1
|
Geertsema J, Kratochvil M, González-Domínguez R, Lefèvre-Arbogast S, Low D, Du Preez A, Lee H, Urpi-Sarda M, Sánchez-Pla A, Aigner L, Samieri C, Andres-Lacueva C, Manach C, Thuret S, Lucassen P, Korosi A. Coffee polyphenols ameliorate early-life stress-induced cognitive deficits in male mice. Neurobiol Stress 2024; 31:100641. [PMID: 38827176 PMCID: PMC11140806 DOI: 10.1016/j.ynstr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Stress exposure during the sensitive period of early development has been shown to program the brain and increases the risk to develop cognitive deficits later in life. We have shown earlier that early-life stress (ES) leads to cognitive decline at an adult age, associated with changes in adult hippocampal neurogenesis and neuroinflammation. In particular, ES has been shown to affect neurogenesis rate and the survival of newborn cells later in life as well as microglia, modulating their response to immune or metabolic challenges later in life. Both of these processes possibly contribute to the ES-induced cognitive deficits. Emerging evidence by us and others indicates that early nutritional interventions can protect against these ES-induced effects through nutritional programming. Based on human metabolomics studies, we identified various coffee-related metabolites to be part of a protective molecular signature against cognitive decline in humans. Caffeic and chlorogenic acids are coffee-polyphenols and have been described to have potent anti-oxidant and anti-inflammatory actions. Therefore, we here aimed to test whether supplementing caffeic and chlorogenic acids to the early diet could also protect against ES-induced cognitive deficits. We induced ES via the limited nesting and bedding paradigm in mice from postnatal(P) day 2-9. On P2, mice received a diet to which 0.02% chlorogenic acid (5-O-caffeoylquinic acid) + 0.02% caffeic acid (3',4'-dihydroxycinnamic acid) were added, or a control diet up until P42. At 4 months of age, all mice were subjected to a behavioral test battery and their brains were stained for markers for microglia and neurogenesis. We found that coffee polyphenols supplemented early in life protected against ES-induced cognitive deficits, potentially this is mediated by the survival of neurons or microglia, but possibly other mechanisms not studied here are mediating the effects. This study provides additional support for the potential of early nutritional interventions and highlights polyphenols as nutrients that can protect against cognitive decline, in particular for vulnerable populations exposed to ES.
Collapse
Affiliation(s)
- J. Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - M. Kratochvil
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - R. González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - S. Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - D.Y. Low
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont Ferrand, France
| | - A. Du Preez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - H. Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - M. Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A. Sánchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - L. Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020, Austria
| | - C. Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - C. Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - C. Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont Ferrand, France
| | - S. Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - P.J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - A. Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Kargari M, Sharafi M, Torshizi MAK, Hezavehei M, Zanganeh Z. Effects of hydroxytyrosol on post-thaw quality of rooster sperm. Reprod Domest Anim 2024; 59:e14588. [PMID: 38822558 DOI: 10.1111/rda.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 μg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 μg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 μg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mohammad Kargari
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zeynab Zanganeh
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Moreira Vasconcelos CF, Neugebauer AZ, Basto Souza R. Exploring promising minor natural phenolic compounds in neuroprotection-related preclinical models. Basic Clin Pharmacol Toxicol 2024; 134:770-777. [PMID: 38566316 DOI: 10.1111/bcpt.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.
Collapse
|
4
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Kim TW, Park SS, Kim SH, Kim MK, Shin MS, Kim SH. Exercise before pregnancy exerts protective effect on prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function in offspring. J Exerc Rehabil 2024; 20:2-10. [PMID: 38433854 PMCID: PMC10902695 DOI: 10.12965/jer.2448068.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Stress during pregnancy has a negative effect on the fetus. However, maternal exercise has a positive effect on the cognitive function of the fetus and alleviates the negative effects of stress. This study aimed to demonstrate whether exercise before pregnancy has a protective effect on prenatal stress-induced impairment of memory, neurogenesis and mitochondrial function in mice offspring. In this experiment, immunohistochemistry, Western blot, measurement of mitochondria oxygen respiration, and behavior tests were performed. Spatial memory and short-term memory of the offspring from the prenatal stress with exercise were increased compared to the offspring from the prenatal stress. The numbers of doublecortin-positive and 5-bromo-2'-deoxyuridine-positive cells in the hippocampal dentate gyrus of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. The expressions of brain-derived neurotrophic factor, postsynaptic density 95 kDa, and synaptophysin in the hippocampus of the offspring from the prenatal stress with exercise were enhanced compared to the offspring from the prenatal stress. Oxygen consumption of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. Exercise before pregnancy alleviated prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function. Therefore, exercise before pregnancy may have a protective effect against prenatal stress of the offspring.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Sport and Health Sciences, College of Art and Culture, Sangmyung University, Seoul,
Korea
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Seong-Hyun Kim
- Department of Kinesiology, Michigan State University, East Lansing, MI,
USA
| |
Collapse
|
6
|
Kimizoğlu O, Kirca ND, Kandis S, Micili SC, Harzadin NU, Kocturk S. Daily Consumption of High-Polyphenol Olive Oil Enhances Hippocampal Neurogenesis in Old Female Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:668-677. [PMID: 36416641 DOI: 10.1080/27697061.2022.2144540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of daily consumption of high-polyphenol (HP) olive oil on neurogenesis by investigating neuronal cell proliferation and maturation in the hippocampus of old rats, and to evaluate the relationship between neurogenesis, spatial memory, and anxiety-like behavior. METHODS A total of 34 female, 20-22-month-old Sprague Dawley rats were divided into three groups: control group, low-polyphenol (LP) group, and high-polyphenol (HP) group. The animals were fed distilled water, LP olive oil and HP-extra virgin olive oil, respectively for 6 weeks using an oral gavage. At 43 days, animals were tested using the Morris Water Maze to evaluate spatial memory, and the Open-field test to evaluate anxiety-like behavior. Neural cell proliferation in the dentate gyrus (DG) was determined by BrdU labeling and Nestin protein expression. Neuronal maturation was determined by NeuN labeling. Synaptic density in the hippocampus and prefrontal cortex was examined by measuring Synaptophysin (SYN) levels. Hippocampal Calbindin levels were measured to assess cellular calcium metabolism. RESULTS Daily consumption of HP olive oil significantly improved cell proliferation and neuronal maturation in the DG of old rats. HP-olive oil significantly increased SYN levels in the prefrontal cortex, and nestin and calbindin levels in the hippocampus (p < 0.05). LP olive oil diet has shown no effect on any parameter (p > 0.05). We also did not find any statistically significant difference between the groups in terms of spatial memory and anxiety-like behavior (p > 0.05). CONCLUSION Our study is first to show that daily consumption of HP-olive oil enhances hippocampal neurogenesis in old rats, which has been confirmed by proliferation and maturation biomarkers. In addition, increased SYN and calbindin levels showed that the generated cells were also functionally developed in the HP group. We suggest that daily consumption of HP olive oil may have beneficial effects on brain aging by triggering neurogenesis.
Collapse
Affiliation(s)
- Ozgun Kimizoğlu
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - N Deniz Kirca
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Serap Cilaker Micili
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| | - Nazan Uysal Harzadin
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Semra Kocturk
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
7
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
8
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Sex differences in the vulnerability of the hippocampus to prenatal stress. Dev Psychobiol 2022; 64:e22305. [PMID: 36282753 DOI: 10.1002/dev.22305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
Distressing events during pregnancy that engage activity of the body's endocrine stress response have been linked with later life cognitive deficits in offspring and associated with developmental changes in cognitive-controlling neural regions. Interestingly, prenatal stress (PS)-induced alterations have shown some sex specificity. Here, we review the literature of animal studies examining sex-specific effect of physical PS on the function and structure of the hippocampus as hippocampal impairments likely underlie PS-associated deficits in learning and memory. Furthermore, the connectivity between the hypothalamic-pituitary-adrenal (HPA) axis and the hippocampus as well as the heavy presence of glucocorticoid receptors (GRs) in the hippocampus suggests this structure plays an important role in modulation of activity within stress circuitry in a sex-specific pattern. We hope that better understanding of sex-specific, PS-related hippocampal impairment will assist in uncovering the molecular mechanisms behind sex-based risk factors in PS populations across development, and perhaps contribute to greater precision in management of cognitive disturbances in this vulnerable population.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
López-Yerena A, Grases-Pintó B, Zhan-Dai S, Pérez-Cano FJ, Lamuela-Raventos RM, Rodríguez-Lagunas MJ, Vallverdú-Queralt A. Nutrition during pregnancy and lactation: New evidence for the vertical transmission of extra virgin olive oil phenolic compounds in rats. Food Chem 2022; 391:133211. [DOI: 10.1016/j.foodchem.2022.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
|
11
|
Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on the Hippocampus Proteome in a Porcine Model. Antioxidants (Basel) 2022; 11:antiox11061135. [PMID: 35740029 PMCID: PMC9219860 DOI: 10.3390/antiox11061135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Supplementation of a mother’s diet with antioxidants such as hydroxytyrosol (HTX) has been proposed to ameliorate the adverse phenotypes of foetuses affected by intrauterine growth restriction (IUGR). Our previous studies showed, in a porcine model of IUGR, an effect of maternal HTX supplementation on the neurotransmitter profile of several brain areas and the morphology of the hippocampus in 100 days old foetuses. The present study analyzed the impact of maternal HTX supplementation on the hippocampus proteome at this foetal age by TMT10plex labelling. Eleven differentially abundant proteins were identified by comparing both conditions, and eight of them downregulated and three upregulated in the HTX-treated group. The downregulated proteins were mainly involved in protein synthesis and RNA metabolism and may explain the differences in neuron differentiation in the HTX-treated group. The upregulated proteins were related to cell detoxification and could represent a potential mechanism to explain the neuroprotective effect of HTX.
Collapse
|
12
|
Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022; 23:e13392. [PMID: 34845821 DOI: 10.1111/obr.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA.,Department of Obstetrics and Gynecology, University of California, Irvine, California, USA.,Department of Epidemiology, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
14
|
Butt MS, Tariq U, Iahtisham-Ul-Haq, Naz A, Rizwan M. Neuroprotective effects of oleuropein: Recent developments and contemporary research. J Food Biochem 2021; 45:e13967. [PMID: 34716610 DOI: 10.1111/jfbc.13967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Neurological disorders are increasing at a faster pace due to oxidative stress, protein aggregation, excitotoxicity, and neuroinflammation. It is reported that the Mediterranean diet including olives as a major dietary component prevents and ameliorates neurological anomalies. Oleuropein is the major bioactive component in different parts of the Olive (Olea europaea L.) tree. Several mechanisms have been reported for the neuroprotective role of oleuropein including induction of apoptosis and autophagy, enhancing the antioxidant pool of the cerebral region, decreasing the unnecessary release of proinflammatory cytokines and chemokines by deactivating the microglia cells and astrocytes thus preventing the occurrence of neuroinflammation. Regular intake of oleuropein seems to be correlated with decreased risks of neural disorders including Alzheimer's, Parkinson's, strokes, depression, anxiety, epilepsy, and others. This review majorly discusses the chemistry, biosynthesis, and metabolism of oleuropein along with an updated vision of its neuroprotective role in counteracting the acute and chronic neurodegenerative and neuropsychiatric disorders. Moreover, mechanisms by which oleuropein may prevent neurodegeneration are reviewed. PRACTICAL APPLICATION: Neurological disorders are negatively affecting the health and life quality of individuals around the globe. Although various medicinal solutions are available to tackle such ailments, none has proven to fully cure and being deprived of side effects. In this respect, the prevention of such disorders using natural remedies may be an effective strategy to overcome the incidence of the increasing cases. Furthermore, the natural compounds provide a safer alternative to pharmaceutical drugs. Hence, oleuropein from olive tree products is found to be efficacious against neurological disorders. This review provides an updated insight on the positive effects of oleuropein against neurodegenerative and neuropsychiatric disorders. The diet practitioners and nutraceutical companies may benefit from the provided information to design and develop strategies to improve the mental health of suffering individuals.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iahtisham-Ul-Haq
- Faculty of Life Sciences, Department of Food Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ambreen Naz
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Rizwan
- Faculty of Life Sciences, Department of Food Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Yeste N, Gómez N, Vázquez-Gómez M, García-Contreras C, Pumarola M, González-Bulnes A, Bassols A. Polyphenols and IUGR Pregnancies: Intrauterine Growth Restriction and Hydroxytyrosol Affect the Development and Neurotransmitter Profile of the Hippocampus in a Pig Model. Antioxidants (Basel) 2021; 10:1505. [PMID: 34679640 PMCID: PMC8532848 DOI: 10.3390/antiox10101505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine growth restriction (IUGR) refers to poor growth of a fetus during pregnancy due to deficient maternal nutrition or oxygen supply. Supplementation of a mother's diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of IUGR. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of the total gestational period), and fetuses were sampled at day 100 of gestation. Fetuses were classified as normal body weight (NBW) or low body weight (LBW) as a consequence of IUGR, constituting four groups: NBW-Control, NBW-HTX, LBW-Control, and LBW-HTX. The brain was removed, and the hippocampus, amygdala, and prefrontal cortex were rapidly dissected. Neuronal markers were studied by immunohistochemistry, and a decrease in the number of mature neurons in the hippocampal Cornu Ammonis subfield 1 (CA1) and the Dentate Gyrus (DG) regions was observed in LBW fetuses together with a higher number of immature neurons and other alterations in neuronal morphology. Furthermore, IUGR conditions altered the neurotransmitter (NT) profile, since an increase in the serotonin (5-HT) pathway was observed in LBW fetuses. Supplementation with HTX was able to reverse the morphological and neurochemical changes, leading both characteristics to values similar to those of NBW fetuses.
Collapse
Affiliation(s)
- Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| | - Néstor Gómez
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| | - Marta Vázquez-Gómez
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (A.G.-B.)
| | | | - Martí Pumarola
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
| | - Antonio González-Bulnes
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (A.G.-B.)
- Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| |
Collapse
|
16
|
|
17
|
Zhao YT, Zhang L, Yin H, Shen L, Zheng W, Zhang K, Zeng J, Hu C, Liu Y. Hydroxytyrosol alleviates oxidative stress and neuroinflammation and enhances hippocampal neurotrophic signaling to improve stress-induced depressive behaviors in mice. Food Funct 2021; 12:5478-5487. [PMID: 33998633 DOI: 10.1039/d1fo00210d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydroxytyrosol (HT), the main phenolic compound in olives and olive products, has antioxidative, anti-inflammatory, neuroprotective, and other physiological functions. The effects of HT on depression are unclear. The aim of this study was to explore the effects of HT on chronic unpredictable mild stress (CUMS) induced depressive-like behaviors. Mice were exposed to CUMS for 9 weeks and then treated with HT beginning in the second week and continuing for 7 weeks. Behavioral, biochemical, and molecular tests were conducted at the end of the experiment. The sucrose preference was significantly decreased in the CUMS group versus the healthy control group. Also, immobility times in forced swimming and tail suspension tests were increased in CUMS-induced mice, but treatment with HT significantly reversed this change. HT ameliorated oxidative stress in CUMS-exposed mice by enhancing superoxide dismutase activity and reducing reactive oxygen species and malondialdehyde levels in the hippocampus. HT administration significantly suppressed microglia activation and inhibited the expression of tumor necrosis factor alpha and interleukin 1 beta in the hippocampus versus the untreated group. The expression level of glial fibrillary acidic protein (GFAP) and the number of GFAP-immunoreactive astrocytes in the hippocampus were significantly augmented by HT. Furthermore, HT treatment increased the expression of hippocampal brain-derived neurotrophic factor (BDNF), phosphorylated tropomyosin receptor kinase B (p-TrkB), and phosphorylated c-AMP response element binding protein (p-CREB) compared with the untreated CUMS group. Overall, HT improved CUMS-induced depressive-like behaviors in mice by alleviating oxidative stress and neuroinflammation and by enhancing the BDNF/TrkB/CREB signaling pathway.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China. and Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, P.R. China
| | - Lulu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Haowen Yin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Ling Shen
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, P.R. China
| | - Wenjing Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Kun Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Jian Zeng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, 524023, P.R. China.
| | - You Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| |
Collapse
|
18
|
Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on Brain Neurochemistry and Development in a Porcine Model. Antioxidants (Basel) 2021; 10:antiox10060884. [PMID: 34073097 PMCID: PMC8227239 DOI: 10.3390/antiox10060884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022] Open
Abstract
Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.
Collapse
|
19
|
Pathania A, Kumar R, Sandhir R. Hydroxytyrosol as anti-parkinsonian molecule: Assessment using in-silico and MPTP-induced Parkinson's disease model. Biomed Pharmacother 2021; 139:111525. [PMID: 33882412 DOI: 10.1016/j.biopha.2021.111525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
3-Hydroxytyrosol (HXT) is a natural polyphenol present in extra virgin olive oil. It is a key component of Mediterranean diet and is known for its strong antioxidant activity. The present study evaluated the potential of HXT as an anti-parkinsonian molecule in terms of its ability to inhibit MAO-B and thereby maintaining dopamine (DA) levels in Parkinson's disease (PD). In-silico molecular docking study followed by MMGBSA binding free energy calculation revealed that HXT has a strong binding affinity for MAO-B in comparison to MAO-A. Moreover, rasagiline and HXT interacted with the similar binding sites and modes of interactions. Additionally, molecular dynamics simulation studies revealed stable nature of HXT-MAO-B interaction and also provided information about the amino acid residues involved in binding. Moreover, in vitro studies revealed that HXT inhibited MAO-B in human platelets with IC50 value of 7.78 μM. In vivo studies using MPTP-induced mouse model of PD revealed increase in DA levels with concomitant decrease in DA metabolites (DOPAC and HVA) on HXT treatment. Furthermore, MAO-B activity was also inhibited on HXT administration to PD mice. In addition, HXT treatment prevented MPTP-induced loss of DA neurons in substantia nigra and their nerve terminals in the striatum. HXT also attenuated motor impairments in PD mice assessed by catalepsy bar, narrow beam walk and open field tests. Thus, the present findings reveal HXT as a potential inhibitor of MAO-B, which may be used as a lead molecule for the development of therapeutics for PD.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
20
|
Bonfante S, Joaquim L, Fileti ME, Giustina AD, de Souza Goldim MP, Danielski LG, Cittadin E, De Carli RJ, de Farias BX, Engel NA, da Rosa N, Fortunato JJ, Giridharan V, Scaini G, Rezin GT, Generoso J, de Bitencourt RM, Terra S, Barichello T, Petronilho F. Stanniocalcin 1 Inhibits the Inflammatory Response in Microglia and Protects Against Sepsis-Associated Encephalopathy. Neurotox Res 2021; 39:119-132. [PMID: 33025358 DOI: 10.1007/s12640-020-00293-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.
Collapse
Affiliation(s)
- Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Evandro Cittadin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Raquel Jaconi De Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Bianca Xavier de Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Vijayasree Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Silvia Terra
- Graduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos (NEUROIMet), Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
21
|
Siracusa R, Scuto M, Fusco R, Trovato A, Ontario ML, Crea R, Di Paola R, Cuzzocrea S, Calabrese V. Anti-inflammatory and Anti-oxidant Activity of Hidrox ® in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants (Basel) 2020; 9:antiox9090824. [PMID: 32899274 PMCID: PMC7576486 DOI: 10.3390/antiox9090824] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In developed countries, the extension of human life is increasingly accompanied by a progressive increase in neurodegenerative diseases, most of which do not yet have effective therapy but only symptomatic treatments. In recent years, plant polyphenols have aroused considerable interest in the scientific community. The mechanisms currently hypothesized for the pathogenesis of Parkinson's disease (PD) are neuroinflammation, oxidative stress and apoptosis. Hydroxytyrosol (HT), the main component of Hidrox® (HD), has been shown to have some of the highest free radical evacuation and anti-inflammatory activities. Here we wanted to study the role of HD on the neurobiological and behavioral alterations induced by rotenone. METHODS A study was conducted in which mice received HD (10 mg/kg, i.p.) concomitantly with rotenone (5 mg/kg, o.s.) for 28 days. RESULTS Locomotor activity, catalepsy, histological damage and several characteristic markers of the PD, such as the dopamine transporter (DAT) content, tyrosine hydroxylase (TH) and accumulation of α-synuclein, have been evaluated. Moreover, we observed the effects of HD on oxidative stress, neuroinflammation, apoptosis and inflammasomes. Taken together, the results obtained highlight HD's ability to reduce the loss of dopaminergic neurons and the damage associated with it by counteracting the three main mechanisms of PD pathogenesis. CONCLUSION HD is subject to fewer regulations than traditional drugs to improve patients' brain health and could represent a promising nutraceutical choice to prevent PD.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Angela Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| |
Collapse
|
22
|
Fusco R, Cordaro M, Siracusa R, D’Amico R, Genovese T, Gugliandolo E, Peritore AF, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Biochemical Evaluation of the Antioxidant Effects of Hydroxytyrosol on Pancreatitis-Associated Gut Injury. Antioxidants (Basel) 2020; 9:antiox9090781. [PMID: 32842687 PMCID: PMC7555523 DOI: 10.3390/antiox9090781] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is a severe abdominal pathology often associated with several complications including gut dysfunction. Oxidative stress is one of the most important pathways involved in this pathology. Hydroxytyrosol (HT), a phenolic compound obtained from olive oil, has shown anti-inflammatory and antioxidant properties. We evaluated the effects of HT administration on pancreatic and intestinal injury induced by caerulein administration. CD1 female mice were administered caerulein (50 μg/kg) for 10 h. HT treatment (5 mg/kg) was performed 30 min after the first caerulein injection and for two consecutive hours afterwards. One hour after the last caerulein injection, mice were sacrificed and serum, colon and pancreatic tissue samples were collected. HT was able to reduce the serum hallmarks of pancreatitis (amylase and lipase), histological damage score in both pancreas and colon tissue, inflammatory cells recruitment (mast cells) in both injured tissues, intrapancreatic trypsin activity and overexpression of the adhesion molecules (Intercellular Adhesion Molecule-1 (ICAM-1) and P-selectin) in colon. Additionally, HT reduced cytokine (interleukin 1 beta (IL- 1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)) levels in serum, pancreas and colon tissue and chemokine release (monocyte chemotactic protein-1 (MCP1/CCL2)) in pancreas and colon tissue. HT decreased lipid peroxidation and oxidative stress (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activity) by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in both injured tissues. Moreover, HT preserved intestinal barrier integrity, as shown by the diamine oxidase (DAO) serum levels and tight junction (zonula occludens (ZO) and occludin) expression in pancreas and colon. Our findings demonstrated that HT would be an important therapeutic tool against pancreatitis-induced injuries in the pancreas and gut.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| |
Collapse
|
23
|
Cao K, Lv W, Hu S, Gao J, Liu J, Feng Z. Punicalagin Activates AMPK/PGC-1α/Nrf2 Cascade in Mice: The Potential Protective Effect against Prenatal Stress. Mol Nutr Food Res 2020; 64:e2000312. [PMID: 32475051 DOI: 10.1002/mnfr.202000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Prenatal stress is closely associated with poor health outcomes for offspring, yet the specific mechanisms and effective interventions remain limited. METHODS AND RESULTS In the present study, both male and female rat offspring exposed to prenatal restraint stress (PRS) are confirmed to have impaired spatial learning and memory, accompanied by reduced AMP-activated protein kinase (AMPK) activity and decreased protein expression of mitochondrial biogenesis and antioxidant pathways in the hippocampus. Interestingly, a deficiency in the AMPK cascade also occurs in liver, heart, and adipose tissues, suggesting that the systemic deactivation of AMPK in the offspring is potentially attributed to increased maternal glucocorticoid levels under PRS. Punicalagin (PU), a major ellagitannin in pomegranate, is found to effectively induce mitochondrial biogenesis and phase II enzymes through activation of AMPK in both HT22 and primary hippocampal neurons, thereby inhibiting glutamate-induced cell viability and mitochondrial membrane potential loss. Meanwhile, the activation of AMPK cascade is also confirmed in mice administrated with PU for three days. CONCLUSIONS Altogether, these results indicate that the systemic deficiency of the AMPK cascade can be the key factor that contributes to poor outcomes of PRS, and PU may be used as an effective maternal nutritional intervention.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shaoqin Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
24
|
D’Andrea G, Ceccarelli M, Bernini R, Clemente M, Santi L, Caruso C, Micheli L, Tirone F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J 2020; 34:4512-4526. [DOI: 10.1096/fj.201902643r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Giorgio D’Andrea
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| |
Collapse
|
25
|
Badihian N, Daniali SS, Kelishadi R. Transcriptional and epigenetic changes of brain derived neurotrophic factor following prenatal stress: A systematic review of animal studies. Neurosci Biobehav Rev 2019; 117:211-231. [PMID: 31838194 DOI: 10.1016/j.neubiorev.2019.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Gestational period plays critical role in neuropsychological development. One of the genes that undergoes changes by prenatal stress (PNS) exposure, is the gene coding brain derived neurotrophic factor (BDNF). Studies have reported different patterns of change following PNS in BDNF, which emphasizes the complexity of the issue. In this review, systematic search of PubMed, Scopus, Web of Science and Cochrane CENTRAL databases was performed. Primary searches resulted in 2132 studies and finally 43 studies were found to meet the inclusion criteria. Transcriptional and epigenetic changes of BDNF gene in the brain were recorded. Decreased or unchanged BDNF total mRNA and BDNF mature protein, with hypermethylation of the coding exons were the most reported changes. However, stress paradigm, gender of the fetus and the day of sacrifice were found to significantly affect the results. Hippocampus and prefrontal cortex are the most vulnerable regions. They can show long lasting and persistent transcriptional and epigenetics changes of BDNF gene following PNS. Further studies evaluating the importance of these findings in humans are essential.
Collapse
Affiliation(s)
- Negin Badihian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
26
|
Calahorra J, Shenk J, Wielenga VH, Verweij V, Geenen B, Dederen PJ, Peinado MÁ, Siles E, Wiesmann M, Kiliaan AJ. Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke. Nutrients 2019; 11:E2430. [PMID: 31614692 PMCID: PMC6836045 DOI: 10.3390/nu11102430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the leading causes of adult disability worldwide. After ischemic stroke, damaged tissue surrounding the irreversibly damaged core of the infarct, the penumbra, is still salvageable and is therefore a target for acute therapeutic strategies. The Mediterranean diet (MD) has been shown to lower stroke risk. MD is characterized by increased intake of extra-virgin olive oil, of which hydroxytyrosol (HT) is the foremost phenolic component. This study investigates the effect of an HT-enriched diet directly after stroke on regaining motor and cognitive functioning, MRI parameters, neuroinflammation, and neurogenesis. Stroke mice on an HT diet showed increased strength in the forepaws, as well as improved short-term recognition memory probably due to improvement in functional connectivity (FC). Moreover, mice on an HT diet showed increased cerebral blood flow (CBF) and also heightened expression of brain derived neurotrophic factor (Bdnf), indicating a novel neurogenic potential of HT. This result was additionally accompanied by an enhanced transcription of the postsynaptic marker postsynaptic density protein 95 (Psd-95) and by a decreased ionized calcium-binding adapter molecule 1 (IBA-1) level indicative of lower neuroinflammation. These results suggest that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic stroke-associated damage.
Collapse
Affiliation(s)
- Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Justin Shenk
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vera H Wielenga
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vivienne Verweij
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Bram Geenen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Pieter J Dederen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - M Ángeles Peinado
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Maximilian Wiesmann
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Amanda J Kiliaan
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Li Y, Peng Y, Ma P, Wang M, Peng C, Tu P, Li X. In vitro and in vivo metabolism of Cistanche tubulosa extract in normal and chronic unpredictable stress-induced depressive rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121728. [DOI: 10.1016/j.jchromb.2019.121728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
28
|
López de Las Hazas MC, Martin-Hernández R, Crespo MC, Tomé-Carneiro J, Del Pozo-Acebo L, Ruiz-Roso MB, Escola-Gil JC, Osada J, Portillo MP, Martinez JA, Navarro MA, Rubió L, Motilva MJ, Visioli F, Dávalos A. Identification and validation of common molecular targets of hydroxytyrosol. Food Funct 2019; 10:4897-4910. [PMID: 31339147 DOI: 10.1039/c9fo01159e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydroxytyrosol (HT) is involved in healthful activities and is beneficial to lipid metabolism. Many investigations focused on finding tissue-specific targets of HT through the use of different omics approaches such as transcriptomics and proteomics. However, it is not clear which (if any) of the potential molecular targets of HT reported in different studies are concurrently affected in various tissues. Following the bioinformatic analyses of publicly available data from a selection of in vivo studies involving HT-supplementation, we selected differentially expressed lipid metabolism-related genes and proteins common to more than one study, for validation in rodent liver samples from the entire selection. Four miRNAs (miR-802-5p, miR-423-3p, miR-30a-5p, and miR-146b-5p) responded to HT supplementation. Of note, miR-802-5p was commonly regulated in the liver and intestine. Our premise was that, in an organ crucial for lipid metabolism such as the liver, consistent modulation should be found for a specific target of HT even if different doses and duration of HT supplementation were used in vivo. Even though our results show inconsistency regarding differentially expressed lipid metabolism-related genes and proteins across studies, we found Fgf21 and Rora as potential novel targets of HT. Omics approaches should be fine-tuned to better exploit the available databases.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
30
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
31
|
ArunSundar M, Shanmugarajan TS, Ravichandiran V. 3,4-Dihydroxyphenylethanol Assuages Cognitive Impulsivity in Alzheimer's Disease by Attuning HPA-Axis via Differential Crosstalk of α7 nAChR with MicroRNA-124 and HDAC6. ACS Chem Neurosci 2018; 9:2904-2916. [PMID: 29901389 DOI: 10.1021/acschemneuro.7b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive impulsivity, a form of suboptimal cost-benefit decision making, is an illustrious attribute of an array of neurodegenerative diseases including Alzheimer's disease (AD). In this study, a delay discounting paradigm was used to assess the effect of 3,4-dihydroxyphenylethanol (DOPET) on cognitive impulsivity, in an oA42i (oligomeric amyloid β1-42 plus ibotenic acid) induced AD mouse model, using a nonspatial T-maze task. The results depicted that oA42i administration elevated cognitive impulsivity, whereas DOPET treatment attenuated the impulsive behavior and matched the choice of the sham-operated controls. In addition, DOPET treatment has ameliorated the anxiety-like behavior in the oA42i-challenged mice. Probing the molecular signaling cascades underpinning these functional ramifications in the oA42i-challenged mice revealed reduced cholinergic (α7 nAChR; alpha 7 nicotinic acetylcholine receptor) function, dysregulated hypothalamic-pituitary-adrenal (HPA) axis (manifested by amplified glucocorticoid receptor expression and plasma corticosterone levels), and also aberrations in the neuroepigenetic (microRNA-124, HDAC6 (histone deacetylase 6), and HSP90 (heat-shock protein 90) expressions) as well as nucleocytoplasmic (importin-α1 expression and nuclear ultra-architecture) continuum. Nonetheless, DOPET administration ameliorated these perturbations and the observations were in line with that of the sham-operated mice. Further validation of the results with organotypic hippocampal slice cultures (OHSCs) confirmed the in vivo findings. We opine that HPA-axis attunement by DOPET might be orchestrated through the α7 nAChR-mediated pathway. Based on these outcomes, we posit that 3,4-dihydroxyphenylethanol might be a potential multimodal agent for the management of cognitive impulsivity and neuromolecular quagmire in AD.
Collapse
Affiliation(s)
- Mohanasundaram ArunSundar
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai-600117, India
| | | | | |
Collapse
|
32
|
Finicelli M, Squillaro T, Di Cristo F, Di Salle A, Melone MAB, Galderisi U, Peluso G. Metabolic syndrome, Mediterranean diet, and polyphenols: Evidence and perspectives. J Cell Physiol 2018; 234:5807-5826. [PMID: 30317573 DOI: 10.1002/jcp.27506] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is defined as the co-occurrence of metabolic risk factors that includes insulin resistance, hyperinsulinemia, impaired glucose tolerance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The clinical significance of MetS consists of identifying a subgroup of patients sharing a common physiopathological state predisposing to chronic diseases. Clinical and scientific studies pinpoint lifestyle modification as an effective strategy aiming to reduce several features accountable for the risk of MetS onset. Among the healthy dietary patterns, the Mediterranean diet (MedDiet) emerges in terms of beneficial properties associated with longevity. Current evidence highlights the protective effect exerted by MedDiet on the different components of MetS. Interestingly, the effect exerted by polyphenols contained within the representative MedDiet components (i.e., olive oil, red wine, and nuts) seems to be accountable for the beneficial properties associated to this dietary pattern. In this review, we aim to summarize the principal evidence regarding the effectiveness of MedDiet-polyphenols in preventing or delaying the physiopathological components accountable for MetS onset. These findings may provide useful insights concerning the health properties of MedDiet-polyphenols as well as the novel targets destined to a tailored approach to MetS.
Collapse
Affiliation(s)
- Mauro Finicelli
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Anna Di Salle
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia
| | - Gianfranco Peluso
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| |
Collapse
|
33
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer. Eur J Nutr 2018; 58:1203-1211. [PMID: 29468462 DOI: 10.1007/s00394-018-1638-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE The main objective of this study was to test the therapeutic potential of hydroxytyrosol and its combination with paclitaxel in breast cancer on oxidative stress status. METHODS Impact on proliferation rates of different chemotherapy administration patterns was assayed in MCF-7 and MDA-MB-231 breast cancer cell lines. Breast tumor-bearing rats were randomly assigned to Control, Hydroxytyrosol, Paclitaxel and Paclitaxel plus hydroxytyrosol groups, for 6 weeks. Tumor volume, cell proliferation and several systemic oxidative stress parameters were measured. Anti-proliferative activity in vitro experiments was correlated with in vivo experiments. RESULTS Combination group did significantly reduce tumor volume when compared with paclitaxel alone. Additionally, the combination improved the antioxidant status without compromising the antitumor activity of standard chemotherapy. CONCLUSION These findings reveal for the first time that hydroxytyrosol is an active partner in combined therapies with paclitaxel against breast cancer. Combination with hydroxytyrosol would also ensure a less oxidative impact of chemotherapeutic drugs that could potentially improve patient wellness.
Collapse
|
35
|
Sangiovanni E, Brivio P, Dell'Agli M, Calabrese F. Botanicals as Modulators of Neuroplasticity: Focus on BDNF. Neural Plast 2017; 2017:5965371. [PMID: 29464125 PMCID: PMC5804326 DOI: 10.1155/2017/5965371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Robles-Almazan M, Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Rodriguez-Garcia C, Quiles JL, Ramirez-Tortosa MC. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res Int 2017; 105:654-667. [PMID: 29433260 DOI: 10.1016/j.foodres.2017.11.053] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022]
Abstract
Many beneficial properties have been attributed to the Mediterranean diet. Over the years, researchers have attempted to learn which foods and which food components are responsible for good health. One of these components is hydroxytyrosol, an important phenolic compound present in olive oil. Hydroxytyrosol is a molecule of high interest to the pharmaceutical industry due to its anti-inflammatory and antimicrobial qualities its role against cardiovascular diseases and metabolic syndrome and for its neuroprotection, antitumour, and chemo modulation effects. The interest in this molecule has led to wide research on its biological activities, its beneficial effects in humans and how to synthetize new molecules from hydroxytyrosol. This review describes the vast range of information about hydroxytyrosol, focusing on its involvement in biological mechanisms and modulation effects on different pathologies. This review also serves to highlight the role of hydroxytyrosol as a nutraceutical and as a potential therapeutic agent.
Collapse
Affiliation(s)
- María Robles-Almazan
- Department of Pathological Anatomy, Hospital Complex of Jaén, Avenida del Ejército Español, 10, Jaén 23007, Spain
| | - Mario Pulido-Moran
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, University campus of Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology José Mataix, University of Granada, Biomedical Research Centre, Avenida del Conocimiento, Armilla, Granada 18016, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, University of Granada, University campus of Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology José Mataix, University of Granada, Biomedical Research Centre, Avenida del Conocimiento, Armilla, Granada 18016, Spain
| | - Cesar Ramirez-Tortosa
- Department of Pathological Anatomy, Hospital Complex of Jaén, Avenida del Ejército Español, 10, Jaén 23007, Spain
| | - Carmen Rodriguez-Garcia
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, University campus of Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology José Mataix, University of Granada, Biomedical Research Centre, Avenida del Conocimiento, Armilla, Granada 18016, Spain
| | - Jose L Quiles
- Department of Physiology, Faculty of Pharmacy, University of Granada, University campus of Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology José Mataix, University of Granada, Biomedical Research Centre, Avenida del Conocimiento, Armilla, Granada 18016, Spain
| | - MCarmen Ramirez-Tortosa
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, University campus of Cartuja, Granada 18071, Spain; Institute of Nutrition and Food Technology José Mataix, University of Granada, Biomedical Research Centre, Avenida del Conocimiento, Armilla, Granada 18016, Spain.
| |
Collapse
|
37
|
Martínez-Huélamo M, Rodríguez-Morató J, Boronat A, de la Torre R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants (Basel) 2017; 6:E73. [PMID: 28954417 PMCID: PMC5745483 DOI: 10.3390/antiox6040073] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
Strong adherence to a Mediterranean diet is associated with improved cognitive function and a lower prevalence of mild cognitive impairment. Olive oil and red wine are rich sources of polyphenols which are responsible in part for the beneficial effects on cognitive functioning. Polyphenols induce endogenous antioxidant defense mechanisms by modulating transcription factors such as the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This review discusses the scientific data supporting the modulating effect of olive oil and red wine polyphenols on Nrf2 expression, and the potential health benefits associated with cognitive functioning.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Jose Rodríguez-Morató
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| | - Anna Boronat
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
| | - Rafael de la Torre
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Modulatory Mechanism of Polyphenols and Nrf2 Signaling Pathway in LPS Challenged Pregnancy Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8254289. [PMID: 29138679 PMCID: PMC5613688 DOI: 10.1155/2017/8254289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2017] [Indexed: 12/16/2022]
Abstract
Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative stress-induced pregnancy disorders.
Collapse
|
39
|
Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. Int J Mol Sci 2017; 18:ijms18050930. [PMID: 28452954 PMCID: PMC5454843 DOI: 10.3390/ijms18050930] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Hydroxytyrosol (HT) ((3,4-Dihydroxyphenyl)ethanol) is a polyphenol mainly present in extra virgin olive oil (EVOO) but also in red wine. It has a potent antioxidant effect related to hydrogen donation, and the ability to improve radical stability. The phenolic content of olive oil varies between 100 and 600 mg/kg, due to multiple factors (place of cultivation, climate, variety of the olive and level of ripening at the time of harvest), with HT and its derivatives providing half of that content. When consumed, EVOO’s phenolic compounds are hydrolyzed in the stomach and intestine, increasing levels of free HT which is then absorbed in the small intestine, forming phase II metabolites. It has been demonstrated that HT consumption is safe even at high doses, and that is not genotoxic or mutagenic in vitro. The beneficial effects of HT have been studied in humans, as well as cellular and animal models, mostly in relation to consumption of EVOO. Many properties, besides its antioxidant capacity, have been attributed to this polyphenol. The aim of this review was to assess the main properties of HT for human health with emphasis on those related to the possible prevention and/or treatment of non-communicable diseases.
Collapse
|
40
|
Peyrol J, Riva C, Amiot MJ. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders. Nutrients 2017; 9:E306. [PMID: 28335507 PMCID: PMC5372969 DOI: 10.3390/nu9030306] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated.
Collapse
Affiliation(s)
- Julien Peyrol
- Laboratory of Cardiovascular Pharm-Ecology EA4278, Department of Sport Sciences, Faculty of Sciences, Avignon University, F-84000 Avignon, France.
| | - Catherine Riva
- Laboratory of Cardiovascular Pharm-Ecology EA4278, Department of Sport Sciences, Faculty of Sciences, Avignon University, F-84000 Avignon, France.
| | - Marie Josèphe Amiot
- Unité Mixte de Recherche (UMR), Nutrition, Obesity and Risk of Thrombosis, Aix-Marseille University, F-13005 Marseille, France.
- Unité Mixte de Recherche (UMR), Markets, Organisations, Institutions, Stakeholder Strategies, F-34060 Montpellier, France.
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, F-34060 Montpellier, France.
- Centre International de Hautes Études Agronomiques Méditerranéennes, F-34060 Montpellier, France.
- Montpellier SupAgro, F-34060 Montpellier, France.
- Institut National de la Recherche Agronomique; Division of Nutrtition, Chemical Food Safety and Consumer Behaviour, F-75015 Paris, France.
- Institut National de la Santé et de la Recherche Médicale, F-75015 Paris, France.
| |
Collapse
|
41
|
Soni M, Prakash C, Sehwag S, Kumar V. Protective effect of hydroxytyrosol in arsenic-induced mitochondrial dysfunction in rat brain. J Biochem Mol Toxicol 2017; 31. [PMID: 28225195 DOI: 10.1002/jbt.21906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/26/2017] [Indexed: 12/28/2022]
Abstract
The present study was planned to investigate the protective effect of hydroxytyrosol (HT) against arsenic (As)-induced mitochondrial dysfunction in rat brain. Rats exposed to sodium arsenite (25 ppm for 8 weeks) showed decreased mitochondrial complexes (I, II, IV) activities, mitochondrial superoxide dismutase (MnSOD), and catalase activities in brain mitochondria. As-treated rats showed reduced mRNA expression of complex I (ND-1, ND-2), IV (COX-1, COX-4) subunits, and uncoupling protein-2 (UCP-2). In addition to this, As exposure downregulated the protein expression of MnSOD. Administration of HT with As restored the enzymatic activities of mitochondrial complexes, MnSOD and catalase, increased the mRNA levels of complexes subunits and UCP-2 as well as proteins level of MnSOD. These results suggest that HT efficiently restores mitochondrial dysfunction in As neurotoxicity and might be used as potential mitoprotective agent in future.
Collapse
Affiliation(s)
- Manisha Soni
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chandra Prakash
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sfurti Sehwag
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
42
|
Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M. Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev 2017; 117:S0149-7634(16)30719-9. [PMID: 28237726 DOI: 10.1016/j.neubiorev.2017.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Psychosocial maternal stress experienced during different vulnerable periods throughout gestation is thought to increase the individual's risk to develop neuropsychiatric, cardiovascular and metabolic disease in later life. Cortisol has generally been identified as the major mediator of maternal stress transfer to the fetus. Its lipophilic nature allows a trans-placental passage and thus excessive maternal cortisol could persistently impair the development of the fetal hypothalamic-pituitary-adrenal axis (HPAA). However, cortisol alone cannot fully explain all effects of maternal stress especially during early to mid pregnancy before maturation of the fetal HPAA has even begun and expression of fetal glucocorticoid receptors is limited. This review focuses on mediators of maternal fetal stress transfer that in addition to cortisol have been proposed as transmitters of maternal stress: catecholamines, cytokines, serotonin/tryptophan, reactive-oxygen-species and the maternal microbiota. We propose that the effects of psychosocial maternal stress on fetal development and health and disease in later life are not a consequence of a single pathway but are mediated by multiple stress-transfer mechanisms acting together in a synergistic manner.
Collapse
Affiliation(s)
- Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christoph Bergmeier
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
43
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
44
|
Souilem S, Fki I, Kobayashi I, Khalid N, Neves MA, Isoda H, Sayadi S, Nakajima M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1834-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci Biobehav Rev 2016; 71:865-877. [DOI: 10.1016/j.neubiorev.2016.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 01/11/2023]
|
46
|
Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Sci Rep 2016; 6:34246. [PMID: 27713551 PMCID: PMC5054377 DOI: 10.1038/srep34246] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
High blood pressure, or “hypertension,” is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension.
Collapse
|
47
|
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. Molecules 2016; 21:molecules21060708. [PMID: 27248987 PMCID: PMC6274112 DOI: 10.3390/molecules21060708] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Many polyphenols that contain more than two phenolic hydroxyl groups are natural antioxidants and can provide health benefits to humans. These polyphenols include, for example, oleuropein, hydroxytyrosol, catechin, chlorogenic acids, hesperidin, nobiletin, and isoflavones. These have been studied widely because of their strong radical-scavenging and antioxidative effects. These effects may contribute to the prevention of diseases, such as diabetes. Insulin secretion, insulin resistance, and homeostasis are important factors in the onset of diabetes, a disease that is associated with dysfunction of pancreatic β-cells. Oxidative stress is thought to contribute to this dysfunction and the effects of antioxidants on the pathogenesis of diabetes have, therefore, been investigated. Here, we summarize the antioxidative effects of polyphenols from the perspective of their radical-scavenging activities as well as their effects on signal transduction pathways. We also describe the preventative effects of polyphenols on diabetes by referring to recent studies including those reported by us. Appropriate analytical approaches for evaluating antioxidants in studies on the prevention of diabetes are comprehensively reviewed.
Collapse
Affiliation(s)
- Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| |
Collapse
|
48
|
Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, Scapagnini G, Vasto S, Caruso C. Nutrigerontology: a key for achieving successful ageing and longevity. IMMUNITY & AGEING 2016; 13:17. [PMID: 27213002 PMCID: PMC4875663 DOI: 10.1186/s12979-016-0071-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
During the last two centuries the average lifespan has increased at a rate of approximately 3 months/year in both sexes, hence oldest old people are becoming the population with the fastest growth in Western World. Although the average life expectancy is increasing dramatically, the healthy lifespan is not going at the same pace. This underscores the importance of studies on the prevention of age-related diseases, in order to satisfactorily decrease the medical, economic and social problems associated to advancing age, related to an increased number of individuals not autonomous and affected by invalidating pathologies. In particular, data from experimental studies in model organisms have consistently shown that nutrient signalling pathways are involved in longevity, affecting the prevalence of age-related loss of function, including age-related diseases. Accordingly, nutrigerontology is defined as the scientific discipline that studies the impact of nutrients, foods, macronutrient ratios, and diets on lifespan, ageing process, and age-related diseases. To discuss the potential relevance of this new science in the attainment of successful ageing and longevity, three original studies performed in Sicily with local foods and two reviews have been assembled in this series. Data clearly demonstrate the positive effects of nutraceuticals, functional foods and Mediterranean Diet on several biological parameters. In fact, they could represent a prevention for many age-related diseases, and, although not a solution for this social plague, at least a remedy to alleviate it. Thus, the possibility to create a dietary pattern, based on the combined strategy of the use of both nutraceuticals and functional foods should permit to create a new therapeutic strategy, based not only on a specific bioactive molecule or on a specific food but on a integrated approach that, starting from the local dietary habits, can be led to a “nutrafunctional diet” applicable worldwide.
Collapse
Affiliation(s)
- Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), 87036 Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy and Institute of biomedicine and molecular immunology "Alberto Monroy" CNR, Palermo, Italy
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
49
|
FU PENG, HU QUAN. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage. Exp Ther Med 2016; 11:1999-2004. [PMID: 27168841 PMCID: PMC4840544 DOI: 10.3892/etm.2016.3101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- PENG FU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - QUAN HU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
50
|
Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. IMMUNITY & AGEING 2016; 13:16. [PMID: 27081392 PMCID: PMC4831196 DOI: 10.1186/s12979-016-0070-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
Collapse
|