1
|
Li S, Ding J, Sun X, Feng L, Zhou W, Gui Z, Mao J. Selenium Concentration Is Positively Associated with Triglyceride-Glucose Index and Triglyceride Glucose-Body Mass Index in Adults: Data from NHANES 2011-2018. Biol Trace Elem Res 2024; 202:401-409. [PMID: 37145256 PMCID: PMC10764531 DOI: 10.1007/s12011-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Compiling evidence supports that selenium plays a vital role in glucose metabolism. Triglyceride-glucose index (TyG) and triglyceride-glucose-body mass index (TyG-BMI) are commonly used in epidemiologic studies to evaluate insulin resistance and cardiovascular disease (CVD) risks. This study is aimed to investigate the association between whole blood selenium concentration and TyG and TyG-BMI. A total of 6290 participants (age ≥ 20 years) from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were included. Multiple linear regression models were used to examine the association between blood selenium quartiles and TyG and TyG-BMI. Subgroup analysis stratified by diabetes status was also performed. The adjusted model showed a positive association between TyG and blood selenium concentration (β [95%CI] = 0.099 [0.063, 0.134], p < 0.001) and TyG-BMI (β [95%CI] = 3.185 [2.102, 4.268], p < 0.001). The association persisted after stratification by diabetes status (p < 0.001). Participants were stratified into four quartiles based on selenium concentration (Q1: 1.08-2.24 μmol/L, Q2: 2.25-2.42 μmol/L, Q3: 2.43-2.62 µmol/L, Q4: 2.63-8.08). Compared with the Q1 group, TyG in the Q3 and Q4 groups was significantly higher (β = 0.075 [95%CI 0.039 to 0.112] and β = 0.140 [95%CI 0.103 to 0.176], respectively). Additionally, TyG-BMI in the Q2, Q3, and Q4 groups was higher than that in the Q1 group (β = 1.189 [95%CI 0.065 to 2.314], β = 2.325 [95%CI 1.204 to 3.446], and β = 4.322 [95%CI 3.210 to 5.435], respectively). Blood level of selenium was positively associated with TyG and TyG-BMI, indicating that excessive blood selenium may be associated with impaired insulin sensitivity and increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Shuying Li
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Jie Ding
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaoxiao Sun
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Li Feng
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Weihong Zhou
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
| | - Zhen Gui
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
He P, Zhang M, Zhang Y, Wu H, Zhang X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker's Yeast. Foods 2023; 12:2343. [PMID: 37372553 DOI: 10.3390/foods12122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
In this research, the effect of selenium (Se) enrichment on dough fermentation characteristics of yeast and the possible mechanisms was investigated. Then, the Se-enriched yeast was used as starter to make Se-enriched bread, and the difference between Se-enriched bread and common bread was investigated. It was found Se enrichment increased CO2 production and sugar consumption rate of Saccharomyces cerevisiae (S. cerevisiae) in dough fermentation, and had positive impacts on final volume and rheological index of dough. The mechanism is possibly related to higher activity and protein expression of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), isocitrate dehydrogenase (ICD), and α-ketoglutarate dehydrogenase (α-KGDHC) in Se-enriched yeast. Moreover, Se-enriched bread (Se content: 11.29 μg/g) prepared by using Se-enriched yeast as starter exhibited higher overall acceptability on sensory, cell density in stomatal morphology, and better elasticity and cohesiveness on texture properties than common bread, which may be due to effect of higher CO2 production on dough quality. These results indicate Se-enriched yeast could be used as both Se-supplements and starter in baked-foods making.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaoyuan Zhang
- Industrial Technology Research Institute, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Chen F, Wang L, Zhang D, Li S, Zhang X. Effect of an Established Nutritional Level of Selenium on Energy Metabolism and Gene Expression in the Liver of Rainbow Trout. Biol Trace Elem Res 2022; 200:3829-3840. [PMID: 34750741 DOI: 10.1007/s12011-021-02953-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
The nutritional selenium (Se) has been demonstrated to have health-boosting effects on fish. However, its effect on fish energy metabolism remains unclear. This study explores the effect and underlying mechanism of the action of nutritional Se on energy metabolism in fish. Rainbow trout (Oncorhynchus mykiss) were fed a basal diet (0 mg Se/kg diet) and a diet containing an already established nutritional Se level (2 mg Se/kg diet, based on Se-yeast) for 30 days. After the feeding experiment, the plasma and liver biochemical profiles and liver transcriptome were analyzed. The results showed that the present nutritional level of Se significantly increased liver triglyceride, total cholesterol, and plasma total cholesterol contents (P < 0.05) compared with the control. Transcriptome analysis showed that 336 and 219 genes were significantly upregulated and downregulated, respectively. Gene enrichment analysis showed that many differentially expressed genes (DEGs) were associated with lipid metabolism pathways (fatty acid biosynthesis, fatty acid elongation, and unsaturated fatty acid biosynthesis), carbohydrate metabolism pathways (glycolysis, the pentose phosphate pathway, and the citrate cycle), and the oxidative phosphorylation pathway. Real-time quantitative PCR (Q-PCR) validation results showed that the expression profiles of 15 genes exhibited similar trends both in RNA sequencing (RNA-seq) and Q-PCR analysis. These results reveal that optimum dietary Se activates glucose catabolic processes, fatty acid biosynthetic processes, and energy production and hence produces higher liver lipid content. This study concludes that the previously established level of nutritional Se (Se-yeast) (2 mg/kg diet, fed basis) for rainbow trout promotes energy storage in the liver, which may benefit fish growth to some extent.
Collapse
Affiliation(s)
- Feifei Chen
- Ministry of Education, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Li Wang
- Ministry of Education, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Dianfu Zhang
- Ministry of Education, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Sai Li
- Ministry of Education, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Xuezhen Zhang
- Ministry of Education, College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Zhao L, Carmean CM, Landeche M, Chellan B, Sargis RM. Selenomethionine modulates insulin secretion in the MIN6-K8 mouse insulinoma cell line. FEBS Lett 2021; 595:3042-3055. [PMID: 34780071 PMCID: PMC10924436 DOI: 10.1002/1873-3468.14232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element of interest for its potential role in glucose homeostasis. The present study investigated the impact of selenium supplementation as selenomethionine (SeMet) on insulin secretion in MIN6-K8 cells, a pancreatic β-cell model. We found that SeMet enhanced percent glucose-induced insulin secretion, while also increasing tolbutamide- and KCl-induced percent insulin secretion. RNA-sequencing showed that SeMet supplementation altered expression of several selenoproteins, including glutathione peroxidase 3 (Gpx3) and selenoprotein P (SelP). Targeted knockdown of Gpx3 increased both percent and total insulin release, while SelP knockdown increased insulin content and insulin release. Collectively, these studies support a putative role for selenium and selenoproteins in the regulation of insulin secretion, glucose homeostasis, and diabetes risk.
Collapse
Affiliation(s)
- Lidan Zhao
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, IL, USA
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Christopher M Carmean
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, IL, USA
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL, USA
- Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, IL, USA
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, IL, USA
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, IL, USA
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, IL, USA
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL, USA
- Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Daily Intake and Serum Levels of Copper, Selenium and Zinc According to Glucose Metabolism: Cross-Sectional and Comparative Study. Nutrients 2021; 13:nu13114044. [PMID: 34836302 PMCID: PMC8622420 DOI: 10.3390/nu13114044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trace elements play an important role in metabolism. We compared the daily intake and serum concentrations of copper (Cu), selenium (Se), and zinc (Zn) across a spectrum of glucose tolerance status in a representative U.S. population. Daily intake and serum concentrations of Cu, Zn and Se in 5087 adults from the 2011–2016 National Health and Nutrition Examination Survey (NHANES) were examined and compared to normal (NGT) and abnormal (AGT) glucose tolerance and the presence of diabetes mellitus (DM). Other than Zn deficiency (21.15%), the prevalence of Zn, Se, and Cu excess and Se and Cu deficiency were low (<4.00%). As compared to the NGT group, Cu and Se supplementation was higher in the AGT and DM groups (p < 0.0001 for all). Serum Se and Zn, but not Cu, concentrations were highly correlated with daily intake (p < 0.0001 for both). As compared to the NGT group, serum Cu concentration was highest in the AGT group (p = 0.03), serum Se concentration was highest in the DM group (p < 0.0001), and serum Zn concentration was highest in the AGT group (p < 0.0001). Serum Se and Zn concentration was correlated with daily Se and Zn intake. Even within the reference range for serum Cu, Se, and Zn concentrations, a higher serum concentration of Cu, Se, and Zn was associated with abnormal glucose metabolism. Although the casual relationship remains to be elucidated, these data suggest caution in Cu, Se and Zn supplementation in non-deficient individuals.
Collapse
|
6
|
Macan TP, de Amorim TA, Damiani AP, Beretta ÂCDL, Magenis ML, Vilela TC, Teixeira JP, Andrade VMD. Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug Chem Toxicol 2020; 45:1066-1072. [PMID: 32811197 DOI: 10.1080/01480545.2020.1808667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Brazil nut (Bertholletia excelsa, H.B.K.) originating from the Amazon region is one of the richest known sources of selenium (Se), a micronutrient that is essential and required for optimal physiological functioning. This mineral presents several health benefits, including improvement of the redox cellular status and maintenance of genomic stability. Knowing that type 2 diabetes mellitus (T2D) is strongly linked to oxidative stress and consequently DNA damage, the aim of this study was to assess the ex vivo antioxidative effects of Se through Brazil nut consumption and its potential in preventing oxidative DNA damage induced by H2O2. In order to accomplish this, the Comet assay (single-cell gel electrophoresis) was used to measure DNA damage in peripheral blood cells harvested before and after supplementation with Brazil nut. Comet assay was also applied ex vivo to measure the potential of Se to prevent oxidative damage to DNA induced by H2O2 in blood of type 2 diabetes patients collected before and after six months of supplementation with Brazil nut. We found that supplementation with Brazil nuts significantly increased serum Se levels. Furthermore, we observed a significant increase in fasting blood glucose after six months of consuming Brazil nuts; however, no significant effect was observed on the levels of glycated hemoglobin. Finally, we noticed that the cells were more resistant to H2O2-induced DNA damage after six months of supplementation with Brazil nut. Thus, consumption of Brazil nuts could decrease oxidative DNA damage in T2D patients, probably through the antioxidative effects of Se.
Collapse
Affiliation(s)
- Tamires Pavei Macan
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Thais Aquino de Amorim
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Ângela Caroline da Luz Beretta
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Marina Lummertz Magenis
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Thais Ceresér Vilela
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
7
|
The Correlation between Dietary Selenium Intake and Type 2 Diabetes: A Cross-Sectional Population-Based Study on North Chinese Adults. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8058463. [PMID: 32076615 PMCID: PMC6996697 DOI: 10.1155/2020/8058463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
The relationship between selenium (Se) and type 2 diabetes (T2D) remains controversial. In previous animal and cell studies, Se was found to be insulin mimic and antidiabetic, whereas recent epidemiological and interventional trials have shown an unexpected association between high Se intake and increased risk of T2D. The present study aimed to investigate the significance of dietary Se and T2D in North Chinese adults. A large sample of the population was enrolled through cluster sampling in Northern China (N=8824). Information on basic characteristics, anthropometric measures, and dietary Se intake was collected from each subject for analysis. Multivariable logistic regression was used to investigate the association between dietary Se and T2D through adjusted odds ratio (OR) and the corresponding 95% confidence interval (CI). The average nutritional Se intake was 52.43 μg/day, and the prevalence of T2D was 20.4% in the studied population. The OR for developing T2D was 1.66 (95% CI: 1.38, 1.99; P for linear trend <0.005), comparing the highest to the lowest quintile of energy-adjusted Se intake in multivariate logistic regression analysis. The mediation analysis discovered that glucose metabolism (indicated by FBG and HbA1c) mediated this association. In conclusion, our research adds further support to the role of high dietary Se in the incidence of T2D. The results also suggested that this association was mediated by glucose metabolism.
Collapse
|
8
|
Solovyev N, Vanhaecke F, Michalke B. Selenium and iodine in diabetes mellitus with a focus on the interplay and speciation of the elements. J Trace Elem Med Biol 2019; 56:69-80. [PMID: 31442957 DOI: 10.1016/j.jtemb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease caused by insulin deficiency (type I) or dysfunction (type II). Diabetes is a threatening public health concern. It is considered as one of the priority non-communicable diseases, due to its high and increasing incidence, the associated healthcare costs, and threatening medical complications. Two trace elements selenium (Se) and iodine (I) were intensively discussed in the context of diabetic pathology and, possibly, etiology. It seems there is a multilayer involvement of these essential nutrients in glucose tolerance, energy metabolism, insulin signaling and resistance, which are mainly related to the antioxidant selenoenzymes and the thyroid hormones. Other factors might be related to (auto)immunity, protection against endoplasmic reticulum stress, and leptin signaling. The aim of the current review is to evaluate the current understanding of the role of selenium and iodine in diabetes with a focus on the biochemical interplay between the elements, their possible role as biomarkers, and their chemical speciation. Possible impacts from novel analytical techniques related to trace element speciation and isotopic analysis are outlined.
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation; Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Bernhard Michalke
- Helmhotz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
9
|
Febiyanto N, Yamazaki C, Kameo S, Sari DK, Puspitasari IM, Sunjaya DK, Herawati DMD, Nugraha GI, Fukuda T, Koyama H. Effects of Selenium Supplementation on the Diabetic Condition Depend on the Baseline Selenium Status in KKAy Mice. Biol Trace Elem Res 2018; 181:71-81. [PMID: 28429286 DOI: 10.1007/s12011-017-1013-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023]
Abstract
Oxidative stress in obesity leads to insulin resistance in type 2 diabetes. Some selenoproteins possess antioxidant properties, suggesting that selenium (Se) may protect against type 2 diabetes; however, evidence from epidemiological studies is contradictory. We hypothesized that Se status before supplementation (baseline) contributes to the supplementation outcome. This study aimed to clarify the influence of baseline Se status on the effect of Se supplementation on the diabetic condition. Six-week-old KKAy mice were fed a diet without supplemental Se or with 0.1 ppm Se in the form of L-selenomethionine (SeM) for 2 weeks to create low-Se and sufficient-Se baseline statuses, respectively. For the next 4 weeks, low-Se mice were given a SeM (0.5 ppm Se)-supplemented diet, and sufficient-Se mice were given either a SeM (0.5 ppm Se)- or sodium selenite (0.5 ppm Se)-supplemented diet; control groups continued on baseline diets. Serum Se concentrations, glutathione peroxidase (GPx) activities, adiponectin levels, glucose tolerance, and insulin sensitivity were analyzed. All mice became diabetic during the 2-week baseline induction period. At the end of the supplementation period, Se-receiving groups demonstrated significantly higher Se concentrations and GPx activities than their respective controls. Sufficient-Se mice receiving SeM had lower blood glucose levels and better insulin sensitivity than control and sodium selenite-receiving mice, whereas low-Se mice receiving SeM showed no such improvements compared with their controls. Our results suggest that Se supplementation in the form of SeM may help prevent type 2 diabetes aggravation in people taking the 55 μg/day Se recommended dietary allowance.
Collapse
Affiliation(s)
- Novian Febiyanto
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Chiho Yamazaki
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Satomi Kameo
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Dian K Sari
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Irma M Puspitasari
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Deni K Sunjaya
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dewi M D Herawati
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Gaga I Nugraha
- Department of Biochemistry, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Toshio Fukuda
- Department of Histopathology and Cytopathology, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hiroshi Koyama
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
10
|
Jablonska E, Reszka E, Gromadzinska J, Wieczorek E, Krol MB, Raimondi S, Socha K, Borawska MH, Wasowicz W. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism. Nutrients 2016; 8:nu8120772. [PMID: 27983572 PMCID: PMC5188427 DOI: 10.3390/nu8120772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast). Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG) and significant down-regulation of seven genes: INSR, ADIPOR1, LDHA, PDHA, PDHB, MYC, and HIF1AN. These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects.
Collapse
Affiliation(s)
- Ewa Jablonska
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| | - Edyta Reszka
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| | - Jolanta Gromadzinska
- Nofer Institute of Occupational Medicine, Department of Biological and Environmental Monitoring, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| | - Edyta Wieczorek
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| | - Magdalena B Krol
- Nofer Institute of Occupational Medicine, Department of Biological and Environmental Monitoring, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| | - Sara Raimondi
- European Institute of Oncology, Division of Epidemiology and Biostatistics, via Ripamonti 435, Milan 20139, Italy.
| | - Katarzyna Socha
- The Medical University of Bialystok, Department of Bromatoloy, A. Mickiewicza 2D Street, 15-222 Bialystok, Poland.
| | - Maria H Borawska
- The Medical University of Bialystok, Department of Bromatoloy, A. Mickiewicza 2D Street, 15-222 Bialystok, Poland.
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Biological and Environmental Monitoring, Sw. Teresy 8 Street, 91-348 Lodz, Poland.
| |
Collapse
|
11
|
Puerto MD, Olivero R, Terevinto A, Saadoun A, Cabrera MC. Dietary Organic and Inorganic Selenium on Liver Glycogen and Lactate, pHu, Color and Drip Loss of Chicken <i>Pectoralis</i> and <i>Gastrocnemius</i> Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojas.2016.61008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhou J, Xu G, Bai Z, Li K, Yan J, Li F, Ma S, Xu H, Huang K. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway. Toxicol Appl Pharmacol 2015; 289:409-18. [PMID: 26522834 DOI: 10.1016/j.taap.2015.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Gang Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhaoshuai Bai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaicheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Junyan Yan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fen Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shuai Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huibi Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Abstract
The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites.
Collapse
Affiliation(s)
- Gerald F Combs
- Grand Forks Human Nutrition Research Center, USDA-ARS, 2420 2nd Ave N Grand Forks, ND 58202, USA.
| |
Collapse
|
14
|
Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS One 2014; 9:e101315. [PMID: 24983750 PMCID: PMC4077766 DOI: 10.1371/journal.pone.0101315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023] Open
Abstract
There are conflicting reports on the link between the micronutrient selenium and the prevalence of diabetes. To investigate the possibility that selenium acts as a "double-edged sword" in diabetes, cDNA microarray profiling and two-dimensional differential gel electrophoresis coupled with mass spectrometry were used to determine changes in mRNA and protein expression in pancreatic and liver tissues of diabetic db/db mice in response to dietary selenate supplementation. Fasting blood glucose levels increased continuously in db/db mice administered placebo (DMCtrl), but decreased gradually in selenate-supplemented db/db mice (DMSe) and approached normal levels after termination of the experiment. Pancreatic islet size was increased in DMSe mice compared with DMCtrl mice, resulting in a clear increase in insulin production and a doubling of plasma insulin concentration. Genes that encode proteins involved in key pancreatic β-cell functions, including regulation of β-cell proliferation and differentiation and insulin synthesis, were found to be specifically upregulated in DMSe mice. In contrast, apoptosis-associated genes were downregulated, indicating that islet function was protected by selenate treatment. Conversely, liver fat accumulation increased in DMSe mice together with significant upregulation of lipogenic and inflammatory genes. Genes related to detoxification were downregulated and antioxidant enzymatic activity was reduced, indicating an unexpected reduction in antioxidant defense capacity and exacerbation of fatty liver degeneration. Moreover, proteomic analysis of the liver showed differential expression of proteins involved in glucolipid metabolism and the endoplasmic reticulum assembly pathway. Taken together, these results suggest that dietary selenate supplementation in db/db mice decreased hyperglycemia by increasing insulin production and secretion; however, long-term hyperinsulinemia eventually led to reduced antioxidant defense capacity, which exacerbated fatty liver degeneration.
Collapse
|
15
|
Zhou J, Huang K, Lei XG. Selenium and diabetes--evidence from animal studies. Free Radic Biol Med 2013; 65:1548-1556. [PMID: 23867154 PMCID: PMC3859733 DOI: 10.1016/j.freeradbiomed.2013.07.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Whereas selenium was found to act as an insulin mimic and to be antidiabetic in earlier studies, recent animal experiments and human trials have shown an unexpected risk of prolonged high Se intake in potentiating insulin resistance and type 2 diabetes. Elevating dietary Se intake (0.4 to 3.0mg/kg of diet) above the nutrient requirements, similar to overproduction of selenoproteins, led to insulin resistance and/or diabetes-like phenotypes in mice, rats, and pigs. Although its diabetogenic mechanism remains unclear, high Se intake elevated activity or production of selenoproteins including GPx1, MsrB1, SelS, and SelP. This upregulation diminished intracellular reactive oxygen species and then dysregulated key regulators of β cells and insulin synthesis and secretion, leading to chronic hyperinsulinemia. Overscavenging intracellular H2O2 also attenuated oxidative inhibition of protein tyrosine phosphatases and suppressed insulin signaling. High Se intake might affect expression and/or function of key regulators of glycolysis, gluconeogenesis, and lipogenesis. Future research is needed to find out if certain forms of Se metabolites in addition to selenoproteins and if mechanisms other than intracellular redox control mediate the diabetogenic effects of high Se intake. Furthermore, a potential interactive role of high Se intake in the interphase of carcinogenesis and diabetogenesis should be explored to make optimal use of Se in human nutrition and health.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Potential utility of sodium selenate as an adjunct to metformin in treating type II diabetes mellitus in rats: a perspective on protein tyrosine phosphatase. BIOMED RESEARCH INTERNATIONAL 2013; 2013:231378. [PMID: 24106697 PMCID: PMC3784083 DOI: 10.1155/2013/231378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/12/2013] [Indexed: 12/14/2022]
Abstract
Metformin is widely regarded as the standard first-line antidiabetic agent, in terms of efficacy and safety profiles. However, in most patients with type II diabetes mellitus (T2DM), it was found that metformin alone is not enough to adequately control hyperglycemia. Thus, we designed this study with the aim to investigate the effect of sodium selenate, a protein tyrosine phosphatase (PTP) inhibitor, individually and as an adjunct to metformin, on a rat model that simulates the metabolic characteristics of human T2DM. T2DM model was achieved by feeding the rats with high-fat, high-fructose diet (HFFD) for 8 weeks followed by a low dose of streptozotocin (STZ) (35 mg/kg/day, i.p.). Changes in serum glucose, insulin, adiponectin, homeostasis model assessment of insulin resistance (HOMA-IR) index, and the lipid profile were assessed. In addition, the level of reduced glutathione (GSH) and the activity of PTP were determined in the liver. Results showed that the addition of sodium selenate to metformin was able to restore hepatic GSH back to normal levels. Also, this combination therapy corrected the altered serum total cholesterol (TC), triglycerides (TG), and adiponectin levels. In conclusion, additive therapeutic effect was recorded when sodium selenate was used as an adjunct to metformin.
Collapse
|
17
|
Shin HS, Yang WJ, Choi EM. The preventive effect of Se-methylselenocysteine on γ-radiation-induced oxidative stress in rat lungs. J Trace Elem Med Biol 2013. [PMID: 23176811 DOI: 10.1016/j.jtemb.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the preventive effect of Se-methylselenocysteine (MSC) administration on γ-radiation (whole body irradiation, single 10-Gy dose)-induced oxidative damage in rat lungs. Rats were pretreated with MSC (0.75mg/rat/day) for 1 week before γ-irradiation. The MSC pretreatment prevented the irradiation-induced increase in lipid peroxidation and the concomitant decrease in cellular glutathione content. The prevention of irradiation-induced oxidative damage in MSC-pretreated rat lungs appeared to be associated with increased antioxidant capacity, particularly in the glutathione system. The 1-week MSC treatment resulted in an increase in glutathione peroxidase, glutathione reductase, and glucose 6-phosphate dehydrogenase activities, which are involved in glutathione redox cycling. An increase in catalase activity was also observed in the rat lungs. Additionally, a significantly increased level of nuclear factor erythroid 2-related factor 2 (Nrf2) was exhibited in the MSC-treated rat lungs. Heme oxygenase 1, glutathione S-transferase pi, and peroxiredoxin 1, which are known target proteins of Nrf2, were also increased in MSC-treated lungs. These results implicate Nrf2 signaling in the MSC-induced activation of the antioxidant system.
Collapse
Affiliation(s)
- Ho-Sang Shin
- Department of Chemistry, University of Incheon, Incheon, Republic of Korea
| | | | | |
Collapse
|
18
|
Roy S, Dontamalla SK, Mondru AK, Sannigrahi S, Veerareddy PR. Downregulation of apoptosis and modulation of TGF-β1 by sodium selenate prevents streptozotocin-induced diabetic rat renal impairment. Biol Trace Elem Res 2011; 139:55-71. [PMID: 20174975 DOI: 10.1007/s12011-010-8635-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/28/2010] [Indexed: 02/02/2023]
Abstract
To investigate whether sodium selenate treatment would impact on the onset of diabetic nephropathy, we examined blood glucose, serum biochemical components, and interrelationship between oxidative stress, TGF-β1, and apoptosis in streptozotocin (STZ) induced diabetic rats. Sixty male Wistar rats were divided into six groups. Group I (n = 10), normal control; Group II (n = 10), diabetic control; Group III (n = 10), sodium selenate (16 μmoles/kg) + diabetic; Group IV (n = 10), sodium selenate (32 μmoles/kg) + diabetic; Group V (n = 10), sodium selenate (16 μmoles/kg) control; and Group VI (n = 10), sodium selenate (32 μmoles/kg) control. Sodium selenate was administered via orogastric route for 10 weeks. In the diabetic group, diabetes was induced by single intraperitoneal injection of STZ (50 mg/kg). The levels of blood glucose were estimated and total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, creatinine, urea, and albumin were detected in serum. Antioxidant status was examined by measuring the superoxide dismutase (SOD), catalase, glutathione, and lipid peroxidation in kidney tissues. Histopathological studies were performed in the kidney tissue sections. The expression of TGF-β1 was estimated by the immunohistochemical analysis in kidneys. Apoptotic study in kidney was performed using the TdT-mediated dUTP nick end labeling technique. It was observed that blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin were significantly higher in diabetic control groups. Diabetic + sodium selenate (16 and 32 μmoles/kg) significantly reduced blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin levels. Selenium-treated groups significantly increased antioxidant enzyme activities (SOD, catalase, and glutathione) in kidneys of diabetic rats. All enzyme activities of selenium control groups did not differ compared with the normal control. Sodium selenate reduces significantly lipid peroxidation in diabetic rats. Cellular architecture of the diabetic rats was altered whereas sodium selenate administration rectifies the degenerative changes of the kidney. Profound immunopositivity of TGF-β1 was observed in the glomerular and tubulointerstitial cells of diabetic rat kidney. Immunopositivity of TGF-β1 was significantly reduced in both low and high dose of sodium-selenate-treated rats (P < 0.05, P < 0.01). High numbers of apoptotic cells were observed in diabetic rats whereas sodium selenate in both doses significantly reduces the incidence of apoptosis (P < 0.05, P < 0.01). We conclude herein that sodium selenate has the potential to play a significant role in limiting the renal impairment by altering the apoptosis and TGF-β1 in experimental diabetic rats.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmacology, St. Peter's Institute of Pharmaceutical Sciences, Hanmakonda, Warangal, Andhra Pradesh 506001, India.
| | | | | | | | | |
Collapse
|
19
|
Shin HS, Choi EM. Effect of Se-methylselenocysteine on the Antioxidant System in Rat Tissues. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.4.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
|
21
|
Nam TI, Park JJ, Choi EM. Prevention of Alloxan-induced Diabetes by Se-Methylselenocysteine Pretreatment in Rats: The Effect on Antioxidant System in Pancreas. Prev Nutr Food Sci 2009. [DOI: 10.3746/jfn.2009.14.2.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Differential action of methylselenocysteine in control and alloxan-diabetic rabbits. Chem Biol Interact 2009; 177:161-71. [DOI: 10.1016/j.cbi.2008.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 01/25/2023]
|
23
|
Meyer JA, Spence DM. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 2009. [DOI: 10.1039/b817203j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Campbell SC, Aldibbiat A, Marriott CE, Landy C, Ali T, Ferris WF, Butler CS, Shaw JA, Macfarlane WM. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett 2008; 582:2333-7. [DOI: 10.1016/j.febslet.2008.05.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/16/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
25
|
Erbayraktar Z, Yilmaz O, Artmann AT, Cehreli R, Coker C. Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res 2007; 118:217-26. [PMID: 17916924 DOI: 10.1007/s12011-007-0037-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
The objective of this study was to investigate the effects of different forms of Se supplementation on the antioxidant defense and glucose homeostasis in experimental diabetes. Sodium selenate (SS) or selenomethionine (SM) were administered (2 micromol Se kg(-1) day(-1)) via orogastric route to streptozotocine (STZ)-induced diabetic rats in addition to basal diet for 12 weeks. Glucose levels in whole blood, glutathione peroxidase (GSH-Px) activity in erythrocytes, Se and fructosamine levels in plasma were evaluated monthly. Plasma Se levels increased significantly in all diabetic groups compared to basal measurements, being more prominent in SM group [p(SM(3)/SM(0)) = 0.018]. The increase in GSH-Px activities was significant at the end of the second month in SS [p(SS(2)/SS(0)) = 0.028], whereas at the end of the third month in SM the value was lower [p(SM3/SM0) = 0.018] and the unsupplemented diabetic control (DC) groups, p(DC(3)/DC(0)) = 0.012. Glucose increased significantly only in DC group. Fructosamine increased gradually in all diabetic groups, being significant in DC and SS groups. At the end of the third month, highest fructosamine levels were observed in SS group, which were significantly higher than the SM group [p(SM/SS) = 0.010]. In conclusion, Se augmented the antioxidant defense by increasing GSH-Px activity and this effect was more prominent when Se was supplemented as SM, which exerted positive effects also on glucose homeostasis.
Collapse
Affiliation(s)
- Zubeyde Erbayraktar
- Department of Biochemistry, School of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Kiersztan A, Lukasinska I, Baranska A, Lebiedzinska M, Nagalski A, Derlacz RA, Bryla J. Differential effects of selenium compounds on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies. J Inorg Biochem 2007; 101:493-505. [PMID: 17222910 DOI: 10.1016/j.jinorgbio.2006.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Although selenium is taken with diet mainly as selenoamino acids, its hypoglycaemic action on hepatic gluconeogenesis has been studied with the use of inorganic selenium derivatives. The aim of the present investigation was to compare relative efficacies of inorganic and organic selenium compounds in reducing glucose synthesis in hepatocytes and renal tubules, significantly contributing to the glucose homeostasis. In contrast to hepatocytes, both selenite and methylselenocysteine inhibited renal gluconeogenesis by about 40-45% in control rabbits. Selenate did not affect this process, whereas selenomethionine inhibited gluconeogenesis by about 20% in both hepatocytes and renal tubules. In contrast to methylselenocysteine, selenite decreased intracellular ATP content, glutathione reduced/glutathione oxidized (GSH/GSSG) ratio and pyruvate carboxylase, PEPCK and FBPase activities, while methylselenocysteine diminished PEPCK activity due to elevation of intracellular 2-oxoglutarate and GSSG, inhibitors of this enzyme. Experiments in vivo indicate that in 3 of 9 alloxan-diabetic rabbits treated for 14 days with methylselenocysteine (0.182mg/kg body weight) blood glucose level was normalized, whereas in all diabetic rabbits plasma creatinine and urea levels decreased from 2.52+/-0.18 and 87.4+/-9.7 down to 1.63+/-0.11 and 39.0+/-2.8, respectively. In view of these data selenium supplementation might be beneficial for protection against diabetes-induced nephrotoxicity despite selenium accumulation in kidneys and liver.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, Warsaw University, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Mueller AS, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 2005; 17:548-60. [PMID: 16443359 DOI: 10.1016/j.jnutbio.2005.10.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/14/2005] [Accepted: 10/15/2005] [Indexed: 11/18/2022]
Abstract
In recent years, a number of investigations on the antidiabetic effects of supranutritional selenate doses have been carried out. Selenate (selenium oxidation state +VI) was shown to possess regulatory effects on glycolysis, gluconeogenesis and fatty acid metabolism, metabolic pathways which are disturbed in diabetic disorders. An enhanced phosphorylation of single components of the insulin signalling pathway could be shown to be one molecular mechanism responsible for the insulinomimetic properties of selenate. In type II diabetic animals, a reduction of insulin resistance could be shown as an outcome of selenate treatment. The present study with db/db mice was performed to investigate the antidiabetic mechanisms of selenate in type II diabetic animals. Twenty-one young adult female db/db mice were randomly assigned to three experimental groups (selenium deficient=0Se, selenite-treated group=SeIV and selenate-treated group=SeVI) with seven animals each. Mice of all groups were fed a selenium-deficient diet for 8 weeks. The animals of the groups SeIV and SeVI were supplemented with increasing amounts of sodium selenite or sodium selenate up to 35% of the LD50 in week 8 in addition to the diet by tube feeding. Selenate treatment reduced insulin resistance significantly and reduced the activity of liver cytosolic protein tyrosine phosphatases (PTPs) as negative regulators of insulin signalling by about 50%. In an in vitro inhibition test selenate (oxidation state +VI) per se did not inhibit PTP activity. In this test, however, selenium compounds of the oxidation state +IV were found to be the actual inhibitors of PTP activity. Selenate administration in vivo further led to characteristic changes in the selenium-dependent redox system, which could be mimicked in an in vitro assay and provided further evidence for the intermediary formation of SeIV metabolites. The expression of peroxisome proliferator-activated receptor gamma (PPARgamma), another important factor in the context of insulin resistance and lipid metabolism, was significantly increased by selenate application. In particular, liver gluconeogenesis and lipid metabolism were influenced strongly by selenate treatment. In conclusion, our results showed that supranutritional selenate doses influenced two important mechanisms involved in insulin-resistant diabetes, namely, PTPs and PPARgamma, which, in turn, can be assumed as being responsible for the changes in intermediary metabolism, e.g., gluconeogenesis and lipid metabolism. The initiation of these mechanisms thereby seems to be coupled to the intermediary formation of the selenium oxidation state +IV (selenite state) from selenate.
Collapse
Affiliation(s)
- Andreas S Mueller
- Institute of Animal Nutrition and Nutritional Physiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | | |
Collapse
|
29
|
Müller AS, Most E, Pallauf J. Effects of a supranutritional dose of selenate compared with selenite on insulin sensitivity in type II diabetic dbdb mice. J Anim Physiol Anim Nutr (Berl) 2005; 89:94-104. [PMID: 15787978 DOI: 10.1111/j.1439-0396.2005.00559.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study was performed to examine the mechanism by which selenate ameliorates the insulin sensitivity in type II diabetic dbdb mice. Therefore, 21-adult female dbdb mice were randomly assigned to three experimental groups (0Se, SeIV and SeVI) with seven animals per group. Mice of group 0Se were fed with a selenium-deficient diet (<0.02 mg Se/kg) based on wheat and torula yeast for 8 weeks whereas the mice of groups SeIV (selenite) and SeVI (selenate) were fed with sodium selenite and sodium selenate (up to 35% of the LD(50) for mice in eighth week), in addition to the diet by daily tube feeding. Eight weeks of selenate application led to significantly elevated insulin sensitivity in comparison with selenium deficiency and selenite application. The activity of cytosolic protein tyrosine phosphatases (PTPs) as important negative regulators of insulin signalling was reduced from 53.8% to 22.5% in the liver and skeletal muscle of selenate-treated mice in comparison with the selenium deficient and selenite-treated controls, suggesting an inhibition of PTPs by intermediary selenate metabolites. In an additional in vitro inhibition study, selenate (oxidation state +VI) did not inhibit PTP activity. Selenium metabolites in the oxidation state +IV were found to be the actual inhibitors of PTP activity. In conclusion, the results of the present study show that one possible mechanism by which supranutritional selenate doses enhance insulin sensitivity in type II diabetic dbdb mice is based on the inhibition of PTPS as negative regulators of insulin signalling. Moreover the cellular metabolism of selenate including its intermediary reduction to the oxidation state +IV seems to play a crucial role during this process.
Collapse
Affiliation(s)
- A S Müller
- Institute of Animal Nutrition and Nutritional Physiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | | | | |
Collapse
|
30
|
Sheng XQ, Huang KX, Xu HB. Influence of alloxan-induced diabetes and selenite treatment on blood glucose and glutathione levels in mice. J Trace Elem Med Biol 2005; 18:261-7. [PMID: 15966575 DOI: 10.1016/j.jtemb.2005.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many clinical studies reported that diabetic patients had lower glutathione contents in erythrocytes or plasma. Recently, selenium, an essential trace element with well-known antioxidant characteristics, has been found to have insulin-mimetic properties. But seldom information is available about the influence of selenium on glutathione changes induced by diabetes mellitus in animals. Therefore, this study was designed to compare the impacts of selenite treatment on glutathione (GSH) levels of blood and tissues such as brain, kidney, liver, spleen and testis in mice. Four groups were used in this study: a control group, a diabetic group, a selenite-treated normal group and a selenite-treated diabetic group. Selenite was administered to the mice for 4 weeks with an oral dose of 2 mg kg(-1) day(-1) by gavage. The blood glucose level, and GSH level in blood and tissues were determined. The results show that the selenite-treated diabetic group had significantly lower blood glucose levels than the diabetic group. Moreover, alloxan-induced diabetes significantly decreased GSH levels in blood, kidney, liver and testis compared to the controls. Selenite treatment of the diabetic mice only improved the GSH levels in liver and brain. On the other hand, selenite administered to the normal mice reduced GSH levels in the liver compared to the controls. In conclusion, this study suggests that selenite treatment of diabetic mice with an effective dose would be beneficial for the antioxidant system of liver and brain although it exerts a toxic effect on the liver of normal mice.
Collapse
Affiliation(s)
- Xi-Qun Sheng
- Institute of Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | | | | |
Collapse
|
31
|
Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE. Selenium and brain function: a poorly recognized liaison. ACTA ACUST UNITED AC 2004; 45:164-78. [PMID: 15210302 DOI: 10.1016/j.brainresrev.2004.03.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 01/08/2023]
Abstract
Molecular biology has recently contributed significantly to the recognition of selenium (Se)2 and Se-dependent enzymes as modulators of brain function. Increased oxidative stress has been proposed as a pathomechanism in neurodegenerative diseases including, among others, Parkinson's disease, stroke, and epilepsy. Glutathione peroxidases (GPx), thioredoxin reductases, and one methionine-sulfoxide-reductase are selenium-dependent enzymes involved in antioxidant defense and intracellular redox regulation and modulation. Selenium depletion in animals is associated with decreased activities of Se-dependent enzymes and leads to enhanced cell loss in models of neurodegenerative disease. Genetic inactivation of cellular GPx increases the sensitivity towards neurotoxins and brain ischemia. Conversely, increased GPx activity as a result of increased Se supply or overexpression ameliorates the outcome in the same models of disease. Genetic inactivation of selenoprotein P leads to a marked reduction of brain Se content, which has not been achieved by dietary Se depletion, and to a movement disorder and spontaneous seizures. Here we review the role of Se for the brain under physiological as well as pathophysiological conditions and highlight recent findings which open new vistas on an old essential trace element.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Neurobiology of Selenium, Neuroscience Research Center, Charité, University Medical School, Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 2004; 101:8852-7. [PMID: 15184668 PMCID: PMC428436 DOI: 10.1073/pnas.0308096101] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, a hallmark of type 2 diabetes, is associated with oxidative stress. However, the role of reactive oxygen species or specific antioxidant enzymes in its development has not been tested under physiological conditions. The objective of our study was to investigate the impact of overexpression of glutathione peroxidase 1 (GPX1), an intracellular selenoprotein that reduces hydrogen peroxide (H(2)O(2)) in vivo, on glucose metabolism and insulin function. The GPX1-overexpressing (OE) and WT male mice (n = 80) were fed a selenium-adequate diet (0.4 mg/kg) from 8 to 24 weeks of age. Compared with the WT, the OE mice developed (P < 0.05) hyperglycemia (117 vs. 149 mg/dl), hyperinsulinemia (419 vs. 1,350 pg/ml), and elevated plasma leptin (5 vs. 16 ng/ml) at 24 weeks of age. Meanwhile, these mice were heavier (37 vs. 27 g, P < 0.001) and fatter (37% vs. 17% fat, P < 0.01) than the WT mice. At 30-60 min after an insulin challenge, the OE mice had 25% less (P < 0.05) of a decrease in blood glucose than the WT mice. Their insulin resistance was associated with a 30-70% reduction (P < 0.05) in the insulin-stimulated phosphorylations of insulin receptor (beta-subunit) in liver and Akt (Ser(473) and Thr(308)) in liver and soleus muscle. Here we report the development of insulin resistance in mammals with elevated expression of an antioxidant enzyme and suggest that increased GPX1 activity may interfere with insulin function by overquenching intracellular reactive oxygen species required for insulin sensitizing.
Collapse
Affiliation(s)
- James P McClung
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|