1
|
Al-Zayadi FQJ, Shakir AS, Kareem AS, Ghasemian A, Behmard E. Design of a novel multi-epitope vaccine against Marburg virus using immunoinformatics studies. BMC Biotechnol 2024; 24:45. [PMID: 38970027 PMCID: PMC11227231 DOI: 10.1186/s12896-024-00873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Marburg virus (MARV) is a highly contagious and virulent agent belonging to Filoviridae family. MARV causes severe hemorrhagic fever in humans and non-human primates. Owing to its highly virulent nature, preventive approaches are promising for its control. There is currently no approved drug or vaccine against MARV, and management mainly involves supportive care to treat symptoms and prevent complications. Our aim was to design a novel multi-epitope vaccine (MEV) against MARV using immunoinformatics studies. In this study, various proteins (VP35, VP40 and glycoprotein precursor) were used and potential epitopes were selected. CTL and HTL epitopes covered 79.44% and 70.55% of the global population, respectively. The designed MEV construct was stable and expressed in Escherichia coli (E. coli) host. The physicochemical properties were also acceptable. MARV MEV candidate could predict comprehensive immune responses such as those of humoral and cellular in silico. Additionally, efficient interaction to toll-like receptor 3 (TLR3) and its agonist (β-defensin) was predicted. There is a need for validation of these results using further in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Ali S Shakir
- College of Dentistry, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Ahmed Shayaa Kareem
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Babylon, 66002, Iraq
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
3
|
Vogel OA, Nafziger E, Sharma A, Pasolli HA, Davey RA, Basler CF. The Role of Ebola Virus VP24 Nuclear Trafficking Signals in Infectious Particle Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584761. [PMID: 38559040 PMCID: PMC10980025 DOI: 10.1101/2024.03.13.584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elias Nafziger
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Rabaan AA, Almansour ZH, Al Bshabshe A, Halwani MA, Al-Subaie MF, Al Kaabi NA, Alshamrani SA, Alshehri AA, Nahari MH, Alqahtani AS, Alhajri M, Alissa M. Application of temperature-dependent and steered molecular dynamics simulation to screen anti-dengue compounds against Marburg virus. J Biomol Struct Dyn 2024:1-20. [PMID: 38234048 DOI: 10.1080/07391102.2024.2303386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using Δ G binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Ali Al Bshabshe
- Adult critical care Department of Medicine, Division of adult critical care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed H Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ali S Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Pei J, Beri NR, Zou AJ, Hubel P, Dorando HK, Bergant V, Andrews RD, Pan J, Andrews JM, Sheehan KCF, Pichlmair A, Amarasinghe GK, Brody SL, Payton JE, Leung DW. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep 2021; 37:109803. [PMID: 34644581 PMCID: PMC8609347 DOI: 10.1016/j.celrep.2021.109803] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.
Collapse
Affiliation(s)
- Jingjing Pei
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nina R Beri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela J Zou
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valter Bergant
- Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Rebecca D Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiehong Pan
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany; Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
8
|
Su Z, Chang Q, Drelich A, Shelite T, Judy B, Liu Y, Xiao J, Zhou C, He X, Jin Y, Saito T, Tang S, Soong L, Wakamiya M, Fang X, Bukreyev A, Ksiazek T, Russell WK, Gong B. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis 2020; 14:e0007960. [PMID: 32687500 PMCID: PMC7392349 DOI: 10.1371/journal.pntd.0007960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/30/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.
Collapse
Affiliation(s)
- Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Changchen Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Shaojun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Impact of Měnglà Virus Proteins on Human and Bat Innate Immune Pathways. J Virol 2020; 94:JVI.00191-20. [PMID: 32295912 DOI: 10.1128/jvi.00191-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Měnglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-β) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-β promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-β promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.
Collapse
|
10
|
Edwards MR, Liu G, De S, Sourimant J, Pietzsch C, Johnson B, Amarasinghe GK, Leung DW, Bukreyev A, Plemper RK, Aron Z, Bowlin TL, Moir DT, Basler CF. Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infect Dis 2020; 6:489-502. [PMID: 31899866 PMCID: PMC7793009 DOI: 10.1021/acsinfecdis.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Marburg virus (MARV) causes severe disease in humans and is known to activate nuclear factor erythroid 2-related factor 2 (Nrf2), the major transcription factor of the antioxidant response. Canonical activation of Nrf2 involves oxidative or electrophilic stress that prevents Kelch-like ECH-associated protein 1 (Keap1) targeted degradation of Nrf2, leading to Nrf2 stabilization and activation of the antioxidant response. MARV activation of Nrf2 is noncanonical with the MARV VP24 protein (mVP24) interacting with Keap1, freeing Nrf2 from degradation. A high-throughput screening (HTS) assay was developed to identify inhibitors of mVP24-induced Nrf2 activity and used to screen more than 55,000 compounds. Hit compounds were further screened against secondary HTS assays for the inhibition of antioxidant activity induced by additional canonical and noncanonical mechanisms. This pipeline identified 14 compounds that suppress the response, dependent on the inducer, with 50% inhibitory concentrations below 5 μM and selectivity index values greater than 10. Notably, several of the identified compounds specifically inhibit mVP24-induced Nrf2 activity.
Collapse
Affiliation(s)
- Megan R. Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Gai Liu
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Sampriti De
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Colette Pietzsch
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, United States
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Alexander Bukreyev
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, United States
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Zachary Aron
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Terry L. Bowlin
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Donald T. Moir
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Salim H, Song J, Sahni A, Pei D. Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1-Nrf2 Interaction. J Org Chem 2019; 85:1416-1424. [PMID: 31609620 DOI: 10.1021/acs.joc.9b02367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrocyclic peptides have proven to be highly effective inhibitors of protein-protein interactions but generally lack cell permeability to access intracellular targets. We show herein that macrocyclic peptides may be rendered highly cell-permeable and biologically active by conjugating them with a cyclic cell-penetrating peptide (CPP). A previously reported cyclic peptidyl inhibitor against the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 (Nrf2) interaction (KD = 18 nM) was covalently attached to a cyclic CPP through a flexible linker. The resulting bicyclic peptide retained the Keap1-binding activity, resisted proteolytic degradation, readily entered mammalian cells, and activated the transcriptional activity of Nrf2 at nanomolar to low micromolar concentrations in cell culture. The inhibitor provides a useful tool for investigating the biological function of Keap1-Nrf2 and a potential lead for further development into a novel class of anti-inflammatory and anticancer agents. Our data suggest that other membrane-impermeable cyclic peptides may be similarly rendered cell-permeable by conjugation with a cyclic CPP.
Collapse
Affiliation(s)
- Heba Salim
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Jian Song
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States.,School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , Guangdong Province 510006 , P.R. China
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
12
|
Hudgens JW, Gallagher ES, Karageorgos I, Anderson KW, Filliben JJ, Huang RYC, Chen G, Bou-Assaf GM, Espada A, Chalmers MJ, Harguindey E, Zhang HM, Walters BT, Zhang J, Venable J, Steckler C, Park I, Brock A, Lu X, Pandey R, Chandramohan A, Anand GS, Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA, Rand KD, Leurs U, Weis DD, Al-Naqshabandi MA, Hageman TS, Deredge D, Wintrode PL, Papanastasiou M, Lambris JD, Li S, Urata S. Interlaboratory Comparison of Hydrogen-Deuterium Exchange Mass Spectrometry Measurements of the Fab Fragment of NISTmAb. Anal Chem 2019; 91:7336-7345. [PMID: 31045344 PMCID: PMC6745711 DOI: 10.1021/acs.analchem.9b01100] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein-ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A ) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨ sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories( tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort( tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements.
Collapse
Affiliation(s)
- Jeffrey W Hudgens
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Elyssia S Gallagher
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Ioannis Karageorgos
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Kyle W Anderson
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - James J Filliben
- Statistical Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - George M Bou-Assaf
- Analytical Development , Biogen Inc. , 225 Binney Street , Cambridge , Massachusetts 02142 , United States
| | - Alfonso Espada
- Centro de Investigación Lilly S.A. , 28108 Alcobendas , Spain
| | - Michael J Chalmers
- Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | | | - Hui-Min Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Benjamin T Walters
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jennifer Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - John Venable
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Caitlin Steckler
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
- Joint Center for Structural Genomics , La Jolla , California 92037 , United States
| | - Inhee Park
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Ansgar Brock
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Xiaojun Lu
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Ratnesh Pandey
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Arun Chandramohan
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Ganesh Srinivasan Anand
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Sasidhar N Nirudodhi
- Vaccine R&D , Pfizer Inc. , 401 N Middletown Rd , Pearl River, New York 10965 , United States
| | - Justin B Sperry
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Jason C Rouse
- Analytical R&D , Pfizer Inc. , 1 Burtt Road , Andover , Massachusetts 01810 , United States
| | - James A Carroll
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Kasper D Rand
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Ulrike Leurs
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - David D Weis
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Mohammed A Al-Naqshabandi
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
- Department of General Science , Soran University , Kawa Street , Soran , Kurdistan Region, Iraq
| | - Tyler S Hageman
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Daniel Deredge
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Malvina Papanastasiou
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - Sheng Li
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Sarah Urata
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
13
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
14
|
Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating disease in humans. In 2012, we published a comprehensive review of the first 45 years of research on marburgviruses and the disease they cause, ranging from molecular biology to ecology. Spurred in part by the deadly Ebola virus outbreak in West Africa in 2013-2016, research on all filoviruses has intensified. Not meant as an introduction to marburgviruses, this article instead provides a synopsis of recent progress in marburgvirus research with a particular focus on molecular biology, advances in animal modeling, and the use of Egyptian fruit bats in infection experiments.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| |
Collapse
|
15
|
Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol 2019; 35:42-56. [PMID: 31003196 PMCID: PMC6556423 DOI: 10.1016/j.coviro.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
The filovirus family includes some of the deadliest viruses known, including Ebola virus and Marburg virus. These viruses cause periodic outbreaks of severe disease that can be spread from person to person, making the filoviruses important public health threats. There remains a need for approved drugs that target all or most members of this virus family. Small molecule inhibitors that target conserved functions hold promise as pan-filovirus therapeutics. To date, compounds that effectively target virus entry, genome replication, gene expression, and virus egress have been described. The most advanced inhibitors are nucleoside analogs that target viral RNA synthesis reactions.
Collapse
Affiliation(s)
- Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States.
| |
Collapse
|
16
|
Basler CF, Krogan NJ, Leung DW, Amarasinghe GK. Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Res 2018; 162:90-100. [PMID: 30550800 DOI: 10.1016/j.antiviral.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 01/24/2023]
Abstract
Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Keul ND, Oruganty K, Schaper Bergman ET, Beattie NR, McDonald WE, Kadirvelraj R, Gross ML, Phillips RS, Harvey SC, Wood ZA. The entropic force generated by intrinsically disordered segments tunes protein function. Nature 2018; 563:584-588. [PMID: 30420606 PMCID: PMC6415545 DOI: 10.1038/s41586-018-0699-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
Abstract
Protein structures are dynamic and can explore a large conformational landscape1,2. Only some of these structural substates are important for protein function (such as ligand binding, catalysis and regulation)3-5. How evolution shapes the structural ensemble to optimize a specific function is poorly understood3,4. One of the constraints on the evolution of proteins is the stability of the folded 'native' state. Despite this, 44% of the human proteome contains intrinsically disordered peptide segments greater than 30 residues in length6, the majority of which have no known function7-9. Here we show that the entropic force produced by an intrinsically disordered carboxy terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (UGDH) towards a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the intrinsically disordered segment, and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface10-13. Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of UGDH to favour inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of intrinsic disorder in the proteome.
Collapse
Affiliation(s)
- Nicholas D Keul
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Krishnadev Oruganty
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Nathaniel R Beattie
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Weston E McDonald
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stephen C Harvey
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
19
|
Hung PJ, Johnson B, Chen BR, Byrum AK, Bredemeyer AL, Yewdell WT, Johnson TE, Lee BJ, Deivasigamani S, Hindi I, Amatya P, Gross ML, Paull TT, Pisapia DJ, Chaudhuri J, Petrini JJH, Mosammaparast N, Amarasinghe GK, Zha S, Tyler JK, Sleckman BP. MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Mol Cell 2018; 71:332-342.e8. [PMID: 30017584 PMCID: PMC6083883 DOI: 10.1016/j.molcel.2018.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/20/2018] [Accepted: 06/07/2018] [Indexed: 11/15/2022]
Abstract
The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.
Collapse
Affiliation(s)
- Putzer J Hung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bo-Ruei Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Andrea K Byrum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya E Johnson
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shruthi Deivasigamani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Issa Hindi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Parmeshwar Amatya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John J H Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
20
|
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018; 119:6366-6382. [DOI: 10.1002/jcb.26897] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Ramezani
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mehdi Parsa Nahad
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2017; 19:130-140. [PMID: 29255269 PMCID: PMC5786482 DOI: 10.1038/s41590-017-0013-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by virally-infected cells however the physiological significance of ROS generated under these conditions is unclear. Here we show that inflammation and cell death induced by exposure of mice or cells to sources of ROS is not altered in the absence of canonical ROS-sensing pathways or known cell death pathways. ROS-induced cell death signaling involves interaction between the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5−/− mice show exacerbated lung inflammation and proinflammatory cytokines in an ozone exposure model. Similarly, challenge with influenza A virus leads to increased virus infiltration, lymphocytic bronchiolitis and reduced survival of Pgam5−/− mice. This pathway, which we term ‘oxeiptosis’, is a ROS-sensitive, caspase independent, non-inflammatory cell death pathway and is important to protect against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
Collapse
Affiliation(s)
- Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Chloé Michaudel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Claire Mackowiak
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friederike L Pennemann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jennifer Wettmarshausen
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Marianne Braun
- EM-Histo Lab, Max-Planck Institute of Neurobiology, Martinsried, Munich, Germany
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabiana Perocchi
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Ryffel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany. .,School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
22
|
Liu G, Nash PJ, Johnson B, Pietzsch C, Ilagan MXG, Bukreyev A, Basler CF, Bowlin TL, Moir DT, Leung DW, Amarasinghe GK. A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35-NP Interface. ACS Infect Dis 2017; 3:190-198. [PMID: 28152588 DOI: 10.1021/acsinfecdis.6b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarization assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP-VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.
Collapse
Affiliation(s)
- Gai Liu
- Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Microbiotix Inc., 1 Innovation Drive, Worcester, Massachusetts 01605, United States
| | - Peter J. Nash
- Microbiotix Inc., 1 Innovation Drive, Worcester, Massachusetts 01605, United States
| | - Britney Johnson
- Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Colette Pietzsch
- Department of Pathology, Department of
Microbiology and Immunology, and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Ma. Xenia G. Ilagan
- High
Throughput Screening Center, Department of Biochemistry and Molecular
Biophysics, and Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alexander Bukreyev
- Department of Pathology, Department of
Microbiology and Immunology, and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Christopher F. Basler
- Center
for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Terry L. Bowlin
- Microbiotix Inc., 1 Innovation Drive, Worcester, Massachusetts 01605, United States
| | - Donald T. Moir
- Microbiotix Inc., 1 Innovation Drive, Worcester, Massachusetts 01605, United States
| | - Daisy W. Leung
- Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gaya K. Amarasinghe
- Department of Pathology
and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
23
|
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus Structural Biology: The Molecules in the Machine. Curr Top Microbiol Immunol 2017; 411:381-417. [PMID: 28795188 DOI: 10.1007/82_2017_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hal Wasserman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|
24
|
Hodak H. Down to the Molecular Mechanisms of Host–Pathogen Interactions. J Mol Biol 2016; 428:3353-4. [DOI: 10.1016/j.jmb.2016.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|