1
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2024:10.1038/s41582-024-01046-7. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Strnad FA, Brown AS, Wieben M, Cortes-Sanchez E, Williams ME, Fung CM. Intrauterine Growth Restriction Alters Postnatal Hippocampal Dentate Gyrus Neuron and Microglia Morphology and Cytokine/Chemokine Milieu in Mice. Life (Basel) 2024; 14:1627. [PMID: 39768335 PMCID: PMC11676380 DOI: 10.3390/life14121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Infants born with intrauterine growth restriction (IUGR) have up to a five-fold higher risk of learning and memory impairment than those with normal growth. Using a mouse model of hypertensive diseases of pregnancy (HDP) to replicate uteroplacental insufficiency (UPI), we have previously shown that UPI causes premature embryonic hippocampal dentate gyrus (DG) neurogenesis in IUGR offspring. The DG is a brain region that receives the first cortical information for memory formation. In the current study, we examined the postnatal DG neuron morphology one month after delivery (P28) using recombinant adeno-associated viral labeling of neurons. We also examined DG microglia's morphology using immunofluorescent histochemistry and defined the hippocampal cytokine/chemokine milieu using Luminex xMAP technology. We found that IUGR preserved the principal dendrite lengths but decreased the dendritic branching and volume of DG neurons. IUGR augmented DG microglial number and cell size. Lastly, IUGR altered the hippocampal cytokine/chemokine profile in a sex-specific manner. We conclude that the prematurely-generated neuronal progenitors develop abnormal morphologies postnatally in a cell-autonomous manner. Microglia appear to modulate neuronal morphology by interacting with dendrites amidst a complex cytokine/chemokine environment that could ultimately lead to adult learning and memory deficits in our mouse model.
Collapse
Affiliation(s)
- Frank A. Strnad
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (F.A.S.); (A.S.B.); (M.W.)
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (F.A.S.); (A.S.B.); (M.W.)
| | - Matthew Wieben
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (F.A.S.); (A.S.B.); (M.W.)
| | | | - Megan E. Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (F.A.S.); (A.S.B.); (M.W.)
| |
Collapse
|
3
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
4
|
Sillau SH, Coughlan C, Ahmed MM, Nair K, Araya P, Galbraith MD, Bettcher BM, Espinosa JM, Chial HJ, Epperson N, Boyd TD, Potter H. Neuron loss in the brain starts in childhood, increases exponentially with age and is halted by GM-CSF treatment in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310223. [PMID: 39072024 PMCID: PMC11275665 DOI: 10.1101/2024.07.14.24310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aging increases the risk of neurodegeneration, cognitive decline, and Alzheimer's disease (AD). Currently no means exist to measure neuronal cell death during life or to prevent it. Here we show that cross-sectional measures of human plasma proteins released from dying/damaged neurons (ubiquitin C-terminal hydrolase-L1/UCH-L1 and neurofilament light/NfL) become exponentially higher from age 2-85; UCH-L1 rises faster in females. Glial fibrillary acidic protein (GFAP) concentrations, indicating astrogliosis/inflammation, increase exponentially after age 40. Treatment with human granulocyte-macrophage colony-stimulating factor (GM-CSF/sargramostim) halted neuronal cell death, as evidenced by reduced plasma UCH-L1 concentrations, in AD participants to levels equivalent to those of five-year-old healthy controls. The ability of GM-CSF treatment to reduce neuronal apoptosis was confirmed in a rat model of AD. These findings suggest that the exponential increase in neurodegeneration with age, accelerated by neuroinflammation, may underlie the contribution of aging to cognitive decline and AD and can be halted by GM-CSF/sargramostim treatment.
Collapse
|
5
|
Gardner RS, Kyle M, Hughes K, Zhao LR. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024; 14:827. [PMID: 39062541 PMCID: PMC11275138 DOI: 10.3390/biom14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aβ) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aβ load, increases Aβ uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aβ plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Yang R, Kong W, Liu K, Wen G, Yu Y. Exploring Imaging Genetic Markers of Alzheimer's Disease Based on a Novel Nonlinear Correlation Analysis Algorithm. J Mol Neurosci 2024; 74:35. [PMID: 38568443 DOI: 10.1007/s12031-024-02190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder characterized by insidious onset. Identifying potential markers in its emergence and progression is crucial for early diagnosis and treatment. Imaging genetics typically merges genetic variables with multiple imaging parameters, employing various association analysis algorithms to investigate the links between pathological phenotypes and genetic variations, and to unearth molecular-level insights from brain images. However, most existing imaging genetics algorithms based on sparse learning assume a linear relationship between genetic factors and brain functions, limiting their ability to discern complex nonlinear correlation patterns and resulting in reduced accuracy. To address these issues, we propose a novel nonlinear imaging genetic association analysis method, Deep Self-Reconstruction-based Adaptive Sparse Multi-view Deep Generalized Canonical Correlation Analysis (DSR-AdaSMDGCCA). This approach facilitates joint learning of the nonlinear relationships between pathological phenotypes and genetic variations by integrating three different types of data: structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism (SNP), and gene expression data. By incorporating nonlinear transformations in DGCCA, our model effectively uncovers nonlinear associations across multiple data types. Additionally, the DSR algorithm clusters samples with identical labels, incorporating label information into the nonlinear feature extraction process and thus enhancing the performance of association analysis. The application of the DSR-AdaSMDGCCA algorithm on real data sets identified several AD risk regions (such as the hippocampus, parahippocampus, and fusiform gyrus) and risk genes (including VSIG4, NEDD4L, and PINK1), achieving maximum classification accuracy with the fewest selected features compared to baseline algorithms. Molecular biology enrichment analysis revealed that the pathways enriched by these top genes are intimately linked to AD progression, affirming that our algorithm not only improves correlation analysis performance but also identifies biologically significant markers.
Collapse
Affiliation(s)
- Renbo Yang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China.
| | - Kun Liu
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
7
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Li GS, Yang YZ, Ma GR, Li PF, Cheng QH, Zhang AR, Zhang ZZ, Zhang FK, Yang X, Fan H, Guo HZ. Rheumatoid arthritis is a protective factor against Alzheimer's disease: a bidirectional two-sample Mendelian randomization study. Inflammopharmacology 2024; 32:863-871. [PMID: 38151584 DOI: 10.1007/s10787-023-01397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Epidemiological evidence suggests that there is an association between rheumatoid arthritis (RA) and Alzheimer's disease (AD). However, the causal relationship between RA and AD remains unclear. Therefore, this study aimed to investigate the causal relationship between RA and AD. METHODS Using publicly available genome-wide association study datasets, bidirectional two-sample Mendelian randomization (TSMR) was performed using the inverse-variance weighted (IVW), weighted median, MR‒Egger regression, simple mode, and weighted mode methods. RESULTS The results of MR for the causal effect of RA on AD (IVW, odds ratio [OR] = 0.959, 95% confidence interval [CI]: 0.941-0.978, P = 2.752E-05; weighted median, OR = 0.960, 95% CI: 0.937-0.984, P = 0.001) revealed a causal association between genetic susceptibility to RA and an increased risk of AD. The results of MR for the causal effect of AD on RA (IVW, OR = 0.978, 95% CI: 0.906-1.056, P = 0.576; weighted median, OR = 0.966, 95% CI: 0.894-1.043, P = 0.382) indicated that there was no causal association between genetic susceptibility to AD and an increased risk of RA. CONCLUSIONS The results of this two-way two-sample Mendelian randomization analysis revealed a causal association between genetic susceptibility to RA and a reduced risk of AD but did not reveal a causal association between genetic susceptibility to AD and an increased or reduced risk of RA.
Collapse
Affiliation(s)
- Guo-Shuai Li
- Gansu Wuwei Hospital of Traditional Chinese Medicine, Wuwei, China
| | - Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guo-Rong Ma
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Peng-Fei Li
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Zhuang-Zhuang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Fu-Kang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xin Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hua Fan
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Sun H, Ma D, Hou S, Zhang W, Li J, Zhao W, Shafeng N, Meng H. Exploring causal correlations between systemic inflammatory cytokines and epilepsy: A bidirectional Mendelian randomization study. Seizure 2024; 114:44-49. [PMID: 38039807 DOI: 10.1016/j.seizure.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammation plays a role in the development and advancement of epilepsy, but the relationship between inflammatory cytokines and epilepsy is still not well understood. Herein, we use two-sample Mendelian randomization (MR) to examine the causal association between systemic inflammatory cytokines and epilepsy. METHODS We conducted a bidirectional two-sample MR analysis based on genome-wide association study data of 41 serum cytokines from 8293 Finnish individuals with various epilepsy subtypes from the International League against Epilepsy Consortium. RESULTS Our study showed that three inflammatory cytokines were associated with epilepsy, five were associated with generalized epilepsy, four were associated with focal epilepsy, one was associated with focal epilepsy-documented lesion negative, three were associated with juvenile absence epilepsy, one was associated with childhood absence epilepsy, two were associated with focal epilepsy-documented lesion other than hippocampal sclerosis, and two were associated with juvenile myoclonic epilepsy. Furthermore, the expression of systemic inflammatory cytokines was unaffected by genetically predicted epilepsy. CONCLUSION This study suggested that several inflammatory cytokines are probably the factors correlated with epilepsy. Additional research is required to ascertain if these biomarkers have therapeutic potential to prevent or manage epilepsy.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Nilupaer Shafeng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Yeapuri P, Machhi J, Lu Y, Abdelmoaty MM, Kadry R, Patel M, Bhattarai S, Lu E, Namminga KL, Olson KE, Foster EG, Mosley RL, Gendelman HE. Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice. Mol Neurodegener 2023; 18:97. [PMID: 38111016 PMCID: PMC10729469 DOI: 10.1186/s13024-023-00692-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aβ) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aβ (TCRAβ). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAβ (TCRAβ -Tregs) to reduce Aβ burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS TCRAβ -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aβ reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aβ-tetramer staining. Adoptive transfer of TCRAβ-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS TCRAβ-Tregs expressed an Aβ-specific TCR. Adoptive transfer of TCRAβ-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAβ-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS TCRAβ-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eugene Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emma G Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
11
|
Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles of regulatory T cells in Alzheimer's disease. Cell Immunol 2023; 393-394:104778. [PMID: 37907046 DOI: 10.1016/j.cellimm.2023.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-β (Aβ) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Cummings JL, Osse AML, Kinney JW. Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modification. Drugs 2023; 83:1387-1408. [PMID: 37728864 PMCID: PMC10582128 DOI: 10.1007/s40265-023-01938-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Novel agents addressing non-amyloid, non-tau targets in Alzheimer's Disease (AD) comprise 70% of the AD drug development pipeline of agents currently in clinical trials. Most of the target processes identified in the Common Alzheimer's Disease Research Ontology (CADRO) are represented by novel agents in trials. Inflammation and synaptic plasticity/neuroprotection are the CADRO categories with the largest number of novel candidate therapies. Within these categories, there are few overlapping targets among the test agents. Additional categories being evaluated include apolipoprotein E [Formula: see text] 4 (APOE4) effects, lipids and lipoprotein receptors, neurogenesis, oxidative stress, bioenergetics and metabolism, vascular factors, cell death, growth factors and hormones, circadian rhythm, and epigenetic regulators. We highlight current drugs being tested within these categories and their mechanisms. Trials will be informative regarding which targets can be modulated to produce a slowing of clinical decline. Possible therapeutic combinations of agents may be suggested by trial outcomes. Biomarkers are evolving in concert with new targets and novel agents, and biomarker outcomes offer a means of supporting disease modification by the putative treatment. Identification of novel targets and development of corresponding therapeutics offer an important means of advancing new treatments for AD.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- , 1380 Opal Valley Street, Henderson, Nevada, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Jefferson W Kinney
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| |
Collapse
|
14
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
15
|
Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation 2023; 20:186. [PMID: 37580767 PMCID: PMC10424356 DOI: 10.1186/s12974-023-02869-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The 18kD translocator protein (TSPO) is used as a positron emission tomography (PET) target to quantify neuroinflammation in patients. In Alzheimer's disease (AD), the cerebellum is the pseudo-reference region for comparison with the cerebral cortex due to the absence of AD pathology and lower levels of TSPO. However, using the cerebellum as a pseudo-reference region is debated, with other brain regions suggested as more suitable. This paper aimed to establish the neuroinflammatory differences between the temporal cortex and cerebellar cortex, including TSPO expression. Using 60 human post-mortem samples encompassing the spectrum of Braak stages (I-VI), immunostaining for pan-Aβ, hyperphosphorylated (p)Tau, TSPO and microglial proteins Iba1, HLA-DR and MSR-A was performed in the temporal cortex and cerebellum. In the cerebellum, Aβ but not pTau, increased over the course of the disease, in contrast to the temporal cortex, where both proteins were significantly increased. TSPO increased in the temporal cortex, more than twofold in the later stages of AD compared to the early stages, but not in the cerebellum. Conversely, Iba1 increased in the cerebellum, but not in the temporal cortex. TSPO was associated with pTau in the temporal cortex, suggesting that TSPO positive microglia may be reacting to pTau itself and/or neurodegeneration at later stages of AD. Furthermore, the neuroinflammatory microenvironment was examined, using MesoScale Discovery assays, and IL15 only was significantly increased in the temporal cortex. Together this data suggests that the cerebellum maintains a more homeostatic environment compared to the temporal cortex, with a consistent TSPO expression, supporting its use as a pseudo-reference region for quantification in TSPO PET scans.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Oliver Dennett
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laurie C Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Paris-Sacaly University, 91400, Orsay, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, 91191, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
16
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
17
|
Olson KE, Abdelmoaty MM, Namminga KL, Lu Y, Obaro H, Santamaria P, Mosley RL, Gendelman HE. An open-label multiyear study of sargramostim-treated Parkinson's disease patients examining drug safety, tolerability, and immune biomarkers from limited case numbers. Transl Neurodegener 2023; 12:26. [PMID: 37217980 PMCID: PMC10201023 DOI: 10.1186/s40035-023-00361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 μg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Obaro
- Great Plains Center for Clinical and Translational Research, Nebraska Medicine, Omaha, NE, USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Wittmann J, Gani M, Evans D, Reynolds SC. Phrenic nerve stimulation mitigates hippocampal and brainstem inflammation in an ARDS model. Front Physiol 2023; 14:1182505. [PMID: 37215178 PMCID: PMC10196250 DOI: 10.3389/fphys.2023.1182505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: In porcine healthy-lung and moderate acute respiratory distress syndrome (ARDS) models, groups that received phrenic nerve stimulation (PNS) with mechanical ventilation (MV) showed lower hippocampal apoptosis, and microglia and astrocyte percentages than MV alone. Objectives: Explore whether PNS in combination with MV for 12 h leads to differences in hippocampal and brainstem tissue concentrations of inflammatory and synaptic markers compared to MV-only animals. Methods: Compare tissue concentrations of inflammatory markers (IL-1α, IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNFα and GM-CSF), pre-synaptic markers (synapsin and synaptophysin) and post-synaptic markers (disc-large-homolog 4, N-methyl-D-aspartate receptors 2A and 2B) in the hippocampus and brainstem in three groups of mechanically ventilated pigs with injured lungs: MV only (MV), MV plus PNS every other breath (MV + PNS50%), and MV plus PNS every breath (MV + PNS100%). MV settings in volume control were tidal volume 8 ml/kg, and positive end-expiratory pressure 5 cmH2O. Moderate ARDS was achieved by infusing oleic acid into the pulmonary artery. Measurements and Main Results: Hippocampal concentrations of GM-CSF, N-methyl-D-aspartate receptor 2B, and synaptophysin were greater in the MV + PNS100% group compared to the MV group, p = 0.0199, p = 0.0175, and p = 0.0479, respectively. The MV + PNS100% group had lower brainstem concentrations of IL-1β, and IL-8 than the MV group, p = 0.0194, and p = 0.0319, respectively; and greater brainstem concentrations of IFN-γ and N-methyl-D-aspartate receptor 2A than the MV group, p = 0.0329, and p = 0.0125, respectively. Conclusion: In a moderate-ARDS porcine model, MV is associated with hippocampal and brainstem inflammation, and phrenic nerve stimulation on every breath mitigates that inflammation.
Collapse
Affiliation(s)
| | - Elizabeth C. Rohrs
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Karl C. Fernandez
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Marlena Ornowska
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Michelle Nicholas
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Wittmann
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Steven C. Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| |
Collapse
|
19
|
Batu Öztürk A, Can Öztürk N, Ayaz F. Conditioned media of mouse macrophages modulates neuronal dynamics in mouse hippocampal cells. Int Immunopharmacol 2023; 114:109548. [PMID: 36525792 DOI: 10.1016/j.intimp.2022.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Many neurodegenerative diseases display both neuroinflammation and impaired neuron production in hippocampus. Although immunotherapeutic strategies indicate a promising avenue for combating neuroinflammation-induced diseases, directly targeting microglia, principle immune cells of CNS for such therapeutic purposes might be problematic due to invasive procedures. Instructing monocytes/macrophages from the periphery can be a less invasive and advantageous strategy compared to reaching microglia. But interplay between CNS neurons and macrophages even under normal conditions is poorly understood. To explore the experimental platform of how CNS derived neuronal cells respond to overall soluble factors of a non-CNS derived immune cell type, we introduced the conditioned media (CM) of unstimulated, and lipopolysaccharide stimulated RAW264.7 mouse macrophages to immortalized HT-22 mouse hippocampal cells during and after they were exposed to neuronal differentiation media. First, we recorded the cell viability of HT-22 cell study groups by using a real time cell analyzer. Then, we assessed the immunocytochemical expression of CR and CB proteins and mRNA levels of Ascl1, Bdnf, CB, Grn, Nrf2 and Rac1 genes via semi quantitative image analysis and q-RT-PCR among the different groups of HT-22 cells. Real time cell monitoring provided a solid physiological evidence regarding how various cell culture treatments affected the cell viability of HT-22 cells over time. Our further findings suggested that culturing HT-22 cells with unstimulated CM of macrophages markedly increased the immunocytochemical expression of CR and mRNA expression of Ascl1, Bdnf, CB and Grn genes, while the latter media resulted in decreases of those expressions. Overall, our results imply that HT-22 cells are meaningfully responsive to the secretome of RAW264.7 macrophages and using the interaction of macrophage with CNS derived neuronal cells is an instructive platform for deciphering the molecular mechanisms of cellular communication between immune system cells and neurons.
Collapse
Affiliation(s)
- Ayla Batu Öztürk
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Nail Can Öztürk
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey; Mersin University Biotechnology Research Center, Mersin University, Mersin, Turkey.
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, Turkey; Mersin University Biotechnology Research Center, Mersin University, Mersin, Turkey.
| |
Collapse
|
20
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Adhikari UK, Khan R, Mikhael M, Balez R, David MA, Mahns D, Hardy J, Tayebi M. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimers Dement 2022. [PMID: 36515320 DOI: 10.1002/alz.12833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Recent published clinical trial safety data showed that 41% of Alzheimer patients experienced amyloid-related imaging abnormalities (ARIA), marks of microhemorrhages and edema in the brain, following administration of Biogen's Aduhelm/aducanumab (amino acids 3-7 of the Aβ peptide). Similarly, Janssen/Pfizer's Bapineuzumab (amino acids 1-5 of the Aβ peptide) and Roche's Gantenerumab (amino acids 2-11/18-27 of the Aβ peptide) also displayed ARIA in clinical trials, including microhemorrhage and focal areas of inflammation or vasogenic edema, respectively. The molecular mechanisms underlying ARIA caused by therapeutic anti-Aβ antibodies remain largely unknown, however, recent reports demonstrated that therapeutic anti-prion antibodies activate neuronal allergenic proteomes following cross-linking cellular prion protein. METHODS Here, we report that treatment of human induced pluripotent stem cells- derived neurons (HSCN) from a non-demented donor, co-cultured with human primary microglia with anti-Aβ1-6, or anti-Aβ17-23 antibodies activate a significant number of allergenic-related proteins as assessed by mass spectrometry. RESULTS Interestingly, a large proportion of the identified proteins included cytokines such as interleukin (IL)-4, IL-12, and IL-13 suggesting a type-1 hypersensitivity response. Following flow cytometry analysis, several proinflammatory cytokines were significantly elevated following anti-Aβ1-6, or anti-Aβ17-23 antibody treatment. DISCUSSION These results justify further and more robust investigation of the molecular mechanisms of ARIA during immunotherapy study trials of AD. HIGHLIGHTS Allergenic-related proteins are often linked with Alzheimer's disease (AD). We investigated the effects of amyloid beta (Aβ) immunotherapy on stem cell derived neurons and primary neuronal cells co-cultured with microglia. Anti-Aβ antibody treatment of neurons or neurons co-cultured with microglia led to activation of a substantial number of allergenic-related genes. These allergenic-related genes are associated with endothelial dysfunction possibly responsible for ARIA.
Collapse
Affiliation(s)
- Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rizwan Khan
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - David Mahns
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
22
|
Yang H, Park SY, Baek H, Lee C, Chung G, Liu X, Lee JH, Kim B, Kwon M, Choi H, Kim HJ, Kim JY, Kim Y, Lee YS, Lee G, Kim SK, Kim JS, Chang YT, Jung WS, Kim KH, Bae H. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimer's disease. Am J Cancer Res 2022; 12:7668-7680. [PMID: 36451854 PMCID: PMC9706584 DOI: 10.7150/thno.75965] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Neuroinflammation is a primary feature of Alzheimer's disease (AD), for which an increasing number of drugs have been specifically developed. The present study aimed to define the therapeutic impact of a specific subpopulation of T cells that can suppress excessive inflammation in various immune and inflammatory disorders, namely, CD4+CD25+Foxp3+ regulatory T cells (Tregs). Methods: To generate Aβ antigen-specific Tregs (Aβ+ Tregs), Aβ 1-42 peptide was applied in vivo and subsequent in vitro splenocyte culture. After isolating Tregs by magnetic bead based purification method, Aβ+ Tregs were adoptively transferred into 3xTg-AD mice via tail vein injection. Therapeutic efficacy was confirmed with behavior test, Western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining (IHC). In vitro suppression assay was performed to evaluate the suppressive activity of Aβ+ Tregs using flow cytometry. Thy1.1+ Treg trafficking and distribution was analyzed to explore the infused Tregs migration into specific organs in an antigen-driven manner in AD mice. We further assessed cerebral glucose metabolism using 18F-FDG-PET, an imaging approach for AD biological definition. Subsequently, we evaluated the migration of Aβ+ Tregs toward Aβ activated microglia using live cell imaging, chemotaxis, antibody blocking and migration assay. Results: We showed that Aβ-stimulated Tregs inhibited microglial proinflammatory activity and modulated the microglial phenotype via bystander suppression. Single adoptive transfer of Aβ+ Tregs was enough to induce amelioration of cognitive impairments, Aβ accumulation, hyper-phosphorylation of tau, and neuroinflammation during AD pathology. Moreover, Aβ-specific Tregs effectively inhibited inflammation in primary microglia induced by Aβ exposure. It may indicate bystander suppression in which Aβ-specific Tregs promote immune tolerance by secreting cytokines to modulate immune responses during neurodegeneration. Conclusions: The administration of Aβ antigen-specific regulatory T cells may represent a new cellular therapeutic strategy for AD that acts by modulating the inflammatory status in AD.
Collapse
Affiliation(s)
- HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Hyunjung Baek
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea,Cancer Immunology Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Byungkyu Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Minjin Kwon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Hyojung Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Hyung Joon Kim
- Institute of Life Science & Biotechnology, VT Bio. Co., Ltd. 3 rd FL, 16 Samseong-ro 76-gil, Gangnam-gu, Seoul 06185, Korea
| | - Jae Yoon Kim
- Institute of Life Science & Biotechnology, VT Bio. Co., Ltd. 3 rd FL, 16 Samseong-ro 76-gil, Gangnam-gu, Seoul 06185, Korea
| | - Younsub Kim
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Ye-Seul Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Gaheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, 75 Nowon-ro, Nowon-Gu, Seoul 01812, Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea,Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Woo Sang Jung
- Stroke center, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea
| | - Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea,✉ Corresponding authors: Kyung Hwa Kim: Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; Tel.: +82-51‑200‑7534; Fax: +82-51-200-7905; . Hyunsu Bae: Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea; Tel.: +82-2-961-9316; Fax: +82-2-961-0333; .; © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea,✉ Corresponding authors: Kyung Hwa Kim: Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; Tel.: +82-51‑200‑7534; Fax: +82-51-200-7905; . Hyunsu Bae: Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea; Tel.: +82-2-961-9316; Fax: +82-2-961-0333; .; © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions
| |
Collapse
|
23
|
Chen Z, Liu H, Ye Y, Chen D, Lu Q, Lu X, Huang C. Granulocyte-macrophage colony-stimulating factor-triggered innate immune tolerance against chronic stress-induced behavioral abnormalities in mice. Int Immunopharmacol 2022; 109:108924. [PMID: 35704970 DOI: 10.1016/j.intimp.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Pre-stimulation of the innate immune is considered a potential strategy to prevent chronic stress-induced behavioral abnormalities in animals. In this study, we investigated whether granulocyte-macrophage colony-stimulating factor (GM-CSF), an immunostimulant used in the clinic to treat diseases of the hematopoietic system, can prevent chronic stress-induced behavioral abnormalities in mice. Our results showed that a single intraperitoneal injection of GM-CSF (100 μg/kg) one day before stress exposure prevented the depression- and anxiety-like behaviors induced by chronic social defeat stress (CSDS) in mice, including preventing the CSDS-induced increase in the immobility time in the tail suspension test and forced swimming test and decrease in the time spent in the interaction zone in the social interaction test, as well as preventing the CSDS-induced decrease in the time spent (i) in open arms in the elevated plus maze test, (ii) on the illuminated side in the light-dark test, and (iii) in the central region of the open field test. The single GM-CSF preinjection (100 μg/kg) also prevented the CSDS-induced increase in the expression levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) mRNA in the hippocampus and medial prefrontal cortex of the mice. Further analysis showed that the preventive effect of GM-CSF on CSDS-induced depression- and anxiety-like behaviors and neuroinflammatory responses was abolished by pretreatment with minocycline (an innate immune inhibitor). These results indicate that a single low dose of GM-CSF before injection could be a potential way to prevent behavioral abnormalities induced by chronic stress in mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China.
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hopital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224008, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
24
|
Yeapuri P, Olson KE, Lu Y, Abdelmoaty MM, Namminga KL, Markovic M, Machhi J, Mosley RL, Gendelman HE. Development of an extended half-life GM-CSF fusion protein for Parkinson's disease. J Control Release 2022; 348:951-965. [PMID: 35738463 DOI: 10.1016/j.jconrel.2022.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/26/2022]
Abstract
Transformation of CD4+ T cell effector to regulatory (Teff to Treg) cells have been shown to attenuate disease progression by restoring immunological balance during the onset and progression of neurodegenerative diseases. In our prior studies, we defined a safe and effective pathway to restore this balance by restoring Treg numbers and function through the daily administration of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These studies were conducted as a proof-of-concept testing in Parkinson's disease (PD) preclinical models and early phase I clinical investigations. In both instances, they served to ameliorate disease associated signs and symptoms. However, despite the recorded efficacy, the cytokine's short half-life, low bioavailability, and injection site reactions proved to be limitations for any broader use. To overcome these limitations, mRNA lipid nanoparticles encoding an extended half-life albumin-GM-CSF fusion protein were developed for both mouse (Msa-GM-CSF) and rat (Rsa-GM-CSF). These formulations were tested for immunomodulatory and neuroprotective efficacy using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and human wild-type alpha-synuclein (αSyn) overexpression preclinical models of PD. A single dose of the extended half-life mouse and rat mRNA lipid nanoparticles generated measurable GM-CSF plasma cytokine levels up to four days. Increased Treg frequency and function were associated with a resting microglial phenotype, nigrostriatal neuroprotection, and restoration of brain tissue immune homeostasis. These findings were substantively beyond the recorded efficacy of daily recombinant wild-type GM-CSF with a recorded half-life of six hours. Mechanistic evaluation of neuropathological transcriptional profiles performed in the disease-affected nigral brain region demonstrated an upregulation of neuroprotective CREB and synaptogenesis signaling and neurovascular coupling pathways. These findings highlight the mRNA-encoded albumin GM-CSF fusion protein modification linked to improvements in therapeutic efficacy. The improvements achieved were associated with the medicine's increased bioavailability. Taken together, the data demonstrate that mRNA LNP encoding the extended half-life albumin-GM-CSF fusion protein can serve as a benchmark for PD immune-based therapeutics. This is especially notable for improving adherence of drug regimens in a disease-affected patient population with known tremors and gait abnormalities.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt.
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Ahmed MM, Wang ACJ, Elos M, Chial HJ, Sillau S, Solano DA, Coughlan C, Aghili L, Anton P, Markham N, Adame V, Gardiner KJ, Boyd TD, Potter H. The innate immune system stimulating cytokine GM-CSF improves learning/memory and interneuron and astrocyte brain pathology in Dp16 Down syndrome mice and improves learning/memory in wild-type mice. Neurobiol Dis 2022; 168:105694. [PMID: 35307513 PMCID: PMC9045510 DOI: 10.1016/j.nbd.2022.105694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 μg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Athena Ching-Jung Wang
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mihret Elos
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heidi J Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leila Aghili
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paige Anton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil Markham
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanesa Adame
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Weber GE, Khrestian M, Tuason ED, Shao Y, Pillai J, Rao S, Feng H, Zhou Y, Cheng F, DeSilva TM, Stauffer S, Leverenz JB, Bekris LM. Peripheral sTREM2-Related Inflammatory Activity Alterations in Early-Stage Alzheimer's Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2283-2299. [PMID: 35523454 PMCID: PMC9117433 DOI: 10.4049/jimmunol.2100771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/07/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) has been linked to multiple immune system-related genetic variants. Triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. In addition, soluble TREM2 (sTREM2) isoform is elevated in cerebrospinal fluid in the early stages of AD and is associated with slower cognitive decline in a disease stage-dependent manner. Multiple studies have reported an altered peripheral immune response in AD. However, less is known about the relationship between peripheral sTREM2 and an altered peripheral immune response in AD. The objective of this study was to explore the relationship between human plasma sTREM2 and inflammatory activity in AD. The hypothesis of this exploratory study was that sTREM2-related inflammatory activity differs by AD stage. We observed different patterns of inflammatory activity across AD stages that implicate early-stage alterations in peripheral sTREM2-related inflammatory activity in AD. Notably, fractalkine showed a significant relationship with sTREM2 across different analyses in the control groups that was lost in later AD-related stages with high levels in mild cognitive impairment. Although multiple other inflammatory factors either differed significantly between groups or were significantly correlated with sTREM2 within specific groups, three inflammatory factors (fibroblast growth factor-2, GM-CSF, and IL-1β) are notable because they exhibited both lower levels in AD, compared with mild cognitive impairment, and a change in the relationship with sTREM2. This evidence provides important support to the hypothesis that sTREM2-related inflammatory activity alterations are AD stage specific and provides critical information for therapeutic strategies focused on the immune response.
Collapse
Affiliation(s)
- Grace E Weber
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Yvonne Shao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Jagan Pillai
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Stephen Rao
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yadi Zhou
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Feixiong Cheng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Tara M DeSilva
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH; and
| | - Shaun Stauffer
- Center for Therapeutics Discovery, Cleveland Clinic, Cleveland, OH
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Lynn M Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH;
| |
Collapse
|
27
|
Machhi J, Yeapuri P, Markovic M, Patel M, Yan W, Lu Y, Cohen JD, Hasan M, Abdelmoaty MM, Zhou Y, Xiong H, Wang X, Mosley RL, Gendelman HE, Kevadiya BD. Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chem Neurosci 2022; 13:1232-1244. [PMID: 35312284 PMCID: PMC9227977 DOI: 10.1021/acschemneuro.1c00847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aβ) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aβ1-42 exposure by increasing the cells' phagocytic and Aβ degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aβ endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jacob D. Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza 12622, Egypt
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
28
|
Markovic M, Yeapuri P, Namminga KL, Lu Y, Saleh M, Olson KE, Gendelman HE, Mosley RL. Interleukin-2 expands neuroprotective regulatory T cells in Parkinson's disease. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2022; 1:43-50. [PMID: 38407500 PMCID: PMC9254387 DOI: 10.1515/nipt-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Background Pharmacological approaches that boost neuroprotective regulatory T cell (Treg) number and function lead to neuroprotective activities in neurodegenerative disorders. Objectives We investigated whether low-dose interleukin 2 (IL-2) expands Treg populations and protects nigrostriatal dopaminergic neurons in a model of Parkinson's disease (PD). Methods IL-2 at 2.5 × 104 IU/dose/mouse was administered for 5 days. Lymphocytes were isolated and phenotype determined by flow cytometric analyses. To 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, 0.5 × 106 of enriched IL-2-induced Tregs were adoptively transferred to assess the effects on nigrostriatal neuron survival. Results IL-2 increased frequencies of CD4+CD25+CD127lowFoxP3+ Tregs that express ICOS and CD39 in blood and spleen. Adoptive transfer of IL-2-induced Tregs to MPTP-treated recipients increased tyrosine hydroxylase (TH)+ nigral dopaminergic neuronal bodies by 51% and TH+ striatal termini by 52% compared to control MPTP-treated animal controls. Conclusions IL-2 expands numbers of neuroprotective Tregs providing a vehicle for neuroprotection of nigrostriatal dopaminergic neurons in a pre-clinical PD model.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| |
Collapse
|
29
|
Kendall LV, Boyd TD, Sillau SH, Bosco-Lauth A, Markham N, Fong D, Clarke P, Tyler KL, Potter H. GM-CSF Promotes Immune Response and Survival in a Mouse Model of COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1213395. [PMID: 35118463 PMCID: PMC8811947 DOI: 10.21203/rs.3.rs-1213395/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
COVID-19 results in increased expression of inflammatory cytokines, but inflammation-targeting clinical trials have yielded poor to mixed results. Our studies of other disorders with an inflammatory component, including Alzheimer's disease, chemobrain, Down syndrome, normal aging, and West Nile Virus infection, showed that treatment with the 'pro-inflammatory' cytokine granulocyte-macrophage colony stimulating factor (GM-CSF) in humans or mouse models alleviated clinical, behavioral, and pathological features. We proposed that human recombinant GM-CSF (sargramostim) be repurposed to promote both the innate and adaptive immune responses in COVID-19 to reduce viral load and mortality1. Here, we report the results of a placebo-controlled study of GM-CSF in human ACE2 transgenic mice inoculated intranasally with SARS-CoV2 virus, a model of COVID-19. Infection resulted in high viral titers in lungs and brains and over 85% mortality. GM-CSF treatment beginning one day after infection increased anti-viral antibody titers, lowered mean lung viral titers proportionately (p=0.0020) and increased the odds of long-term survival by up to 5.8-fold (p=0.0358), compared to placebo. These findings suggest that, as an activator of both the innate and adaptive immune systems, GM-CSF/sargramostim may be an effective COVID-19 therapy with the potential to protect from re-infection more effectively than treatment with antiviral drugs or monoclonal antibodies.
Collapse
Affiliation(s)
- L V Kendall
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO
| | - T D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO
| | - S H Sillau
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - A Bosco-Lauth
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO
| | - N Markham
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO
| | - D Fong
- Department of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - P Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - K L Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
- Denver VA Medical Center, Denver CO
- Departments of Immunology and Microbiology, and Medicine, University of Colorado School of Medicine, Aurora, CO
| | - H Potter
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
30
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
31
|
Machhi J, Yeapuri P, Lu Y, Foster E, Chikhale R, Herskovitz J, Namminga KL, Olson KE, Abdelmoaty MM, Gao J, Quadros RM, Kiyota T, Jingjing L, Kevadiya BD, Wang X, Liu Y, Poluektova LY, Gurumurthy CB, Mosley RL, Gendelman HE. CD4+ effector T cells accelerate Alzheimer's disease in mice. J Neuroinflammation 2021; 18:272. [PMID: 34798897 PMCID: PMC8603581 DOI: 10.1186/s12974-021-02308-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aβ) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS In this report, we developed and characterized cloned lines of amyloid beta (Aβ) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aβ-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aβ T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aβ-Th1 and Aβ-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS The propagated Aβ-Th1 and Aβ-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aβ reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aβ-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aβ reactive Tregs.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Emma Foster
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099 USA
| | - Rupesh Chikhale
- University College London School of Pharmacy, Bloomsbury, London, WC1E 6DE UK
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Ju Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rolen M. Quadros
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE USA
| | - Tomomi Kiyota
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080 USA
| | - Liang Jingjing
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Channabasavaiah B. Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
32
|
Ahmed MM, Johnson NR, Boyd TD, Coughlan C, Chial HJ, Potter H. Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners? Front Aging Neurosci 2021; 13:718426. [PMID: 34603007 PMCID: PMC8481947 DOI: 10.3389/fnagi.2021.718426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune system activation and inflammation are associated with and may contribute to clinical outcomes in people with Down syndrome (DS), neurodegenerative diseases such as Alzheimer's disease (AD), and normal aging. In addition to serving as potential diagnostic biomarkers, innate immune system activation and inflammation may play a contributing or causal role in these conditions, leading to the hypothesis that effective therapies should seek to dampen their effects. However, recent intervention studies with the innate immune system activator granulocyte-macrophage colony-stimulating factor (GM-CSF) in animal models of DS, AD, and normal aging, and in an AD clinical trial suggest that activating the innate immune system and inflammation may instead be therapeutic. We consider evidence that DS, AD, and normal aging are accompanied by innate immune system activation and inflammation and discuss whether and when during the disease process it may be therapeutically beneficial to suppress or promote such activation.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy D. Boyd
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Partner Therapeutics, Inc., Lexington, MA, United States
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
33
|
Salama A, Elgohary R. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ. Int Immunopharmacol 2021; 101:107867. [PMID: 34489184 DOI: 10.1016/j.intimp.2021.107867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) has a crucial role in neuroprotection. It phosphorylates serine/threonine kinase (Akt) Substrate inhibiting the inflammatory responses induced by the nuclear factor-κB (NF-κB). Exposure to chromium VI dust among workers has been reported and induced brain injury, as the absorption of chromium through the nasal membrane has been found to deliver it directly to the brain. The study aimed to investigate the influence of administration of L-carnitine or/and Co Q10 as theraputic agents against potassium dichromate (PD)-induced brain injury via AMPK/AKT/NF-κβ signaling pathway. Brain injury was induced by PD intranasally as a single dose of 2 mg/kg, 24 h latter rats received L-carnitine (100 mg/kg; orally), Co Q10 (50 mg/kg; orally) and L-carnitine (50 mg/kg; orally) + Co Q10 (25 mg/kg; orally) respectively for 3 days. Locomotor activity was assessed before and at the end of the experiment, then, biochemical and histopathological investigations were assessed in brain homogenate. The exposure of rats to PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in GSH serum contents with an increase in brain contents of TNF-α, IL-6, and NF-kβ and reduced AMPK and AKT brain contents as compared to the control group. Treatment with L-carnitine + Co Q10 ameliorated cognitive impairment and oxidative stress, decreased the brain contents of inflammatory mediators; TNF-α, IL-6, and NF-κβ elevated AMPK and AKT, as compared to each drug. Also, L-carnitine + Co Q10 administration restored morphological changes as degenerated neurons and necrosis. L-carnitine + Co Q10 play important role in AMPK/AKT/NF-κβ pathway that responsible for their antioxidant and anti-inflammatory effects against PD-induced brain injury in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
34
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
35
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
36
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Construction of Recombinant Human GM-CSF and GM-CSF-ApoA-I Fusion Protein and Evaluation of Their Biological Activity. Pharmaceuticals (Basel) 2021; 14:ph14050459. [PMID: 34068113 PMCID: PMC8152757 DOI: 10.3390/ph14050459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.
Collapse
|
38
|
Olson KE, Namminga KL, Lu Y, Thurston MJ, Schwab AD, de Picciotto S, Tse SW, Walker W, Iacovelli J, Small C, Wipke BT, Mosley RL, Huang E, Gendelman HE. Granulocyte-macrophage colony-stimulating factor mRNA and Neuroprotective Immunity in Parkinson's disease. Biomaterials 2021; 272:120786. [PMID: 33839625 PMCID: PMC8382980 DOI: 10.1016/j.biomaterials.2021.120786] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Restoring numbers and function of regulatory T cells (Tregs) is a novel therapeutic strategy for neurodegenerative disorders. Whether Treg function is boosted by adoptive cell transfer, pharmaceuticals, or immune modulators, the final result is a robust anti-inflammatory and neuronal sparing response. Herein, a newly developed lipid nanoparticle (LNP) containing mRNA encoding granulocyte-macrophage colony-stimulating factor (Gm-csf mRNA) was developed to peripherally induce Tregs and used for treatment in preclinical Parkinson's disease (PD) models. Administration of Gm-csf mRNA to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and rats overexpressing alpha-synuclein produced dose-dependent increases in plasma GM-CSF levels and peripheral CD4+CD25+FoxP3+ Treg populations. This upregulation paralleled nigrostriatal neuroprotection, upregulated immunosuppression-associated mRNAs that led to the detection of a treatment-induced CD4+ T cell population, and decreased reactive microgliosis. The current findings strengthen prior works utilizing immune modulation by harnessing Gm-csf mRNA to augment adaptive immune function by employing a new delivery platform to treat PD and potentially other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | | | | | | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Eric Huang
- Moderna, Inc., Cambridge, MA, 02139, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
39
|
Potter H, Woodcock JH, Boyd TD, Coughlan CM, O'Shaughnessy JR, Borges MT, Thaker AA, Raj BA, Adamszuk K, Scott D, Adame V, Anton P, Chial HJ, Gray H, Daniels J, Stocker ME, Sillau SH. Safety and efficacy of sargramostim (GM-CSF) in the treatment of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12158. [PMID: 33778150 PMCID: PMC7988877 DOI: 10.1002/trc2.12158] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Inflammatory markers have long been observed in the brain, cerebrospinal fluid (CSF), and plasma of Alzheimer's disease (AD) patients, suggesting that inflammation contributes to AD and might be a therapeutic target. However, non-steroidal anti-inflammatory drug trials in AD and mild cognitive impairment (MCI) failed to show benefit. Our previous work seeking to understand why people with the inflammatory disease rheumatoid arthritis are protected from AD found that short-term treatment of transgenic AD mice with the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) led to an increase in activated microglia, a 50% reduction in amyloid load, an increase in synaptic area, and improvement in spatial memory to normal. These results called into question the consensus view that inflammation is solely detrimental in AD. Here, we tested our hypothesis that modulation of the innate immune system might similarly be used to treat AD in humans by investigating the ability of GM-CSF/sargramostim to safely ameliorate AD symptoms/pathology. METHODS A randomized, double-blind, placebo-controlled trial was conducted in mild-to-moderate AD participants (NCT01409915). Treatments (20 participants/group) occurred 5 days/week for 3 weeks plus two follow-up (FU) visits (FU1 at 45 days and FU2 at 90 days) with neurological, neuropsychological, blood biomarker, and imaging assessments. RESULTS Sargramostim treatment expectedly changed innate immune system markers, with no drug-related serious adverse events or amyloid-related imaging abnormalities. At end of treatment (EOT), the Mini-Mental State Examination score of the sargramostim group increased compared to baseline (P = .0074) and compared to placebo (P = .0370); the treatment effect persisted at FU1 (P = .0272). Plasma markers of amyloid beta (Aβ40 [decreased in AD]) increased 10% (P = .0105); plasma markers of neurodegeneration (total tau and UCH-L1) decreased 24% (P = .0174) and 42% (P = .0019), respectively, after sargramostim treatment compared to placebo. DISCUSSION The innate immune system is a viable target for therapeutic intervention in AD. An extended treatment trial testing the long-term safety and efficacy of GM-CSF/sargramostim in AD is warranted.
Collapse
Affiliation(s)
- Huntington Potter
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Jonathan H. Woodcock
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Christina M. Coughlan
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - John R. O'Shaughnessy
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Manuel T. Borges
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ashesh A. Thaker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | | | | | - Vanesa Adame
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paige Anton
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Heidi J. Chial
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Helen Gray
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Joseph Daniels
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Michelle E. Stocker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Stefan H. Sillau
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| |
Collapse
|
40
|
Pignataro G, Cataldi M, Taglialatela M. Neurological risks and benefits of cytokine-based treatments in coronavirus disease 2019: from preclinical to clinical evidence. Br J Pharmacol 2021; 179:2149-2174. [PMID: 33512003 DOI: 10.1111/bph.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Immunodeficiency and hyperinflammation are responsible for the most frequent and life-threatening forms of coronavirus disease 2019 (COVID-19). Therefore, cytokine-based treatments targeting immuno-inflammatory mechanisms are currently undergoing clinical scrutiny in COVID-19-affected patients. In addition, COVID-19 patients also exhibit a wide range of neurological manifestations (neuro-COVID), which may also benefit from cytokine-based treatments. In fact, such drugs have shown some clinical efficacy also in neuroinflammatory diseases. On the other hand, anti-cytokine drugs are endowed with significant neurological risks, mainly attributable to their immunodepressant effects. Therefore, the aim of the present manuscript is to briefly describe the role of specific cytokines in neuroinflammation, to summarize the efficacy in preclinical models of neuroinflammatory diseases of drugs targeting these cytokines and to review the clinical data regarding the neurological effects of these drugs currently being investigated against COVID-19, in order to raise awareness about their potentially beneficial and/or detrimental neurological consequences.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
41
|
Palada V, Ahmed AS, Freyhult E, Hugo A, Kultima K, Svensson CI, Kosek E. Elevated inflammatory proteins in cerebrospinal fluid from patients with painful knee osteoarthritis are associated with reduced symptom severity. J Neuroimmunol 2020; 349:577391. [PMID: 32987275 DOI: 10.1016/j.jneuroim.2020.577391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation and periphery-to-CNS neuroimmune cross-talk in patients with painful knee osteoarthritis (OA) are poorly understood. We utilized proximity extension assay to measure the level of 91 inflammatory proteins in CSF and serum from OA patients and controls. The patients had elevated levels of 48 proteins in CSF indicating neuroinflammation. Ten proteins were correlated between CSF and serum and potentially involved in periphery-to-CNS neuroimmune cross-talk. Seven CSF proteins, all with previously reported neuroprotective effects, were associated with lower pain intensity and milder knee-related symptoms. Our findings indicate that neuroinflammation in OA could be protective and associated with less severe symptoms.
Collapse
Affiliation(s)
- Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Aisha Siddiqah Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Anders Hugo
- Ortho Center Stockholm, 194 89 Upplands Väsby, Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden.
| |
Collapse
|
42
|
Munafò A, Burgaletto C, Di Benedetto G, Di Mauro M, Di Mauro R, Bernardini R, Cantarella G. Repositioning of Immunomodulators: A Ray of Hope for Alzheimer's Disease? Front Neurosci 2020; 14:614643. [PMID: 33343293 PMCID: PMC7746859 DOI: 10.3389/fnins.2020.614643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder characterized by cognitive decline and by the presence of amyloid β plaques and neurofibrillary tangles in the brain. Despite recent advances in understanding its pathophysiological mechanisms, to date, there are no disease-modifying therapeutic options, to slow or halt the evolution of neurodegenerative processes in AD. Current pharmacological treatments only transiently mitigate the severity of symptoms, with modest or null overall improvement. Emerging evidence supports the concept that AD is affected by the impaired ability of the immune system to restrain the brain's pathology. Deep understanding of the relationship between the nervous and the immune system may provide a novel arena to develop effective and safe drugs for AD treatment. Considering the crucial role of inflammatory/immune pathways in AD, here we discuss the current status of the immuno-oncological, immunomodulatory and anti-TNF-α drugs which are being used in preclinical studies or in ongoing clinical trials by means of the drug-repositioning approach.
Collapse
Affiliation(s)
- Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Marco Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,Unit of Clinical Toxicology, University Hospital, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
44
|
Fung ITH, Sankar P, Zhang Y, Robison LS, Zhao X, D'Souza SS, Salinero AE, Wang Y, Qian J, Kuentzel ML, Chittur SV, Temple S, Zuloaga KL, Yang Q. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J Exp Med 2020; 217:133697. [PMID: 32022838 PMCID: PMC7144523 DOI: 10.1084/jem.20190915] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence has challenged the traditional view about the immune privilege of the brain, but the precise roles of immune cells in regulating brain physiology and function remain poorly understood. Here, we report that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the choroid plexus of aged brains. ILC2 in the aged brain are long-lived, are relatively resistant to cellular senescence and exhaustion, and are capable of switching between cell cycle dormancy and proliferation. They are functionally quiescent at homeostasis but can be activated by IL-33 to produce large amounts of type 2 cytokines and other effector molecules in vitro and in vivo. Intracerebroventricular transfer of activated ILC2 revitalized the aged brain and enhanced the cognitive function of aged mice. Administration of IL-5, a major ILC2 product, was sufficient to repress aging-associated neuroinflammation and alleviate aging-associated cognitive decline. Targeting ILC2 in the aged brain may provide new avenues to combat aging-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Xiuli Zhao
- Neural Stem Cell Institute, Rensselaer, NY
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY
| | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, NY
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY.,Department of Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
45
|
Li S, Weinstein G, Zare H, Teumer A, Völker U, Friedrich N, Knol MJ, Satizabal CL, Petyuk VA, Adams HHH, Launer LJ, Bennett DA, De Jager PL, Grabe HJ, Ikram MA, Gudnason V, Yang Q, Seshadri S. The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Commun 2020; 2:fcaa176. [PMID: 33345186 PMCID: PMC7734441 DOI: 10.1093/braincomms/fcaa176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in brain development and function. Substantial amounts of BDNF are present in peripheral blood, and may serve as biomarkers for Alzheimer's disease incidence as well as targets for intervention to reduce Alzheimer's disease risk. With the exception of the genetic polymorphism in the BDNF gene, Val66Met, which has been extensively studied with regard to neurodegenerative diseases, the genetic variation that influences circulating BDNF levels is unknown. We aimed to explore the genetic determinants of circulating BDNF levels in order to clarify its mechanistic involvement in brain structure and function and Alzheimer's disease pathophysiology in middle-aged and old adults. Thus, we conducted a meta-analysis of genome-wide association study of circulating BDNF in 11 785 middle- and old-aged individuals of European ancestry from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), the Framingham Heart Study (FHS), the Rotterdam Study and the Study of Health in Pomerania (SHIP-Trend). Furthermore, we performed functional annotation analysis and related the genetic polymorphism influencing circulating BDNF to common Alzheimer's disease pathologies from brain autopsies. Mendelian randomization was conducted to examine the possible causal role of circulating BDNF levels with various phenotypes including cognitive function, stroke, diabetes, cardiovascular disease, physical activity and diet patterns. Gene interaction networks analysis was also performed. The estimated heritability of BDNF levels was 30% (standard error = 0.0246, P-value = 4 × 10-48). We identified seven novel independent loci mapped near the BDNF gene and in BRD3, CSRNP1, KDELC2, RUNX1 (two single-nucleotide polymorphisms) and BDNF-AS. The expression of BDNF was associated with neurofibrillary tangles in brain tissues from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). Seven additional genes (ACAT1, ATM, NPAT, WDR48, TTC21A, SCN114 and COX7B) were identified through expression and protein quantitative trait loci analyses. Mendelian randomization analyses indicated a potential causal role of BDNF in cardioembolism. Lastly, Ingenuity Pathway Analysis placed circulating BDNF levels in four major networks. Our study provides novel insights into genes and molecular pathways associated with circulating BDNF levels and highlights the possible involvement of plaque instability as an underlying mechanism linking BDNF with brain neurodegeneration. These findings provide a foundation for a better understanding of BDNF regulation and function in the context of brain aging and neurodegenerative pathophysiology.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, Haifa 3498838, Israel
| | - Habil Zare
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Maria J Knol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Lenore J Launer
- Department of Health and Human Services, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegererative Diseases (DZNE), Rostock/Greifswald, Germany
| | - M Arfan Ikram
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Vilmundur Gudnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Icelandic Heart Association, 201 Kopavogur, Iceland
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
46
|
Olson KE, Namminga KL, Schwab AD, Thurston MJ, Lu Y, Woods A, Lei L, Shen W, Wang F, Joseph SB, Gendelman HE, Mosley RL. Neuroprotective Activities of Long-Acting Granulocyte-Macrophage Colony-Stimulating Factor (mPDM608) in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Intoxicated Mice. Neurotherapeutics 2020; 17:1861-1877. [PMID: 32638217 PMCID: PMC7851309 DOI: 10.1007/s13311-020-00877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of dopaminergic neurons along the nigrostriatal axis, neuroinflammation, and peripheral immune dysfunction are the pathobiological hallmarks of Parkinson's disease (PD). Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully tested for PD treatment. GM-CSF is a known immune modulator that induces regulatory T cells (Tregs) and serves as a neuronal protectant in a broad range of neurodegenerative diseases. Due to its short half-life, limited biodistribution, and potential adverse effects, alternative long-acting treatment schemes are of immediate need. A long-acting mouse GM-CSF (mPDM608) was developed through Calibr, a Division of Scripps Research. Following mPDM608 treatment, complete hematologic and chemistry profiles and T-cell phenotypes and functions were determined. Neuroprotective and anti-inflammatory capacities of mPDM608 were assessed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice that included transcriptomic immune profiles. Treatment with a single dose of mPDM608 resulted in dose-dependent spleen and white blood cell increases with parallel enhancements in Treg numbers and immunosuppressive function. A shift in CD4+ T-cell gene expression towards an anti-inflammatory phenotype corresponded with decreased microgliosis and increased dopaminergic neuronal cell survival. mPDM608 elicited a neuroprotective peripheral immune transformation. The observed phenotypic shift and neuroprotective response was greater than observed with recombinant GM-CSF (rGM-CSF) suggesting human PDM608 as a candidate for PD treatment.
Collapse
Affiliation(s)
- Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Aaron D. Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Mackenzie J. Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ashley Woods
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Lei Lei
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Weijun Shen
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Sean B. Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| |
Collapse
|
47
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
48
|
Martin-Estebane M, Gomez-Nicola D. Targeting Microglial Population Dynamics in Alzheimer's Disease: Are We Ready for a Potential Impact on Immune Function? Front Cell Neurosci 2020; 14:149. [PMID: 32581720 PMCID: PMC7289918 DOI: 10.3389/fncel.2020.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting two-thirds of people with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune response, whereby microglia plays a central role as the main resident macrophage of the brain. Recent genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) located in microglial genes and associated with a delayed onset of AD, highlighting the important role of these cells on the onset and/or progression of the disease. These findings have increased the interest in targeting microglia-associated neuroinflammation as a potentially disease-modifying therapeutic approach for AD. In this review we provide an overview on the contribution of microglia to the pathophysiology of AD, focusing on the main regulatory pathways controlling microglial population dynamics during the neuroinflammatory response, such as the colony-stimulating factor 1 receptor (CSF1R), its ligands (the colony-stimulating factor 1 and interleukin 34) and the transcription factor PU.1. We also discuss the current therapeutic strategies targeting proliferation to modulate microglia-associated neuroinflammation and their potential impact on peripheral immune cell populations in the short and long-term. Understanding the effects of immunomodulatory approaches on microglia and other immune cell types might be critical for developing specific, effective, and safe therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Martin-Estebane
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
49
|
Potter H, Boyd TD, Clarke P, Pelak VS, Tyler KL. Recruiting the innate immune system with GM-CSF to fight viral diseases, including West Nile Virus encephalitis and COVID-19. F1000Res 2020; 9:345. [PMID: 32704352 PMCID: PMC7359749 DOI: 10.12688/f1000research.23729.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic grows throughout the world, it is imperative that all approaches to ameliorating its effects be investigated, including repurposing drugs that show promise in other diseases. We have been investigating an approach to multiple disorders that involves recruiting the innate immune system to aid the body's healing and regenerative mechanism(s). In the case of West Nile Virus encephalitis and potentially COVID-19, the proposed intervention to stimulate the innate immune system may give the adaptive immune response the necessary time to develop, finish clearing the virus, and provide future immunity. Furthermore, we have found that GM-CSF-induced recruitment of the innate immune system is also able to reverse brain pathology, neuroinflammation and cognitive deficits in mouse models of Alzheimer's disease and Down syndrome, as well as improving cognition in normal aging and in human patients with cognitive deficits due to chemotherapy, both of which exhibit neuroinflammation. Others have shown that GM-CSF is an effective treatment for both bacterial and viral pneumonias, and their associated inflammation, in animals and that it has successfully treated pneumonia-associated Acute Respiratory Distress Syndrome in humans. These and other data strongly suggest that GM-CSF may be an effective treatment for many viral infections, including COVID-19.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Victoria S. Pelak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
50
|
Uddin MS, Kabir MT, Mamun AA, Barreto GE, Rashid M, Perveen A, Ashraf GM. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. Int Immunopharmacol 2020; 84:106479. [PMID: 32353686 DOI: 10.1016/j.intimp.2020.106479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Asma Perveen
- School of Life Sciences, The Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|