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites versus single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and longtime stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.
Collapse
|
4
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Ishizaka T, Hatori K. Direct observation of oriented behavior of actin filaments interacting with desmin intermediate filaments. Biochim Biophys Acta Gen Subj 2023; 1867:130488. [PMID: 37838354 DOI: 10.1016/j.bbagen.2023.130488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Associations between actin filaments (AFs) and intermediate filaments (IFs) are frequently observed in living cells. The crosstalk between these cytoskeletal components underpins cellular organization and dynamics; however, the molecular basis of filamentous interactions is not fully understood. Here, we describe the mode of interaction between AFs and desmin IFs (DIFs) in a reconstituted in vitro system. METHODS AFs (rabbit skeletal muscle) and DIFs (chicken gizzard) were labeled with fluorescent dyes. DIFs were immobilized on a heavy meromyosin (HMM)-coated collodion surface. HMM-driven AFs with ATP hydrolysis was assessed in the presence of DIFs. Images of single filaments were obtained using fluorescence microscopy. Vector changes in the trajectories of single AFs were calculated from microscopy images. RESULTS AF speed transiently decreased upon contact with DIF. The difference between the incoming and outgoing angles of a moving AF broadened upon contact with a DIF. A smaller incoming angle tended to result in a smaller outgoing angle in a nematic manner. The percentage of moving AFs decreased with an increasing DIF density, but the speed of the moving AFs was similar to that in the no-desmin control. An abundance of DIFs tended to exclude AFs from the HMM-coated surfaces. CONCLUSIONS DIFs agitate the movement of AFs with the orientation. DIFs can bind to HMMs and weaken actin-myosin interactions. GENERAL SIGNIFICANCE The study indicates that apart from the binding strength, the accumulation of weak interactions characteristic of filamentous structures may affect the dynamic organization of cell architecture.
Collapse
Affiliation(s)
- Takumi Ishizaka
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Japan
| | - Kuniyuki Hatori
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Japan.
| |
Collapse
|
6
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
7
|
Lorenz C, Köster S. Multiscale architecture: Mechanics of composite cytoskeletal networks. BIOPHYSICS REVIEWS 2022; 3:031304. [PMID: 38505277 PMCID: PMC10903411 DOI: 10.1063/5.0099405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 03/21/2024]
Abstract
Different types of biological cells respond differently to mechanical stresses, and these responses are mainly governed by the cytoskeleton. The main components of this biopolymer network are actin filaments, microtubules, and intermediate filaments, whose mechanical and dynamic properties are highly distinct, thus opening up a large mechanical parameter space. Aside from experiments on whole, living cells, "bottom-up" approaches, utilizing purified, reconstituted protein systems, tremendously help to shed light on the complex mechanics of cytoskeletal networks. Such experiments are relevant in at least three aspects: (i) from a fundamental point of view, cytoskeletal networks provide a perfect model system for polymer physics; (ii) in materials science and "synthetic cell" approaches, one goal is to fully understand properties of cellular materials and reconstitute them in synthetic systems; (iii) many diseases are associated with cell mechanics, so a thorough understanding of the underlying phenomena may help solving pressing biomedical questions. In this review, we discuss the work on networks consisting of one, two, or all three types of filaments, entangled or cross-linked, and consider active elements such as molecular motors and dynamically growing filaments. Interestingly, tuning the interactions among the different filament types results in emergent network properties. We discuss current experimental challenges, such as the comparability of different studies, and recent methodological advances concerning the quantification of attractive forces between filaments and their influence on network mechanics.
Collapse
Affiliation(s)
- C. Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S. Köster
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Fluorescence microscopic imaging of single desmin intermediate filaments elongated by the presence of divalent cations in vitro. Biophys Chem 2022; 287:106839. [DOI: 10.1016/j.bpc.2022.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
9
|
Schepers AV, Kraxner J, Lorenz C, Köster S. Mechanics of Single Vimentin Intermediate Filaments Under Load. Methods Mol Biol 2022; 2478:677-700. [PMID: 36063338 DOI: 10.1007/978-1-0716-2229-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The eukaryotic cytoskeleton consists of three different types of biopolymers - microtubules, actin filaments, and intermediate filaments - and provides cells with versatile mechanical properties, combining stability and flexibility. The unique molecular structure of intermediate filaments leads to high extensibility and stability under load. With high laser power dual optical tweezers, the mechanical properties of intermediate filaments may be investigated, while monitoring the extension with fluorescence microscopy. Here, we provide detailed protocols for the preparation of single vimentin intermediate filaments and general measurement protocols for (i) stretching experiments, (ii) repeated loading and relaxation cycles, and (iii) force-clamp experiments. We describe methods for the analysis of the experimental data in combination with computational modeling approaches.
Collapse
Affiliation(s)
- Anna V Schepers
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Julia Kraxner
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Charlotta Lorenz
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Sarah Köster
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany.
| |
Collapse
|
10
|
Carse S, Lang D, Katz AA, Schäfer G. Exogenous Vimentin Supplementation Transiently Affects Early Steps during HPV16 Pseudovirus Infection. Viruses 2021; 13:v13122471. [PMID: 34960740 PMCID: PMC8703489 DOI: 10.3390/v13122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating the early steps in oncogenic Human Papillomavirus (HPV) infection has great cancer-preventative potential, as this virus is the etiological agent of virtually all cervical cancer cases and is associated with many other anogenital and oropharyngeal cancers. Previous work from our laboratory has identified cell-surface-expressed vimentin as a novel HPV16 pseudovirus (HPV16-PsVs)-binding molecule modulating its infectious potential. To further explore its mode of inhibiting HPV16-PsVs internalisation, we supplemented it with exogenous recombinant human vimentin and show that only the globular form of the molecule (as opposed to the filamentous form) inhibited HPV16-PsVs internalisation in vitro. Further, this inhibitory effect was only transient and not sustained over prolonged incubation times, as demonstrated in vitro and in vivo, possibly due to full-entry molecule engagement by the virions once saturation levels have been reached. The vimentin-mediated delay of HPV16-PsVs internalisation could be narrowed down to affecting multiple steps during the virus’ interaction with the host cell and was found to affect both heparan sulphate proteoglycan (HSPG) binding as well as the subsequent entry receptor complex engagement. Interestingly, decreased pseudovirus internalisation (but not infection) in the presence of vimentin was also demonstrated for oncogenic HPV types 18, 31 and 45. Together, these data demonstrate the potential of vimentin as a modulator of HPV infection which can be used as a tool to study early mechanisms in infectious internalisation. However, further refinement is needed with regard to vimentin’s stabilisation and formulation before its development as an alternative prophylactic means.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dirk Lang
- Department of Human Biology, Division of Cell Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Arieh A. Katz
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- SA-MRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-404-7688
| |
Collapse
|
11
|
Garcia-Pelagio KP, Bloch RJ. Biomechanical Properties of the Sarcolemma and Costameres of Skeletal Muscle Lacking Desmin. Front Physiol 2021; 12:706806. [PMID: 34489727 PMCID: PMC8416993 DOI: 10.3389/fphys.2021.706806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023] Open
Abstract
Intermediate filaments (IFs), composed primarily by desmin and keratins, link the myofibrils to each other, to intracellular organelles, and to the sarcolemma. There they may play an important role in transfer of contractile force from the Z-disks and M-lines of neighboring myofibrils to costameres at the membrane, across the membrane to the extracellular matrix, and ultimately to the tendon (“lateral force transmission”). We measured the elasticity of the sarcolemma and the connections it makes at costameres with the underlying contractile apparatus of individual fast twitch muscle fibers of desmin-null mice. By positioning a suction pipet to the surface of the sarcolemma and applying increasing pressure, we determined the pressure at which the sarcolemma separated from nearby sarcomeres, Pseparation, and the pressure at which the isolated sarcolemma burst, Pbursting. We also examined the time required for the intact sarcolemma-costamere-sarcomere complex to reach equilibrium at lower pressures. All measurements showed the desmin-null fibers to have slower equilibrium times and lower Pseparation and Pbursting than controls, suggesting that the sarcolemma and its costameric links to nearby contractile structures were weaker in the absence of desmin. Comparisons to earlier values determined for muscles lacking dystrophin or synemin suggest that the desmin-null phenotype is more stable than the former and less stable than the latter. Our results are consistent with the moderate myopathy seen in desmin-null muscles and support the idea that desmin contributes significantly to sarcolemmal stability and lateral force transmission.
Collapse
Affiliation(s)
- Karla P Garcia-Pelagio
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics. Cells 2021; 10:cells10081905. [PMID: 34440673 PMCID: PMC8392029 DOI: 10.3390/cells10081905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics. In this review, we summarize our current understanding of the contribution of IFs to cell and tissue mechanics and explain these results in light of recent in vitro studies that have investigated physical properties of single IFs and IF networks. Finally, we highlight how changes in IF gene expression, network assembly dynamics, and post-translational modifications can tune IF properties to adapt cell and tissue mechanics to changing environments.
Collapse
|
13
|
Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. Proc Natl Acad Sci U S A 2021; 118:2102026118. [PMID: 34187892 DOI: 10.1073/pnas.2102026118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics-single-filament mechanics, filament length, and interactions between filaments-including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament-filament interactions.
Collapse
|
14
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
15
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Jung W, Li J, Chaudhuri O, Kim T. Nonlinear Elastic and Inelastic Properties of Cells. J Biomech Eng 2020; 142:100806. [PMID: 32253428 PMCID: PMC7477719 DOI: 10.1115/1.4046863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Mechanical forces play an important role in various physiological processes, such as morphogenesis, cytokinesis, and migration. Thus, in order to illuminate mechanisms underlying these physiological processes, it is crucial to understand how cells deform and respond to external mechanical stimuli. During recent decades, the mechanical properties of cells have been studied extensively using diverse measurement techniques. A number of experimental studies have shown that cells are far from linear elastic materials. Cells exhibit a wide variety of nonlinear elastic and inelastic properties. Such complicated properties of cells are known to emerge from unique mechanical characteristics of cellular components. In this review, we introduce major cellular components that largely govern cell mechanical properties and provide brief explanations of several experimental techniques used for rheological measurements of cell mechanics. Then, we discuss the representative nonlinear elastic and inelastic properties of cells. Finally, continuum and discrete computational models of cell mechanics, which model both nonlinear elastic and inelastic properties of cells, will be described.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
17
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
18
|
Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118726. [PMID: 32320724 DOI: 10.1016/j.bbamcr.2020.118726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The cytoskeleton is a complex network of interconnected biopolymers intimately involved in the generation and transmission of forces. Several mechanical properties of microtubules and actin filaments have been extensively explored in cells. In contrast, intermediate filaments (IFs) received comparatively less attention despite their central role in defining cell shape, motility and adhesion during physiological processes as well as in tumor progression. Here, we explored relevant biophysical properties of vimentin IFs in living cells combining confocal microscopy and a filament tracking routine that allows localizing filaments with ~20 nm precision. A Fourier-based analysis showed that IFs curvatures followed a thermal-like behavior characterized by an apparent persistence length (lp*) similar to that measured in aqueous solution. Additionally, we determined that certain perturbations of the cytoskeleton affect lp* and the lateral mobility of IFs as assessed in cells in which either the microtubule dynamic instability was reduced or actin filaments were partially depolymerized. Our results provide relevant clues on how vimentin IFs mechanically couple with microtubules and actin filaments in cells and support a role of this network in the response to mechanical stress.
Collapse
|
19
|
Miyasaka Y, Murakami K, Ito K, Kumaki J, Makabe K, Hatori K. Condensed desmin and actin cytoskeletal communication in lipid droplets. Cytoskeleton (Hoboken) 2019; 76:477-490. [DOI: 10.1002/cm.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yoshiya Miyasaka
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Keigo Murakami
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Koji Ito
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University Yamagata Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Kuniyuki Hatori
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| |
Collapse
|
20
|
Aufderhorst-Roberts A, Koenderink GH. Stiffening and inelastic fluidization in vimentin intermediate filament networks. SOFT MATTER 2019; 15:7127-7136. [PMID: 31334536 DOI: 10.1039/c9sm00590k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermediate filaments are cytoskeletal proteins that are key regulators of cell mechanics, a role which is intrinsically tied to their hierarchical structure and their unique ability to accommodate large axial strains. However, how the single-filament response to applied strains translates to networks remains unclear, particularly with regards to the crosslinking role played by the filaments' disordered "tail" domains. Here we test the role of these noncovalent crosslinks in the nonlinear rheology of reconstituted networks of the intermediate filament protein vimentin, probing their stress- and rate-dependent mechanics. Similarly to previous studies we observe elastic stress-stiffening but unlike previous work we identify a characteristic yield stress σ*, above which the networks exhibit rate-dependent softening of the network, referred to as inelastic fluidization. By investigating networks formed from tail-truncated vimentin, in which noncovalent crosslinking is suppressed, and glutaraldehyde-treated vimentin, in which crosslinking is made permanent, we show that rate-dependent inelastic fluidization is a direct consequence of vimentin's transient crosslinking. Surprisingly, although the tail-tail crosslinks are individually weak, the effective timescale for stress relaxation of the network exceeds 1000 s at σ*. Vimentin networks can therefore maintain their integrity over a large range of strains (up to ∼1000%) and loading rates (10-3 to 10-1 s-1). Our results provide insight into how the hierarchical structure of vimentin networks contributes to the cell's ability to be deformable yet strong.
Collapse
|
21
|
Swärd K, Krawczyk KK, Morén B, Zhu B, Matic L, Holmberg J, Hedin U, Uvelius B, Stenkula K, Rippe C. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. Am J Physiol Cell Physiol 2019; 317:C1128-C1142. [PMID: 31461342 DOI: 10.1152/ajpcell.00047.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
22
|
Golde T, Glaser M, Tutmarc C, Elbalasy I, Huster C, Busteros G, Smith DM, Herrmann H, Käs JA, Schnauß J. The role of stickiness in the rheology of semiflexible polymers. SOFT MATTER 2019; 15:4865-4872. [PMID: 31161188 DOI: 10.1039/c9sm00433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bouzar L, Michael Müller M, Messina R, Nöding B, Köster S, Mohrbach H, Kulić IM. Helical Superstructure of Intermediate Filaments. PHYSICAL REVIEW LETTERS 2019; 122:098101. [PMID: 30932552 DOI: 10.1103/physrevlett.122.098101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 06/09/2023]
Abstract
Intermediate filaments are the least explored among the large cytoskeletal elements. We show here that they display conformational anomalies in narrow microfluidic channels. Their unusual behavior can be understood as the consequence of a previously undetected, large-scale helically curved superstructure. Confinement in a channel orders the otherwise soft, strongly fluctuating helical filaments and enhances their structural correlations, giving rise to experimentally detectable, strongly oscillating tangent correlation functions. We propose an explanation for the detected intrinsic curving phenomenon-an elastic shape instability that we call autocoiling. The mechanism involves self-induced filament buckling via a surface stress located at the outside of the cross section. The results agree with ultrastructural findings and rationalize for the commonly observed looped intermediate filament shapes. Beyond curvature, explaining the molecular origin of the detected helical torsion remains an interesting challenge.
Collapse
Affiliation(s)
- Lila Bouzar
- Laboratoire de Physique des Matériaux, USTHB, BP 32 El-Alia Bab-Ezzouar, 16111 Alger, Algeria
| | - Martin Michael Müller
- Laboratoire de Physique et Chimie Théoriques-UMR 7019, Université de Lorraine, 1 boulevard Arago, 57070 Metz, France
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France
| | - René Messina
- Laboratoire de Physique et Chimie Théoriques-UMR 7019, Université de Lorraine, 1 boulevard Arago, 57070 Metz, France
| | - Bernd Nöding
- Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hervé Mohrbach
- Laboratoire de Physique et Chimie Théoriques-UMR 7019, Université de Lorraine, 1 boulevard Arago, 57070 Metz, France
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France
| | - Igor M Kulić
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France
| |
Collapse
|
24
|
Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport. J Theor Biol 2019; 464:132-148. [DOI: 10.1016/j.jtbi.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023]
|
25
|
Brennich ME, Vainio U, Wedig T, Bauch S, Herrmann H, Köster S. Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. SOFT MATTER 2019; 15:1999-2008. [PMID: 30719518 DOI: 10.1039/c8sm02281j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vimentin intermediate filaments constitute a distinct filament system in mesenchymal cells that is instrumental for cellular mechanics and migration. In vitro, the rod-like monomers assemble in a multi-step, salt-dependent manner into micrometer long biopolymers. To disclose the underlying mechanisms further, we employed small angle X-ray scattering on two recombinant vimentin variants, whose assembly departs at strategic points from the normal assembly route: (i) vimentin with a tyrosine to leucine change at position 117; (ii) vimentin missing the non-α-helical carboxyl-terminal domain. Y117L vimentin assembles into unit-length filaments (ULFs) only, whereas ΔT vimentin assembles into filaments containing a higher number of tetramers per cross section than normal vimentin filaments. We show that the shape and inner structure of these mutant filaments is significantly altered. ULFs assembled from Y117L vimentin contain more, less tightly bundled vimentin tetramers, and ΔT vimentin filaments preserve the number density despite the higher number of tetramers per filament cross-section.
Collapse
Affiliation(s)
- Martha E Brennich
- Institute for X-ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Böni LJ, Sanchez-Ferrer A, Widmer M, Biviano MD, Mezzenga R, Windhab EJ, Dagastine RR, Fischer P. Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40460-40473. [PMID: 30371056 DOI: 10.1021/acsami.8b17166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments (IFs) are known for their extensibility, flexibility, toughness, and their ability to hydrate. Using keratin-like IFs obtained from slime fibers from the invertebrate Atlantic hagfish ( Myxine glutinosa), films were produced by drop-casting and coagulation on the surface of a MgCl2 buffer. Drop-casting produced self-supporting, smooth, and dense films rich in β-sheets (61%), whereas coagulation formed thin, porous films with a nanorough surface and a lower β-sheet content (51%). The films hydrated and swelled immediately when immersed in water and did not dissolve. X-ray diffraction showed that the β-crystallites remained stable upon hydration, that swelling presumably happens in the amorphous C-terminal tail-domains of the IFs, and that high salt conditions caused a denser network mesh size, suggesting polyelectrolyte behavior. Hydration resulted in a roughly 1000-fold decrease in apparent Young's modulus from 109 to 106 Pa as revealed by atomic force microscopy nanoindentation. Nanoindentation-based power-law rheology and stress-relaxation measurements indicated viscoelasticity and a soft-solid hydrogel character for hydrated films, where roughly 80% of energy is elastically stored and 20% is dissipated. By pulling coagulation films from the buffer interface, macroscopic fibers with highly aligned IF β-crystals similar to natural hagfish fibers were produced. We propose that viscoelasticity and strong hydrogen bonding interactions with the buffer interface are crucial for the production of such long biomimetic fibers with aligned β-sheets. This study demonstrates that hagfish fiber IFs can be reconstituted into functional biomimetic materials that are stiff when dry and retain the ability to hydrate to become soft and viscoelastic when in water.
Collapse
Affiliation(s)
| | | | | | - M D Biviano
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | | | | - R R Dagastine
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | |
Collapse
|
27
|
G Lopez C, Saldanha O, Aufderhorst-Roberts A, Martinez-Torres C, Kuijs M, Koenderink GH, Köster S, Huber K. Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. SOFT MATTER 2018; 14:8445-8454. [PMID: 30191240 DOI: 10.1039/c8sm01007b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments are a major structural element in the cytoskeleton of animal cells that mechanically integrate other cytoskeletal components and absorb externally applied stress. Their role is likely to be linked to their complex molecular architecture which is the product of a multi-step assembly pathway. Intermediate filaments form tetrameric subunits which assemble in the presence of monovalent salts to form unit length filaments that subsequently elongate by end-to-end annealing. The present work characterizes this complex assembly process using reconstituted vimentin intermediate filaments with monovalent salts as an assembly trigger. A multi-scale approach is used, comprising static light scattering, dynamic light scattering and quantitative scanning transmission electron microscopy (STEM) mass measurements. Light scattering reveals the radius of gyration (Rg), molecular weight (Mw) and diffusion coefficient (D) of the assembling filaments as a function of time and salt concentration (cS) for the given protein concentration of 0.07 g L-1. At low cS (10 mM KCl) no lateral or elongational growth is observed, whereas at cS = 50-200 mM, the hydrodynamic cross-sectional radius and the elongation rate increases with cS. Rgversus Mw plots suggest that the mass per unit length increases with increasing salt content, which is confirmed by STEM mass measurements. A kinetic model based on rate equations for a two step process is able to accurately describe the variation of mass, length and diffusion coefficient of the filaments with time and provides a consistent description of the elongation accelerated by increasing cS.
Collapse
Affiliation(s)
- Carlos G Lopez
- Chemistry Department, University of Paderborn, 33098 Paderborn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Golde T, Huster C, Glaser M, Händler T, Herrmann H, Käs JA, Schnauß J. Glassy dynamics in composite biopolymer networks. SOFT MATTER 2018; 14:7970-7978. [PMID: 30176034 PMCID: PMC6183213 DOI: 10.1039/c8sm01061g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
The cytoskeleton is a highly interconnected meshwork of strongly coupled subsystems providing mechanical stability as well as dynamic functions to cells. To elucidate the underlying biophysical principles, it is central to investigate not only one distinct functional subsystem but rather their interplay as composite biopolymeric structures. Two of the key cytoskeletal elements are actin and vimentin filaments. Here, we show that composite networks reconstituted from actin and vimentin can be described by a superposition of two non-interacting scaffolds. Arising effects are demonstrated in a scale-spanning frame connecting single filament dynamics to macro-rheological network properties. The acquired results of the linear and non-linear bulk mechanics can be captured within an inelastic glassy wormlike chain model. In contrast to previous studies, we find no emergent effects in these composite networks. Thus, our study paves the way to predict the mechanics of the cytoskeleton based on the properties of its single structural components.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Constantin Huster
- Institute for Theoretical Physics
, University of Leipzig
,
04103 Leipzig
, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Tina Händler
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Harald Herrmann
- Molecular Genetics
, German Cancer Research Center
,
69120 Heidelberg
, Germany
- Department of Neuropathology
, University Hospital Erlangen
,
91054
, Erlangen
, Germany
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| |
Collapse
|
29
|
Chaudhary G, Fudge DS, Macias-Rodriguez B, Ewoldt RH. Concentration-independent mechanics and structure of hagfish slime. Acta Biomater 2018; 79:123-134. [PMID: 30170194 DOI: 10.1016/j.actbio.2018.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
The defense mechanism of hagfish slime is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a concentrated material into a comparably "infinite" sea of water to form a dilute, sticky, cohesive elastic gel. This raises questions about the robustness of gel formation and rheological properties across a range of concentrations, which we study here for the first time. Across a nearly 100-fold change in concentration, we discover that the gel has similar viscoelastic time-dependent properties with constant power-law exponent (α=0.18±0.01), constant relative damping tanδ=G''/G'≈0.2-0.3, and varying overall stiffness that scales linearly with the concentration (∼c0.99±0.05). The power-law viscoelasticity (fit by a fractional Kelvin-Voigt model) is persistent at all concentrations with nearly constant fractal dimension. This is unlike other materials and suggests that the underlying material structure of slime remains self-similar irrespective of concentration. This interpretation is consistent with our microscopy studies of the fiber network. We derive a structure-rheology model to test the hypothesis that the origins of ultra-soft elasticity are based on bending of the fibers. The model predictions show an excellent agreement with the experiments. Our findings illustrate the unusual and robust properties of slime which may be vital in its physiological use and provide inspiration for the design of new engineered materials. STATEMENT OF SIGNIFICANCE Hagfish produce a unique gel-like material to defend themselves against predator attacks. The successful use of the defense gel is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a small quantity of biomaterial which then expands by a factor of 10,000 (by volume) into an "infinite" sea of water. This raises questions about the robustness of gel formation and properties across a range of concentrations. This study provides the first ever understanding of the mechanics of hagfish slime over a very wide range of concentration. We discover that some viscoelastic properties of slime are remarkably constant regardless of its concentration. Such a characteristic is uncommon in most known materials.
Collapse
|
30
|
Posey D, Blaisdell-Pijuan P, Knoll SK, Saif TA, Ahmed WW. Small-scale displacement fluctuations of vesicles in fibroblasts. Sci Rep 2018; 8:13294. [PMID: 30185883 PMCID: PMC6125338 DOI: 10.1038/s41598-018-31656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Abstract
The intracellular environment is a dynamic space filled with various organelles moving in all directions. Included in this diverse group of organelles are vesicles, which are involved in transport of molecular cargo throughout the cell. Vesicles move in either a directed or non-directed fashion, often depending on interactions with cytoskeletal proteins such as microtubules, actin filaments, and molecular motors. How these proteins affect the local fluctuations of vesicles in the cytoplasm is not clear since they have the potential to both facilitate and impede movement. Here we show that vesicle mobility is significantly affected by myosin-II, even though it is not a cargo transport motor. We find that myosin-II activity increases the effective diffusivity of vesicles and its inhibition facilitates longer states of non-directed motion. Our study suggests that altering myosin-II activity in the cytoplasm of cells can modulate the mobility of vesicles, providing a possible mechanism for cells to dynamically tune the cytoplasmic environment in space and time.
Collapse
Affiliation(s)
- Danielle Posey
- Department of Biological Science, California State University, Fullerton, CA, USA
| | | | - Samantha K Knoll
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Wylie W Ahmed
- Department of Physics, California State University, Fullerton, CA, USA.
| |
Collapse
|
31
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
32
|
Block J, Witt H, Candelli A, Danes JC, Peterman EJG, Wuite GJL, Janshoff A, Köster S. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. SCIENCE ADVANCES 2018; 4:eaat1161. [PMID: 29928696 PMCID: PMC6007166 DOI: 10.1126/sciadv.aat1161] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 05/05/2023]
Abstract
Structure and dynamics of living matter rely on design principles fundamentally different from concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton permit living systems to divide, migrate, and grow with a high degree of variability and durability. Among the three filament systems, microfilaments, microtubules, and intermediate filaments (IFs), the physical properties of IFs and their role in cellular mechanics are the least well understood. We use optical trapping of individual vimentin filaments to investigate energy dissipation, strain history dependence, and creep behavior of stretched filaments. By stochastic and numerical modeling, we link our experimental observations to the peculiar molecular architecture of IFs. We find that individual vimentin filaments display tensile memory and are able to dissipate more than 70% of the input energy. We attribute these phenomena to distinct nonequilibrium folding and unfolding of α helices in the vimentin monomers constituting the filaments.
Collapse
Affiliation(s)
- Johanna Block
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany
| | - Hannes Witt
- Institute of Physical Chemistry, University of Goettingen, 37077 Göttingen, Germany
| | - Andrea Candelli
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LUMICKS B.V., 1081 HV Amsterdam, Netherlands
| | - Jordi Cabanas Danes
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LUMICKS B.V., 1081 HV Amsterdam, Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, 37077 Göttingen, Germany
- Corresponding author. (S.K.); (A.J.)
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany
- Corresponding author. (S.K.); (A.J.)
| |
Collapse
|
33
|
Pegoraro AF, Janmey P, Weitz DA. Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harb Perspect Biol 2017; 9:9/11/a022038. [PMID: 29092896 DOI: 10.1101/cshperspect.a022038] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYThe cytoskeleton is the major mechanical structure of the cell; it is a complex, dynamic biopolymer network comprising microtubules, actin, and intermediate filaments. Both the individual filaments and the entire network are not simple elastic solids but are instead highly nonlinear structures. Appreciating the mechanics of biopolymer networks is key to understanding the mechanics of cells. Here, we review the mechanical properties of cytoskeletal polymers and discuss the implications for the behavior of cells.
Collapse
Affiliation(s)
- Adrian F Pegoraro
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Paul Janmey
- Institute for Medicine and Engineering and Department of Physiology, Perelman School of Medicine, and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
34
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
35
|
Even C, Abramovici G, Delort F, Rigato AF, Bailleux V, de Sousa Moreira A, Vicart P, Rico F, Batonnet-Pichon S, Briki F. Mutation in the Core Structure of Desmin Intermediate Filaments Affects Myoblast Elasticity. Biophys J 2017; 113:627-636. [PMID: 28793217 DOI: 10.1016/j.bpj.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022] Open
Abstract
Elastic properties of cells are mainly derived from the actin cytoskeleton. However, intermediate filaments are emerging as major contributors to the mechanical properties of cells. Using atomic force microscopy, we studied the elasticity of mouse myoblasts expressing a mutant form of the gene encoding for desmin intermediate filaments, p.D399Y. This variant produces desmin aggregates, the main pathological symptom of myofibrillar myopathies. Here we show that desmin-mutated cells display a 39% increased median elastic modulus compared to wild-type cells. Desmin-mutated cells required higher forces than wild-type cells to reach high indentation depths, where desmin intermediate filaments are typically located. In addition, heat-shock treatment increased the proportion of cells with aggregates and induced a secondary peak in the distribution of Young's moduli. By performing atomic force microscopy mechanical mapping combined with fluorescence microscopy, we show that higher Young's moduli were measured where desmin aggregates were located, indicating that desmin aggregates are rigid. Therefore, we provide evidence that p.D399Y stiffens mouse myoblasts. Based on these results, we suggest that p.D399Y-related myofibrillar myopathy is at least partly due to altered mechanical properties at the single-cell scale, which are propagated to the tissue scale.
Collapse
Affiliation(s)
- Catherine Even
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| | - Gilles Abramovici
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna F Rigato
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Virginie Bailleux
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Abel de Sousa Moreira
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Felix Rico
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fatma Briki
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
36
|
Zhang C, Liu T, Wang G, Wang H, Che X, Gao X, Liu H. Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway. J Cancer 2017; 8:2511-2522. [PMID: 28900489 PMCID: PMC5595081 DOI: 10.7150/jca.18161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background: The role of Rac3 in cell proliferation in lung adenocarcinoma has been tackled in our previous study. However, the role of Rac3 in cell invasion and migration of lung adenocarcinoma is still not clear. Methods: The expression of Rac3 in lung adenocarcinoma specimens and paired noncancerous normal tissues were evaluated by immunohistochemistry. Lentivirus-mediated RNA interference (RNAi) was employed to silence Rac3 in lung adenocarcinoma cell lines A549 and H1299. A p38 MAPK inhibitor (LY2228820) was employed to inhibit activity of p38 MAPK pathway. Cell invasion and migration in vitro were examined by invasion and migration assays, respectively. PathScan® intracellular signaling array kit and western blot were employed in mechanism investigation. Results: Rac3 expression was frequently higher in lung adenocarcinoma than paired noncancerous normal tissues. Rac3 expression was an independent risk factor for lymphonode metastasis, and was associated with worse survival outcome. Silencing of Rac3 inhibited cell invasion and cell migration in lung adenocarcinoma cell lines. Knockdown of Rac3 decreased activity of p38 MAPK pathway. LY2228820, which was an important p38 MAPK inhibitor, inhibited Rac3-induced cell invasion and migration of lung adenocarcinoma. E-cadherin expression was increased and vimentin expression was decreased after silencing of Rac3 or following the treatment of LY2228820. Conclusions: Our findings suggest that Rac3 regulates cell invasion, migration and EMT via p38 MAPK pathway. Rac3 may be a potential biomarker of invasion and metastasis for lung adenocarcinoma, and knockdown of Rac3 may potentially serve as a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Chenlei Zhang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, P.R. China
| | - Tieqin Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, P.R. China
| | - Gebang Wang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, P.R. China
| | - Huan Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang 110001, Liaoning, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang 110001, Liaoning, P.R. China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Education and Ministry of Health, NO.155 North Nanjing Street, Heping District, Shenyang 110001, Liaoning, P.R. China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, P.R. China
- Department of Thoracic Surgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Heping District, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
37
|
Sharma S, Conover GM, Elliott JL, Der Perng M, Herrmann H, Quinlan RA. αB-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress Chaperones 2017; 22:613-626. [PMID: 28470624 PMCID: PMC5465037 DOI: 10.1007/s12192-017-0788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.
Collapse
Affiliation(s)
- Sarika Sharma
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Gloria M Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jayne L Elliott
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Ming Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roy A Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK.
| |
Collapse
|
38
|
Loke JJ, Kumar A, Hoon S, Verma C, Miserez A. Hierarchical Assembly of Tough Bioelastomeric Egg Capsules is Mediated by a Bundling Protein. Biomacromolecules 2017; 18:931-942. [PMID: 28196415 DOI: 10.1021/acs.biomac.6b01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marine snail egg capsules are shock-absorbing bioelastomers made from precursor "egg case proteins" (ECPs) that initially lack long-range order. During capsule formation, these proteins self-assemble into coiled-coil filaments that subsequently align into microscopic layers, a multiscale process which is crucial to the capsules' shock-absorbing properties. In this study, we show that the self-assembly of ECPs into their functional capsule material is mediated by a bundling protein that facilitates the aggregation of coiled-coil building blocks and their gelation into a prefinal capsule prior to final stabilization. This low molecular weight bundling protein, termed Pugilina cochlidium Bundling Protein (PcBP), led to gelation of native extracts from gravid snails, whereas crude extracts lacking PcBP did not gelate and remained as a protein solution. Refolding and reconcentration of recombinant PcBP induced bundling and aggregation of ECPs, as evidenced by ECPs oligomerization. We propose that the secretion of PcBP in vivo is a time-specific event during the embryo encapsulation process prior to cross-linking in the ventral pedal gland (VPG). Using molecular dynamics (MD) simulations, we further propose plausible disulfide binding sites stabilizing two PcBP monomers, as well as a polarized surface charge distribution, which we suggest plays an important role in the bundling mechanism. Overall, this study shows that controlled bundling is a key step during the extra-cellular self-assembly of egg capsules, which has previously been overlooked.
Collapse
Affiliation(s)
- Jun Jie Loke
- School of Materials Science and Engineering, Nanyang Technological University (NTU) , Singapore 639798, Singapore.,Centre for Biomimetic Sensor Science (CBSS), NTU , Singapore 637553, Singapore
| | - Akshita Kumar
- Centre for Biomimetic Sensor Science (CBSS), NTU , Singapore 637553, Singapore.,School of Biological Sciences, NTU , Singapore 637551, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, Biomedical Sciences Institute, Agency for Science Technology and Research (A*STAR) , Singapore 138673, Singapore
| | - Chandra Verma
- School of Biological Sciences, NTU , Singapore 637551, Singapore.,Bioinformatics Institute, A*STAR , 30 Biopolis Street, Singapore 138671, Singapore
| | - Ali Miserez
- School of Materials Science and Engineering, Nanyang Technological University (NTU) , Singapore 639798, Singapore.,Centre for Biomimetic Sensor Science (CBSS), NTU , Singapore 637553, Singapore.,School of Biological Sciences, NTU , Singapore 637551, Singapore
| |
Collapse
|
39
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
40
|
Charrier EE, Asnacios A, Milloud R, De Mets R, Balland M, Delort F, Cardoso O, Vicart P, Batonnet-Pichon S, Hénon S. Desmin Mutation in the C-Terminal Domain Impairs Traction Force Generation in Myoblasts. Biophys J 2016; 110:470-480. [PMID: 26789769 DOI: 10.1016/j.bpj.2015.11.3518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
The cytoskeleton plays a key role in the ability of cells to both resist mechanical stress and generate force, but the precise involvement of intermediate filaments in these processes remains unclear. We focus here on desmin, a type III intermediate filament, which is specifically expressed in muscle cells and serves as a skeletal muscle differentiation marker. By using several complementary experimental techniques, we have investigated the impact of overexpressing desmin and expressing a mutant desmin on the passive and active mechanical properties of C2C12 myoblasts. We first show that the overexpression of wild-type-desmin increases the overall rigidity of the cells, whereas the expression of a mutated E413K desmin does not. This mutation in the desmin gene is one of those leading to desminopathies, a subgroup of myopathies associated with progressive muscular weakness that are characterized by the presence of desmin aggregates and a disorganization of sarcomeres. We show that the expression of this mutant desmin in C2C12 myoblasts induces desmin network disorganization, desmin aggregate formation, and a small decrease in the number and total length of stress fibers. We finally demonstrate that expression of the E413K mutant desmin also alters the traction forces generation of single myoblasts lacking organized sarcomeres.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 8251, Paris, France; Matière et Systèmes Complexes, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7057, Paris, France
| | - Atef Asnacios
- Matière et Systèmes Complexes, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7057, Paris, France
| | - Rachel Milloud
- LIPhy Université Grenoble 1, CNRS, UMR 5588, Grenoble, France
| | - Richard De Mets
- LIPhy Université Grenoble 1, CNRS, UMR 5588, Grenoble, France
| | - Martial Balland
- LIPhy Université Grenoble 1, CNRS, UMR 5588, Grenoble, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 8251, Paris, France
| | - Olivier Cardoso
- Matière et Systèmes Complexes, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7057, Paris, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 8251, Paris, France
| | - Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 8251, Paris, France
| | - Sylvie Hénon
- Matière et Systèmes Complexes, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7057, Paris, France.
| |
Collapse
|
41
|
Implications and Assessment of the Elastic Behavior of Lamins in Laminopathies. Cells 2016; 5:cells5040037. [PMID: 27754432 PMCID: PMC5187521 DOI: 10.3390/cells5040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023] Open
Abstract
Lamins are mechanosensitive and elastic components of the nuclear lamina that respond to external mechanical cues by altering gene regulation in a feedback mechanism. Numerous mutations in A-type lamins cause a plethora of diverse diseases collectively termed as laminopathies, the majority of which are characterized by irregularly shaped, fragile, and plastic nuclei. These nuclei are challenged to normal mechanotransduction and lead to disease phenotypes. Here, we review our current understanding of the nucleocytoskeleton coupling in mechanotransduction mediated by lamins. We also present an up-to-date understanding of the methods used to determine laminar elasticity both at the bulk and single molecule level.
Collapse
|
42
|
Włodarczyk-Biegun MK, Slingerland CJ, Werten MWT, van Hees IA, de Wolf FA, de Vries R, Stuart MAC, Kamperman M. Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers. Biomacromolecules 2016; 17:2063-72. [DOI: 10.1021/acs.biomac.6b00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Cornelis J. Slingerland
- Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc W. T. Werten
- Wageningen UR
Food and Biobased Research, Wageningen, The Netherlands
| | - Ilse A. van Hees
- Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Frits A. de Wolf
- Wageningen UR
Food and Biobased Research, Wageningen, The Netherlands
| | - Renko de Vries
- Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Martien A. Cohen Stuart
- Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Marleen Kamperman
- Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
43
|
Saldanha O, Brennich ME, Burghammer M, Herrmann H, Köster S. The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. BIOMICROFLUIDICS 2016; 10:024108. [PMID: 27042250 PMCID: PMC4798992 DOI: 10.1063/1.4943916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 05/16/2023]
Abstract
The structural organization of metazoan cells and their shape are established through the coordinated interaction of a composite network consisting of three individual filament systems, collectively termed the cytoskeleton. Specifically, microtubules and actin filaments, which assemble from monomeric globular proteins, provide polar structures that serve motor proteins as tracks. In contrast, intermediate filaments (IFs) assemble from highly charged, extended coiled coils in a hierarchical assembly mechanism of lateral and longitudinal interaction steps into non-polar structures. IF proteins are expressed in a distinctly tissue-specific way and thereby serve to generate the precise plasticity of the respective cells and tissues. Accordingly, in the cell, numerous parameters such as pH and salt concentration are adjusted such that the generation of functional networks is ensured. Here, we transfer the problem for the mesenchymal IF protein vimentin to an in vitro setting and combine small angle x-ray scattering with microfluidics and finite element method simulations. Our approach is adapted to resolve the early assembly steps, which take place in the sub-second to second range. In particular, we reveal the influence of ion species and concentrations on the assembly. By tuning the flow rates and thus concentration profiles, we find a minimal critical salt concentration for the initiation of the assembly. Furthermore, our analysis of the surface sensitive Porod regime in the x-ray data reveals that the formation of first assembly intermediates, so-called unit length filaments, is not a one-step reaction but consists of distinct consecutive lateral association steps followed by radial compaction as well as smoothening of the surface of the full-width filament.
Collapse
Affiliation(s)
- Oliva Saldanha
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | - Martha E Brennich
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | | | | | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
44
|
Elson EL, Genin GM. Tissue constructs: platforms for basic research and drug discovery. Interface Focus 2016; 6:20150095. [PMID: 26855763 DOI: 10.1098/rsfs.2015.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.
Collapse
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St Louis, MO 63110 , USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science , Washington University , St Louis, MO 63130 , USA
| |
Collapse
|
45
|
Ridge KM, Shumaker D, Robert A, Hookway C, Gelfand VI, Janmey PA, Lowery J, Guo M, Weitz DA, Kuczmarski E, Goldman RD. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods Enzymol 2015; 568:389-426. [PMID: 26795478 DOI: 10.1016/bs.mie.2015.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA; Veterans Administration, Chicago, Illinois, USA.
| | - Dale Shumaker
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amélie Robert
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Lowery
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA
| | - Ming Guo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Edward Kuczmarski
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
46
|
Abstract
Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
47
|
Jensen MH, Morris EJ, Goldman RD, Weitz DA. Emergent properties of composite semiflexible biopolymer networks. BIOARCHITECTURE 2015; 4:138-43. [PMID: 25759912 DOI: 10.4161/19490992.2014.989035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown, necessitating the study of composite networks using mixtures of semiflexible biopolymers. We employ bulk rheology in a simplified in vitro system to uncover the fundamental mechanical interactions between networks of the 2 semiflexible polymers, F-actin and vimentin IF. Surprisingly, co-polymerization of actin and vimentin can produce composite networks either stronger or weaker than pure F-actin networks. We show that this effect occurs through steric constraints imposed by IF on F-actin during network formation and filament crosslinking, highlighting novel emergent behavior in composite semiflexible networks.
Collapse
Affiliation(s)
- Mikkel H Jensen
- a School of Engineering and Applied Sciences ; Harvard University ; Cambridge , Massachusetts USA
| | | | | | | |
Collapse
|
48
|
Hémonnot CYJ, Mauermann M, Herrmann H, Köster S. Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization. Biomacromolecules 2015; 16:3313-21. [PMID: 26327161 DOI: 10.1021/acs.biomac.5b00965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate filament proteins keratin K8 and K18 constitute an essential part of the cytoskeleton in simple epithelial cell layers, structurally enforcing their mechanical resistance. K8/K18 heterodimers form extended filaments and higher-order structures including bundles and networks that bind to cell junctions. We study the assembly of these proteins in the presence of monovalent or divalent ions by small-angle X-ray scattering. We find that both ion species cause an increase of the filament diameter when their concentration is increased; albeit, much higher values are needed for the monovalent compared to the divalent ions for the same effect. Bundling occurs also for monovalent ions and at comparatively low concentrations of divalent ions, very different from vimentin intermediate filaments, a fibroblast-specific cytoskeleton component. We explain these differences by variations in charge and hydrophobicity patterns of the proteins. These differences may reflect the respective physiological situation in stationary cell layers versus single migrating fibroblasts.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
50
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|