1
|
Seyfried KS, Kremer B, Conzen-Dilger C, Veldeman M, Bertram U, Blume C, Mueller CA, Bi T, Jütten K, Clusmann H, Höllig A. Mapping Inflammatory Markers in Cerebrospinal Fluid Following Aneurysmal Subarachnoid Hemorrhage: An Age- and Sex-Matched Analysis. Int J Mol Sci 2025; 26:1302. [PMID: 39941070 PMCID: PMC11818219 DOI: 10.3390/ijms26031302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Despite extensive research on aneurysm treatment and neurocritical care, aneurysmal subarachnoid hemorrhage (SAH) is still a life-threatening disease, often leaving survivors with lasting neurological and cognitive impairments. Early brain injury (EBI) and delayed cerebral ischemia (DCI) are the main contributors to brain damage, with neuroinflammation being a critical shared pathophysiological process. While numerous inflammatory markers and their temporal profiles in cerebrospinal fluid (CSF) have already been identified, comparisons with age- and sex-matched controls are limited. This study analyzed CSF from 17 SAH patients requiring an external ventricular drain (EVD) due to symptomatic hydrocephalus, sampled on days 4 and 10 post-ictus. An age- and sex-matched control group included 17 cerebrovascularly healthy patients requiring lumbar drains during aortic surgery. Chemokines and cytokines were quantified using immunoassays. Significantly elevated markers in SAH patients across both time points included MCP-1, CXCL-13, Eotaxin-1, CXCL-10, IL-8, and MIF. MIP-1α and MIP-1β showed significant differences at particular time points, indicating a distinct temporal profile for each parameter. These findings highlight neuroinflammation's key role in intracranial and systemic pathophysiology following SAH, emphasizing its complexity and individual variability. Knowing demographic factors impact the specific manifestations of pathophysiological processes, the comparison with an age- and sex-matched control group is meaningful.
Collapse
Affiliation(s)
- Katharina Sophie Seyfried
- Department of Neurosurgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (B.K.); (C.C.-D.); (M.V.); (U.B.); (C.B.); (C.A.M.); (T.B.); (K.J.); (H.C.); (A.H.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2025; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Wang C, Cheng F, Han Z, Yan B, Liao P, Yin Z, Ge X, Li D, Zhong R, Liu Q, Chen F, Lei P. Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis. Neural Regen Res 2025; 20:518-532. [PMID: 38819064 PMCID: PMC11317932 DOI: 10.4103/nrr.nrr-d-23-01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongrong Zhong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Foo IJH, Chua BY, Chang SY, Jia X, van der Eerden A, Fazakerley JK, Kedzierska K, Kedzierski L. Prior influenza virus infection alleviates an arbovirus encephalitis by reducing viral titer, inflammation, and cellular infiltrates in the central nervous system. J Virol 2025:e0210824. [PMID: 39817772 DOI: 10.1128/jvi.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis. We used a model system in which mice were given influenza A virus (IAV) infection 8 days prior to Semliki Forest virus (SFV) infection (IAV→SFV). IAV infection clearly attenuated the subsequent SFV infection with reduced titers of infectious SFV and lower levels of cytokines and chemokines in the central nervous system (CNS). In contrast, the SFV viremia in both IAV→SFV and SFV-only mice was comparable. Increased type I interferon (IFN) levels in the CNS after IAV infection might have contributed to some level of protection towards SFV infection in the CNS, suggesting that early control of SFV replication in the CNS during IAV→SFV infection led to reduced adaptive response, given the lower number of CD8+ T cells recruited to the brain in IAV→SFV infection. In lungs, however, prior IAV infection elicited effector CD8+ T cells with highly activated CD38 and/or CD25 phenotypes, while SFV-only infection elicited distinct effector CD8+ T cells with increased frequencies of KLRG1 expression, a hallmark of short-lived effector T cells. Taken together, our findings demonstrate that prior IAV infection can confer protective immunity toward secondary SFV infection, confirmed by reduced disease severity and inflammatory immune responses in the brain. Our work provides important insights into therapies and vaccine regimens directed against unrelated pathogens. IMPORTANCE Influenza viruses are medically important human pathogens that caused epidemics and pandemics throughout history. Conversely, encephalitic arthropod-borne virus (arboviral) diseases affect both humans and domestic animals, creating massive public health issues. Influenza viruses circulate globally while arboviruses dominate tropical regions. Given both influenza virus and encephalitic arboviruses, such as alphaviruses, circulate in many regions globally, co-infections are likely to occur. In addition, arthropod-borne neurotropic infections are generally mild or asymptomatic, hence are likely to be unnoticed as a risk factor during influenza infection. However, the consequences of such co-infections are unclear. Our recent study showed that alphavirus infection preceding Influenza A virus (IAV) infection negatively impacted immune responses to the influenza virus in mice. Here, we aim to investigate the immune responses when the order of sequential infection with IAV and alphavirus are swapped. Altogether, our findings will provide key insights to improved diagnostics, preventative vaccines, and antiviral therapies.
Collapse
Affiliation(s)
- Isabelle J H Foo
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Alice van der Eerden
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Wang N, Yang Y, Wang H, Li Y, Wang M, Li Q. Cinobufagin modulates vasculogenic mimicry and tumor-associated macrophages to inhibit ovarian cancer progression. Eur J Pharmacol 2025; 987:177157. [PMID: 39617163 DOI: 10.1016/j.ejphar.2024.177157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ovarian cancer is among the most prevalent malignant tumors affecting women. While conventional therapies like surgery do provide some measure of disease control, they are accompanied by evident side effects that may readily result in drug resistance. Cinobufagin (HCS) is a water-soluble active component extracted from the dried skin of the Bufo gargarizans. Clinical studies have demonstrated its significant anti-tumor effects. METHODS Transcriptome sequencing identified Forkhead Box S1 (FOXS1)-related targets, and Western blot analysis evaluated the expression levels of vasculogenic mimicry (VM)-related proteins and pathway proteins after cinobufagin intervention. Immunofluorescence and ELISA were used to detect the effects of cinobufagin on M1 and M2 macrophage markers. Additionally, a co-culture model of Skov3 cells and macrophages was established to study the effects of cinobufagin on tumor-associated macrophage polarization. RESULTS Cinobufagin significantly inhibited the growth of Skov3 ovarian cancer cells both in vitro and in vivo. Additionally, cinobufagin decreased the expression levels of VM-related proteins, thereby affecting vasculogenesis both in vitro and in vivo. Transcriptomic analysis revealed that the regulation of the FOXS1 gene contributed to this inhibitory effect. In the co-culture system, we found that cinobufagin inhibited IL-4-induced M2 macrophage polarization. Overexpression of FOXS1 in Skov3 cells enhanced the activity of the C-C motif chemokine ligand 2/receptor 2 (CCL2/CCR2) pathway, which was suppressed by cinobufagin, thus affecting the tumor microenvironment. CONCLUSION Cinobufagin suppressed vasculogenic mimicry by regulating the FOXS1 gene and inhibited M2 macrophage polarization through the CCL2/CCR2 pathway, thereby affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Hainan Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Yueyue Li
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China; Anhui Academy of Traditional Chinese Medicine Bozhou Branch, Bozhou City, Anhui Province, 236800, China.
| |
Collapse
|
6
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
7
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:749-770. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
8
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
9
|
Tarale P, Chaudhary S, Mukherjee S, Sarkar DK. Ethanol-activated microglial exosomes induce MCP1 signaling mediated death of stress-regulatory proopiomelanocortin neurons in the developing hypothalamus. J Neuroinflammation 2024; 21:279. [PMID: 39478585 PMCID: PMC11526652 DOI: 10.1186/s12974-024-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Microglia, a type of resident immune cells within the central nervous system, have been implicated in ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined if microglial extracellular vesicles (exosomes) are involved in the ethanol-induced neuronal death of the β-endorphin neuron via secreting elevated levels of the chemokine monocyte chemoattractant protein 1 (MCP1), a key regulator of neuroinflammation. METHODS We employed an in vitro model, consisting of primary culture of hypothalamic microglia prepared from postnatal day 2 (PND2) rat hypothalami and treated with or without 50 mM ethanol for 24 h, and an in vivo animal model in which microglia were obtained from hypothalami of PND6 rats fed daily with 2.5 mg/kg ethanol or control milk formula for five days prior to use. Exosomes were extracted and characterized with nanosight tracking analysis (NTA), transmission electron microscopy and western blot. Chemokine multiplex immunoassay and ELISA were used for quantitative estimation of MCP1 level. Neurotoxic ability of exosome was tested using primary cultures of β-endorphin neurons and employing nucleosome assay and immunocytochemistry. Elevated plus maze, open field and restraint tests were used to assess anxiety-related behaviors. RESULTS Ethanol elevated MCP1 levels in microglial exosomes both in vitro and in vivo models. Ethanol-activated microglial exosomes when introduced into primary cultures of β-endorphin neurons, increased cellular levels of MCP1 and the chemokine receptor CCR2 related signaling molecules including inflammatory cytokines and apoptotic genes as well as apoptotic death of β-endorphin neurons. These effects of microglial exosomes on β-endorphin neurons were suppressed by a CCR2 antagonist RS504393. Furthermore, RS504393 when injected in postnatal rats prior to feeding with ethanol it reduced alcohol-induced β-endorphin neuronal death in the hypothalamus. RS504393 also suppressed corticosterone response to stress and anxiety-like behaviors in postnatally alcohol-fed rats during adult period. CONCLUSION These data suggest that alcohol exposures during the developmental period elevates MCP1 levels in microglial exosomes that promote MCP1/CCR2 signaling to increase the apoptosis of β-endorphin neurons and resulting in hormonal and behavioral stress responses.
Collapse
Affiliation(s)
- Prashant Tarale
- The Endocrine Program, The State University of New Jersey, Rutgers, New Brunswick, NJ, USA
- Department of Animal Sciences, State University of New Jersey, Rutgers, New Brunswick, NJ, USA
| | - Shaista Chaudhary
- The Endocrine Program, The State University of New Jersey, Rutgers, New Brunswick, NJ, USA
- Department of Animal Sciences, State University of New Jersey, Rutgers, New Brunswick, NJ, USA
| | - Sayani Mukherjee
- The Endocrine Program, The State University of New Jersey, Rutgers, New Brunswick, NJ, USA
- Hormone Laboratory Research Group, Department of Clinical Science, University of Bergen, Bergen, 5020, Norway
| | - Dipak K Sarkar
- The Endocrine Program, The State University of New Jersey, Rutgers, New Brunswick, NJ, USA.
- Department of Animal Sciences, State University of New Jersey, Rutgers, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Huang J, Xiong L, Tang S, Zhao J, Zuo L. Balancing Tumor Immunotherapy and Immune-Related Adverse Events: Unveiling the Key Regulators. Int J Mol Sci 2024; 25:10919. [PMID: 39456702 PMCID: PMC11507008 DOI: 10.3390/ijms252010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Tumor immunotherapy has emerged as a promising approach in cancer treatment in recent years, offering vast potential. This method primarily involves targeting and inhibiting the suppressive checkpoints present in different immune cells to enhance their activation, ultimately leading to tumor regression. However, tumor cells exploit the surrounding immune cells and tissues to establish a tumor microenvironment (TME) that supports their survival and growth. Within the TME, the efficacy of effector immune cells is compromised, as tumor cells exploit inhibitory immune cells to suppress their function. Furthermore, certain immune cells can be co-opted by tumor cells to facilitate tumor growth. While significantly enhancing the body's tumor immunity can lead to tumor regression, it can also result in severe toxic side effects and an inflammatory factor storm. As a consequence, patients often discontinue treatment due to immune-related adverse events (irAEs) or, in extreme cases, succumb to toxic side effects before experiencing tumor regression. In this analysis, we examined several remission regimens for irAEs, each with its own drawbacks, including toxic side effects or suppression of tumor immunotherapy, which is undesirable. A recent research study, specifically aimed at downregulating intestinal epithelial barrier permeability, has shown promising results in reducing the severity of inflammatory bowel disease (IBD) while preserving immune function. This approach effectively reduces the severity of IBD without compromising the levels of TNF-α and IFN-γ, which are crucial for maintaining the efficacy of tumor immunotherapy. Based on the substantial similarities between IBD and ICI colitis (combo immune checkpoint inhibitors-induced colitis), this review proposes that targeting epithelial cells represents a crucial research direction for mitigating irAEs in the future.
Collapse
Affiliation(s)
- Jianshang Huang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Lei Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Sainan Tang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Junhao Zhao
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| |
Collapse
|
11
|
Samanta RJ, Chiollaz AC, Needham E, Yue JK, Helmy A, Zanier ER, Wang KKW, Kobeissy F, Posti JP, Summers C, Manley GT, Maas AI, Tenovuo O, Sanchez JC, Menon DK. Parsimonious immune-response endotypes and global outcome in patients with traumatic brain injury. EBioMedicine 2024; 108:105310. [PMID: 39293212 PMCID: PMC11424973 DOI: 10.1016/j.ebiom.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The inflammatory response in patients with traumatic brain injury (TBI) offers opportunities for stratification and intervention. Previous unselected approaches to immunomodulation in patients with TBI have not improved patient outcomes. METHODS Serum and plasma samples from two prospective, multi-centre observational studies of patients with TBI were used to discover (Collaborative European NeuroTrauma Effectiveness Research [CENTER-TBI], Europe) and validate (Transforming Research and Clinical Knowledge in Traumatic Brain Injury [TRACK-TBI] Pilot, USA) individual variations in the immune response using a multiplex panel of 30 inflammatory mediators. Mediators that were associated with unfavourable outcomes (Glasgow outcome score-extended [GOS-E] ≤ 4) were used for hierarchical clustering to identify patients with similar signatures. FINDINGS Two clusters were identified in both the discovery and validation cohorts, termed early-inflammatory and pauci-inflammatory. The early-inflammatory phenotype had higher concentrations of interleukin-6 (IL-6), IL-15, and monocyte chemoattractant protein 1 (MCP1). Patients with the early-inflammatory phenotype were older and more likely to have an unfavourable GOS-E at 6 months. There were no differences in the baseline injury severity scores between patients in each phenotype. A combined IL-15 and MCP1 signature identified patients with the early-inflammatory phenotype in both cohorts. Inflammatory processes mediated outcomes in older patients with moderate-severe TBI. INTERPRETATION Our findings offer a precision medicine approach for future clinical trials of immunomodulation in patients with TBI, by using inflammatory signatures to stratify patients. FUNDING CENTER-TBI study was supported by the European Union 7th Framework Programme. TRACK-TBI is supported by the National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
- Romit J Samanta
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Edward Needham
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, Decatur, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jussi P Posti
- Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Charlotte Summers
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Ir Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium; Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Olli Tenovuo
- Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | | | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
13
|
Yeung J, DeYoung T, Spring S, de Guzman AE, Elder MW, Beauchamp A, Wong CS, Palmert MR, Lerch JP, Nieman BJ. Sex chromosomes and hormones independently influence healthy brain development but act similarly after cranial radiation. Proc Natl Acad Sci U S A 2024; 121:e2404042121. [PMID: 39207735 PMCID: PMC11388377 DOI: 10.1073/pnas.2404042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs. XY) and/or gonadal hormone influence. The contributions of each can be separated using the four-core genotype mouse model (FCG), where sex chromosome complement and gonadal sex are decoupled. While studies of FCG mice have evaluated brain differences in adulthood, it is still unclear how sex chromosome and sex hormone effects emerge through development in both healthy and pathological contexts. Our study utilizes longitudinal MRI with the FCG model to investigate sex effects in healthy development and after CRT in wildtype and immune-modified Ccl2-knockout mice. Our findings in normally developing mice reveal a relatively prominent chromosome effect prepubertally, compared to sex hormone effects which largely emerge later. Spatially, sex chromosome and hormone influences were independent of one another. After CRT in Ccl2-knockout mice, both male chromosomes and male hormones similarly improved brain outcomes but did so more separately than in combination. Our findings highlight the crucial role of sex chromosomes in early development and identify roles for sex chromosomes and hormones after CRT-induced inflammation, highlighting the influences of biological sex in both normal brain development and pathology.
Collapse
Affiliation(s)
- Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto TN 38068, Italy
| | - Madeline W Elder
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - C Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto ON M5T 1P5, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
14
|
Chéry SL, O'Buckley TK, Boero G, Balan I, Morrow AL. Neurosteroid [3α,5α]3-hydroxypregnan-20-one inhibition of chemokine monocyte chemoattractant protein-1 in alcohol-preferring rat brain neurons, microglia, and astroglia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1693-1703. [PMID: 38991981 DOI: 10.1111/acer.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.
Collapse
Affiliation(s)
- Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Chadarevian JP, Hasselmann J, Lahian A, Capocchi JK, Escobar A, Lim TE, Le L, Tu C, Nguyen J, Kiani Shabestari S, Carlen-Jones W, Gandhi S, Bu G, Hume DA, Pridans C, Wszolek ZK, Spitale RC, Davtyan H, Blurton-Jones M. Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy. Neuron 2024; 112:2686-2707.e8. [PMID: 38897209 DOI: 10.1016/j.neuron.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Alina Lahian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sunil Gandhi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Guojun Bu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - David A Hume
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Clare Pridans
- University of Edinburgh, University of Edinburgh Center for Inflammation Research, Edinburgh, UK
| | | | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Babar DA, Khansole G, Kumar Singh V, Shinde A, Vaishnavi K, Balaji AS, Rode HB. N,N-Diarylsulfonamide Reduces Proinflammatory Cytokine Interleukin-6 Levels in Cells through Nuclear Factor-κB Regulation. ChemMedChem 2024; 19:e202300598. [PMID: 38613187 DOI: 10.1002/cmdc.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The arylsulfonamides were synthesized from aryl sulfonyl chloride and aromatic amines in dichloromethane in the presence of pyridine. The aryne chemistry was used to prepare diarylsulfonamide from arylsulfonamides and O-silylaryl triflate with CsF in acetonitrile at room temperature for 30 min. The synthesized compounds were evaluated for cytotoxicity followed by the cytokine/inflammatory marker's inhibition capability and its mechanism of action in RAW-264.7 cells. Elevated interleukin-6 (IL-6) levels have been reported in inflammatory conditions and inflammation-associated disorders. Hence, reducing the IL-6 levels in inflammatory conditions can serve as an attractive therapeutic target in dealing the inflammation. Among 42 compounds, seven compounds showed significant inhibition of IL-6 levels in lipopolysaccharide (LPS) challenged RAW-264.7 cells at 12.5 μM concentration. Further, investigation revealed that the IC50 value of these compounds for reducing IL-6 levels was found to be in the range of 2.6 to 9.7 μM. The promising compounds 5y (IC50 of 2.6 μM) and 5n (IC50 of 4.1 μM) along with other derivatives fulfil drug-likeness parameters laid down by Lipinski's rule of five. Further, RT-qPCR and Western-blot analysis revealed that treatment with 5n significantly reduced the expression of pro-inflammatory, inflammatory and macrophage marker's expression (IL-1β, CCL2, COX2 and CD68) compared to LPS control. The mechanistic evaluation showed that 5n exhibited anti-inflammatory properties by modulating the nuclear factor-κB (NF-κB) activation. The identified compound can be a promising candidate for further discovery efforts to generate a preclinical candidate effective in inflammation.
Collapse
Affiliation(s)
- Dattatraya A Babar
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gopinath Khansole
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Vishal Kumar Singh
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Kambhampati Vaishnavi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Andugulapati Sai Balaji
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
17
|
Arfaei R, Mikaeili N, Daj F, Boroumand A, Kheyri A, Yaraghi P, Shirzad Z, Keshavarz M, Hassanshahi G, Jafarzadeh A, Shahrokhi VM, Khorramdelazad H. Decoding the role of the CCL2/CCR2 axis in Alzheimer's disease and innovating therapeutic approaches: Keeping All options open. Int Immunopharmacol 2024; 135:112328. [PMID: 38796962 DOI: 10.1016/j.intimp.2024.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, distresses the elderly in large numbers and is characterized by β-amyloid (Aβ) accumulation, elevated tau protein levels, and chronic inflammation. The brain's immune system is aided by microglia and astrocytes, which produce chemokines and cytokines. Nevertheless, dysregulated expression can cause hyperinflammation and lead to neurodegeneration. CCL2/CCR2 chemokines are implicated in neurodegenerative diseases exacerbating. Inflicting damage on nerves and central nervous system (CNS) cells is the function of this axis, which recruits and migrates immune cells, including monocytes and macrophages. It has been shown that targeting the CCL2/CCR2 axis may be a therapeutic option for inflammatory diseases. Using the current knowledge about the involvement of the CCL2/CCR2 axis in the immunopathogenesis of AD, this comprehensive review synthesizes existing information. It also explores potential therapeutic options, including modulation of the CCL2/CCR2 axis as a possible strategy in AD.
Collapse
Affiliation(s)
- Reyhaneh Arfaei
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Daj
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Shirzad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Keshavarz
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
18
|
Yang Q, Yang C, Lv H, Zheng X, Mao S, Liu N, Mo S, Liao B, Yang M, Lu Z, Tang L, Huang X, Jian C, Shang J. Autophagy Regulation Attenuates Neuroinflammation and Cognitive Decline in an Alzheimer's Disease Mouse Model with Chronic Cerebral Hypoperfusion. Inflammation 2024:10.1007/s10753-024-02043-0. [PMID: 38951357 DOI: 10.1007/s10753-024-02043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
This study investigates the role of autophagy regulation in modulating neuroinflammation and cognitive function in an Alzheimer's disease (AD) mouse model with chronic cerebral hypoperfusion (CCH). Using the APP23/PS1 mice plus CCH model, we examined the impact of autophagy regulation on cognitive function, neuroinflammation, and autophagic activity. Our results demonstrate significant cognitive impairments in AD mice, exacerbated by CCH, but mitigated by treatment with the autophagy inhibitor 3-methyladenine (3-MA). Dysregulation of autophagy-related proteins, accentuated by CCH, underscores the intricate relationship between cerebral blood flow and autophagy dysfunction in AD pathology. While 3-MA restored autophagic balance, rapamycin (RAPA) treatment did not induce significant changes, suggesting alternative therapeutic approaches are necessary. Dysregulated microglial polarization and neuroinflammation in AD+CCH were linked to cognitive decline, with 3-MA attenuating neuroinflammation. Furthermore, alterations in M2 microglial polarization and the levels of inflammatory markers NLRP3 and MCP1 were observed, with 3-MA treatment exhibiting potential anti-inflammatory effects. Our findings shed light on the crosstalk between autophagy and neuroinflammation in AD+CCH and suggest targeting autophagy as a promising strategy for mitigating neuroinflammation and cognitive decline in AD+CCH.
Collapse
Affiliation(s)
- Qin Yang
- Medical School, Jinan University, Guangzhou, Guangdong, China
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Chengmin Yang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Hui Lv
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xingwu Zheng
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Sanyin Mao
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Ning Liu
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shenglong Mo
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Bao Liao
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Meiling Yang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Zhicheng Lu
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Lina Tang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaorui Huang
- Department of Psychiatry and Psychology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Jingwei Shang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
19
|
Okazaki Y, Sasaki T, Hosomoto K, Tanimoto S, Kawai K, Nagase T, Sugahara C, Yabuno S, Kin K, Sasada S, Yasuhara T, Tanaka S, Date I. Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades. Sci Rep 2024; 14:14543. [PMID: 38914629 PMCID: PMC11196670 DOI: 10.1038/s41598-024-64972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure.
Collapse
Grants
- 22K16659 Japan Ministry of Education, Culture, Sports, Science, and Technology
- 22K16688 Japan Ministry of Education, Culture, Sports, Science, and Technology
- 22K09207 Japan Ministry of Education, Culture, Sports, Science, and Technology
Collapse
Affiliation(s)
- Yosuke Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Kakeru Hosomoto
- Department of Neurosurgery, Kure Kyosai Hospital, Kure, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Isao Date
- Department of Neurosurgery, Okayama Rosai Hospital, Okayama, Japan
| |
Collapse
|
20
|
Lin R, Jin L, Xue Y, Zhang Z, Huang H, Chen D, Liu Q, Mao Z, Wu Z, Tao Q. Hybrid Membrane-Coated Nanoparticles for Precise Targeting and Synergistic Therapy in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306675. [PMID: 38647399 PMCID: PMC11200089 DOI: 10.1002/advs.202306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.
Collapse
Affiliation(s)
- Rong‐Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Lu‐Lu Jin
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yan‐Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zhe‐Sheng Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Hui‐Feng Huang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Dian‐Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Qian Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zheng‐Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310058China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai200031China
| | - Qing‐Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
21
|
Harris VK, Stark J, Williams A, Roche M, Malin M, Kumar A, Carlson AL, Kizilbash C, Wollowitz J, Andy C, Gerber LM, Sadiq SA. Efficacy of intrathecal mesenchymal stem cell-neural progenitor therapy in progressive MS: results from a phase II, randomized, placebo-controlled clinical trial. Stem Cell Res Ther 2024; 15:151. [PMID: 38783390 PMCID: PMC11119709 DOI: 10.1186/s13287-024-03765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-neural progenitors (MSC-NPs) are a bone marrow mesenchymal stem cell (MSC)-derived ex vivo manipulated cell product with therapeutic potential in multiple sclerosis (MS). The objective of this study was to determine efficacy of intrathecal (IT) MSC-NP treatment in patients with progressive MS. METHODS The study is a phase II randomized, double-blind, placebo-controlled clinical trial with a compassionate crossover design conducted at a single site. Subjects were stratified according to baseline Expanded Disability Status Scale (EDSS) (3.0-6.5) and disease subtype (secondary or primary progressive MS) and randomized into either treatment or placebo group to receive six IT injections of autologous MSC-NPs or saline every two months. The primary outcome was EDSS Plus, defined by improvement in EDSS, timed 25-foot walk (T25FW) or nine-hole peg test. Secondary outcomes included the individual components of EDSS Plus, the six-minute walk test (6MWT), urodynamics testing, and brain atrophy measurement. RESULTS Subjects were randomized into MSC-NP (n = 27) or saline (n = 27) groups. There was no difference in EDSS Plus improvement between the MSC-NP (33%) and saline (37%) groups. Exploratory subgroup analysis demonstrated that in subjects who require assistance for ambulation (EDSS 6.0-6.5) there was a significantly higher percentage of improvement in T25FW and 6MWT in the MSC-NP group (3.7% ± 23.1% and - 9.2% ± 18.2%) compared to the saline group (-54.4% ± 70.5% and - 32.1% ± 30.0%), (p = 0.030 and p = 0.036, respectively). IT-MSC-NP treatment was also associated with improved bladder function and reduced rate of grey matter atrophy on brain MRI. Biomarker analysis demonstrated increased MMP9 and decreased CCL2 levels in the cerebrospinal fluid following treatment. CONCLUSION Results from exploratory outcomes suggest that IT-MSC-NP treatment may be associated with a therapeutic response in a subgroup of MS patients. TRIAL REGISTRATION ClinicalTrials.gov NCT03355365, registered November 14, 2017, https://clinicaltrials.gov/study/NCT03355365?term=NCT03355365&rank=1 .
Collapse
Affiliation(s)
- Violaine K Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - James Stark
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Armistead Williams
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Morgan Roche
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Michaela Malin
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Anjali Kumar
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Alyssa L Carlson
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Cara Kizilbash
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA
| | - Caroline Andy
- Weill Cornell Medicine, Department of Population Health Sciences, New York, NY, USA
| | - Linda M Gerber
- Weill Cornell Medicine, Department of Population Health Sciences, New York, NY, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, 10019, USA.
| |
Collapse
|
22
|
Kawada K, Ishida T, Morisawa S, Jobu K, Higashi Y, Aizawa F, Yagi K, Izawa-Ishizawa Y, Niimura T, Abe S, Goda M, Miyamura M, Ishizawa K. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced inflammation in murine microglial cells. Front Pharmacol 2024; 15:1302055. [PMID: 38738173 PMCID: PMC11082290 DOI: 10.3389/fphar.2024.1302055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Exosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression. Hypothesis/Purpose In this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents. Methods ALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses. Results Overall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide. Conclusion Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent.
Collapse
Affiliation(s)
- Kei Kawada
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiko Miyamura
- Center for Regional Sustainability and Innovation, Kochi University, Kochi, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| |
Collapse
|
23
|
Berríos-Cárcamo P, Núñez S, Castañeda J, Gallardo J, Bono MR, Ezquer F. Two-Month Voluntary Ethanol Consumption Promotes Mild Neuroinflammation in the Cerebellum but Not in the Prefrontal Cortex, Hippocampus, or Striatum of Mice. Int J Mol Sci 2024; 25:4173. [PMID: 38673763 PMCID: PMC11050159 DOI: 10.3390/ijms25084173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1β, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - Sarah Núñez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones 7510602, Chile;
- Centro Ciencia & Vida, Santiago 8580702, Chile
| | - Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
- Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| |
Collapse
|
24
|
Gu C, Geng X, Wu Y, Dai Y, Zeng J, Wang Z, Fang H, Sun Y, Chen X. Engineered Macrophage Membrane-Coated Nanoparticles with Enhanced CCR2 Expression Promote Spinal Cord Injury Repair by Suppressing Neuroinflammation and Neuronal death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305659. [PMID: 37884477 DOI: 10.1002/smll.202305659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Spinal cord injury (SCI) is a severe neurological disorder characterized by significant disability and limited treatment options. Mitigating the secondary inflammatory response following the initial injury is the primary focus of current research in the treatment of SCI. CCL2 (C─C motif chemokine ligand 2) serves as the primary regulator responsible for inflammatory chemotaxis of the majority of peripheral immune cells, blocking the CCL2-CCR2 (C─C chemokine receptor type 2) axis has shown considerable therapeutic potential for inflammatory diseases, including SCI. In this study, it presents a multifunctional biomimetic nanoplatform (CCR2-MM@PLGA/Cur) specifically designed to target the CCL2-CCR2 axis, which consisted of an engineered macrophage membrane (MM) coating with enhanced CCR2 expression and a PLGA (poly (lactic-co-glycolic acid)) nanoparticle that encapsulated therapeutic drugs. CCR2 overexpression on MM not only enhanced drug-targeted delivery to the injury site, but also attenuated macrophage infiltration, microglia pro-inflammatory polarization, and neuronal apoptosis by trapping CCL2. Consequently, it facilitated neural regeneration and motor function recovery in SCI mice, enabling a comprehensive treatment approach for SCI. The feasibility and efficacy of this platform are confirmed through a series of in vitro and in vivo assays, offering new insights and potential avenues for further exploration in the treatment of SCI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Yicheng Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Yuya Dai
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Zhenqiang Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, P. R. China
| |
Collapse
|
25
|
Allison RL, Ebert AD. ALS iPSC-derived microglia and motor neurons respond to astrocyte-targeted IL-10 and CCL2 modulation. Hum Mol Genet 2024; 33:530-542. [PMID: 38129120 DOI: 10.1093/hmg/ddad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs). The loss of MNs in ALS leads to muscle weakness and wasting, respiratory failure, and death often within two years of diagnosis. Glial cells in ALS show aberrant expression of pro-inflammatory and neurotoxic proteins associated with activation and have been proposed as ideal therapeutic targets. In this study, we examined astrocyte-targeted treatments to reduce glial activation and neuron pathology using cells differentiated from ALS patient-derived iPSC carrying SOD1 and C9ORF72 mutations. Specifically, we tested the ability of increasing interleukin 10 (IL-10) and reducing C-C motif chemokine ligand 2 (CCL2/MCP-1) signaling targeted to astrocytes to reduce activation phenotypes in both astrocytes and microglia. Overall, we found IL10/CCL2NAb treated astrocytes to support anti-inflammatory phenotypes and reduce neurotoxicity, through different mechanisms in SOD1 and C9ORF72 cultures. We also found altered responses of microglia and motor neurons to astrocytic influences when cells were cultured together rather than in isolation. Together these data support IL-10 and CCL2 as non-mutation-specific therapeutic targets for ALS and highlight the role of glial-mediated pathology in this disease.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
26
|
Lu X, Chen W, Tian G, Ge F. THEM6 is a prognostic biomarker for breast cancer and is associated with immune infiltration. Sci Rep 2023; 13:21974. [PMID: 38081884 PMCID: PMC10713618 DOI: 10.1038/s41598-023-49379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
To characterize the implications of lipid metabolism-related gene thioesterase superfamily member 6 (THEM6) in breast cancer. Several databases including The Cancer Genome Atlas (TCGA) were utilized for our meticulous bioinformatics analysis. We further performed qRT-PCR, immunoblotting and IHC assays to validate the expression of THEM6 in various breast cancer cells and tissues. In addition, we have carried out relevant functional experiments to explore the regulatory role of THEM6 in vitro. Lipid metabolism-related genes are independent factors for overall survival. According to several databases, THEM6 was significantly more expressed in cancerous tissues of breast invasive carcinoma (BRCA) compared to its paracancerous tissues. Furthermore, THEM6 overexpression was correlated with poorer overall survival of BRCA patients, serving as a separate prognostic factor for BRCA. Biological functional analyses revealed that THEM6 was associated with tumor progression and pathogenesis. Finally, we discovered that in BRCA, THEM6 expression was linked to multiple immune cell types. qRT-PCR and Western blotting experiments demonstrated a general upregulation of THEM6 expression in breast carcinoma cells. IHC showed that THEM6 was expressed in both breast cancer tissues and para-cancer tissues, but its expression level was significantly higher in carcinoma tissues. In vitro studies indicated that THEM6 increased proliferation, invasion, and inhibited apoptosis of breast carcinoma cells, while also affecting the cell cycle and promoting cancer progression. Furthermore, THEM6 may influence macrophage recruitment and polarization in the tumor microenvironment by regulating CCL2 secretion, which in turn affects macrophage recruitment in the tumor microenvironment. Our findings indicate that the overexpression of THEM6, which is linked to the development of breast cancer, is a predictor of a poor prognosis and has an impact on the degree of immune cell infiltration. Therefore, THEM6 has the potential to be a valuable target for BRCA.
Collapse
Affiliation(s)
- Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, 650223, China
- Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan, 650223, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650223, China.
| |
Collapse
|
27
|
Netherby-Winslow C, Thompson B, Lotta L, Gallagher M, Van Haute P, Yang R, Hott D, Hasan H, Bachmann K, Bautista J, Gerber S, Cory-Slechta DA, Janelsins M. Effects of mammary cancer and chemotherapy on neuroimmunological markers and memory function in a preclinical mouse model. Brain Behav Immun Health 2023; 34:100699. [PMID: 38058985 PMCID: PMC10695847 DOI: 10.1016/j.bbih.2023.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/08/2023] Open
Abstract
Treatment modalities for breast cancer, including cyclophosphamide chemotherapy, have been associated with the development of cognitive decline (CRCD), which is characterized by impairments in memory, concentration, attention, and executive functions. We and others have identified a link between inflammation and decreased cognitive performance in patients with breast cancer receiving chemotherapy. In order to better understand the inflammation-associated molecular changes within the brain related to tumor alone or in combination with chemotherapy, we orthotopically implanted mouse mammary tumors (E0771) into female C57BL/6 mice and administered clinically relevant doses of cyclophosphamide and doxorubicin intravenously at weekly intervals for four weeks. We measured serum cytokines and markers of neuroinflammation at 48 h and up to one month post-treatment and tested memory using a reward-based delayed spatial alternation paradigm. We found that breast tumors and chemotherapy altered systemic inflammation and neuroinflammation. We further found that the presence of tumor and chemotherapy led to a decline in memory over time at the longest delay, when memory was the most taxed, compared to shorter delay times. These findings in a clinically relevant mouse model shed light on possible biomarkers for CRCD and add to the growing evidence that anti-inflammatory strategies have the potential to mitigate cancer- or treatment-related side effects.
Collapse
Affiliation(s)
- Colleen Netherby-Winslow
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Bryan Thompson
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Louis Lotta
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Mark Gallagher
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Paige Van Haute
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Rachel Yang
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Devin Hott
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Hamza Hasan
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Katherine Bachmann
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | - Javier Bautista
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| | - Scott Gerber
- Department of Surgery, Division of Surgical Oncology, Rochester, NY, United States
| | | | - Michelle Janelsins
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester, Rochester, NY, United States
| |
Collapse
|
28
|
Allan-Blitz LT, Goodrich J, Hu H, Akbari O, Klausner JD. Altered Tumor Necrosis Factor Response in Neurologic Postacute SARS-CoV-2 Syndrome. J Interferon Cytokine Res 2023; 43:307-313. [PMID: 37384921 PMCID: PMC10354723 DOI: 10.1089/jir.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
Neurologic manifestations of postacute sequelae after SARS-CoV-2 infection (neuro-PASC) are common; however, the underlying drivers of those symptoms remain poorly understood. Prior work has postulated that immune dysregulation leads to ongoing neuroinflammation. We aimed to identify the cytokines involved in that immune dysregulation by comparing 37 plasma cytokine profiles among 20 case patients with neuro-PASC to 20 age- and gender-matched controls. Neuro-PASC cases were defined as individuals with self-reported persistent headache, general malaise, and anosmia or ageusia at least 28 days post-SARS-CoV-2 infection. As a sensitivity analysis, we repeated the main analysis among only participants of Hispanic heritage. In total, 40 specimens were tested. Participants were an average of 43.5 years old (interquartile range 30-52), 20 (50.0%) of whom identified as women. Levels of tumor necrosis factor alpha (TNFα) were 0.76 times lower [95% confidence interval (CI) 0.62-0.94] among cases of neuro-PASC compared with controls, as were levels of C-C motif chemokine 19 (CCL19) (0.67; 95% CI 0.50-0.91), C-C motif chemokine 2 (CCL2) (0.72; 95% CI 0.55-0.95), chemokine interferon-gamma inducible protein 10 (CXCL10) (0.63; 95% CI 0.42-0.96), and chemokine interferon-gamma inducible protein 9 (CXCL9) (0.62; 95% CI 0.38-0.99). Restricting analysis of TNF and CCL19 to participants who identified as Hispanic did not alter results. We noted a reduction in TNFα and down-stream chemokines among patients with neuro-PASC, suggesting an overall immune attenuation.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
29
|
Chen D, Li J, Liu H, Liu X, Zhang C, Luo H, Wei Y, Xi Y, Liang H, Zhang Q. Genome-Wide Epistasis Study of Cerebrospinal Fluid Hyperphosphorylated Tau in ADNI Cohort. Genes (Basel) 2023; 14:1322. [PMID: 37510227 PMCID: PMC10379656 DOI: 10.3390/genes14071322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide, and the genetic mechanism of which is not yet fully understood. Much evidence has accumulated over the past decade to suggest that after the first large-scale genome-wide association studies (GWAS) were conducted, the problem of "missing heritability" in AD is still a great challenge. Epistasis has been considered as one of the main causes of "missing heritability" in AD, which has been largely ignored in human genetics. The focus of current genome-wide epistasis studies is usually on single nucleotide polymorphisms (SNPs) that have significant individual effects, and the amount of heritability explained by which was very low. Moreover, AD is characterized by progressive cognitive decline and neuronal damage, and some studies have suggested that hyperphosphorylated tau (P-tau) mediates neuronal death by inducing necroptosis and inflammation in AD. Therefore, this study focused on identifying epistasis between two-marker interactions at marginal main effects across the whole genome using cerebrospinal fluid (CSF) P-tau as quantitative trait (QT). We sought to detect interactions between SNPs in a multi-GPU based linear regression method by using age, gender, and clinical diagnostic status (cds) as covariates. We then used the STRING online tool to perform the PPI network and identify two-marker epistasis at the level of gene-gene interaction. A total of 758 SNP pairs were found to be statistically significant. Particularly, between the marginal main effect SNP pairs, highly significant SNP-SNP interactions were identified, which explained a relatively high variance at the P-tau level. In addition, 331 AD-related genes were identified, 10 gene-gene interaction pairs were replicated in the PPI network. The identified gene-gene interactions and genes showed associations with AD in terms of neuroinflammation and neurodegeneration, neuronal cells activation and brain development, thereby leading to cognitive decline in AD, which is indirectly associated with the P-tau pathological feature of AD and in turn supports the results of this study. Thus, the results of our study might be beneficial for explaining part of the "missing heritability" of AD.
Collapse
Affiliation(s)
- Dandan Chen
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongwei Liu
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Xiaolong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chenghao Zhang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yiming Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
30
|
Londzin P, Trawczyński M, Cegieła U, Czuba ZP, Folwarczna J. Effects of Donepezil on the Musculoskeletal System in Female Rats. Int J Mol Sci 2023; 24:ijms24108991. [PMID: 37240337 DOI: 10.3390/ijms24108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The extension of human life makes it more and more important to prevent and treat diseases of the elderly, including Alzheimer's disease (AD) and osteoporosis. Little is known about the effects of drugs used in the treatment of AD on the musculoskeletal system. The aim of the present study was to investigate the effects of donepezil, an acetylcholinesterase inhibitor, on the musculoskeletal system in rats with normal and reduced estrogen levels. The study was carried out on four groups of mature female rats: non-ovariectomized (NOVX) control rats, NOVX rats treated with donepezil, ovariectomized (OVX) control rats and OVX rats treated with donepezil. Donepezil (1 mg/kg p.o.) was administered for four weeks, starting one week after the ovariectomy. The serum concentrations of CTX-I, osteocalcin and other biochemical parameters, bone mass, density, mineralization, histomorphometric parameters and mechanical properties, and skeletal muscle mass and strength were examined. Estrogen deficiency increased bone resorption and formation and worsened cancellous bone mechanical properties and histomorphometric parameters. In NOVX rats, donepezil decreased bone volume to tissue volume ratio in the distal femoral metaphysis, increased the serum phosphorus concentration and tended to decrease skeletal muscle strength. No significant bone effects of donepezil were observed in OVX rats. The results of the present study indicate slightly unfavorable effects of donepezil on the musculoskeletal system in rats with normal estrogen levels.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Marcin Trawczyński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
31
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Justus JLP, Schluga Y, da Rocha MT, Martins E, Liao A, Abramson I, Vaida F, Schrier R, Ellis RJ. CD3 +CD56 + and CD3 -CD56 + lymphocytes in the cerebrospinal fluid of persons with HIV-1 subtypes B and C. J Neuroimmunol 2023; 377:578067. [PMID: 36965365 PMCID: PMC10817703 DOI: 10.1016/j.jneuroim.2023.578067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
The transactivator of transcription (Tat) is a HIV regulatory protein which promotes viral replication and chemotaxis. HIV-1 shows extensive genetic diversity, HIV-1 subtype C being the most dominant subtype in the world. Our hypothesis is the frequency of CSF CD3+CD56+ and CD3-CD56dim is reduced in HIV-1C compared to HIV-1B due to the Tat C30S31 substitution in HIV-1C. 34 CSF and paired blood samples (PWH, n = 20; PWoH, n = 14) were studied. In PWH, the percentage of CD3+CD56+ was higher in CSF than in blood (p < 0.001), comparable in both compartments in PWoH (p = 0.20). The proportion of CD3-CD56dim in CSF in PWH was higher than PWoH (p = 0.008). There was no subtype differences. These results showed CNS compartmentalization of NKT cell response in PWH.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Bin Tang
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Julie Lilian P Justus
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yara Schluga
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Tadeu da Rocha
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Edna Martins
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Antony Liao
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ian Abramson
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Florin Vaida
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| |
Collapse
|
32
|
Lu W, Gonzalez‐Bautista E, Guyonnet S, Lucas A, Parini A, Walston JD, Vellas B, de Souto Barreto P. Plasma inflammation-related biomarkers are associated with intrinsic capacity in community-dwelling older adults. J Cachexia Sarcopenia Muscle 2023; 14:930-939. [PMID: 36660894 PMCID: PMC10067471 DOI: 10.1002/jcsm.13163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND How inflammation relates to intrinsic capacity (IC), the composite of physical and mental capacities, remains undefined. Our study aimed to investigate the cross-sectional and longitudinal associations between plasma inflammation-related biomarkers and IC in older adults. METHODS This secondary analysis of the Multidomain Alzheimer Preventive Trial (MAPT) included 1238 community-dwelling older individuals with IC assessments from 12 to 60 months. Plasma C-reactive protein (CRP), interleukin-6 (IL-6), tumour necrosis factor receptor-1 (TNFR-1), monocyte chemoattractant protein-1 (MCP-1) and growth differentiation factor-15 (GDF-15) were measured at 12 months. IC was operationalized as a score ranging from 0 to 100, derived from four domains: cognition, Mini-Mental State Examination; locomotion, Short Physical Performance Battery; psychological, Geriatric Depression Scale; and vitality, handgrip strength. A five-domain IC score (plus sensory) was investigated in a subsample (n = 535) with a 1-year follow-up as an exploratory outcome. RESULTS The mean age of the 1238 participants was 76.2 years (SD = 4.3); 63.7% were female. Their initial four-domain IC scores averaged 78.9 points (SD = 9.3), with a yearly decline of 1.17 points (95% CI = -1.30 to -1.05; P < 0.001). We observed significant associations of lower baseline IC with higher CRP, IL-6, TNFR-1 and GDF-15, after controlling age, sex, MAPT group allocation and educational level [CRP: adjusted β (95% CI) = -1.56 (-2.64 to -0.48); P = 0.005; IL-6: adjusted β = -3.16 (-4.82 to -1.50); P < 0.001; TNFR-1: adjusted β = -6.86 (-10.25 to -3.47); P < 0.001; GDF-15: adjusted β = -7.07 (-10.02 to -4.12); P < 0.001]. Higher TNFR-1, MCP-1 and GDF-15 were associated with faster decline in four-domain IC over 4 years [TNFR-1: adjusted β (95% CI) = -1.28 (-2.29 to -0.27); P = 0.013; MCP-1: adjusted β = -1.33 (-2.24 to -0.42); P = 0.004; GDF-15: adjusted β = -1.42 (-2.26 to -0.58); P = 0.001]. None of the biomarkers was significantly associated with the five-domain IC decline. CONCLUSIONS Inflammation was associated with lower IC in older adults. Among all plasma biomarkers, TNFR-1 and GDF-15 were consistently associated with IC at the cross-sectional and longitudinal levels.
Collapse
Affiliation(s)
- Wan‐Hsuan Lu
- Gerontopole of Toulouse, Institute of AgeingToulouse University Hospital (CHU Toulouse)ToulouseFrance
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul SabatierToulouseFrance
| | - Emmanuel Gonzalez‐Bautista
- Gerontopole of Toulouse, Institute of AgeingToulouse University Hospital (CHU Toulouse)ToulouseFrance
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul SabatierToulouseFrance
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of AgeingToulouse University Hospital (CHU Toulouse)ToulouseFrance
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul SabatierToulouseFrance
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR 1048, University of ToulouseToulouseFrance
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR 1048, University of ToulouseToulouseFrance
| | - Jeremy D. Walston
- Division of Geriatric MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of AgeingToulouse University Hospital (CHU Toulouse)ToulouseFrance
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul SabatierToulouseFrance
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of AgeingToulouse University Hospital (CHU Toulouse)ToulouseFrance
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul SabatierToulouseFrance
| | | |
Collapse
|
33
|
Stonedahl S, Leser JS, Clarke P, Potter H, Boyd TD, Tyler KL. Treatment with Granulocyte-Macrophage Colony-Stimulating Factor Reduces Viral Titers in the Brains of West Nile Virus-Infected Mice and Improves Survival. J Virol 2023; 97:e0180522. [PMID: 36802227 PMCID: PMC10062152 DOI: 10.1128/jvi.01805-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
West Nile virus (WNV) is the leading cause of epidemic arboviral encephalitis in the United States. As there are currently no proven antiviral therapies or licensed human vaccines, understanding the neuropathogenesis of WNV is critical for rational therapeutic design. In WNV-infected mice, the depletion of microglia leads to enhanced viral replication, increased central nervous system (CNS) tissue injury, and increased mortality, suggesting that microglia play a critical role in protection against WNV neuroinvasive disease. To determine if augmenting microglial activation would provide a potential therapeutic strategy, we administered granulocyte-macrophage colony-stimulating factor (GM-CSF) to WNV-infected mice. Recombinant human GM-CSF (rHuGMCSF) (sargramostim [Leukine]) is an FDA-approved drug used to increase white blood cells following leukopenia-inducing chemotherapy or bone marrow transplantation. Daily treatment of both uninfected and WNV-infected mice with subcutaneous injections of GM-CSF resulted in microglial proliferation and activation as indicated by the enhanced expression of the microglia activation marker ionized calcium binding adaptor molecule 1 (Iba1) and several microglia-associated inflammatory cytokines, including CCL2 (C-C motif chemokine ligand 2), interleukin 6 (IL-6), and IL-10. In addition, more microglia adopted an activated morphology as demonstrated by increased sizes and more pronounced processes. GM-CSF-induced microglial activation in WNV-infected mice was associated with reduced viral titers and apoptotic activity (caspase 3) in the brains of WNV-infected mice and significantly increased survival. WNV-infected ex vivo brain slice cultures (BSCs) treated with GM-CSF also showed reduced viral titers and caspase 3 apoptotic cell death, indicating that GM-CSF specifically targets the CNS and that its actions are not dependent on peripheral immune activity. Our studies suggest that stimulation of microglial activation may be a viable therapeutic approach for the treatment of WNV neuroinvasive disease. IMPORTANCE Although rare, WNV encephalitis poses a devastating health concern, with few treatment options and frequent long-term neurological sequelae. Currently, there are no human vaccines or specific antivirals against WNV infections, so further research into potential new therapeutic agents is critical. This study presents a novel treatment option for WNV infections using GM-CSF and lays the foundation for further studies into the use of GM-CSF as a treatment for WNV encephalitis as well as a potential treatment for other viral infections.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology, University of Colorado, Aurora, Colorado, USA
- Department of Microbiology, University of Colorado, Aurora, Colorado, USA
| | - J. Smith Leser
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- University of Colorado Alzheimer’s and Cognition Center, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Timothy D. Boyd
- University of Colorado Alzheimer’s and Cognition Center, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Denver VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
34
|
Wang H, Zong Y, Zhu L, Wang W, Han Y. Chemokines in patients with Alzheimer's disease: A meta-analysis. Front Aging Neurosci 2023; 15:1047810. [PMID: 36967827 PMCID: PMC10033959 DOI: 10.3389/fnagi.2023.1047810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disease in elderly people. Many researches have reported that neuroinflammation is related to AD. Chemokines are a class of small cytokines that play important roles in cell migration and cell communication, which involved in neuroinflammation. Up to now there is no meta-analysis to explore the difference of chemokines between AD patients and healthy elderly individuals.MethodWe searched PubMed, Web of science, Cochrane library, EMBASE and Scopus databases from inception to January 2022. Data were extracted by two independent reviewers, and the Review Manager 5.3 was used for the meta-analysis.ResultThirty-two articles were included and analyzed. The total number of participants in the included study was 3,331. We found that the levels of CCL5 (SMD = 2.56, 95% CI: 1.91–3.21), CCL15 (SMD = 3.30, 95% CI: 1.48–5.13) and IP-10 (SMD = 3.88, 95% CI: 1.84–5.91) in the plasma of AD patients were higher than healthy people. MCP-1 protein (SMD = 0.67, 95% CI: 0.29–1.05) in the AD patients' CSF was higher than healthy controls.ConclusionThese results suggested that chemokines may play an important role in AD. These findings could provide evidences for the diagnosis and treatment of AD.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021278736, identifier: CRD42021278736.
Collapse
Affiliation(s)
- Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yu Zong
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lei Zhu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Weiyi Wang
- Department of Cardiovascular Diseases, Civil Aviation General Hospital, Peking University, Beijing, China
- *Correspondence: Weiyi Wang
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- Yanshuo Han
| |
Collapse
|
35
|
Harris VK, Bishop D, Wollowitz J, Carling G, Carlson AL, Daviaud N, Sadiq SA. Mesenchymal stem cell-derived neural progenitors attenuate proinflammatory microglial activation via paracrine mechanisms. Regen Med 2023; 18:259-273. [PMID: 36852422 DOI: 10.2217/rme-2023-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Background: Mesenchymal stem cell-derived neural progenitor cell (MSC-NP) therapy is an experimental approach to treat multiple sclerosis. The influence of MSC-NPs on microglial activation was investigated. Methods: Microglia were stimulated in the presence of MSC-NP-conditioned media, and proinflammatory or proregenerative marker expression was assessed by quantitative PCR and ELISA. Results: Microglia stimulated in the presence of MSC-NP-conditioned media displayed reduced expression of proinflammatory markers including CCL2, increased expression of proregenerative markers and reduced phagocytic activity. The paracrine effects of MSC-NPs from multiple donors correlated with TGF-β3 gene expression and was reversed by TGF-β signaling inhibition. Conclusion: MSC-NPs promote beneficial microglial polarization through secreted factors. This study suggests that microglia are a potential therapeutic target of MSC-NP cell therapy.
Collapse
Affiliation(s)
| | - Derek Bishop
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Gillian Carling
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Alyssa L Carlson
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Nicolas Daviaud
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| |
Collapse
|
36
|
Mwema A, Bottemanne P, Paquot A, Ucakar B, Vanvarenberg K, Alhouayek M, Muccioli GG, des Rieux A. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD 2-G. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102633. [PMID: 36435364 DOI: 10.1016/j.nano.2022.102633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Here, prostaglandin D2-glycerol ester (PGD2-G) was selected to target neuroinflammation. As PGD2-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD2-G to the central nervous system (CNS). PGD2-G-loaded LNC (PGD2-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD2-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD2-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD2-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD2-G-LNC remains a good candidate, in need of further work.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Pauline Bottemanne
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Adrien Paquot
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Bernard Ucakar
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
37
|
Multiplex Assessment of Serum Chemokines CCL2, CCL5, CXCL1, CXCL10, and CXCL13 Following Traumatic Brain Injury. Inflammation 2023; 46:244-255. [PMID: 35969281 DOI: 10.1007/s10753-022-01729-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
Chemokines may promote neuroinflammation following traumatic brain injury (TBI), thereby exacerbating secondary injury. This study was designed to investigate the contributions of chemokines (CCL2, CCL5, CXCL1, CXCL10, and CXCL13) to TBI severity and clinical outcome. Peripheral blood was drawn from 92 TBI patients on admission, and 40 controls were recruited. Serum concentrations of CCL2, CCL5, CXCL1, CXCL10, and CXCL13 on admission were measured by ELISA. Preoperative clinical severity was evaluated using the Glasgow Coma Scale (GCS), and clinical outcome at 90 days post-TBI was evaluated using the Glasgow Outcome Scale (GOS). The associations were evaluated by calculating Spearman's correlation coefficients. A binary logistic regression model was used to identify clinicodemographic factors influencing outcome, and ROC curves were constructed. Serum concentrations of CCL2, CCL5, CXCL1, CXCL10, and CXCL13 were elevated significantly after TBI and negatively correlated with GCS and GOS scores except CCL5. CCL2 may be considered as an independent predictor to predict severity and outcome. Moreover, combination of GCS score, CCL2, and CXCL10 can be a better assessment prognosis of moderate and severe TBI.
Collapse
|
38
|
Korchynskyi O, Yoshida K, Korchynska N, Czarnik-Kwaśniak J, Tak PP, Pruijn GJM, Isozaki T, Ruth JH, Campbell PL, Amin MA, Koch AE. Mammalian Glycosylation Patterns Protect Citrullinated Chemokine MCP-1/CCL2 from Partial Degradation. Int J Mol Sci 2023; 24:ijms24031862. [PMID: 36768186 PMCID: PMC9915159 DOI: 10.3390/ijms24031862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic agent for monocytes, primarily produced by macrophages and endothelial cells. Significantly elevated levels of MCP-1/CCL2 were found in synovial fluids of patients with rheumatoid arthritis (RA), compared to osteoarthritis or other arthritis patients. Several studies suggested an important role for MCP-1 in the massive inflammation at the damaged joint, in part due to its chemotactic and angiogenic effects. It is a known fact that the post-translational modifications (PTMs) of proteins have a significant impact on their properties. In mammals, arginine residues within proteins can be converted into citrulline by peptidylarginine deiminase (PAD) enzymes. Anti-citrullinated protein antibodies (ACPA), recognizing these PTMs, have become a hallmark for rheumatoid arthritis (RA) and other autoimmune diseases and are important in diagnostics and prognosis. In previous studies, we found that citrullination converts the neutrophil attracting chemokine neutrophil-activating peptide 78 (ENA-78) into a potent macrophage chemoattractant. Here we report that both commercially available and recombinant bacterially produced MCP-1/CCL2 are rapidly (partially) degraded upon in vitro citrullination. However, properly glycosylated MCP-1/CCL2 produced by mammalian cells is protected against degradation during efficient citrullination. Site-directed mutagenesis of the potential glycosylation site at the asparagine-14 residue within human MCP-1 revealed lower expression levels in mammalian expression systems. The glycosylation-mediated recombinant chemokine stabilization allows the production of citrullinated MCP-1/CCL2, which can be effectively used to calibrate crucial assays, such as modified ELISAs.
Collapse
Affiliation(s)
- Olexandr Korchynskyi
- Department of Human Immunology and Centre for Innovative Biomedical Research, Medical Faculty, University of Rzeszow, 1a Warzywna St., 35-310 Rzeszów, Poland
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Molecular Immunology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01054 Kyiv, Ukraine
- Department of Public Development and Health, S. Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
- Correspondence:
| | - Ken Yoshida
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Rheumatology, Department of Internal Medicine, the Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Nataliia Korchynska
- Department of Public Development and Health, S. Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
| | - Justyna Czarnik-Kwaśniak
- Department of Human Immunology and Centre for Innovative Biomedical Research, Medical Faculty, University of Rzeszow, 1a Warzywna St., 35-310 Rzeszów, Poland
| | - Paul P. Tak
- Department of Internal Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Candel Therapeutics, Needham, MA 02494, USA
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Takeo Isozaki
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey H. Ruth
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip L. Campbell
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M. Asif Amin
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alisa E. Koch
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Fiorini MR, Dilliott AA, Farhan SMK. Sex-stratified RNA-seq analysis reveals traumatic brain injury-induced transcriptional changes in the female hippocampus conducive to dementia. Front Neurol 2022; 13:1026448. [PMID: 36619915 PMCID: PMC9813497 DOI: 10.3389/fneur.2022.1026448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Traumatic brain injury (TBI), resulting from a violent force that causes functional changes in the brain, is the foremost environmental risk factor for developing dementia. While previous studies have identified specific candidate genes that may instigate worse outcomes following TBI when mutated, TBI-induced changes in gene expression conducive to dementia are critically understudied. Additionally, biological sex seemingly influences TBI outcomes, but the discrepancies in post-TBI gene expression leading to progressive neurodegeneration between the sexes have yet to be investigated. Methods We conducted a whole-genome RNA sequencing analysis of post-mortem brain tissue from the parietal neocortex, temporal neocortex, frontal white matter, and hippocampus of 107 donors characterized by the Aging, Dementia, and Traumatic Brain Injury Project. Our analysis was sex-stratified and compared gene expression patterns between TBI donors and controls, a subset of which presented with dementia. Results We report three candidate gene modules from the female hippocampus whose expression correlated with dementia in female TBI donors. Enrichment analyses revealed that the candidate modules were notably enriched in cardiac processes and the immune-inflammatory response, among other biological processes. In addition, multiple candidate module genes showed a significant positive correlation with hippocampal concentrations of monocyte chemoattractant protein-1 in females with post-TBI dementia, which has been previously described as a potential biomarker for TBI and susceptibility to post-injury dementia. We concurrently examined the expression profiles of these candidate modules in the hippocampus of males with TBI and found no apparent indicator that the identified candidate modules contribute to post-TBI dementia in males. Discussion Herein, we present the first sex-stratified RNA sequencing analysis of TBI-induced changes within the transcriptome that may be conducive to dementia. This work contributes to our current understanding of the pathophysiological link between TBI and dementia and emphasizes the growing interest in sex as a biological variable affecting TBI outcomes.
Collapse
Affiliation(s)
- Michael R. Fiorini
- Department of Human Genetics, McGill University, Montreal, QC, Canada,*Correspondence: Michael R. Fiorini ✉
| | - Allison A. Dilliott
- Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Allison A. Dilliott ✉
| | - Sali M. K. Farhan
- Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Sali M. K. Farhan ✉
| |
Collapse
|
41
|
Gao F, Zhang PF, Gao J, Song J, Chi S. The CCL2 rs4586 SNP Is Associated with Slower Amyloid-β Deposition and Faster Tau Accumulation of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1647-1657. [PMID: 36314210 DOI: 10.3233/jad-220716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND CC-chemokine ligand 2 (CCL2), the key immunomodulatory chemokine for microglial activation, has been implicated in the pathogenesis of Alzheimer's disease (AD). Whether the association of CCL2 single nucleotide polymorphisms (SNPs) and the risk of AD is still controversial. OBJECTIVE We aimed to investigate whether CCL2 rs4586 SNP is associated with the pathological changes and cognitive decline of AD. METHODS A total of 486 participants with longitudinal cerebrospinal fluid (CSF) amyloid-β (Aβ) and phospho-tau (P-tau) biomarkers, 18F-Florbetapir and 18F-flortaucipir-positron emission tomography (PET), and cognitive assessments from the Alzheimer's disease Neuroimaging Initiative were included in the study. The effects of CCL2 rs4586 SNP on the pathological changes and cognitive decline of AD were assessed with linear mixed-effects models and evaluated according to the Aβ-status so as to identify whether the effects were independent of Aβ status. RESULTS CCL2 rs4586-CC carriers exhibited a slower global Aβ-PET accumulation, particularly within stage I and stage II. However, they exhibited a faster accumulation of CSF P-tau and global tau-PET standard uptake value ratios, especially in Braak I and Braak III/IV and the inferior temporal gyrus. The congruent effects of CCL2 rs4586 on tau accumulation existed only in the Aβ-group, as is shown in global tau-PET and Braak I. However, CCL2 rs4586 was not associated with the cognitive decline. CONCLUSION Our findings showed that the CCL2 rs4586-CC (versus TT/TC) genotype was associated with slower Aβ deposition and faster tau accumulation, and the latter of which was independent of Aβ status.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng-Fei Zhang
- Department of Medicine, Hangzhou Juno Genomics Inc, Hangzhou, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinghui Song
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
42
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Serum Proteins Associated with Blood-Brain Barrier as Potential Biomarkers for Seizure Prediction. Int J Mol Sci 2022; 23:ijms232314712. [PMID: 36499038 PMCID: PMC9740683 DOI: 10.3390/ijms232314712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
As 30% of epileptic patients remain drug-resistant, seizure prediction is vital. Induction of epileptic seizure is a complex process that can depend on factors such as intrinsic neuronal excitability, changes in extracellular ion concentration, glial cell activity, presence of inflammation and activation of the blood−brain barrier (BBB). In this study, we aimed to assess if levels of serum proteins associated with BBB can predict seizures. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 49 patients with epilepsy who were seizure-free for a minimum of seven days and measured by ELISA. The examination was repeated after 12 months. An extensive medical history was taken, and patients were subjected to a follow-up, including a detailed history of seizures. Serum levels of MMP-2, MMP-9, TIMP-1, CCL-2, and P-selectin differed between the two time points (p < 0.0001, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.0035, respectively). General linear model analyses determined the predictors of seizures. Levels of MMP-2, MMP-9, and CCL-2 were found to influence seizure count in 1, 3, 6, and 12 months of observation. Serum levels of MMP-2, MMP-9, and CCL-2 may be considered potential biomarkers for seizure prediction and may indicate BBB activation.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | |
Collapse
|
43
|
Welch GM, Boix CA, Schmauch E, Davila-Velderrain J, Victor MB, Dileep V, Bozzelli PL, Su Q, Cheng JD, Lee A, Leary NS, Pfenning AR, Kellis M, Tsai LH. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. SCIENCE ADVANCES 2022; 8:eabo4662. [PMID: 36170369 PMCID: PMC9519048 DOI: 10.1126/sciadv.abo4662] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/26/2022] [Indexed: 05/13/2023]
Abstract
DNA double-strand breaks (DSBs) are linked to neurodegeneration and senescence. However, it is not clear how DSB-bearing neurons influence neuroinflammation associated with neurodegeneration. Here, we characterize DSB-bearing neurons from the CK-p25 mouse model of neurodegeneration using single-nucleus, bulk, and spatial transcriptomic techniques. DSB-bearing neurons enter a late-stage DNA damage response marked by nuclear factor κB (NFκB)-activated senescent and antiviral immune pathways. In humans, Alzheimer's disease pathology is closely associated with immune activation in excitatory neurons. Spatial transcriptomics reveal that regions of CK-p25 brain tissue dense with DSB-bearing neurons harbor signatures of inflammatory microglia, which is ameliorated by NFκB knockdown in neurons. Inhibition of NFκB in DSB-bearing neurons also reduces microglia activation in organotypic mouse brain slice culture. In conclusion, DSBs activate immune pathways in neurons, which in turn adopt a senescence-associated secretory phenotype to elicit microglia activation. These findings highlight a previously unidentified role for neurons in the mechanism of disease-associated neuroinflammation.
Collapse
Affiliation(s)
- Gwyneth M. Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carles A. Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eloi Schmauch
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matheus B. Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P. Lorenzo Bozzelli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiao Su
- Departments of Computational Biology and Biology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jemmie D. Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noelle S. Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas R. Pfenning
- Departments of Computational Biology and Biology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
44
|
Qiburi Q, Ganbold T, Aoqier A, Yang D, Su Z, Bao M, He M, Gaowa S, Temuqile T, Baigude H. Analysis and identification of key anti-inflammatory molecules in Eerdun Wurile and exploration of their mechanism of action in microglia. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123458. [PMID: 36183605 DOI: 10.1016/j.jchromb.2022.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Ethnomedicine Eerdun Wurile (EW) can significantly promote poststroke neuro-recovery through modulation of microglia polarization. Fraction 4-6 (F4-6) isolated from EW via serial fractionation inhibits the expression of pro-inflammatory genes in LPS stimulated microglia. However, the key active molecules of F4-6 have not been identified. Herein, we identified alantolactone (Ala) and dehydrodiisoeugenol (Deh) as the active anti-inflammatory components of F4-6 by UPLC-qTof MS analysis. We confirmed that, F4-6, Ala, Deh and mixture of Ala and Deh (Mix) downregulate the expression of several pro-inflammatory genes including Ccl2, Cox2 and Il6 in LPS-treated microglia in a similar pattern. At the same time upregulate the expression of anti-inflammatory genes including Hmox1, Tgfβ, Igf1 and Creb1. Moreover, the conditioned culture media obtained from F4-6 treated microglia significantly enhanced proliferation of N2a cells, and promoted neurite outgrowth possibly through upregulation of Nefh and Dlg4. Mechanistically, F4-6 strongly downregulated the expression of NF-κB p65, while also inhibiting the nuclear translocation of p65, leading to the suppression of transcription of pro-inflammatory genes initiated by NF-κB. Collectively, our data identified and quantified the key chemicals of EW and provide insights into the optimization of the herbal composition for neuroprotection.
Collapse
Affiliation(s)
- Qiburi Qiburi
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Aoqier Aoqier
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Dezhi Yang
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Zhiyu Su
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Meng He
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Saren Gaowa
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Temuqile Temuqile
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China.
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
45
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
46
|
CCL2, CCR2 Gene Variants and CCL2, CCR2 Serum Levels Association with Age-Related Macular Degeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071038. [PMID: 35888126 PMCID: PMC9322437 DOI: 10.3390/life12071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Background: Age-related macular degeneration (AMD) is the most common cause of progressive and irreversible blindness in developed countries. Although the pathogenesis is not fully understood, AMD is a multifactorial pathology with an accumulation of inflammatory components and macrophages and a strong genetic predisposition. Our purpose was to investigate the association between early AMD and CCL2 (rs1024611, rs4586, rs2857656) and CCR2 (rs1799865) single nucleotide polymorphisms (SNPs) and CCL2, CCR2 serum levels in a Lithuanian population. Methods: The study included 310 patients with early AMD and 384 healthy subjects. Genotyping of CCL2 rs1024611, rs4586, rs2857656, and CCR2 rs1799865 was performed using a real-time polymerase chain reaction method, while CCL2 and CCR2 chemokines serum concentrations were analyzed using an enzyme-linked immunosorbent assay. Results: We found that the G allele at CCL2 rs1024611 was more prevalent in the early AMD group than in controls (29.2% vs. 24.1%, p = 0.032). Similarly, the C allele in CCL2 rs2857656 is more common in the early AMD group than in controls (29.2% vs. 24.2%, p = 0.037). Binomial logistic regression revealed that each G allele in rs1024611 was associated with 1.3-fold increased odds of developing early AMD under the additive model (OR = 1.322; 95% CI: 1.032–1.697, p = 0.027) as was each C allele in rs2857656 under the additive model (OR = 1.314; 95% CI: 1.025–1.684, p = 0.031). Haplotype analysis revealed that the C-A-G haplotype of CCL2 SNPs was associated with 35% decreased odds of early AMD development. Further analysis showed elevated CCL2 serum levels in the group with early AMD compared to controls (median (IQR): 1181.6 (522.6) pg/mL vs. 879.9 (494.4) pg/mL, p = 0.013); however, there were no differences between CCR2 serum levels within groups. Conclusions: We found the associations between minor alleles at CCL2 rs1024611 and rs2857656, elevated CCL2 serum levels, and early AMD development.
Collapse
|
47
|
Network Pharmacology Approach to Investigate the Mechanism of Modified Liu Jun Zi Decoction in the Treatment of Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7536042. [PMID: 35754680 PMCID: PMC9232340 DOI: 10.1155/2022/7536042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Although modified Liu Jun Zi decoction (MLD) has favorable outcomes for chronic atrophic gastritis (CAG) in clinics, the identification of its active ingredients and the molecular mechanism of pharmacology are still unknown and need to be solved urgently. In the study, we screened 170 active components of MLD based on oral bioavailability ≥30% and drug-likeness ≥0.18 via the TCMSP platform. We further establish a dataset containing 315 CAG targets from PharmGkb, GeneCard, OMIM, DrugBank database, and Therapeutic Target database. Network pharmacology found that there are 110 active components of MLD and 26 potential targets for CAG in the “ingredient-target” network. The results of gene ontology analysis show that these targets are involved mainly in reactive oxygen species metabolic process, regulation of vasculature development, and T cell activation. KEGG pathways analysis indicates that these signaling pathways in the treatment of CAG include HIF-1 signaling pathway, neurodegeneration-multiple diseases pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Finally, docking of the active component quercetin and clinical medicine Omeprazole with the core targets was carried out. We found that quercetin, a crucial active ingredient in MLD, has good binding activity with potential targets of CAG, and its molecular conformation is stable, which is better than the binding energy of Omeprazole. So, the active ingredients of MLD exhibit good potential drugs for the treatment of CAG.
Collapse
|
48
|
Lu WH, Giudici KV, Morley JE, Guyonnet S, Parini A, Aggarwal G, Nguyen AD, Li Y, Bateman RJ, Vellas B, de Souto Barreto P. Investigating the combination of plasma amyloid-beta and geroscience biomarkers on the incidence of clinically meaningful cognitive decline in older adults. GeroScience 2022; 44:1489-1503. [PMID: 35445358 PMCID: PMC9213609 DOI: 10.1007/s11357-022-00554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022] Open
Abstract
We investigated combining a core AD neuropathology measure (plasma amyloid-beta [Aβ] 42/40) with five plasma markers of inflammation, cellular stress, and neurodegeneration to predict cognitive decline. Among 401 participants free of dementia (median [IQR] age, 76 [73-80] years) from the Multidomain Alzheimer Preventive Trial (MAPT), 28 (7.0%) participants developed dementia, and 137 (34.2%) had worsening of clinical dementia rating (CDR) scale over 4 years. In the models utilizing plasma Aβ alone, a tenfold increased risk of incident dementia (nonsignificant) and a fivefold increased risk of worsening CDR were observed as each nature log unit increased in plasma Aβ levels. Models incorporating Aβ plus multiple plasma biomarkers performed similarly to models included Aβ alone in predicting dementia and CDR progression. However, improving Aβ model performance for composite cognitive score (CCS) decline, a proxy of dementia, was observed after including plasma monocyte chemoattractant protein 1 (MCP1) and growth differentiation factor 15 (GDF15) as covariates. Participants with abnormal Aβ, GDF15, and MCP1 presented higher CCS decline (worsening cognitive function) compared to their normal-biomarker counterparts (adjusted β [95% CI], - 0.21 [- 0.35 to - 0.06], p = 0.005). In conclusion, our study found limited added values of multi-biomarkers beyond the basic Aβ models for predicting clinically meaningful cognitive decline among non-demented older adults. However, a combined assessment of inflammatory and cellular stress status with Aβ pathology through measuring plasma biomarkers may improve the evaluation of cognitive performance.
Collapse
Affiliation(s)
- Wan-Hsuan Lu
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Kelly Virecoulon Giudici
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR 1048, University of Toulouse, 31400, Toulouse, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| |
Collapse
|
49
|
Oligosaccharide and Flavanoid Mediated Prebiotic Interventions to Treat Gut Dysbiosis Associated Cognitive Decline. J Neuroimmune Pharmacol 2022; 17:94-110. [PMID: 35043295 DOI: 10.1007/s11481-021-10041-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Oligosaccharides are potential prebiotic which maintains gut microbiota and improves gut health. The association of gut and brain is named as gut-brain-axis. Gut dysbiosis disrupts gut-brain-axis and effectively contributes to psychiatric disorders. In the present study, Xylo-oligosaccharide (XOS) and Quercetin were used as therapeutic interventions against gut dysbiosis mediated cognitive decline. Gut dysbiosis was established in mice through administration of Ampicillin Sodium, orally for 14 days. XOS and quercetin were administered separately or in combination along with antibiotic. Gene expression studies using mice faecal samples showed both XOS and quercetin could revive Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were reduced due to antibiotic treatment. FITC-dextran concentration in serum revealed XOS and quercetin protected intestinal barrier integrity against antibiotic associated damage. This was verified by histopathological studies showing restored intestinal architecture. Moreover, intestinal inflammation which increased after antibiotic treated animals was reduced upon XOS and quercetin treatment. Behavioural studies demonstrated that gut dysbiosis reduced fear conditioning, spatial and recognition memory which were reversed upon XOS and quercetin treatment. XOS and quercetin also reduced inflammation and acetylcholine esterase which were heightened in antibiotic treated animal brain. They also reduced oxidative stress, pro-inflammatory cytokines and chemokines and protected hippocampal neurons. In conclusion, XOS and quercetin effectively reduced antibiotic associated gut dysbiosis and prevented gut dysbiosis associated cognitive decline in mice.
Collapse
|
50
|
Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Chen ZH, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, Shen H. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov 2022; 8:44. [PMID: 35570218 PMCID: PMC9108096 DOI: 10.1038/s41421-022-00403-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.
Collapse
Affiliation(s)
- Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Li Hou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingpeng Yao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Honglei Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- State Key Lab of Respiratory Disease, Guangzhou, Guangdong, China.
| |
Collapse
|