1
|
Pegu SR, Deb R, Das PJ, Sengar GS, Yadav AK, Rajkhowa S, Paul S, Gupta VK. Development of multiplex PCR assay for simultaneous detection of African swine fever, porcine circo and porcine parvo viral infection from clinical samples. Anim Biotechnol 2023; 34:1883-1890. [PMID: 35343866 DOI: 10.1080/10495398.2022.2053698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A diagnostic method for simultaneously detecting and distinguishing African Swine Fever (ASF), porcine circovirus type 2 (PCV2), and porcine parvovirus (PPV) in clinical specimens is critical for differential diagnosis, monitoring, and control in the field. Three primer pairs were designed and used to create a multiplex PCR assay. In addition, 356 porcine post mortem tissue samples from various parts of India's North Eastern region were tested by the developed multiplex PCR assay to demonstrate its accuracy. Using the designed primers, each of the ASF, PCV2 and PPV target genes was amplified, but no other porcine virus genes were detected. The assay's limit of detection was 102 copies/µl of PCV2, PPV, or ASFV. The detection of PCV2, PPV, and ASF in postmortem tissue samples revealed that they are co-circulating in India's North-Eastern region. The percentage positivity (PP) for PCV2, PPV and ASF single infection were 7.02% (25/356), 3.93% (14/356), and 3.37% (12/356), respectively, while the PP for PCV2& PPV co-infection was 2.80% (10/356), ASF & PCV2 co infection was 1.4% (5/356) and the ASF, PPV& PCV2 co-infection was1.40% (5/356). The results also indicate that the ASF can infect pigs alongside PCV and PPV.
Collapse
Affiliation(s)
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati, Assam
| | | | | | | | | | - Souvik Paul
- ICAR-National Research Centre on Pig, Guwahati, Assam
| | | |
Collapse
|
2
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Erdem M, Andaç-Özketen A, Özketen AÇ, Karahan G, Tozluyurt A, Palaz F, Alp A, Ünal S. Clinical Validation and Evaluation of a Colorimetric SARS-CoV-2 RT-LAMP Assay Against RT-PCR. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:136-143. [PMID: 38633012 PMCID: PMC10986683 DOI: 10.36519/idcm.2023.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/27/2023] [Indexed: 04/19/2024]
Abstract
Objective Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is one of the time-saving, accurate, and cost-effective alternative methods to real-time polymerase chain reaction (RT-PCR). This study aimed to identify the robustness of a colorimetric RT-LAMP assay kit that we developed, detecting SARS-COV-2 viral RNA within 30 minutes using a primer set special to the N gene against RT-PCR, the gold standard. Materials and Methods Both symptomatic and asymptomatic subjects were included from a single university hospital and the status of both RT-PCR and RT-LAMP assay results were compared, and the consistency of these two assays was analyzed. Results We showed that the RT-LAMP and RT-PCR assay results confirmed 90% consistency. When we consider the epidemiologic, clinical, and radiologic evaluation, the consistency reached 97%. Conclusion The results revealed that the colorimetric RT-LAMP assay was efficient, robust, and rapid to be used as in vitro diagnostic tool to display competitiveness compared with RT-PCR.
Collapse
Affiliation(s)
- Murat Erdem
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | | | - Ahmet Çağlar Özketen
- Department of Basic Sciences, TED University, Ankara, Turkey
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Gizem Karahan
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | | | - Alpaslan Alp
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Qian J, Zhang Q, Lu M. Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs. Biosens Bioelectron 2023; 226:115114. [PMID: 36753990 DOI: 10.1016/j.bios.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
In recent years, paper-based nucleic acid sensors have been demonstrated for the ability to detect DNA and RNA molecules extracted from viruses and bacteria. In clinical samples, these nucleic acids are mostly encapsulated in lipid membranes and need to be released before being analyzed using paper-based sensors. For the nucleic acid amplification tests (NAATs), it is also desirable to remove the interfering molecules that can inhibit the nucleic acid amplification. To achieve a field deployable NAAT, we report a portable sensor system that combines the thermolysis and paper-based NAATs to detect target RNA molecules carried by viral and exosomal nanoparticles. The sensor cartridge includes a lysis chamber with a pressure-controlled diaphragm valve, paper flow channels, and three paper-based NAAT reaction chambers to extract, transport, and detect nucleic acids respectively. A compact instrument was prototyped to automate the assay, collect fluorescence images of the nucleic acid amplification, and generate amplification curves for NAATs. The pump-free and paper-based sensor achieved quantitative analysis of influenza A virus (IAV) RNA and exosome microRNA within 1 h, with the lowest detect concentration of 104 TCID50/mL and 106 EV/mL for IAV and exosome, respectively. Owing to the advantages of easy storage, simple operation, and low cost, such as system has great potential to be used as a point-of-care test for in-field diagnosis of viral and bacterial infections.
Collapse
Affiliation(s)
- Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Febrer-Sendra B, Fernández-Soto P, García-Bernalt Diego J, Crego-Vicente B, Negredo A, Muñor-Bellido JL, Belhassen-García M, Sánchez-Seco MP, Muro A. A Novel RT-LAMP for the Detection of Different Genotypes of Crimean–Congo Haemorrhagic Fever Virus in Patients from Spain. Int J Mol Sci 2023; 24:ijms24076411. [PMID: 37047384 PMCID: PMC10094476 DOI: 10.3390/ijms24076411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Crimean–Congo haemorrhagic fever (CCHF) is a potentially lethal tick-borne viral disease with a wide distribution. In Spain, 12 human cases of CCHF have been confirmed, with four deaths. The diagnosis of CCHF is hampered by the nonspecific symptoms, the high genetic diversity of CCHFV, and the biosafety requirements to manage the virus. RT-qPCR and serological tests are used for diagnosis with limitations. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) could be an effective alternative in the diagnosis of the disease. However, none of the few RT-LAMP assays developed to date has detected different CCHFV genotypes. Here, we designed a RT-LAMP using a degenerate primer set to compensate for the variability of the CCHFV target sequence. RT-LAMP was performed in colorimetric and real-time tests on RT-qPCR-confirmed CCHF patient samples notified in Spain in 2020 and 2021. Urine from an inpatient was analysed by RT-LAMP for the first time and compared with RT-qPCR. The amplicons obtained by RT-qPCR were sequenced and African III and European V genotypes were identified. RT-LAMP amplified both genotypes and was more sensitive than RT-qPCR in urine samples. We have developed a novel, rapid, specific, and sensitive RT-LAMP test that allows the detection of different CCHFV genotypes in clinical samples. This pan-CCHFV RT-LAMP detected viral RNA for the first time in urine samples. It can be easily performed as a single-tube isothermal colorimetric method on a portable platform in real time and without the need for expensive equipment, thus bringing molecular diagnostics closer to rural or resource-poor areas, where CCHF usually occurs.
Collapse
|
6
|
Boora S, Khan A, Sharma V, Kaushik S, Mehta PK, Singh S, Kaushik S. RT-LAMP is a potential future molecular diagnostic tool for influenza A virus. Future Virol 2023. [DOI: 10.2217/fvl-2022-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Aim: Influenza A virus (IAV) causes serious illness and is responsible for significant morbidity and mortality. To diagnose IAV infection in its early stages, a quick, sensitive, precise detection method is needed for effective clinical management. Materials & methods: In-house hydroxylnaphthol blue (HNB)-based RT-LAMP assay for early detection of IAV using the HA gene was compared with RT-PCR/multiplex-RT-PCR. Results: For the reference strains of IAV, (H1N1 (A/Texas/50/2012) and H3N2 (A/Malaysia/2089302/2009)) RT-LAMP and RT-PCR/M-RT-PCR exhibited a limit of detection (LOD) of 10 and 100 fg/ml, respectively. Conclusion: HNB-based RT-LAMP is a rapid, sensitive, cost-effective diagnostic tool, and could be a point-of-care test for IAV patients during outbreaks.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Anish Khan
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Department of Virology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sulochana Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
7
|
Novel sensitive isothermal-based diagnostic technique for the detection of African swine fever virus. Arch Virol 2023; 168:79. [PMID: 36740635 DOI: 10.1007/s00705-023-05702-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/07/2022] [Indexed: 02/07/2023]
Abstract
A rapid, simple, and sensitive diagnostic technique for the detection of African swine fever virus (ASFV) nucleic acid was developed for testing clinical samples in the field or resource-constrained settings. In the current study, the saltatory rolling-circle amplification (SRCA) technique was used for the first time to detect ASFV. The technique was developed using World Organization for Animal Health (WOAH)-approved primers targeting the p72 gene of the ASFV genome. The assay can be performed within 90 minutes at an isothermal temperature of 58°C without a requirement for sophisticated instrumentation. The results can be interpreted by examination with the naked eye with the aid of SYBR Green dye. This assay exhibited 100% specificity, producing amplicons only from ASFV-positive samples, and there was no cross-reactivity with other pathogenic viruses and bacteria of pigs that were tested. The lower limits of detection of SRCA, endpoint PCR, and real-time PCR assays were 48.4 copies/µL, 4.84 × 103 copies/µL, and 4.84 × 103 copies/µL, respectively. Thus, the newly developed SRCA assay was found to be 100 times more sensitive than endpoint and real-time PCR assays. Clinical tissue samples obtained from ASFV-infected domestic pigs and other clinical samples collected during 2020-22 from animals with suspected ASFV infection were tested using the SRCA assay, and a 100% accuracy rate, negative predictive value, and positive predictive value were demonstrated. The results indicate that the SRCA assay is a simple yet sensitive method for the detection of ASFV that may improve the diagnostic capacity of field laboratories, especially during outbreaks. This novel diagnostic technique is completely compliant with the World Health Organization's "ASSURED" criteria advocated for disease diagnosis, as it is affordable, specific, sensitive, user-friendly, rapid and robust, equipment-free, and deliverable. Therefore, this SRCA assay may be preferable to other complex molecular techniques for diagnosing African swine fever.
Collapse
|
8
|
Kumar JS, Parida M, Shete AM, Majumdar T, Patil S, Yadav PD, Dash PK. Development of a Reverse Transcription Loop - Mediated Isothermal Amplification [RT-LAMP] as a early rapid detection assay for Crimean Congo Hemorrhagic Fever virus. Acta Trop 2022; 231:106435. [PMID: 35378061 DOI: 10.1016/j.actatropica.2022.106435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Presently diagnosis of Crimean Congo Hemorrhagic Fever virus (CCHFV) infection relies on real-time and end-point RT-PCR, and serodiagnostic assay. These assays are time consuming and cannot be used as a routine screening test. The objective of this study was to develop a rapid diagnostic test that could be completed in < 60 minutes. Rapid detection of CCHFV infection is important for faster delivery of appropriate therapeutics, clinical management of patient and also important to contain the outbreak. In the present study, we have developed a rapid and sensitive single tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of CCHFV. The limit of detection of RT-LAMP vis-a-vis Real-time RT-PCR assay is 10 RNA copies. Further, CCHFV specific RT-LAMP assay was successfully evaluated with human and tick samples. The assay correctly picked up diverse CCHFV isolates indicating its applicability for different strains. A comparative evaluation of the RT-LAMP assay vis-à-vis with the real-time RT-PCR revealed 100% concordance with 100 % sensitivity and specificity respectively. No cross reactivity with related Flaviviruses and hemorrhagic fever viruses was observed. The assay is a rapid, isothermal, simple to perform molecular diagnostic, which can be performed in a portable heating block device. CCHF RT-LAMP assay can be used in low resource laboratories for monitoring of CCHFV outbreaks in remote rural regions in affected countries.
Collapse
Affiliation(s)
- Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Manmohan Parida
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Anita M Shete
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Triparna Majumdar
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Savita Patil
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Pragya D Yadav
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Paban Kumar Dash
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
9
|
Chattopadhyay K, Mandal M, Maiti DK. Smart Metal-Organic Frameworks for Biotechnological Applications: A Mini-Review. ACS APPLIED BIO MATERIALS 2021; 4:8159-8171. [PMID: 35005918 DOI: 10.1021/acsabm.1c00982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this pandemic situation it is evident that viruses and bacteria, more specifically, multiple drug resistant (MDR) bacteria, endanger human civilization severely. It is high time to design smart weapons to combat these pathogens for the prevention and cure of allied ailments. Metal-organic frameworks (MOFs) are porous materials designed from metal ions or inorganic clusters and multidentate organic ligands. Due to some unique features like high porosity, tunable pore shape and size, numerous possible metal-ligand combinations, etc., MOFs are ideal candidates to design "smart biotechnological tools". MOFs construct promising fluorescence based biosensing platforms for detection of viruses. MOFs also exhibit excellent antibacterial activity due to their ability for sustained release of active biocidal agents. There are several reviews that summarize the antibacterial applications of MOFs, but the biosensing platforms based on MOFs for detection of viruses have scarcely been summarized. This review carefully covers both the aspects including virus detection (nucleic acid recognition and immunological detection) with underlying mechanisms as well as antibacterial application of MOFs and doped MOFs or composites. This review will deliver valuable information and references for designing new, smarter antimicrobial agents based on MOFs.
Collapse
Affiliation(s)
- Krishna Chattopadhyay
- Department of Chemistry, University of Calcutta, Kolkata 700009, India.,Post Graduate Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Manas Mandal
- Department of Chemistry, Sree Chaitanya College, Habra, WB 743268, India.,Department of Chemistry, Jadavpur University, Kolkata, WB 700032, India
| | - Dilip Kumar Maiti
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
10
|
Ghosh S, Straus DL, Good C, Phuntumart V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS One 2021; 16:e0250808. [PMID: 34898622 PMCID: PMC8668100 DOI: 10.1371/journal.pone.0250808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Saprolegniasis is an important disease in freshwater aquaculture, and is associated with oomycete pathogens in the genus Saprolegnia. Early detection of significant levels of Saprolegnia spp. pathogens would allow informed decisions for treatment which could significantly reduce losses. This study is the first to report the development of loop-mediated isothermal amplification (LAMP) for the detection of Saprolegnia spp. and compares it with quantitative PCR (qPCR). The developed protocols targeted the internal transcribed spacer (ITS) region of ribosomal DNA and the cytochrome C oxidase subunit 1 (CoxI) gene and was shown to be specific only to Saprolegnia genus. This LAMP method can detect as low as 10 fg of S. salmonis DNA while the qPCR method has a detection limit of 2 pg of S. salmonis DNA, indicating the superior sensitivity of LAMP compared to qPCR. When applied to detect the pathogen in water samples, both methods could detect the pathogen when only one zoospore of Saprolegnia was present. We propose LAMP as a quick (about 20–60 minutes) and sensitive molecular diagnostic tool for the detection of Saprolegnia spp. suitable for on-site applications.
Collapse
Affiliation(s)
- Satyaki Ghosh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David L. Straus
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, United States of America
| | - Christopher Good
- The Conservation Fund’s Freshwater Institute, Shepherdstown, West Virginia, United States of America
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kim DY, Kim HR, Park JH, Kwon NY, Kim JM, Kim JK, Park JH, Lee KK, Kim SH, Kim WI, Lyoo YS, Park CK. Detection of a novel porcine circovirus 4 in Korean pig herds using a loop-mediated isothermal amplification assay. J Virol Methods 2021; 299:114350. [PMID: 34748817 DOI: 10.1016/j.jviromet.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023]
Abstract
A novel porcine circovirus 4 has been recently identified in China and Korea. A sensitive and specific diagnostic method is urgently required to detect the virus in field samples. We developed a loop-mediated isothermal amplification (LAMP) the assay for the visual detection of PCV4 and evaluated its sensitivity, specificity, and applicability in clinical samples. This assay's results can be directly visualized by the naked eye using hydroxynaphthol blue after incubation for 40 min at 64 °C. The assay specifically amplified PCV4 DNA and no other viral nucleic acids. The sensitivity of the assay was <50 DNA copies/reaction, which was 10 times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). Clinical evaluation revealed that the PCV4 detection rate in individual pig samples and at the farm level was 39.3 % (57/145) and 45.7 % (32/70), respectively, which were higher than cPCR (46 samples, 24 farms) and qPCR (52 samples, 29 farms) results. Cumulatively, owing to the advantages of high sensitivity and specificity, direct visual monitoring of the results, no possibility for cross-contamination, and being a low-cost equipment, the developed LAMP assay will be a valuable tool for the detection of the novel PCV4 in clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Da-Young Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Hyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea; DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Na-Young Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Kyeom Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hoon Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seong-Hee Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Rapid detection of avian leukosis virus subgroup J by cross-priming amplification. Sci Rep 2021; 11:10946. [PMID: 34040071 PMCID: PMC8155010 DOI: 10.1038/s41598-021-90479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) causes oncogenic disease in chickens in China, resulting in great harm to poultry production, and remains widespread in China. Herein, we employed a cross-priming amplification (CPA) approach and a nucleic acid detection device to establish a visual rapid detection method for ALV-J. The sensitivity of CPA, polymerase chain reaction (PCR) and real-time PCR (RT-PCR) was compared, and the three methods were used to detect ALV-J in the cell cultures which inoculated with clinical plasma. The result showed when the amplification reaction was carried out at 60 °C for just 60 min, the sensitivity of CPA was 10 times higher than conventional PCR, with high specificity, which was comparable with RT-PCR, based on detection of 123 cell cultures which inoculated with clinical plasma, the coincidence rate with real-time PCR was 97.3% (71/73). CPA detection of ALV-J does not require an expensive PCR instrument; a simple water bath or incubator is sufficient for complete DNA amplification, and the closed nucleic acid detection device avoids aerosol pollution, making judgment of results more intuitive and objective. The CPA assay would be a promising simple, rapid and sensitive method for identification of ALV-J.
Collapse
|
13
|
Hou CY, Xu T, Zhang LH, Cui JT, Zhang YH, Li XS, Zheng LL, Chen HY. Simultaneous detection and differentiation of porcine circovirus 3 and 4 using a SYBR Green І-based duplex quantitative PCR assay. J Virol Methods 2021; 293:114152. [PMID: 33845107 DOI: 10.1016/j.jviromet.2021.114152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022]
Abstract
Porcine circovirus 4 (PCV4) was a novel circovirus identified from diseased pigs in 2019 in Hunan Province, China, and PCV3 and PCV4 co-infection has been reported. In order to detect and differentiate PCV3 and PCV4 simultaneously, the SYBR Green І-based duplex quantitative PCR (qPCR) assay was established in the present study. The two viruses could be easily distinguished by different Tm values: 86.5°C for PCV3 and 79°C for PCV4, while other porcine pathogens did not shown specific melting peaks. The detection limits of this duplex qPCR assay were 51.7 copies/μL for PCV3 and 67.7 copies/μL for PCV4, and both of the intra-assay and inter-assay of the CV analysis of this assay were less than 2.0 %. Sixty-four clinical samples from 22 different swine farms were screened by the duplex qPCR assay. The results showed that the positive detection rate of PCV3 was 37.5 % (24/64) and PCV4 was 34.38 % (22/64), and PCV3 and PCV4 co-infection rate was 17.19 % (11/64). The detection rate of the duplex qPCR assay was higher than that of the conventional PCR assay. The duplex qPCR was of high sensitivity and specificity, being able to provide technical support for clinical detection, differential diagnosis and control of PCV3 and PCV4.
Collapse
Affiliation(s)
- Cheng-Yao Hou
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Tong Xu
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Liu-Hui Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Yuan-Hang Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, A Tanner N. Development of multiplexed reverse-transcription loop-mediated isothermal amplification for detection of SARS-CoV-2 and influenza viral RNA. Biotechniques 2021; 70:167-174. [PMID: 33535813 PMCID: PMC7860930 DOI: 10.2144/btn-2020-0157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
The ongoing pandemic has demonstrated the utility of widespread surveillance and diagnostic detection of the novel SARS-CoV-2. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) has enabled broader testing, but current LAMP tests only detect single targets and require separate reactions for controls. With flu season in the Northern Hemisphere, the ability to screen for multiple targets will be increasingly important, and the ability to include internal controls in RT-LAMP allows for improved efficiency. Here we describe multiplexed RT-LAMP with four targets (SARS-CoV-2, influenza A, influenza B, human RNA) in a single reaction using real-time and end point fluorescence detection. Such increased functionality of RT-LAMP will enable even broader adoption of this molecular testing approach and aid in the fight against this public health threat.
Collapse
Affiliation(s)
- Yinhua Zhang
- Nucleic Acid Replication Division, Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Nathan A Tanner
- Nucleic Acid Replication Division, Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
15
|
Kumar JS, Yadav PD, Shete AM, Majumdar T, Patil S, Dash PK. Development and evaluation of reverse transcription loop-mediated isothermal amplification for rapid and real-time detection of Kyasanur forest disease virus. Int J Infect Dis 2021; 112:346-351. [PMID: 33486011 DOI: 10.1016/j.ijid.2021.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
SIGNIFICANCE Kyasanur forest disease (KFD), a re-emerging tick-borne viral disease, causes severe hemorrhagic fever in humans and nonhuman primates. KFD virus (KFDV) is a member of the genus Flavivirus. KFD is now increasingly reported outside its endemic zone in India. Rapid and specific detection of the KFDV plays a critical role in containment of the outbreak. The diagnosis of KFD currently relies on real-time RT-PCR, nested RT-PCR, end point RT-PCR, and serodiagnostic assay. These assays are tedious, time-consuming, and cannot be used as a routine screening platform. OBJECTIVE The present study was aimed to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for molecular diagnosis of KFD. DESIGN The gene amplification reaction was accomplished by incubation at a constant temperature of 63°C for 60min. RESULTS The limit of detection of RT-LAMP assay was 10 copies. KFD RT-LAMP assay was successfully evaluated with diverse host samples including humans, monkeys, and tick. The assay correctly picked up different KFD isolates indicating its applicability for divergent strains. Comparative evaluation of RT-LAMP assay with quantitative TaqMan real-time RT-PCR revealed 100% concordance. No cross-reaction with related flavi and other hemorrhagic fever viruses was observed, indicating its high specificity. CONCLUSION AND RELEVANCE The RT-LAMP test developed in this study will serve as a rapid, sensitive alternate detection method for KFDV infection and would be useful for high throughput screening of clinical samples in resource limited areas during outbreaks.
Collapse
Affiliation(s)
- Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior 474002, India
| | - Pragya D Yadav
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Anita M Shete
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Triparna Majumdar
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Savita Patil
- Indian Council of Medical Research, National Institute of Virology, Pune, 411021, India
| | - Paban Kumar Dash
- Division of Virology, Defence Research and Development Establishment, Gwalior 474002, India.
| |
Collapse
|
16
|
Development of a Real-Time Loop-Mediated Isothermal Amplification Method for the Detection of West Nile Virus. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The West Nile Virus (WNV), discovered in New York, USA in 1999 after it was first isolated in Uganda in 1937, has since spread not only in the United States but also around the world. Africa, Eurasia, Australia, and the Middle East have sporadic cases of the disease. Objectives: We aimed to find real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to be more sensitive than conventional RT-PCR, and more rapid and efficient than conventional RT-PCR and real-time RT-PCR for WNV detection. Methods: A total of 32 genomic sequences from different strains of WNV were analyzed to identify conserved nucleotide sequence regions. Six WNV specific RT-LAMP primers targeting the E gene were designed. Results: The novel primer for the real-time RT-LAMP assay can detect WNV with high specificity. The efficiency of the real-time RT-LAMP assay is higher than the conventional RT-PCR and real-time RT-PCR. Real-time RT-PCR and conventional PCR require at least 30 – 40 min and 2 h, respectively, to yield results, whereas real-time RT-LAMP provides positive results in only 10 – 20 min. Conclusions: The novel primers were developed by analyzing of 32 genomic sequences of WNV strains. The primers were designed from the most conserved region of the E gene for real-time RT-LAMP. The LAMP assay is a rapid, efficient, highly sensitive, and specific tool for the identification of WNV.
Collapse
|
17
|
Tomar PS, Kumar JS, Patel S, Sharma S. Polymerase Spiral Reaction Assay for Rapid and Real Time Detection of West Nile Virus From Clinical Samples. Front Cell Infect Microbiol 2020; 10:426. [PMID: 32984063 PMCID: PMC7492713 DOI: 10.3389/fcimb.2020.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus of public health importance. Currently, there is no FDA approved vaccine available against WNV infection in humans. Therefore, the early diagnosis of the WNV infection is important for epidemiologic control and timely clinical management in areas where multiple Flaviviruses are endemic. The present study aimed to develop reverse transcription polymerase spiral reaction (RT-PSR) assay that rapidly and accurately detects the envelope (env) gene of WNV. RT-PSR assay was optimized at 63°C for 60 min using real-time turbidimeter or visual detection by the addition of SYBR Green I dye. The standard curve for RT-PSR assay was generated using the 10-fold serial dilutions of in vitro transcribed WNV RNA. To determine the detection limit of RT-PSR assay, an amplified product of conventional RT-PCR was in vitro transcribed as per standard protocol. The detection limit of the newly developed RT-PSR assay was compared with that of conventional RT-PCR and CDC reported TaqMan real-time RT-PCR using a serial 10-fold dilution of IVT WNV RNA. The detection limit of RT-PSR was found to be 1 RNA copy, which is 100-fold higher than that of conventional RT-PCR (100 copies). This suggests that RT-PSR assay is a valuable diagnostic tool for rapid and real-time detection of WNV in acute-phase serum samples. The assay was validated with a panel of 107 WNV suspected human clinical samples with signs of acute posterior uveitis and onset of febrile illness. Out of 107 samples, 30 were found positive by RT-PSR assay. The specificities of the selected primer sets were established by the absence of cross-reactivity with other closely related members viruses of the Flaviviruses, Alphaviruses, and Morbilliviruses groups. No cross-reactivity was observed with other viruses. To best of our knowledge, this is the first report describing the RT-PSR assay for the detection of RNA virus (WNV) in clinical samples. RT-PSR is a high throughput method and more than 30 reactions can be run at once in real-time turbidimeter. PSR assay has potential to be used for a rapid screening of large number of clinical samples in endemic areas during an outbreak.
Collapse
Affiliation(s)
- Priyanka Singh Tomar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sapan Patel
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | - Shashi Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
18
|
Kim HR, Lim DR, Chae HG, Park JY, Kim SH, Lee KK, Lee C, Lyoo YS, Park CK. Advanced target-specific probe-based real-time loop-mediated isothermal amplification assay for the rapid and specific detection of porcine circovirus 3. Transbound Emerg Dis 2020; 67:2336-2344. [PMID: 32526102 DOI: 10.1111/tbed.13671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 01/21/2023]
Abstract
Porcine circovirus type 3 (PCV3) is an emerging viral pathogen that has been identified in pigs with various clinical signs. For rapid and specific detection of PCV3, an advanced real-time loop-mediated isothermal amplification (rLAMP) assay that uses both assimilating probes and swarm primers were developed and evaluated in this study. The assay specifically amplified PCV3 DNA, but it did not amplify other porcine viral nucleic acids. The limit of detection of rLAMP with swarm primers was 50 PCV3 DNA copies/reaction, which was comparable to that of the real-time quantitative polymerase chain reaction (qPCR) and 10 times more sensitive than rLAMP without swarm primers. In an evaluation of clinical samples, the rLAMP assay was able to detect PCV3 DNA within 17.34 ± 4.45 min, which is more rapid than what has been previously reported for the standard qPCR assay (31.78 ± 4.60 min). Detection with rLAMP was largely in agreement with that of the qPCR with a kappa value (95% confidence interval) of 0.98 (0.95-1.00). Taken together, these results suggest that the rLAMP assay presented will be a valuable tool for rapid, specific and reliable diagnosis of PCV3 in clinical samples.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine and Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Da-Rae Lim
- College of Veterinary Medicine and Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.,Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Gyeong Chae
- College of Veterinary Medicine and Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.,Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Seong-Hee Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine and Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Lee JW, Won YJ, Kang LH, Lee SG, Park SW, Paik SY. Development of a real-time loop-mediated isothermal amplification method for the detection of severe fever with thrombocytopenia syndrome virus. J Microbiol 2020; 58:711-715. [PMID: 32424580 PMCID: PMC7232587 DOI: 10.1007/s12275-020-0109-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is being reported annually in South Korea since its first detection there in 2010. The causal agent is a negative-strand RNA virus 80–100 nm in diameter. It causes fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, and neural symptoms. The mortality rate of SFTS was 32.6% among 172 cases reported from 2012 to 2015 in South Korea. Thus, is necessary to develop an effective diagnostic method that selectively identifies the isolates circulating in South Korea. The real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay is a simple, rapid, and sensitive approach for molecular diagnosis. Here, we designed novel primers for this assay and found that the technique had very high specificity, sensitivity, and efficiency. This real-time RT-LAMP approach using the novel primers developed herein can be applied for early diagnosis of SFTSV strains in South Korea to reduce the mortality rate of SFTS.
Collapse
Affiliation(s)
- Jae Woong Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yu-Jung Won
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Lae Hyung Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung-Geun Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Daegu Catholic University, Gyeongsan-si, 38430, Republic of Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
20
|
de Paz HD, Brotons P, Esteva C, Muñoz-Almagro C. Validation of a Loop-Mediated Isothermal Amplification Assay for Rapid Diagnosis of Invasive Pneumococcal Disease. Front Cell Infect Microbiol 2020; 10:115. [PMID: 32266166 PMCID: PMC7105778 DOI: 10.3389/fcimb.2020.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
Current molecular PCR-based techniques used for detecting Streptococcus pneumoniae, the causative pathogen of invasive pneumococcal disease (IPD), are accurate but have a run time of several hours. We aimed to develop and validate a novel real-time loop mediated amplification (LAMP) assay for rapid detection of pneumococcus in normally sterile samples with accuracy comparable to a gold standard real-time PCR. Conserved regions of lytA were used for the design of the LAMP test. Analytical validation included assessment of linearity, limit of detection (LOD), intra-assay and inter-assay precision and analytical specificity, which was evaluated by using reference strain S. pneumoniae R6 and a quality control panel. Clinical performance was assessed on all samples collected from children with suspicion of IPD attended in Hospital Sant Joan de Deu (Barcelona, Spain) during the period April-September 2015. Fresh samples were analyzed after DNA extraction. The following values of analytical parameters were determined: linearity within the range 108-104 copies/mL; limit of detection, 5·103 copies/mL; intra- and inter-assay precision measured by mean coefficient of variance, 3.61 and 6.59%; analytical specificity, 9/9 pathogens similar to S. pneumoniae and 14/14 strains of different S. pneumoniae serotypes correctly identified as negative and positive results, respectively. Diagnostic sensitivity and specificity values were 100.0 and 99.3%. Median time of DNA amplification was 15 min. The new LAMP assay showed to have similar accuracy as PCR while being 5-fold faster and could become a useful diagnostic tool for early diagnosis of IPD.
Collapse
Affiliation(s)
- Héctor David de Paz
- Department of Molecular Microbiology, Institut de Recerca Pediatrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Pedro Brotons
- Department of Molecular Microbiology, Institut de Recerca Pediatrica, Hospital Sant Joan de Déu, Barcelona, Spain.,CIBER of Epidemiology and Public Health, CIBERESP, Madrid, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Cristina Esteva
- Department of Molecular Microbiology, Institut de Recerca Pediatrica, Hospital Sant Joan de Déu, Barcelona, Spain.,CIBER of Epidemiology and Public Health, CIBERESP, Madrid, Spain
| | - Carmen Muñoz-Almagro
- Department of Molecular Microbiology, Institut de Recerca Pediatrica, Hospital Sant Joan de Déu, Barcelona, Spain.,CIBER of Epidemiology and Public Health, CIBERESP, Madrid, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
21
|
Parida M, Dash PK, Shukla J. Advance detection technologies for select biothreat agents. HANDBOOK ON BIOLOGICAL WARFARE PREPAREDNESS 2020. [PMCID: PMC7153318 DOI: 10.1016/b978-0-12-812026-2.00005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This chapter provides a comprehensive update about various technological developments in the field of biothreat agent detection. We have attempted to provide the reader with all the basic information starting with the culture considered as gold standard of diagnosis, immunological assays like the immunochromatographic test (ICT) which includes the lateral flow rapid strip test, flow through spot test and molecular assays, polymerase chain reaction (PCR), real-time RT-PCR, isothermal gene amplification assays, next-generation sequencing (NGS) technology, etc. One major highlight of the chapter includes bio-monitoring and aerosol generation technologies. We have also provided information about the sensor technologies nanomaterials biosensors, various analytical techniques besides various instrumental technologies like mass spectroscopy and Raman chemical imaging. The last part of the chapter is devoted to some newer technologies like biodetectors where we have given details about those that are currently commercially available.
Collapse
|
22
|
Ma YD, Li KH, Chen YH, Lee YM, Chou ST, Lai YY, Huang PC, Ma HP, Lee GB. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. LAB ON A CHIP 2019; 19:3804-3814. [PMID: 31620745 DOI: 10.1039/c9lc00797k] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Emerging and re-emerging infectious diseases pose global threats to human health. Although several conventional diagnostic methods have been widely adopted in the clinic, the long turn-around times of "gold standard" culture-based techniques, as well as the limited sensitivity of lateral-flow strip assays, thwart medical progress. In this study, a smartphone-controlled, automated, and portable system was developed for rapid molecular diagnosis of pathogens (including viruses and bacteria) via the use of a colorimetric loop-mediated isothermal amplification (LAMP) approach on a passive, self-driven microfluidic device. The system was capable of 1) purifying viral or bacterial samples with specific affinity reagents that had been pre-conjugated to magnetic beads, 2) lysing pathogens at low temperatures, 3) executing isothermal nucleic acid amplification, and 4) quantifying the results of colorimetric assays for detection of pathogens with an integrated color sensor. The entire, 40 min analytical process was automatically performed with a novel punching-press mechanism that could be controlled and monitored by a smartphone. As a proof of concept, the influenza A (H1N1) virus and methicillin-resistant Staphylococcus aureus bacteria were used to characterize and optimize the device, and the limits of detection were experimentally found to be 3.2 × 10-3 hemagglutinating units (HAU) per reaction and 30 colony-forming units (CFU) per reaction, respectively; both such values represent high enough sensitivity for clinical adoption. Moreover, the colorimetric assay could be both qualitative and quantitative for detection of pathogens. This is the first instance of an easy-to-use, automated, and portable system for accurate and sensitive molecular diagnosis of either viruses or bacteria, and it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, point-of-care pathogen detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yu-Dong Ma
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yung-Mao Lee
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Shang-Ta Chou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yue-Yuan Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
23
|
Yang K, Jiao Z, Zhou D, Guo R, Duan Z, Tian Y. Development of a multiplex PCR to detect and discriminate porcine circoviruses in clinical specimens. BMC Infect Dis 2019; 19:778. [PMID: 31488066 PMCID: PMC6727504 DOI: 10.1186/s12879-019-4398-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A diagnostic method to simultaneously detect and discriminate porcine circovirus type 1 (PCV1), porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3) in clinical specimens is imperative for the differential diagnosis and monitoring and control of PCVs in the field. METHODS Three primer pairs were designed and used to develop a multiplex PCR assay. And 286 samples from 8 farms in Hubei province were tested by the developed multiplex PCR assay to demonstrate the accuracy. RESULTS Each of target genes of PCV1, PCV2 and PCV3 was amplified using the designed primers, while no other porcine viruses genes were detected. The limit of detection of the assay was 10 copies/μL of PCV1, PCV2 OR PCV3. The results of the tissue samples detection showed that PCV1, PCV2 and PCV3 are co-circulating in central China. The PCV1, PCV2 and PCV3 singular infection rate was 52.4% (150/286), 61.2% (175/286) and 45.1% (129/286), respectively, while the PCV1 and PCV2 co-infection rate was 11.2% (32/286), the PCV1 and PCV3 co-infection rate was 5.9% (17/286), the PCV2 and PCV3 co-infection rate was 23.4% (67/286), and the PCV1, PCV2 and PCV3 co-infection rate was 1.7% (5/286), respectively, which were 100% consistent with the sequencing method and real-time PCR methods. CONCLUSIONS The multiplex PCR assay could be used as a differential diagnostic tool for monitoring and control of PCVs in the field. The results also indicate that the PCVs infection and their co-infection are severe in Hubei province, Central China.
Collapse
Affiliation(s)
- Keli Yang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China. .,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, 430064, People's Republic of China.
| | - Zuwu Jiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Danna Zhou
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Rui Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Zhengying Duan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Yongxiang Tian
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China. .,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, 430064, People's Republic of China.
| |
Collapse
|
24
|
Wang H, Liu X, Zeng F, Zhang T, Lian Y, Wu M, Xiao L, Zhu Y, Zhang Y, Chen M, Huang R, Luo M, Cong F, Guo P. Development of a real-time loop-mediated isothermal amplification assay for detection of porcine circovirus 3. BMC Vet Res 2019; 15:305. [PMID: 31443656 PMCID: PMC6706899 DOI: 10.1186/s12917-019-2037-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Background Porcine circovirus type 3 (PCV3) is an emerging circovirus species, that has been reported in major pig-raising countries including the United States, China, South Korea, Brazil, Spain, and Poland. Results A real-time loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of porcine circovirus 3 (PCV3). The method had a detection limit of 1 × 101 copies/μL with no cross-reactions with classical swine fever virus (CSFV) C strain, foot-and-mouth disease virus (FMDV), porcine circovirus 2 (PCV2) LG vaccine strain, porcine epidemic diarrhoea virus (PEDV), porcine respiratory and reproductive syndrome virus (PRRSV), or pseudorabies virus (PRV). The PCV3 positive detection rate of 203 clinical samples for the real-time LAMP assay was 89.66% (182/203). Conclusions The real-time LAMP assay is highly sensitive, and specific for use in epidemiological investigations of PCV3.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangnan Liu
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China
| | - Fanwen Zeng
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China
| | - Tongyuan Zhang
- Center for Animal Disease Control and Prevention, FuShun, 113006, China
| | - Yuexiao Lian
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China
| | - Miaoli Wu
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Li Xiao
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yu Zhang
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Meili Chen
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Ren Huang
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Manlin Luo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China.
| | - Feng Cong
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| | - Pengju Guo
- Guangdong laboratory animals monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| |
Collapse
|
25
|
Zhao Y, Han HY, Fan L, Tian RB, Cui JT, Li JY, Chen HY, Yang MF, Zheng LL. Development of a TB green II-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine circovirus 2 and 3. Mol Cell Probes 2019; 45:31-36. [PMID: 30980890 DOI: 10.1016/j.mcp.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3), as a newly emerged circovirus, is widely distributed in pig populations worldwide. Co-infection of PCV2 and PCV3 has been reported frequently in clinical samples. In the present study, a TB Green II-based duplex real-time polymerase chain reaction (qPCR) was developed to rapidly and differentially detect PCV2 and PCV3. The assay specifically detected PCV2 and PCV3, with no fluorescence signals being detected for other non-targeted pig pathogens. The duplex qPCR showed a high degree of linearity (R2 > 0.998), and its limits of detection were 10 and 78 copies/μL for PCV2 and PCV3, respectively. The duplex qPCR could detect and differentiate PCV2 (melting peaks at 85.5 °C) and PCV3 (melting peaks at 82.5 °C), and showed high repeatability and reproducibility, with intra- and inter-assay coefficients of variation of less than 2.0%. Fifty-six tissue samples from 18 pig farms were used to evaluate the duplex qPCR method. The results revealed infection rates of 66.07% (37/56) and 39.28% (22/56) for PCV2 and PCV3, respectively. The PCV2 + PCV3 co-infection rate was 39.28% (22/56). The developed method could be used as an efficient molecular biology tool for epidemiological investigations of PCV2 and PCV3.
Collapse
Affiliation(s)
- Yu Zhao
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Hao-Ying Han
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Lin Fan
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Run-Bo Tian
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Jing-Yi Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China.
| | - Ming-Fan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China.
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan Province, People's Republic of China
| |
Collapse
|
26
|
Han HY, Zheng HH, Zhao Y, Tian RB, Xu PL, Hou HL, Chen HY, Yang MF. Development of a SYBR green I-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine epidemic diarrhea virus and porcine circovirus 3. Mol Cell Probes 2019; 44:44-50. [PMID: 30735700 PMCID: PMC7172278 DOI: 10.1016/j.mcp.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
The development of a rapid, specific, and sensitive SYBR Green I-based duplex real-time quantitative PCR assay is described for the simultaneous detection of porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 3 (PCV3). The assay specifically detected PEDV and PCV3, with no fluorescence detected for other non-targeted pig pathogens. The assay showed a good linear relationship, and the limits of detection for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively. The assay exhibited high repeatability and reproducibility, with intra-assay and inter-assay variation coefficients less than 2.0%. A clinical evaluation using intestinal tissue and fecal samples from piglets suffering from diarrhea at different pig farms in China revealed that the singular infection rates of PEDV and PCV3 were 43.94% (29/66) and 16.67% (11/66), respectively, while the co-infection rate of PCV3 with PEDV was 27.27% (18/66). The results indicate this assay is a rapid and reliable diagnostic tool for PEDV and PCV3 monitoring and surveillance in the field, and provides technical support for the quantitative detection of clinical samples infected or co-infected with PEDV and PCV3. PED outbreaks have been resulted in a huge economic loss in the pig farming industry. PCV3 is a novel virus and has been detected in piglets affected with diarrhea. A duplex qPCR assay was developed for the simultaneous detection of PEDV and PCV3. The LOD for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively.
Collapse
Affiliation(s)
- Hao-Ying Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Run-Bo Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Peng-Li Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hua-Lin Hou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Ming-Fan Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
27
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
28
|
Chen J, Zhao Z, Chen Y, Zhang J, Yan L, Zheng X, Liao M, Cao W. Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poult Sci 2018; 97:2568-2574. [PMID: 29617900 PMCID: PMC6016701 DOI: 10.3382/ps/pey086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Avian leukosis virus subgroup K (ALV-K) is an emerging ALV tumor virus of chickens. We developed a SYBR green-based real-time polymerase chain reaction (PCR) assay for the rapid and economical detection of ALV-K in chicken flocks. The assay was specific for ALV-K and did not cross-react with other ALV subgroup or avian influenza virus, Newcastle disease virus, or Marek's Disease virus. The method was 100 times more sensitive than conventional PCR and 10 times more sensitive than the enzyme-linked immunosorbent assay (ELISA) for the P27 antigen. The assay was also more sensitive than conventional PCR in tests of 86 clinical plasma samples. DF-1 tissue culture cells infected with 1 TCID50 ALV-K particle were identified as negative using ELISA but tested positive with the real-time PCR method. The viral loads in organs and tissues in infected chickens were highest in kidney, lungs, and glandular stomach, and these results matched ELISA findings.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zijun Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yangyijun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lifu Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiaocui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture.,South China Collaborative Innovation Center for Prevention and Control of Poultry Infectious Diseases and Safety of Poultry Products, Guangzhou, People's Republic of China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture.,South China Collaborative Innovation Center for Prevention and Control of Poultry Infectious Diseases and Safety of Poultry Products, Guangzhou, People's Republic of China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, People's Republic of China
| |
Collapse
|
29
|
|
30
|
Subpopulation Primers Essential for Exhaustive Detection of Diverse Hemagglutinin Genes of H5 Subtype Avian Influenza Viruses by Loop-Mediated Isothermal Amplification Method. J Clin Microbiol 2018; 56:JCM.00985-18. [PMID: 30021821 DOI: 10.1128/jcm.00985-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 11/20/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a potential screening test for avian influenza (AI), but its narrow detection spectrum limits its applications. To improve this narrow detection spectrum, 3 types of primers were compared for detection of diverse H5 subtype hemagglutinin (HA) genes. Four and 6 genes, of 10 genetically different H5 HA genes tested, were detected with S primers specific for A/duck/Tsukuba/9/2005 (H5N2) and with M primers (which contained mixed bases), respectively. In contrast, all 10 HA genes became positive with population primers (P primers) (a mixture of primers designed for each subpopulation of 2,202 HA genes). Our study indicated that the P primers for the forward inner primer (FIP) and backward inner primer (BIP) sites were essential for exhaustive detection, whereas those for the F3, forward loop (FL), backward loop (BL), and B3 sites were exchangeable with M primers. A base mismatch experiment demonstrated that HA genes with ≤2 base mismatches per primer site and ≤10 base mismatches per HA gene were amplifiable. Reverse transcription-LAMP was broadly reactive, specific for H5 subtype HA genes, and applicable to field samples, with the sensitivity of real-time PCR. The in silico analysis suggested that most H5 HA genes (2,586 positive genes/2,588 genes tested) registered in the GenBank database might be amplifiable. These results indicate that the use of subpopulation primers in LAMP allows exhaustive detection of diverse HA genes and H5 LAMP can be used as a reliable AI screening test in general diagnostic laboratories.
Collapse
|
31
|
Rapid in vitro detection of CTX-M groups 1, 2, 8, 9 resistance genes by LAMP assays. PLoS One 2018; 13:e0200421. [PMID: 30021007 PMCID: PMC6051616 DOI: 10.1371/journal.pone.0200421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/26/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The prevalence of bacteria producing CTX-M Extended-Spectrum β-lactamases (ESBLs) has increased around the world and some of them became a major cause of infections such as bloodstream or urinary tract infections (UTI). We developed a loop-mediated isothermal amplification (LAMP) assay for a simple, rapid and sensitive detection of the four most common CTX-M groups, namely CTX-M groups 1, 2, 8 and 9. METHODS LAMP primers targeting the four ESBLs CTX-M groups were designed using the Primer Explorer V4 software. The detection limit of the method was tested by serial dilution of reference DNAs. The primer specificity of the LAMP reaction was tested on DNA extracted from six strains producing various group of CTX-M and validated using DNA extracted from CTX-M-resistant clinical isolates (isolated from pus, urine, or blood). Results were compared with those of conventional PCR. RESULTS We were able to detect down to 0.1 pg/ul of DNA using the newly developed LAMP assays whereas the minimal amount detectable for conventional PCR was 50 to 100pg/ul, indicating that the LAMP assay was found to have a detection limit at least 500 to 1000 times lower than the PCR. Additionally, representative genes from the CTX-M groups 1, 2, 8 and 9 were amplified using the designed assay and no cross amplification was observed between the four CTX-M groups, demonstrating the specificity of the LAMP assay. Of the 37 clinical strains tested, the four LAMP assays showed 100% sensitivity and 87%, 97%, 100%, 100% specificity for the CTX-M groups 1, 2, 8 and 9 respectively. CONCLUSION Being sensitive, specific, rapid and standard methods, the LAMP assays developed in this study have a potential to be beneficial tools in molecular epidemiology and surveillance studies of the four prevalent EBSLs CTX-M groups even in low cost laboratory.
Collapse
|
32
|
Wang H, Cong F, Zeng F, Lian Y, Liu X, Luo M, Guo P, Ma J. Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV). J Virol Methods 2018; 260:45-48. [PMID: 29936095 PMCID: PMC7113678 DOI: 10.1016/j.jviromet.2018.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
A novel swine acute diarrhea syndrome Coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in southern China in 2017. A simple and rapid detection test was developed for this virus using real-time RT-LAMP based on the conserved N gene of the virus. The method had a detection limit of 1.0 × 101 copies/μL with no cross-reactions with classical swine fever virus, porcine and respiratory syndrome virus NA, porcine and respiratory syndrome virus EU, transmissible gastroenteritis coronavirus, foot and mouth disease virus, porcine epidemic diarrhea virus (S-INDEL and non-S-INDEL), swine influenza virus subtype H1N1, porcine circovirus type 2, seneca valley virus, porcine parvovirus, porcine deltacoronavirus and rotavirus. This method was also reproducible. Twenty of 24 clinical samples were identified as SADS-CoV RNA-positive by the real-time RT-LAMP and the results were consistent with that of the real time RT-PCR method. This new method for detecting SADS-CoV is specific and sensitive for the detection of SADS-CoV.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Fanwen Zeng
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Xiangnan Liu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Manlin Luo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China.
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510633, China.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Sharma V, Chaudhry D, Kaushik S. Evaluation of clinical applicability of reverse transcription-loop-mediated isothermal amplification assay for detection and subtyping of Influenza A viruses. J Virol Methods 2018; 253:18-25. [PMID: 29253497 PMCID: PMC7113880 DOI: 10.1016/j.jviromet.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Influenza A viruses (IAVs) have always remain a serious concern for the global economy and public health. A rapid, specific and sensitive detection method is always needed to control the influenza in its early stages by timely intervention of therapy and early clinical management. OBJECTIVES To develop RT-LAMP assays for detection of influenza A viruses, their further subtyping into seasonal (H1N1, H3N2) and novel pandemic H1N1 viruses and to evaluate clinical applicability of optimized RT-LAMP assays on patients' samples. STUDY DESIGN In this study, we optimized RT-LAMP assay to detect IAVs by using primers against matrix gene and subtyping of IAVs was done by using primers against hemagglutinin gene. Optimized RT-LAMP assays were applied on clinical samples from patients having influenza like illness and results were compared with conventional one-step RT-PCR and real-time RT-PCR. RESULTS RT-LAMP assays successfully detected and differentiated IAVs into H1N1, H3N2 and pdm09/H1N1 subtypes. One hundred and sixty seven clinical swab samples from influenza suspected patients were taken and tested with RT-LAMP assay, detecting 30 (17.9%) samples positive for Influenza A virus. Out of 30 samples, 21, 7 and 2 were found positive for pdm09/H1N1, H3N2 and seasonal H1 respectively. Conventional one-step RT-PCR detected a total of 27 (16.2%) samples for influenza A and further subtyping showed 20 and 7 samples positive for pdm09/H1N1 and H3N2 virus respectively whereas none was found positive for seasonal H1N1. RT-LAMP assay demonstrated higher sensitivity (93.8%) than conventional RT-PCR (84.4%) for influenza A viruses detection in clinical samples. CONCLUSIONS RT-LAMP assay is rapid, sensitive, specific and cost effective method for detection of influenza A viruses than conventional one-step RT-PCR and it can serve as a good alternate for diagnosis and surveillance studies during influenza outbreaks in resource-limited setups of developing countries.
Collapse
Affiliation(s)
- Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Dhruva Chaudhry
- Pulmonary and Critical Care Medicine, Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India.
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
34
|
Park YR, Kim HR, Kim SH, Lee KK, Lyoo YS, Yeo SG, Park CK. Loop-mediated isothermal amplification assay for the rapid and visual detection of novel porcine circovirus 3. J Virol Methods 2018; 253:26-30. [DOI: 10.1016/j.jviromet.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
35
|
Kim HR, Park YR, Lim DR, Park MJ, Park JY, Kim SH, Lee KK, Lyoo YS, Park CK. Multiplex real-time polymerase chain reaction for the differential detection of porcine circovirus 2 and 3. J Virol Methods 2017; 250:11-16. [PMID: 28941615 DOI: 10.1016/j.jviromet.2017.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/01/2022]
Abstract
A multiplex quantitative real-time polymerase chain reaction (mqPCR) assay was developed for the rapid and differential detection of porcine circovirus 2 (PCV2) and PCV3. Each of the capsid genes of PCV2 and PCV3 were amplified using specific primers and probe sets, while no other porcine pathogen genes were detected. Limit of detection of the assay was below 50 copies of the target genes of PCV2 and PCV3, and was comparable to that of previously described methods The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 4.0%. Clinical evaluation using tissue samples from a domestic pig farm showed that PCV2 and PCV3 co-circulated at the farm. Moreover, singular infection rates of PCV2 or PCV3 were 21.7% (10/46) or 6.5% (3/46), respectively, while the co-infection rate of PCV3 with PCV2 was 28.3% (13/46). PCV3 DNA was detected by the mqPCR in respiratory diseased piglet tissue samples and aborted fetal tissue samples, suggesting that PCV3 infection is associated with porcine respiratory disease and reproductive failure in the pig farm. This mqPCR method is a rapid and reliable differential diagnostic tool for the monitoring and surveillance of PCV2 and PCV3 in the field.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu-Ri Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Rae Lim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min-Ji Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Seong-Hee Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
36
|
Almasi MA, Almasi G. Loop Mediated Isothermal Amplification (LAMP) for Embryo Sex Determination in Pregnant Women at Eight Weeks of Pregnancy. J Reprod Infertil 2017; 18:197-204. [PMID: 28377900 PMCID: PMC5359858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In human, SRY (sex-determining region of the Y chromosome) is the major gene for the testis-determining factor which is found in normal XY males and in the rare XX males, and it is absent in normal XX females and many XY females. There are several methods which can indicate a male genotype by the presence of the amplified product of SRY gene. The aim of this study was to identify the SRY gene for embryo sex determination in human during pregnancy using loop mediated isothermal amplification (LAMP) method. METHODS A total of 15 blood samples from pregnant women at eight weeks of pregnancy were collected, and Plasma DNA was extracted. LAMP assay was performed using DNA obtained for detection of SRY gene. Furthermore, colorimetric LAMP assay for rapid and easy detection of SRY gene was developed. RESULTS LAMP results revealed that the positive reaction was highly specific only with samples containing XY chromosomes, while no amplification was found in samples containing XX chromosomes. A total of 15 blood samples from pregnant women were seven male embryos (46.6%) and eight female embryos (53.4%). All used visual components in the colorimetric assay could successfully make a clear distinction between positive and negative ones. CONCLUSION The LAMP assay developed in this study is a valuable tool capable of monitoring the purity and detection of SRY gene for sex determination.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Corresponding Author: Mohammad Amin Almasi, Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | | |
Collapse
|
37
|
Almasi MA, Almasi G. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus. Arch Virol 2016; 162:495-500. [PMID: 27738843 DOI: 10.1007/s00705-016-3116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Galavizh Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
38
|
Leirs K, Tewari Kumar P, Decrop D, Pérez-Ruiz E, Leblebici P, Van Kelst B, Compernolle G, Meeuws H, Van Wesenbeeck L, Lagatie O, Stuyver L, Gils A, Lammertyn J, Spasic D. Bioassay Development for Ultrasensitive Detection of Influenza A Nucleoprotein Using Digital ELISA. Anal Chem 2016; 88:8450-8. [DOI: 10.1021/acs.analchem.6b00502] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karen Leirs
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
| | | | | | | | | | | | - Griet Compernolle
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | - Ann Gils
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
39
|
Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016; 8:96. [PMID: 27077877 PMCID: PMC4848591 DOI: 10.3390/v8040096] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis of influenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of the conventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans.
Collapse
Affiliation(s)
- Sai Vikram Vemula
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jikun Liu
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Xue Wang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Santanu Biswas
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
40
|
Almasi MA, Aghapour-Ojaghkandi M, Bagheri K, Ghazvini M, Hosseyni-Dehabadi SM. Comparison and evaluation of two diagnostic methods for detection of npt II and GUS genes in Nicotiana tabacum. Appl Biochem Biotechnol 2015; 175:3599-616. [PMID: 25820356 DOI: 10.1007/s12010-015-1529-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022]
Abstract
To diminish the time required for some diagnostic assays including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP) and also a visual detection protocol on the basis of npt II and GUS genes in transgenic tobacco plants were used. Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum leaf discs was performed with plant transformation vector of pBI 121. From kanamycin-resistant plants selected by their antibiotic resistance, four plants were selected for DNA isolation. Presence of the transgene was confirmed in the transformants by PCR and LAMP. In this regard, all LAMP and PCR primers were designed on the basis of the gene sequences of npt II and GUS. The LAMP assay was applied for direct detection of gene marker from plant samples without DNA extraction steps (direct LAMP assay). Also, a novel colorimetric LAMP assay for rapid and easy detection of npt II and GUS genes was developed here, its potential compared with PCR assay. The LAMP method, on the whole, had the following advantages over the PCR method: easy detection, high sensitivity, high efficiency, simple manipulation, safety, low cost, and user friendly.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran,
| | | | | | | | | |
Collapse
|
41
|
Xia Y, Guo XG, Zhou S. Rapid detection of Streptococcus pneumoniae by real-time fluorescence loop-mediated isothermal amplification. J Thorac Dis 2014; 6:1193-9. [PMID: 25276360 DOI: 10.3978/j.issn.2072-1439.2014.07.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/24/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND AIM OF STUDY A significant human pathogenic bacterium, Streptococcus pneumoniae was recognized as a major cause of pneumonia, and is the subject of many humoral immunity studies. Diagnosis is generally made based on clinical suspicion along with a positive culture from a sample from virtually any place in the body. But the testing time is too long. This study is to establish a rapid diagnostic method to identification of Streptococcus pneumoniae. METHODS Our laboratory has recently developed a new platform called real-amp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of Streptococcus pneumonia. Two pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the Streptococcus pneumoniae. The amplification was carried out at 63 degree Celsius using SYBR Green for 60 minutes with the tube scanner set to collect fluorescence signals. Clinical samples of Streptococcus pneumoniae and other bacteria were used to determine the sensitivity and specificity of the primers by comparing with traditional culture method. RESULTS The new set of primers consistently detected in laboratory-maintained isolates of Streptococcus pneumoniae from our hospital. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting Streptococcus pneumoniae. CONCLUSIONS This study demonstrates that the Streptococcus pneumoniae LAMP primers developed here have the ability to accurately detect Streptococcus pneumoniae infections by real-time fluorescence LAMP.
Collapse
Affiliation(s)
- Yong Xia
- 1 Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 2 Department of Internal Medicine, The Third Clinical College of Guangzhou Medical University, Guangdong 510000, China ; 3 Center for Severe maternal Treatment of Guangzhou City, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 4 Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, China
| | - Xu-Guang Guo
- 1 Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 2 Department of Internal Medicine, The Third Clinical College of Guangzhou Medical University, Guangdong 510000, China ; 3 Center for Severe maternal Treatment of Guangzhou City, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 4 Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, China
| | - Shan Zhou
- 1 Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 2 Department of Internal Medicine, The Third Clinical College of Guangzhou Medical University, Guangdong 510000, China ; 3 Center for Severe maternal Treatment of Guangzhou City, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510000, China ; 4 Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710000, China
| |
Collapse
|
42
|
Apiwat C, Wiriyachaiporn N, Maneeprakorn W, Dharakul T, Thepthai C, Puthavathana P, Siritantikorn S, Horthongkham N. Simultaneous discrimination and detection of influenza A(H1N1)pdm09 and seasonal influenza A viruses using a rapid immunogold biosensor. Arch Virol 2014; 159:1603-11. [PMID: 24402634 DOI: 10.1007/s00705-013-1974-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
A rapid immunogold biosensor for the simultaneous discrimination of influenza A(H1N1)pdm09 and seasonal influenza A viruses was developed successfully. Monoclonal antibodies (mAbs) that were specific for the hemagglutinin protein of the A(H1N1)pdm09 virus were produced, and the best mAb pairs were selected. Using an mAb that was specific for the influenza A nucleoprotein, a rapid immunogold biosensor for the discrimination and detection of A(H1N1)pdm09/seasonal influenza viruses was developed. When tested with 72 virus isolates, the system achieved 100 % detection of the A(H1N1)pdm09 virus without cross-reactivity against seasonal influenza A (H1, H3 subtypes) and B viruses, parainfluenza viruses, respiratory syncytial viruses, and adenoviruses. The detection limits for A(H1N1)pdm09 and seasonal strains were 5 × 10(2)-7.5 × 10(3) and 1 × 10(3)-7.5 × 10(5) TCID50/mL, respectively. When tested with 49 clinical specimens, the specificity was high (100 %). The sensitivity for the detection of A(H1N1)pdm09 and seasonal strains was 90 % and 100 %, respectively, which correlated with the results of real-time reverse transcription polymerase chain reaction as a reference method. The ability of the system to detect and discriminate the A(H1N1)pdm09 strain from the seasonal strains suggests that this method may be beneficial for investigation of outbreaks and diagnostic applications. Furthermore, this method might be a useful platform for developing a rapid diagnostic system for the simultaneous discrimination of other influenza virus subtypes during future outbreaks.
Collapse
Affiliation(s)
- Chayachon Apiwat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Detection of new bunyavirus RNA by reverse transcription-loop-mediated isothermal amplification. J Clin Microbiol 2013; 52:531-5. [PMID: 24478484 DOI: 10.1128/jcm.01813-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging and epidemic infectious disease in central and northeast China. It is caused by New Bunyavirus and carries an average 12% case fatality rate. Early and rapid detection is critical for prevention and control of New Bunyavirus infection, since no vaccine or antiviral drugs are currently available, and prevention requires careful attention to control of the suspected tick vector. In this study, a simple and sensitive reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid detection of New Bunyavirus. The detection limit of the RT-LAMP assay was approximately 10(3) 50% tissue culture infective doses/ml of New Bunyavirus in culture supernatants, and no cross-reactive amplification of other viruses known to cause similar clinical manifestations was observed. The assay was further evaluated using 138 specimens from clinically suspected SFTS and 40 laboratory-proven hantavirus infection with fever and renal syndrome patients, and the assay exhibited 97% agreement compared to real-time RT-PCR and conventional RT-PCR. Using real-time RT-PCR as the diagnostic gold standard, RT-LAMP was 99% sensitive and 100% specific. The RT-LAMP assay could become a useful alternative in clinical diagnosis of SFTS caused by New Bunyavirus, especially in resource-limited hospitals or rural clinics of China.
Collapse
|
44
|
Li C, Chen Z, Meng C, Liu G. Rapid detection of duck hepatitis A virus genotype C using reverse transcription loop-mediated isothermal amplification. J Virol Methods 2013; 196:193-8. [PMID: 24291148 DOI: 10.1016/j.jviromet.2013.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/20/2023]
Abstract
A one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was used and optimized to develop a rapid and sensitive detection system for duck hepatitis A virus genotype C (DHAV-C) RNA. A set of four specific primers was designed against highly conserved sequences located within the 3D gene from DHAV (strain GX1201). Under optimal reaction conditions, the sensitivity of DHAV-C-specific RT-LAMP was 100-fold higher than that of reverse transcriptase-polymerase chain reaction (RT-PCR), with a detection limit of 0.3pg (6.59×10(4) copies) per reaction. No cross-reactivity was observed from the samples of other duck viruses, which is in good accordance with RT-PCR. Furthermore, a positive reaction can be visually inspected by observing turbidity or color change after the addition of SYBR green I dye. The DHAV-C-specific RT-LAMP assay was applied to the samples and compared with RT-PCR. The positive-sample ratios were 26.7% (12 of 45) by RT-LAMP and 20% (9 of 45) by RT-PCR. Therefore, the newly developed RT-LAMP assay is a rapid, specific, sensitive, and cost-effective method of DHAV-C detection. This assay has potential applications in both clinical diagnosis and field surveillance of DHAV-C infection.
Collapse
Affiliation(s)
- Chuanfeng Li
- Division of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongyan Chen
- Division of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunchun Meng
- Division of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangqing Liu
- Division of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
45
|
Wei X, Zheng L, Luo F, Lin Z, Guo L, Qiu B, Chen G. Fluorescence biosensor for the H5N1 antibody based on a metal–organic framework platform. J Mater Chem B 2013; 1:1812-1817. [DOI: 10.1039/c3tb00501a] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Almasi MA, Moradi A, Nasiri J, Karami S, Nasiri M. Assessment of Performance Ability of Three Diagnostic Methods for Detection of Potato Leafroll Virus (PLRV) Using Different Visualizing Systems. Appl Biochem Biotechnol 2012; 168:770-84. [DOI: 10.1007/s12010-012-9818-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|
47
|
Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. LAB ON A CHIP 2012; 12:2469-86. [PMID: 22592150 DOI: 10.1039/c2lc40100b] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nucleic Acid Testing (NAT) promises rapid, sensitive and specific diagnosis of infectious, inherited and genetic disease. The next generation of diagnostic devices will interrogate the genetic determinants of such conditions at the point-of-care, affording clinicians prompt reliable diagnosis from which to guide more effective treatment. The complex biochemical nature of clinical samples, the low abundance of nucleic acid targets in the majority of clinical samples and existing biosensor technology indicate that some form of nucleic acid amplification will be required to obtain clinically relevant sensitivities from the small samples used in point-of-care testing (POCT). This publication provides an overview and thorough review of existing technologies for nucleic acid amplification. The different methods are compared and their suitability for POCT adaptation are discussed. Current commercial products employing isothermal amplification strategies are also investigated. In conclusion we identify the factors impeding the integration of the methods discussed in fully automated, sample-to-answer POCT devices.
Collapse
Affiliation(s)
- Pascal Craw
- Department of Electronic & Computer Engineering, School of Engineering & Design, Brunel University, London, UK.
| | | |
Collapse
|
48
|
Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci 2012; 48:217-49. [PMID: 22185616 DOI: 10.3109/10408363.2011.640976] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The appearance of eight new respiratory viruses, including the SARS coronavirus in 2003 and swine-origin influenza A/H1N1 in 2009, in the human population in the past nine years has tested the ability of virology laboratories to develop diagnostic tests to identify these viruses. Nucleic acid based amplification tests (NATs) for respiratory viruses were first introduced two decades ago and today are utilized for the detection of both conventional and emerging viruses. These tests are more sensitive than other diagnostic approaches, including virus isolation in cell culture, shell vial culture (SVC), antigen detection by direct fluorescent antibody (DFA) staining, and rapid enzyme immunoassay (EIA), and now form the backbone of clinical virology laboratory testing around the world. NATs not only provide fast, accurate and sensitive detection of respiratory viruses in clinical specimens but also have increased our understanding of the epidemiology of both new emerging viruses such as the pandemic H1N1 influenza virus of 2009, and conventional viruses such as the common cold viruses, including rhinovirus and coronavirus. Multiplex polymerase chain reaction (PCR) assays introduced in the last five years detect up to 19 different viruses in a single test. Several multiplex PCR tests are now commercially available and tests are working their way into clinical laboratories. The final chapter in the evolution of respiratory virus diagnostics has been the addition of allelic discrimination and detection of single nucleotide polymorphisms associated with antiviral resistance. These assays are now being multiplexed with primary detection and subtyping assays, especially in the case of influenza virus. These resistance assays, together with viral load assays, will enable clinical laboratories to provide physicians with new and important information for optimal treatment of respiratory virus infections.
Collapse
Affiliation(s)
- James B Mahony
- M.G. DeGroote Institute for Infectious Disease Research, St. Joseph’s Healthcare, Hamilton, Canada.
| | | | | |
Collapse
|
49
|
Direct loop-mediated isothermal amplification from Plasmodium chabaudi infected blood samples: inability to discriminate genomic and cDNA sequences. Exp Parasitol 2012; 131:40-4. [PMID: 22417971 DOI: 10.1016/j.exppara.2012.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) has been increasingly used for diagnosis and quantification of pathogens. Since the Bst DNA polymerase used in this assay is highly resistant to PCR inhibitors present in blood, direct analysis of blood samples without DNA or RNA extraction is possible. Indeed, the presence of Plasmodium chabaudi specific nucleic acids was easily detectable using primer sets for P. chabaudi 18S rRNA and the cir 1 mRNA. Despite the fact that primers for cir 1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin II mRNAs were used that spanned an intron, selective amplification of mRNA in the presence of contaminating genomic DNA was not possible. Optimization of the reaction temperature could only improve discrimination when low complexity templates (target sequences cloned in a plasmid vector) were used. Placing different LAMP primers across intron exon boundaries did not prevent amplification in the absence of reverse transcriptase. Probably due to the high A+T content and low number of introns only a very limited number of possible primer sets spanning introns could be identified in the target genes and no reaction conditions could be established that would allow quantification of RNA levels in the presence of DNA directly from blood samples.
Collapse
|
50
|
Li Y, Hong M, Lin Y, Bin Q, Lin Z, Cai Z, Chen G. Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chem Commun (Camb) 2012; 48:6562-4. [DOI: 10.1039/c2cc31990j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|