1
|
Bezerra PR, Vasconcelos AA, Almeida VS, Neves-Martins TC, Mebus-Antunes NC, Almeida FCL. 1H, 15N, and 13C resonance assignments of the N-terminal domain and ser-arg-rich intrinsically disordered region of the nucleocapsid protein of the SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:219-225. [PMID: 39174826 DOI: 10.1007/s12104-024-10191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 is a multifunctional protein involved in nucleocapsid assembly and various regulatory functions. It is the most abundant protein during viral infection. Its functionality is closely related to its structure, which comprises two globular domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), flanked by intrinsically disordered regions. The linker between the NTD and CTD includes a Serine-Arginine rich (SR) region, which is crucial for the regulation of the N protein's function. Here, we report the near-complete assignment of the construct containing the NTD followed by the SR region (NTD-SR). Additionally, we describe the dynamic nature of the SR region and compare it with all other available chemical shift assignments reported for the SR region.
Collapse
Affiliation(s)
- Peter R Bezerra
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana A Vasconcelos
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor S Almeida
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C Neves-Martins
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane C Mebus-Antunes
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
3
|
Esler MA, Belica CA, Rollie JA, Brown WL, Moghadasi SA, Shi K, Harki DA, Harris RS, Aihara H. A compact stem-loop DNA aptamer targets a uracil-binding pocket in the SARS-CoV-2 nucleocapsid RNA-binding domain. Nucleic Acids Res 2024:gkae874. [PMID: 39380503 DOI: 10.1093/nar/gkae874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein is a structural component of the virus with essential roles in the replication and packaging of the viral RNA genome. The N protein is also an important target of COVID-19 antigen tests and a promising vaccine candidate along with the spike protein. Here, we report a compact stem-loop DNA aptamer that binds tightly to the N-terminal RNA-binding domain of SARS-CoV-2 N protein. Crystallographic analysis shows that a hexanucleotide DNA motif (5'-TCGGAT-3') of the aptamer fits into a positively charged concave surface of N-NTD and engages essential RNA-binding residues including Tyr109, which mediates a sequence-specific interaction in a uracil-binding pocket. Avid binding of the DNA aptamer allows isolation and sensitive detection of full-length N protein from crude cell lysates, demonstrating its selectivity and utility in biochemical applications. We further designed a chemically modified DNA aptamer and used it as a probe to examine the interaction of N-NTD with various RNA motifs, which revealed a strong preference for uridine-rich sequences. Our studies provide a high-affinity chemical probe for the SARS-CoV-2 N protein RNA-binding domain, which may be useful for diagnostic applications and investigating novel antiviral agents.
Collapse
Affiliation(s)
- Morgan A Esler
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher A Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph A Rollie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JCY, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. J Biol Chem 2024; 300:107831. [PMID: 39343003 DOI: 10.1016/j.jbc.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30 kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). In both soluble and condensed forms, N has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ∼1:1 ratio of N to oligonucleotide, LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here, assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
- Patrick M Laughlin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
5
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Hu Y, Hao C, Wang D, Guo M, Chu H, Jin X, Zu S, Ding X, Zhang H, Hu H. Porcine deltacoronavirus nucleocapsid protein antagonizes JAK-STAT signaling pathway by targeting STAT1 through KPNA2 degradation. J Virol 2024; 98:e0033424. [PMID: 38829137 PMCID: PMC11264599 DOI: 10.1128/jvi.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.
Collapse
Affiliation(s)
- Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Donghan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongyan Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
7
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JC, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588883. [PMID: 38645044 PMCID: PMC11030382 DOI: 10.1101/2024.04.10.588883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). N, in both soluble and condensed forms, has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ~1:1 ratio of N to oligonucleotide LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University
| | | | - Joseph C.Y. Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University
| |
Collapse
|
8
|
Uppal GK, Poolsup S, Zaripov E, Gu Y, Berezovski MV. Comparative analysis of aptamers binding to SARS-CoV-2 N protein using capillary electrophoresis and bio-layer interferometry. Anal Bioanal Chem 2024; 416:1697-1705. [PMID: 38305861 DOI: 10.1007/s00216-024-05174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Aptamers are increasingly employed in SARS-CoV-2 theragnostics in recent years. Characterization of aptamers, testing affinity and kinetic parameters (e.g., equilibrium dissociation constant (KD), kon, and koff), can be done by several methods and influenced by many factors. This study aims to characterize the binding of aptamers to SARS-CoV-2 nucleocapsid (N) protein using capillary electrophoresis (CE) and bio-layer interferometry (BLI). These two analytical methods differ by how the aptamer binds to its target protein once the aptamer, as a capture ligand, is partitioned in solution (CE) or immobilized on the biosensor (BLI). With CE, the KD values of the N-binding aptamers (tNSP1, tNSP2, and tNSP3) were determined to be 18 ± 4 nM, 45 ± 11 nM, and 32 ± 7 nM, respectively, while the KD measurements by BLI yielded 4.8 ± 0.6, 4.5 ± 0.5, and 2.9 ± 0.3 nM, respectively. CE results showed a higher KD across all aptamers tested. The differences in the steric hindrance and confirmational structures of the aptamers immobilized on the BLI biosensors versus those suspended in the CE sample solution affect the molecular interactions between aptamers and the target proteins. Moreover, the buffer composition including pH and ionic strength can influence the stability of aptamer structures, or aptamer-protein complexes. All these variables affect the binding and calculated KD. In this sense, a KD value alone is not sufficient to make comparisons between aptamers; instead, the entire experimental setup should also be considered. This is particularly important when implementing aptamers in different bioanalytical systems.
Collapse
Affiliation(s)
- Gurcharan K Uppal
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yuxuan Gu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
9
|
Hong JY, Lin SC, Kehn-Hall K, Zhang KM, Luo SY, Wu HY, Chang SY, Hou MH. Targeting protein-protein interaction interfaces with antiviral N protein inhibitor in SARS-CoV-2. Biophys J 2024; 123:478-488. [PMID: 38234090 PMCID: PMC10912909 DOI: 10.1016/j.bpj.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.
Collapse
Affiliation(s)
- Jhen-Yi Hong
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Kai-Min Zhang
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University. Taichung, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; PhD Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Adly AN, Bi M, Carlson CR, Syed AM, Ciling A, Doudna JA, Cheng Y, Morgan DO. Assembly of SARS-CoV-2 ribonucleosomes by truncated N ∗ variant of the nucleocapsid protein. J Biol Chem 2023; 299:105362. [PMID: 37863261 PMCID: PMC10665939 DOI: 10.1016/j.jbc.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.
Collapse
Affiliation(s)
- Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | | | - Abdullah M Syed
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Alison Ciling
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Jennifer A Doudna
- J. David Gladstone Institutes, San Francisco, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA; Innovative Genomics Institute, University of California, Berkeley, California, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA; Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
12
|
Estelle AB, Forsythe HM, Yu Z, Hughes K, Lasher B, Allen P, Reardon PN, Hendrix DA, Barbar EJ. RNA structure and multiple weak interactions balance the interplay between RNA binding and phase separation of SARS-CoV-2 nucleocapsid. PNAS NEXUS 2023; 2:pgad333. [PMID: 37901441 PMCID: PMC10605006 DOI: 10.1093/pnasnexus/pgad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 binds viral RNA, condensing it inside the virion, and phase separating with RNA to form liquid-liquid condensates. There is little consensus on what differentiates sequence-independent N-RNA interactions in the virion or in liquid droplets from those with specific genomic RNA (gRNA) motifs necessary for viral function inside infected cells. To identify the RNA structures and the N domains responsible for specific interactions and phase separation, we use the first 1,000 nt of viral RNA and short RNA segments designed as models for single-stranded and paired RNA. Binding affinities estimated from fluorescence anisotropy of these RNAs to the two-folded domains of N (the NTD and CTD) and comparison to full-length N demonstrate that the NTD binds preferentially to single-stranded RNA, and while it is the primary RNA-binding site, it is not essential to phase separation. Nuclear magnetic resonance spectroscopy identifies two RNA-binding sites on the NTD: a previously characterized site and an additional although weaker RNA-binding face that becomes prominent when binding to the primary site is weak, such as with dsRNA or a binding-impaired mutant. Phase separation assays of nucleocapsid domains with double-stranded and single-stranded RNA structures support a model where multiple weak interactions, such as with the CTD or the NTD's secondary face promote phase separation, while strong, specific interactions do not. These studies indicate that both strong and multivalent weak N-RNA interactions underlie the multifunctional abilities of N.
Collapse
Affiliation(s)
- Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Heather M Forsythe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Allen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Maiti P, Nand M, Mathpal S, Wahab S, Kuniyal JC, Sharma P, Joshi T, Ramakrishnan MA, Chandra S. Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening. J Biomol Struct Dyn 2023:1-14. [PMID: 37732349 DOI: 10.1080/07391102.2023.2257333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The emergence and immune evasion ability of SARS-CoV-2 Omicron strains, mainly BA.5.2 and BF.7 and other variants of concern have raised global apprehensions. With this context, the discovery of multitarget inhibitors may be proven more comprehensive paradigm than its one-drug-to-one target counterpart. In the current study, a library of 271 phytochemicals from 25 medicinal plants from the Indian Himalayan Region has been virtually screened against SARS-CoV-2 by targeting nine virus proteins, viz., papain-like protease, main protease, nsp12, helicase, nsp14, nsp15, nsp16, envelope, and nucleocapsid for screening of a multi-target inhibitor against the viral replication. Initially, 94 phytochemicals were screened by a hybrid machine learning model constructed by combining 6 confirmatory bioassays against SARS-CoV-2 replication using an instance-based learner lazy k-nearest neighbour classifier. Further, 25 screened compounds with excellent drug-like properties were subjected to molecular docking. The phytochemical Cepharadione A from the plant Piper longum showed binding potential against four proteins with the highest binding energy of -10.90 kcal/mol. The compound has acceptable absorption, distribution, metabolism, excretion, and toxicity properties and exhibits stable binding behaviour in terms of root mean square deviation (0.068 ± 0.05 nm), root-mean-square fluctuation, hydrogen bonds, solvent accessible surface area (83.88-161.89 nm2), and molecular mechanics Poisson-Boltzmann surface area during molecular dynamics simulation of 200 ns with selected target proteins. Concerning the utility of natural compounds in the therapeutics formulation, Cepharadione A could be further investigated as a remarkable lead candidate for the development of therapeutic drugs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Maiti
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Mahesha Nand
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Priyanka Sharma
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Nainital, India
| | | | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora, India
| |
Collapse
|
14
|
Ju X, Wang Z, Wang P, Ren W, Yu Y, Yu Y, Yuan B, Song J, Zhang X, Zhang Y, Xu C, Tian B, Shi Y, Zhang R, Ding Q. SARS-CoV-2 main protease cleaves MAGED2 to antagonize host antiviral defense. mBio 2023; 14:e0137323. [PMID: 37439567 PMCID: PMC10470497 DOI: 10.1128/mbio.01373-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent causing the global pandemic of COVID-19. SARS-CoV-2 genome encodes a main protease (nsp5, also called Mpro) and a papain-like protease (nsp3, also called PLpro), which are responsible for processing viral polyproteins to assemble a functional replicase complex. In this study, we found that Mpro of SARS-CoV-2 can cleave human MAGED2 and other mammalian orthologs at Gln-263. Moreover, SARS-CoV and MERS-CoV Mpro can also cleave human MAGED2, suggesting MAGED2 cleavage by Mpro is an evolutionarily conserved mechanism of coronavirus infection in mammals. Intriguingly, Mpro from Beta variant cleaves MAGED2 more efficiently than wild type, but Omicron Mpro is opposite. Further studies show that MAGED2 inhibits SARS-CoV-2 infection at viral replication step. Mechanistically, MAGED2 is associated with SARS-CoV-2 nucleocapsid protein through its N-terminal region in an RNA-dependent manner, and this disrupts the interaction between SARS-CoV-2 nucleocapsid protein and viral genome, thus inhibiting viral replication. When MAGED2 is cleaved by Mpro, the N-terminal of MAGED2 will translocate into the nucleus, and the truncated MAGED2 is unable to suppress SARS-CoV-2 replication. This work not only discovers the antiviral function of MAGED2 but also provides new insights into how SARS-CoV-2 Mpro antagonizes host antiviral response. IMPORTANCE Host factors that restrict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain elusive. Here, we found that MAGED2 can be cleaved by SARS-CoV-2 main protease (Mpro) at Gln-263. SARS-CoV and MERS-CoV Mpro can also cleave MAGED2, and MAGED2 from multiple species can be cleaved by SARS-CoV-2 Mpro. Mpro from Beta variant cleaves MAGED2 more efficiently efficiently than wild type, but Omicron is the opposite. MAGED2 depletion enhances SARS-CoV-2 infection, suggesting its inhibitory role in SARS-CoV-2 infection. Mechanistically, MAGED2 restricts SARS-CoV-2 replication by disrupting the interaction between nucleocapsid and viral genomes. When MAGED2 is cleaved, its N-terminal will translocate into the nucleus. In this way, Mpro relieves MAGED2' inhibition on viral replication. This study improves our understanding of complex viral-host interaction and provides novel targets to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Ziqiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Pengcheng Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Wenlin Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Chang Xu
- School of Medicine, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | | |
Collapse
|
15
|
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A. The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 2023; 14:3331. [PMID: 37286558 DOI: 10.1038/s41467-023-38882-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements. Numerous studies report the involvement of its disordered segments in non-selective RNA-recognition, but how N organizes the inevitable recognition of specific motifs remains unanswered. We here use NMR spectroscopy to systematically analyze the interactions of N's N-terminal RNA-binding domain (NTD) with individual cis RNA elements clustering in the SARS-CoV-2 regulatory 5'-genomic end. Supported by broad solution-based biophysical data, we unravel the NTD RNA-binding preferences in the natural genome context. We show that the domain's flexible regions read the intrinsic signature of preferred RNA elements for selective and stable complex formation within the large pool of available motifs.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607, Hamburg, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
16
|
Mackeown M, Kung YA, Davila-Calderon J, Ford WP, Luo L, Henry B, Li ML, Brewer G, Shih SR, Tolbert BS. The 5'UTR of HCoV-OC43 adopts a topologically constrained structure to intrinsically repress translation. J Biol Chem 2023; 299:103028. [PMID: 36805339 PMCID: PMC9930382 DOI: 10.1016/j.jbc.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.
Collapse
Affiliation(s)
- Matthew Mackeown
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan City, Taiwan
| | | | - William P Ford
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Barrington Henry
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan City, Taiwan
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
17
|
Lodola C, Secchi M, Sinigiani V, De Palma A, Rossi R, Perico D, Mauri PL, Maga G. Interaction of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicases DDX1 and DDX3X Modulates Their Activities on Double-Stranded RNA. Int J Mol Sci 2023; 24:ijms24065784. [PMID: 36982856 PMCID: PMC10058294 DOI: 10.3390/ijms24065784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.
Collapse
Affiliation(s)
- Camilla Lodola
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Massimiliano Secchi
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Virginia Sinigiani
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Rossana Rossi
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Davide Perico
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Pier Luigi Mauri
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| |
Collapse
|
18
|
McCollum C, Courtney CM, O’Connor NJ, Aunins TR, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and Biodistribution of Nanoligomers Targeting the SARS-CoV-2 Genome for the Treatment of COVID-19. ACS Biomater Sci Eng 2023; 9:1656-1671. [PMID: 36853144 PMCID: PMC10000012 DOI: 10.1021/acsbiomaterials.2c00669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen
R. McCollum
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Nolan J. O’Connor
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department
of Microbiology, New York University Langone, New York, New York 10016, United States
| | - Keegan L. Rogers
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| | - Anushree Chatterjee
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| |
Collapse
|
19
|
High-depth sequencing characterization of viral dynamics across tissues in fatal COVID-19 reveals compartmentalized infection. Nat Commun 2023; 14:574. [PMID: 36732505 PMCID: PMC9894515 DOI: 10.1038/s41467-022-34256-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.
Collapse
|
20
|
Ahmadi K, Shahbazi B, Zakeri AJ, Gouklani H. Characterization of SARS-CoV-2 omicron variants from Iran and evaluation of the effect of mutations on the spike, nucleocapsid, ORF8, and ORF9b proteins function. J Biomol Struct Dyn 2022; 41:11415-11430. [PMID: 36576175 DOI: 10.1080/07391102.2022.2162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
The SARS-CoV-2 'Omicron' strain, with 15 mutations in the receptor binding domain (RBD), was detected in South Africa and rapidly spread worldwide. SARS-CoV-2 ORF9b protein by binding to the TOM70 receptor and ORF8 protein by binding to MHC-I, IF3 receptors inhibit the host's immune response. In this study, genomics variations were evaluated for 96 samples isolated from Iran from March to July 2022 using the Nextclade web server and informatics tools. We identified the mutations occurring in the SARS-CoV-2 proteins. We also evaluated the effect of mutations on spike protein interaction with the ACE2 receptor, ORF9b protein interaction with the TOM70 receptor, and structural stability of ORF8 and nucleocapsid proteins using docking and molecular dynamics. Results indicated that during March and April 2022, the BA.2 strain was dominant in the south of Iran, while during June 2022, the BA.5 strain was dominant. BF.5 strain had the most divergence among SARS-CoV-2 strains reported from south of Iran. The binding affinity of BA.5 and BF.5 strains spike protein to ACE2 receptor is similar, and compared to BA.2 strain, was stronger. The BF.5 ORF9b K40R mutation causes a better binding affinity of the protein to the TOM70 receptor. Also, mutations that occurred in the ORF8 protein led to instability in the dimer formation of this protein and improved immune response for mutations that occurred in BA.2 strain, while this mutation did not occur in BF.5 strain. The mutations that were detected in nucleocapsid protein CTD and NTD domains caused the stability of these domains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abdul-Jabbar Zakeri
- Social Determinants in Health Promotion Research Center, Research Institute for Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
21
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Morse M, Sefcikova J, Rouzina I, Beuning PJ, Williams M. Structural domains of SARS-CoV-2 nucleocapsid protein coordinate to compact long nucleic acid substrates. Nucleic Acids Res 2022; 51:290-303. [PMID: 36533523 PMCID: PMC9841419 DOI: 10.1093/nar/gkac1179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the ∼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.
Collapse
Affiliation(s)
- Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Mark C Williams
- To whom correspondence should be addressed. Tel: +1 617 373 5705;
| |
Collapse
|
23
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
24
|
Carlson CR, Adly AN, Bi M, Howard CJ, Frost A, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. J Biol Chem 2022; 298:102560. [PMID: 36202211 PMCID: PMC9529352 DOI: 10.1016/j.jbc.2022.102560] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.
Collapse
Affiliation(s)
| | - Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Conor J Howard
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
25
|
Yaron TM, Heaton BE, Levy TM, Johnson JL, Jordan TX, Cohen BM, Kerelsky A, Lin TY, Liberatore KM, Bulaon DK, Van Nest SJ, Koundouros N, Kastenhuber ER, Mercadante MN, Shobana-Ganesh K, He L, Schwartz RE, Chen S, Weinstein H, Elemento O, Piskounova E, Nilsson-Payant BE, Lee G, Trimarco JD, Burke KN, Hamele CE, Chaparian RR, Harding AT, Tata A, Zhu X, Tata PR, Smith CM, Possemato AP, Tkachev SL, Hornbeck PV, Beausoleil SA, Anand SK, Aguet F, Getz G, Davidson AD, Heesom K, Kavanagh-Williamson M, Matthews DA, tenOever BR, Cantley LC, Blenis J, Heaton NS. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Sci Signal 2022; 15:eabm0808. [PMID: 36282911 PMCID: PMC9830954 DOI: 10.1126/scisignal.abm0808] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.
Collapse
Affiliation(s)
- Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine/Memorial Sloan Kettering Cancer Center/The Rockefeller University, New York, NY 10021, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tristan X. Jordan
- New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin M. Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Katarina M. Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Danielle K. Bulaon
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Samantha J. Van Nest
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Edward R. Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marisa N. Mercadante
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kripa Shobana-Ganesh
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robert E. Schwartz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Harel Weinstein
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA 92868, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T. Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | - François Aguet
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate Heesom
- Proteomics Facility, University of Bristol, Bristol, BS8 1TD, UK
| | | | - David A. Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
26
|
Hossain A, Akter S, Rashid AA, Khair S, Alam ASMRU. Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microb Pathog 2022; 170:105699. [PMID: 35944840 PMCID: PMC9356572 DOI: 10.1016/j.micpath.2022.105699] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is the causative agent behind the ongoing COVID-19 pandemic. This virus is a cumulative outcome of mutations, leading to frequent emergence of new variants and their subvariants. Some of them are a matter of high concern, while others are variants of interest for studying the mutational effect. The major five variants of concern (VOCs) are Alpha (B.1.1.7), Beta (B.1.315), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529.*/BA.*). Omicron itself has >100 subvariants at present, among which BA.1 (21K), BA.2 (21L), BA.4 (22A), BA.5 (22B), and BA.2.12.1 (22C) are the dominant ones. Undoubtedly, these variants and sometimes their progeny subvariants have significant differences in their spike region that impart them the unique properties they harbor. But alongside, the mutations in their non-spike regions could also be responsible elements behind their characteristics, such as replication time, virulence, survival, host immune evasion, and such. There exists a probability that these mutations of non-spike proteins may also impart epistatic effects that are yet to be brought to light. The focus of this review encompasses the non-spike mutations of Omicron, especially in its widely circulating subvariants (BA.1, BA.2, BA.4, BA.5, and BA.2.12.1). The mutations such as in NSP3, NSP6, NSP13, M protein, ORF7b, and ORF9b are mentioned few of all, which might have led to the varying properties, including growth advantages, higher transmission rate, lower infectivity, and most importantly better host immune evasion through natural killer cell inactivation, autophagosome-lysosome fusion prevention, host protein synthesis disruption, and so on. This aspect of Omicron subvariants has not yet been explored. Further study of alteration of expression or interaction profile of these non-spike mutations bearing proteins, if present, can add a great deal of knowledge to the current understanding of the viral properties and thus effective prevention strategies.
Collapse
Affiliation(s)
- Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shammi Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Alfi Anjum Rashid
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sabik Khair
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
27
|
Roden C, Dai Y, Giannetti C, Seim I, Lee M, Sealfon R, McLaughlin G, Boerneke M, Iserman C, Wey S, Ekena J, Troyanskaya O, Weeks K, You L, Chilkoti A, Gladfelter A. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Res 2022; 50:8168-8192. [PMID: 35871289 PMCID: PMC9371935 DOI: 10.1093/nar/gkac596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 12/11/2022] Open
Abstract
Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Catherine A Giannetti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ian Seim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Rachel Sealfon
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel A Wey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Joanne L Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
28
|
Feng X, Zhang X, Jiang S, Tang Y, Cheng C, Krishna PA, Wang X, Dai J, Zhao D, Xia T, Zeng J. A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis. Comput Struct Biotechnol J 2022; 20:5193-5202. [PMID: 36059866 PMCID: PMC9424123 DOI: 10.1016/j.csbj.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.
Collapse
|
29
|
McCollum CR, Courtney CM, O’Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022; 8:3087-3106. [PMID: 35729709 PMCID: PMC9236218 DOI: 10.1021/acsbiomaterials.2c00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The devastating effects of the coronavirus disease 2019 (COVID-19) pandemic have made clear a global necessity for antiviral strategies. Most fatalities associated with infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) result at least partially from uncontrolled host immune response. Here, we use an antisense compound targeting a previously identified microRNA (miRNA) linked to severe cases of COVID-19. The compound binds specifically to the miRNA in question, miR-2392, which is produced by human cells in several disease states. The safety and biodistribution of this compound were tested in a mouse model via intranasal, intraperitoneal, and intravenous administration. The compound did not cause any toxic responses in mice based on measured parameters, including body weight, serum biomarkers for inflammation, and organ histopathology. No immunogenicity from the compound was observed with any administration route. Intranasal administration resulted in excellent and rapid biodistribution to the lungs, the main site of infection for SARS-CoV-2. Pharmacokinetic and biodistribution studies reveal delivery to different organs, including lungs, liver, kidneys, and spleen. The compound was largely cleared through the kidneys and excreted via the urine, with no accumulation observed in first-pass organs. The compound is concluded to be a safe potential antiviral treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen R. McCollum
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
| | - Nolan J. O’Connor
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Yuchen Ding
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department of Microbiology, New York
University Langone, New York, New York 10016, United
States
| | - Keegan L. Rogers
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Jared M. Brown
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| |
Collapse
|
30
|
Sarkar S, Runge B, Russell RW, Movellan KT, Calero D, Zeinalilathori S, Quinn CM, Lu M, Calero G, Gronenborn AM, Polenova T. Atomic-Resolution Structure of SARS-CoV-2 Nucleocapsid Protein N-Terminal Domain. J Am Chem Soc 2022; 144:10543-10555. [PMID: 35638584 PMCID: PMC9173677 DOI: 10.1021/jacs.2c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, β-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sucharita Sarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ryan W. Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Kumar Tekwani Movellan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Daniel Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Somayeh Zeinalilathori
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guillermo Calero
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
31
|
Liang J, Shi J, Chen S, Duan G, Yang F, Cheng Z, Li X, Ruan J, Mi D, Gao S. How the Replication and Transcription Complex Functions in Jumping Transcription of SARS-CoV-2. Front Genet 2022; 13:904513. [PMID: 35706445 PMCID: PMC9191571 DOI: 10.3389/fgene.2022.904513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although unprecedented efforts are underway to develop therapeutic strategies against this disease, scientists have acquired only a little knowledge regarding the structures and functions of the CoV replication and transcription complex (RTC). Ascertaining all the RTC components and the arrangement of them is an indispensably step for the eventual determination of its global structure, leading to completely understanding all of its functions at the molecular level. Results: The main results include: 1) hairpins containing the canonical and non-canonical NSP15 cleavage motifs are canonical and non-canonical transcription regulatory sequence (TRS) hairpins; 2) TRS hairpins can be used to identify recombination regions in CoV genomes; 3) RNA methylation participates in the determination of the local RNA structures in CoVs by affecting the formation of base pairing; and 4) The eventual determination of the CoV RTC global structure needs to consider METTL3 in the experimental design. Conclusions: In the present study, we proposed the theoretical arrangement of NSP12-15 and METTL3 in the global RTC structure and constructed a model to answer how the RTC functions in the jumping transcription of CoVs. As the most important finding, TRS hairpins were reported for the first time to interpret NSP15 cleavage, RNA methylation of CoVs and their association at the molecular level. Our findings enrich fundamental knowledge in the field of gene expression and its regulation, providing a crucial basis for future studies.
Collapse
Affiliation(s)
| | - Jinsong Shi
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shunmei Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Fan Yang
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhi Cheng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jishou Ruan
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Dong Mi
- Department of Clinical Laboratory, Affiliated Maternity Hospital, Nankai University, Tianjin, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Carlson CR, Adly AN, Bi M, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.23.493138. [PMID: 35664996 PMCID: PMC9164447 DOI: 10.1101/2022.05.23.493138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nucleocapsid (N) protein of coronaviruses is responsible for compaction of the ∼30-kb RNA genome in the ∼100-nm virion. Cryo-electron tomography suggests that each virion contains 35-40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined with viral RNA fragments in vitro, forms cylindrical 15-nm particles similar to the vRNP structures observed within coronavirus virions. These vRNPs form in the presence of stem-loop-containing RNA and depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine (SR) region weakens these interactions and disrupts vRNP assembly. We propose that unmodified N binds stem-loop-rich regions in genomic RNA to form compact vRNP complexes within the nucleocapsid, while phosphorylated N maintains uncompacted viral RNA to promote the protein's transcriptional function.
Collapse
Affiliation(s)
| | - Armin N. Adly
- Department of Physiology, University of California, San Francisco CA 94143
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco CA 94143
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco CA 94143
| |
Collapse
|
33
|
Ribeiro-Filho HV, Jara GE, Batista FAH, Schleder GR, Costa Tonoli CC, Soprano AS, Guimarães SL, Borges AC, Cassago A, Bajgelman MC, Marques RE, Trivella DBB, Franchini KG, Figueira ACM, Benedetti CE, Lopes-de-Oliveira PS. Structural dynamics of SARS-CoV-2 nucleocapsid protein induced by RNA binding. PLoS Comput Biol 2022; 18:e1010121. [PMID: 35551296 PMCID: PMC9129039 DOI: 10.1371/journal.pcbi.1010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein. The nucleocapsid (N) protein of the SARS-CoV-2 virus plays an essential role in virus particle assembly as it specifically binds to and wraps the virus genomic RNA into a well-organized structure known as the ribonucleoprotein. Understanding how the N protein wraps around the virus RNA is critical for the development of strategies to inhibit virus assembly within host cells. One of the limitations regarding the molecular structure of the ribonucleoprotein, however, is that the N protein has several unstructured and mobile regions that preclude the resolution of its full atomic structure. Moreover, the N protein can form higher-order oligomers, both in the presence and absence of RNA. Here we employed computational methods, supported by experimental data, to simulate the N protein structural dynamics in the absence and presence of RNA. Our data suggest that the N protein forms structurally dynamic dimers in the absence of RNA, with its structured N- and C-terminal domains oriented in extended conformations. In the presence of RNA, however, the N protein assumes a more compact conformation. Our model for the oligomeric structure of the N protein bound to RNA helps to understand how N protein dimers interact to each other to form the ribonucleoprotein.
Collapse
Affiliation(s)
- Helder Veras Ribeiro-Filho
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriel Ernesto Jara
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Gabriel Ravanhani Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel Leite Guimarães
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio Carlos Borges
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| | - Paulo Sergio Lopes-de-Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| |
Collapse
|
34
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
35
|
Caruso IP, Dos Santos Almeida V, do Amaral MJ, de Andrade GC, de Araújo GR, de Araújo TS, de Azevedo JM, Barbosa GM, Bartkevihi L, Bezerra PR, Dos Santos Cabral KM, de Lourenço IO, Malizia-Motta CLF, de Luna Marques A, Mebus-Antunes NC, Neves-Martins TC, de Sá JM, Sanches K, Santana-Silva MC, Vasconcelos AA, da Silva Almeida M, de Amorim GC, Anobom CD, Da Poian AT, Gomes-Neto F, Pinheiro AS, Almeida FCL. Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. Int J Biol Macromol 2022; 203:466-480. [PMID: 35077748 PMCID: PMC8783401 DOI: 10.1016/j.ijbiomac.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to β-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.
Collapse
Affiliation(s)
- Icaro Putinhon Caruso
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| | - Vitor Dos Santos Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gabriela Rocha de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Talita Stelling de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Moreira de Azevedo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Glauce Moreno Barbosa
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Leonardo Bartkevihi
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Peter Reis Bezerra
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Katia Maria Dos Santos Cabral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Isabella Otênio de Lourenço
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Clara L F Malizia-Motta
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Aline de Luna Marques
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Nathane Cunha Mebus-Antunes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Thais Cristtina Neves-Martins
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Maróstica de Sá
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcos Caique Santana-Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Ariana Azevedo Vasconcelos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcius da Silva Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gisele Cardoso de Amorim
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Cristiane Dinis Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Tanaka T, Saito A, Suzuki T, Miyamoto Y, Takayama K, Okamoto T, Moriishi K. Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening. Antiviral Res 2022; 199:105268. [PMID: 35271914 PMCID: PMC8900913 DOI: 10.1016/j.antiviral.2022.105268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-β but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-β. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.
Collapse
Affiliation(s)
- Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan.
| |
Collapse
|
37
|
Bessa LM, Guseva S, Camacho-Zarco AR, Salvi N, Maurin D, Perez LM, Botova M, Malki A, Nanao M, Jensen MR, Ruigrok RWH, Blackledge M. The intrinsically disordered SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a. SCIENCE ADVANCES 2022; 8:eabm4034. [PMID: 35044811 PMCID: PMC8769549 DOI: 10.1126/sciadv.abm4034] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 05/10/2023]
Abstract
The processes of genome replication and transcription of SARS-CoV-2 represent important targets for viral inhibition. Betacoronaviral nucleoprotein (N) is a highly dynamic cofactor of the replication-transcription complex (RTC), whose function depends on an essential interaction with the amino-terminal ubiquitin-like domain of nsp3 (Ubl1). Here, we describe this complex (dissociation constant - 30 to 200 nM) at atomic resolution. The interaction implicates two linear motifs in the intrinsically disordered linker domain (N3), a hydrophobic helix (219LALLLLDRLNQL230) and a disordered polar strand (243GQTVTKKSAAEAS255), that mutually engage to form a bipartite interaction, folding N3 around Ubl1. This results in substantial collapse in the dimensions of dimeric N, forming a highly compact molecular chaperone, that regulates binding to RNA, suggesting a key role of nsp3 in the association of N to the RTC. The identification of distinct linear motifs that mediate an important interaction between essential viral factors provides future targets for development of innovative strategies against COVID-19.
Collapse
Affiliation(s)
| | - Serafima Guseva
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Nicola Salvi
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Maiia Botova
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Anas Malki
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Max Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | | | | | | |
Collapse
|
38
|
Ranjbar M, Asadi M, Nourigorji M, Sarkari B, Mostafavi‐Pour Z, Zomorodian K, Shabaninejad Z, Taheri‐Anganeh M, Maleksabet A, Moghadami M, Savardashtaki A. Development of a recombinant nucleocapsid protein-based ELISA for the detection of IgM and IgG antibodies to SARS-CoV-2. Biotechnol Appl Biochem 2022; 69:2592-2598. [PMID: 34965611 PMCID: PMC9011413 DOI: 10.1002/bab.2308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022]
Abstract
Coronavirus 2019 (COVID-19) is a global concern for public health. Thus, early and accurate diagnosis is a critical step in management of this infectious disease. Currently, RT-PCR is routine diagnosis test for COVID-19, but it has some limitations and false negative results. enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 antigens seems to be an appropriate approach for serodiagnosis of COVID-19. In the current study, an ELISA system, using a recombinant nucleocapsid (N) protein, was developed for the detection of IgM and IgG antibodies to SARS-CoV-2. The related protein was expressed, purified, and used in an ELISA system. Sera samples (67) for COVID-19 patients, as well as sera samples from healthy volunteers (112), along with sera samples from non-COVID-19 patients were examined by the ELISA system. The expression and purity of the recombinant N protein were approved by SDS-PAGE and Western blotting. The sensitivity of ELISA system was 91.04 and 92.53% for the detection of IgG and IgM antibodies, respectively. Moreover, the specificity of the developed ELISA system for IgG and IgM were 98.21 and 97.32%, respectively. Our developed ELISA system showed satisfactory sensitivity and specificity for the detection of antiSARS-CoV-2 IgM and IgG antibodies and could be used as a complementary approach for proper diagnosis of COVID-19.
Collapse
Affiliation(s)
- Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Marjan Nourigorji
- Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran,Basic Sciences in Infectious Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | - Zohreh Mostafavi‐Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of MedicineShiraz University of Medical SciencesShirazIran,Autophagy Research CenterShiraz University of Medical SciencesShirazIran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran,Basic Sciences in Infectious Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran,Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
| | - Mortaza Taheri‐Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineMazandaran University of Medical SciencesSariIran
| | - Mohsen Moghadami
- Department of Internal Medicine, School of MedicineShiraz University of Medical SciencesShirazIran,Health Policy Research CenterShiraz University of Medical SciencesShirazIran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran,Infertility Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
39
|
Wang YT, Long XY, Ding X, Fan SR, Cai JY, Yang BJ, Zhang XF, Luo RH, Yang L, Ruan T, Ren J, Jing CX, Zheng YT, Hao XJ, Chen DZ. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. Eur J Med Chem 2022; 227:113966. [PMID: 34749200 PMCID: PMC8559303 DOI: 10.1016/j.ejmech.2021.113966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented in human history. As a major structural protein, nucleocapsid protein (NPro) is critical to the replication of SARS-CoV-2. In this work, 17 NPro-targeting phenanthridine derivatives were rationally designed and synthesized, based on the crystal structure of NPro. Most of these compounds can interact with SARS-CoV-2 NPro tightly and inhibit the replication of SARS-CoV-2 in vitro. Compounds 12 and 16 exhibited the most potent anti-viral activities with 50% effective concentration values of 3.69 and 2.18 μM, respectively. Furthermore, site-directed mutagenesis of NPro and Surface Plasmon Resonance (SPR) assays revealed that 12 and 16 target N-terminal domain (NTD) of NPro by binding to Tyr109. This work found two potent anti-SARS-CoV-2 bioactive compounds and also indicated that SARS-CoV-2 NPro-NTD can be a target for new anti-virus agents.
Collapse
Affiliation(s)
- Yi-Ting Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Xin-Yan Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, PR China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shi-Rui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Jie-Yun Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Bi-Juan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Xin-Fang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Department of Chemical Science and Engineering, Yunnan University, Kunming, Yunnan, 650091, PR China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Ting Ruan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, PR China
| | - Juan Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Department of Chemical Science and Engineering, Yunnan University, Kunming, Yunnan, 650091, PR China
| | - Chen-Xu Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China.
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| | - Duo-Zhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
40
|
Koetzner CA, Hurst-Hess KR, Kuo L, Masters PS. Analysis of a crucial interaction between the coronavirus nucleocapsid protein and the major membrane-bound subunit of the viral replicase-transcriptase complex. Virology 2021; 567:1-14. [PMID: 34933176 PMCID: PMC8669624 DOI: 10.1016/j.virol.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.
Collapse
Affiliation(s)
- Cheri A Koetzner
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Kelley R Hurst-Hess
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Lili Kuo
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Paul S Masters
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, 12208, USA.
| |
Collapse
|
41
|
Xia J, Tang W, Wang J, Lai D, Xu Q, Huang R, Hu Y, Gong X, Fan J, Shu Q, Xu J. SARS-CoV-2 N Protein Induces Acute Lung Injury in Mice via NF-ĸB Activation. Front Immunol 2021; 12:791753. [PMID: 34950152 PMCID: PMC8688532 DOI: 10.3389/fimmu.2021.791753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
Background Infection of SARS-CoV-2 may cause acute respiratory syndrome. It has been reported that SARS-CoV-2 nucleocapsid protein (N-protein) presents early in body fluids during infection. The direct involvement of N-protein in lung injury is poorly understood. Methods Recombinant N-protein was pretreated with polymyxin B, a lipopolysaccharide (LPS)-neutralizing agent. C57BL/6, C3H/HeJ (resistant to LPS), and C3H/HeN (control for C3H/HeJ) mice were exposed to N-protein via intratracheal administration to examine acute lung injury. In vitro, bone marrow-derived macrophages (BMDMs) were cultured with N-protein to study phosphorylation of nuclear factor kappa B (NF-ĸB) p65, macrophage polarization, and expression of proinflammatory cytokines. Results N-protein produced acute lung injury in C57BL/6 mice, with elevated protein permeability, total cell count, neutrophil infiltration, and proinflammatory cytokines in the bronchioalveolar lavage. N-protein also induced lung injury in both C3H/HeJ and C3H/HeN mice, indicating that the effect could not be attributed to the LPS contamination. N-protein triggered phosphorylation of NF-ĸB p65 in vitro, which was abolished by both N-protein denaturation and treatment with an antibody for N-protein, demonstrating that the effect is N-protein specific. In addition, N-protein promoted M1 macrophage polarization and the expression of proinflammatory cytokines, which was also blocked by N-protein denaturation and antibody for N-protein. Furthermore, N-protein induced NF-ĸB p65 phosphorylation in the lung, while pyrrolidine dithiocarbamate, an NF-ĸB inhibitor, alleviated the effect of N-protein on acute lung injury. Conclusions SARS-CoV-2 N-protein itself is toxic and induces acute lung injury in mice. Both N-protein and NF-ĸB pathway may be therapeutic targets for treating multi-organ injuries in Coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqi Tang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Xu
- Hangzhou Medical College of Bioengineering, Hangzhou, China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojue Gong
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
42
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 DOI: 10.21203/rs.3.rs-30484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
43
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 PMCID: PMC7484575 DOI: 10.1080/07391102.2020.1804457] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
44
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
45
|
Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. J Biol Chem 2021; 297:101218. [PMID: 34562452 PMCID: PMC8494237 DOI: 10.1016/j.jbc.2021.101218] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.
Collapse
Affiliation(s)
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | - Uli Schmitz
- Gilead Sciences, Inc, Foster City, California, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
46
|
de Araujo TS, Barbosa GM, Sanches K, Azevedo JM, Dos Santos Cabral KM, Almeida MS, Almeida FCL. The 1H, 15N, and 13C resonance assignments of the N-terminal domain of the nucleocapsid protein from the Middle East respiratory syndrome coronavirus. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:341-345. [PMID: 33914244 PMCID: PMC8082218 DOI: 10.1007/s12104-021-10027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
During the past 17 years, the coronaviruses have become a global public emergency, with the first appearance in 2012 in Saudi Arabia of the Middle East respiratory syndrome. Among the structural proteins encoded in the viral genome, the nucleocapsid protein is the most abundant in infected cells. It is a multifunctional phosphoprotein involved in the capsid formation, in the modulation and regulation of the viral life cycle. The N-terminal domain of N protein specifically interacts with transcriptional regulatory sequence (TRS) and is involved in the discontinuous transcription through the melting activity of double-stranded TRS (dsTRS).
Collapse
Affiliation(s)
- Talita Stelling de Araujo
- Protein Advanced Biochemistry (PAB), Institute of Medical Biochemistry (IBqM)-National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Glauce Moreno Barbosa
- National Center of Nuclear Magnetic Resonance (CNRMN), Institute of Medical Biochemistry (IBqM)-Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Karoline Sanches
- National Center of Nuclear Magnetic Resonance (CNRMN), Institute of Medical Biochemistry (IBqM)-Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Jéssica M Azevedo
- Protein Advanced Biochemistry (PAB), Institute of Medical Biochemistry (IBqM)-National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Katia Maria Dos Santos Cabral
- Protein Advanced Biochemistry (PAB), Institute of Medical Biochemistry (IBqM)-National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Protein Advanced Biochemistry (PAB), Institute of Medical Biochemistry (IBqM)-National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN), Institute of Medical Biochemistry (IBqM)-Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Rio BioNMR Network (RMNRio), Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Caruso ÍP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. Biophys J 2021; 120:2814-2827. [PMID: 34197802 PMCID: PMC8239202 DOI: 10.1016/j.bpj.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of β2-β3 and Δ2-β5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.
Collapse
Affiliation(s)
- Ícaro P Caruso
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Wu C, Qavi AJ, Hachim A, Kavian N, Cole AR, Moyle AB, Wagner ND, Sweeney-Gibbons J, Rohrs HW, Gross ML, Peiris JSM, Basler CF, Farnsworth CW, Valkenburg SA, Amarasinghe GK, Leung DW. Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. iScience 2021; 24:102681. [PMID: 34095780 PMCID: PMC8168301 DOI: 10.1016/j.isci.2021.102681] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Nucleocapsid (N) encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays key roles in the replication cycle and is a critical serological marker. Here, we characterize essential biochemical properties of N and describe the utility of these insights in serological studies. We define N domains important for oligomerization and RNA binding and show that N oligomerization provides a high-affinity RNA-binding platform. We also map the RNA-binding interface, showing protection in the N-terminal domain and linker region. In addition, phosphorylation causes reduction of RNA binding and redistribution of N from liquid droplets to loose coils, showing how N-RNA accessibility and assembly may be regulated by phosphorylation. Finally, we find that the C-terminal domain of N is the most immunogenic, based on antibody binding to patient samples. Together, we provide a biochemical description of SARS-CoV-2 N and highlight the value of using N domains as highly specific and sensitive diagnostic markers.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abraham J. Qavi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d’Immunologie Biologique, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Aidan R. Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B. Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joyce Sweeney-Gibbons
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - J. S. Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
49
|
Roden CA, Dai Y, Seim I, Lee M, Sealfon R, McLaughlin GA, Boerneke MA, Iserman C, Wey SA, Ekena JL, Troyanskaya OG, Weeks KM, You L, Chilkoti A, Gladfelter AS. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34159327 DOI: 10.1101/2021.06.14.448452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.
Collapse
|
50
|
de Luna Marques A, Caruso IP, Santana-Silva MC, Bezerra PR, Araujo GR, Almeida FCL, Amorim GC. 1H, 15N and 13C resonance assignments of the N-terminal domain of the nucleocapsid protein from the endemic human coronavirus HKU1. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:153-157. [PMID: 33389548 PMCID: PMC7778850 DOI: 10.1007/s12104-020-09998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.
Collapse
Affiliation(s)
- Aline de Luna Marques
- NUMPEX-BIO, Campus Duque de Caxias, Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, RJ, 25245-390, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Icaro Putinhon Caruso
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB) and Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcos Caique Santana-Silva
- NUMPEX-BIO, Campus Duque de Caxias, Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, RJ, 25245-390, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Peter Reis Bezerra
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gabriela Rocha Araujo
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Fabio Ceneviva Lacerda Almeida
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
- Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gisele Cardoso Amorim
- NUMPEX-BIO, Campus Duque de Caxias, Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, RJ, 25245-390, Brazil.
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil.
- Rio BioNMR Network, Rio de Janeiro, Brazil.
| |
Collapse
|