1
|
Rahayu ES, Yoga WK, Komalasari H, Mariyatun M, Yuda WA, Manurung NEP, Hasan PN, Suharman S, Pamungkaningtyas FH, Nurfiana DA, Pramesi PC, Gatya M, Therdtatha P, Nakayama J, Juffrie M, Djaafar TF, Marwati T, Utami T. Probiotic Chocolate Containing Lactobacillus plantarum Dad-13 Alters the Gut Microbiota Composition of Undernourished Children in Lombok: A Randomized Double-Blind Trial. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9493797. [PMID: 39132547 PMCID: PMC11316911 DOI: 10.1155/2024/9493797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
The present study investigated the ingestion effect of chocolate probiotic containing Lactobacillus plantarum Dad-13 in undernourished children. A 100-day observation was conducted on undernourished children in Lombok, who were divided into probiotic (n = 28) and placebo (n = 28) groups. Fecal sampling was performed on the 10th and 100th days and further analyzed for gut microbiota composition, short-chain fatty acid (SCFA), and fecal pH. A significant difference was found in the diversity index, fecal pH, and several microbiotas at the phylum and genus levels. At the phylum level, Bacteroidetes was significantly higher in the probiotic group, and a higher relative abundance (RA) of Firmicutes was found in the placebo group. At the genus level, significant differences were observed in some bacteria, such as Bifidobacterium and Prevotella. Therefore, it can be concluded that the probiotic intervention in this study resulted in changes of gut microbiota diversity and fecal pH. Trial Registration: Thai Clinical Trials Registry identifier: TCTR20220425001.
Collapse
Affiliation(s)
- Endang S. Rahayu
- Faculty of Agricultural TechnologyUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu K. Yoga
- Faculty of Agricultural TechnologyUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Husnita Komalasari
- Faculty of Agricultural TechnologyUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mariyatun Mariyatun
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Nancy E. P. Manurung
- Food Technology Study ProgramDepartment of Chemical EngineeringPoliteknik Negeri Sriwijaya, Palembang 30128, Indonesia
| | - Pratama N. Hasan
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Suharman Suharman
- Faculty of Agricultural TechnologyUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Dina A. Nurfiana
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Putrika C. Pramesi
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mifta Gatya
- Center for Food and Nutrition StudiesUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Jiro Nakayama
- Department of Bioscience and BiotechnologyFaculty of AgricultureKyushu University, Fukuoka 819-0395, Japan
| | - Mohammad Juffrie
- Department of Public HealthUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Titiek F. Djaafar
- Research Center for Food Technology and ProcessNational Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Tri Marwati
- Research Center for Food Technology and ProcessNational Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Tyas Utami
- Faculty of Agricultural TechnologyUniversitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Abbasi A, Bazzaz S, Da Cruz AG, Khorshidian N, Saadat YR, Sabahi S, Ozma MA, Lahouty M, Aslani R, Mortazavian AM. A Critical Review on Akkermansia muciniphila: Functional Mechanisms, Technological Challenges, and Safety Issues. Probiotics Antimicrob Proteins 2024; 16:1376-1398. [PMID: 37432597 DOI: 10.1007/s12602-023-10118-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adriano G Da Cruz
- Department of Food Processing, Federal Institute of Science and Technology Education of Rio de Janeiro (IFRJ) - Campus Maracanã, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim Khorshidian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
4
|
Edwards PT, Soni KG, Conner ME, Fowler SW, Foong JPP, Stavely R, Cheng LS, Preidis GA. Site-specific pathophysiology in a neonatal mouse model of gastroparesis. Neurogastroenterol Motil 2023; 35:e14676. [PMID: 37772676 PMCID: PMC11023621 DOI: 10.1111/nmo.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Early-life events impact maturation of the gut microbiome, enteric nervous system, and gastrointestinal motility. We examined three regions of gastric tissue to determine how maternal separation and gut microbes influence the structure and motor function of specific regions of the neonatal mouse stomach. METHODS Germ-free and conventionally housed C57BL/6J mouse pups underwent timed maternal separation (TmSep) or nursed uninterrupted (controls) until 14 days of life. We assessed gastric emptying by quantifying the progression of gavaged fluorescein isothiocyanate (FITC)-dextran. With isolated rings of forestomach, corpus, and antrum, we measured tone and contractility by force transduction, gastric wall thickness by light microscopy, and myenteric plexus neurochemistry by whole-mount immunostaining. KEY RESULTS Regional gastric sampling revealed site-specific differences in contractile patterns and myenteric plexus structure. In neonatal mice, TmSep prolonged gastric emptying. In the forestomach, TmSep increased contractile responses to carbachol, decreased muscularis externa and mucosa thickness, and increased the relative proportion of myenteric plexus nNOS+ neurons. Germ-free conditions did not appreciably alter the structure or function of the neonatal mouse stomach and did not impact the changes caused by TmSep. CONCLUSIONS AND INFERENCES A regional sampling approach facilitates site-specific investigations of murine gastric motor physiology and histology to identify site-specific alterations that may impact gastrointestinal function. Delayed gastric emptying in TmSep is associated with a thinner muscle wall, exaggerated cholinergic contractile responses, and increased proportions of inhibitory myenteric plexus nNOS+ neurons in the forestomach. Gut microbes do not profoundly affect the development of the neonatal mouse stomach or the gastric pathophysiology that results from TmSep.
Collapse
Affiliation(s)
- Price T. Edwards
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Krishnakant G. Soni
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Margaret E. Conner
- Molecular Virology and Microbiology, Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie W. Fowler
- Molecular Virology and Microbiology, Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Jaime P. P. Foong
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Vic., Australia
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lily S. Cheng
- Michael E. DeBakey Department of Surgery, Division of Pediatric Surgery, Texas Children’s Surgical Oncology Program, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
6
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10145-8. [PMID: 37668855 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Hwang IC, Vasquez R, Song JH, Engstrand L, Valeriano VD, Kang DK. Alterations in the gut microbiome and its metabolites are associated with the immune response to mucosal immunization with Lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 spike epitopes in mice. Front Cell Infect Microbiol 2023; 13:1242681. [PMID: 37705931 PMCID: PMC10495993 DOI: 10.3389/fcimb.2023.1242681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Robie Vasquez
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
8
|
Russell AL, McAdams ZL, Donovan E, Seilhamer N, Siegrist M, Franklin CL, Ericsson AC. The contribution of maternal oral, vaginal, and gut microbiota to the developing offspring gut. Sci Rep 2023; 13:13660. [PMID: 37608207 PMCID: PMC10444849 DOI: 10.1038/s41598-023-40703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
There is limited understanding of how the microbiota colonizing various maternal tissues contribute to the development of the neonatal gut microbiota (GM). To determine the contribution of various maternal microbiotic sites to the offspring microbiota in the upper and lower gastrointestinal tract (GIT) during early life, litters of mice were sacrificed at 7, 9, 10, 11, 12, 14, and 21 days of age, and fecal and ileal samples were collected. Dams were euthanized alongside their pups, and oral, vaginal, ileal, and fecal samples were collected. This was done in parallel using mice with either a low-richness or high-richness microbiota to assess the consistency of findings across multiple microbial compositions. Samples were analyzed using 16S rRNA amplicon sequencing. The compositional similarity between pup and dam samples were used to determine the contribution of each maternal source to the composition of the neonate fecal and ileal samples at each timepoint. As expected, similarity between neonate and maternal feces increased significantly over time. During earlier time-points however, the offspring fecal and ileal microbiotas were closer in composition to the maternal oral microbiota than other maternal sites. Prominent taxa contributed by the maternal oral microbiota to the neonate GM were supplier-dependent and included Lactobacillus spp., Streptococcus spp., and a member of the Pasteurellaceae family. These findings align with the microbial taxa reported in infant microbiotas, highlighting the translatability of mouse models in this regard, as well as the dynamic nature of the GM during early life.
Collapse
Affiliation(s)
- Amber L Russell
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 65201, USA
| | - Zachary L McAdams
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 65201, USA
| | - Erin Donovan
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Nicole Seilhamer
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Melissa Siegrist
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
| | - Craig L Franklin
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 65201, USA
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, 65201, USA.
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA.
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Hidalgo-Villeda F, Million M, Defoort C, Vannier T, Svilar L, Lagier M, Wagner C, Arroyo-Portilla C, Chasson L, Luciani C, Bossi V, Gorvel JP, Lelouard H, Tomas J. Prolonged dysbiosis and altered immunity under nutritional intervention in a physiological mouse model of severe acute malnutrition. iScience 2023; 26:106910. [PMID: 37378323 PMCID: PMC10291336 DOI: 10.1016/j.isci.2023.106910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute malnutrition (SAM) is a multifactorial disease affecting millions of children worldwide. It is associated with changes in intestinal physiology, microbiota, and mucosal immunity, emphasizing the need for multidisciplinary studies to unravel its full pathogenesis. We established an experimental model in which weanling mice fed a high-deficiency diet mimic key anthropometric and physiological features of SAM in children. This diet alters the intestinal microbiota (less segmented filamentous bacteria, spatial proximity to epithelium), metabolism (decreased butyrate), and immune cell populations (depletion of LysoDC in Peyer's patches and intestinal Th17 cells). A nutritional intervention leads to a fast zoometric and intestinal physiology recovery but to an incomplete restoration of the intestinal microbiota, metabolism, and immune system. Altogether, we provide a preclinical model of SAM and have identified key markers to target with future interventions during the education of the immune system to improve SAM whole defects.
Collapse
Affiliation(s)
- Fanny Hidalgo-Villeda
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France
- Ap-HM, Marseille, France
| | - Catherine Defoort
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Thomas Vannier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Ljubica Svilar
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Margaux Lagier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Camille Wagner
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cynthia Arroyo-Portilla
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cécilia Luciani
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Jean-Pierre Gorvel
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Julie Tomas
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
11
|
Weng Y, Xu T, Wang C, Jin Y. Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic Profiling in Male Mice. Metabolites 2023; 13:metabo13040522. [PMID: 37110180 PMCID: PMC10144212 DOI: 10.3390/metabo13040522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Epoxiconazole (EPX), a triazole fungicide, is widely used in agriculture to control pests and diseases. High residual and occupational exposure to EPX increases health risks, and evidence of potential harm to mammals remains to be added. In the present study, 6-week-old male mice were exposed to 10 and 50 mg/kg bw EPX for 28 days. The results showed that EPX significantly increased the liver weights. EPX also decreased the mucus secretion of the colon and altered intestinal barrier function in mice including a reduced expression of some genes (Muc2, meprinβ, tjp1). Moreover, EPX altered the composition and abundance of gut microbiota in the colon of mice. The alpha diversity indices (Shannon, Simpson) in the gut microbiota increased after exposure to EPX for 28 days. Interestingly, EPX increased the ratio of Firmicutes to Bacteroides and the abundance of other harmful bacteria including Helicobacter and Alistipes. Based on the untargeted metabolomic analysis, it was found that EPX altered the metabolic profiles of the liver in mice. KEGG analysis of differential metabolites revealed that EPX disrupted the pathway related to glycolipid metabolism, and the mRNA levels of related genes were also confirmed. In addition, the correlation analysis showed that the most altered harmful bacteria were associated with some significantly altered metabolites. The findings highlight that EPX exposure changed the micro-environment and lipid metabolism disturbance. These results also suggest that the potential toxicity of triazole fungicides to mammals cannot be ignored.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
12
|
Zhang C, Lin C, Li L, Mohsen M, Wang T, Wang X, Zhang L, Huang W. Single and combined effects of microplastics and cadmium on the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105927. [PMID: 36842394 DOI: 10.1016/j.marenvres.2023.105927] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution of the ocean has received extensive attention as plastic pollution increases globally, but the potential ecological risks caused by microplastic interactions with trace metals still require further research. In this study, Apostichopus japonicus was used to explore the individual and combined toxicities of cadmium (Cd) and microplastics and their effects on growth, Cd tissue accumulation, digestive enzymes, and gut microbes. The body weight gain and specific growth rate of animals exposed to a combination of high concentrations of Cd and microplastics decreased. The addition of high concentrations of cadmium to the diet led to an increase in cadmium content in the respiratory tree, digestive tract and body wall. Amylase, lipase and trypsin decreased to different degrees in the group treated with high concentrations of Cd/microplastics. Firmicutes were significantly reduced across multiple treatment groups, with the order Lactobacillales being the most significantly affected. Cd is the pollutant causing the greatest negative impact, but the presence of microplastics undoubtedly increases its toxicity.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Ting Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Xu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Libin Zhang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Zhejiang, 310012, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Zhejiang, 310012, China
| |
Collapse
|
13
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Wang X, Weng Y, Geng S, Wang C, Jin C, Shi L, Jin Y. Maternal procymidone exposure has lasting effects on murine gut-liver axis and glucolipid metabolism in offspring. Food Chem Toxicol 2023; 174:113657. [PMID: 36764477 DOI: 10.1016/j.fct.2023.113657] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
There is increasing evidence that maternal exposure to environmental pollutants can cause intestinal and metabolic diseases, and these disease risks still exist in offspring. Here, female C57BL/6 mice were orally treated with procymidone (PRO) (10 and 100 mg/kg body weight/day) by dietary supplementation during the gestation and lactation periods. Then, we discovered PRO changed the physiology, intestinal barrier and metabolism both in the generations of F0 and different developmental stages of F1 (7 weeks and 30 weeks old, respectively). Maternal PRO exposure affected the growth phenotypes and the glucolipid metabolism related indicators and genes of mice, especially the male mice of F1 generations. The changes in bile acids (BAs) metabolism demonstrated that PRO disordered glucolipid metabolism through enterohepatic circulation. Furthermore, PRO reduced mucus secretion in the gut and altered the composition of gut microbiota, leading more bacteria to disseminate in the gut and inflammatory responses both in F0 and F1 regenerations. And PRO-induced gut microbiota dysbiosis was tightly related to BAs metabolites. Together, the results indicated that PRO destructed the functional integrity of intestinal barrier and the inflammatory reaction was triggered. And then, the disorder of glucolipid metabolism was induced through the BAs enterohepatic circulation. This study indicated that the cross-generation effects of PRO could not be ignored.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shinan Geng
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
15
|
Surekha MV, Suneetha N, Balakrishna N, Putcha UK, Satyanarayana K, Geddam JJB, Sreenu P, Tulja B, Mamidi RS, Rutter GA, Meur G. Impact of COVID-19 during pregnancy on placental pathology, maternal and neonatal outcome - A cross-sectional study on anemic term pregnant women from a tertiary care hospital in southern India. Front Endocrinol (Lausanne) 2023; 14:1092104. [PMID: 37025411 PMCID: PMC10070875 DOI: 10.3389/fendo.2023.1092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background SARS-CoV-2 infection during pregnancy may cause adverse maternal, neonatal and placental outcomes. While tissue hypoxia is often reported in COVID-19 patients, pregnant women with anemia are suspected to be more prone to placental hypoxia-related injuries. Methods This hospital-based cross-sectional study was conducted between August-November 2021, during COVID-19 second wave in India. Term pregnant women (N=212) admitted to hospital for delivery were enrolled consecutively. Since hospital admission mandated negative RT-PCR test for SARS-CoV-2 virus, none had active infection. Data on socio-demography, COVID-19 history, maternal, obstetric, and neonatal outcomes were recorded. Pre-delivery maternal and post-delivery cord blood samples were tested for hematological parameters and SARS-CoV-2 IgG. Placentae were studied for histology. Results Of 212 women, 122 (58%) were seropositive for SARS-CoV-2 IgG, but none reported COVID-19 history; 134 (63.2%) were anemic. In seropositive women, hemoglobin (p=0.04), total WBC (p=0.009), lymphocytes (p=0.005) and neutrophils (p=0.02) were significantly higher, while ferritin was high, but not significant and neutrophils to lymphocytes (p=0.12) and platelets to lymphocytes ratios (p=0.03) were lower. Neonatal outcomes were similar. All RBC parameters and serum ferritin were significantly lower in anemic mothers but not in cord blood, except RDW that was significantly higher in both, maternal (p=0.007) and cord (p=0.008) blood from seropositive anemic group compared to other groups. Placental histology showed significant increase in villous hypervascularity (p=0.000), dilated villous capillaries (p=0.000), and syncytiotrophoblasts (p=0.02) in seropositive group, typically suggesting placental hypoxia. Maternal anemia was not associated with any histological parameters. Univariate and multivariate logistic regression analyses of placental histopathological adverse outcomes showed strong association with SARS-CoV-2 seropositivity but not with maternal anemia. When adjusted for several covariates, including anemia, SARS-CoV-2 seropositivity emerged as independent risk factor for severe chorangiosis (AOR 8.74, 95% CI 3.51-21.76, p<0.000), dilated blood vessels (AOR 12.74, 95% CI 5.46-29.75, p<0.000), syncytiotrophoblasts (AOR 2.86, 95% CI 1.36-5.99, p=0.005) and villus agglutination (AOR 9.27, 95% CI 3.68-23.32, p<0.000). Conclusion Asymptomatic COVID-19 during pregnancy seemed to be associated with various abnormal placental histopathologic changes related to placental hypoxia independent of maternal anemia status. Our data supports an independent role of SARS-CoV-2 in causing placental hypoxia in pregnant women.
Collapse
Affiliation(s)
- M. V. Surekha
- Pathology and Microbiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - N. Suneetha
- Obstetrics & Gynecology Department, Government Area Hospital, Nampally, Hyderabad, India
| | - N. Balakrishna
- Department of Statistics, Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, India
| | - Uday Kumar Putcha
- Pathology and Microbiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - K. Satyanarayana
- Pathology and Microbiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - J. J. Babu Geddam
- Clinical Epidemiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - Pagidoju Sreenu
- Clinical Epidemiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - B. Tulja
- Clinical Epidemiology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - Raja Sriswan Mamidi
- Clinical Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| | - Guy A. Rutter
- Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gargi Meur
- Cell Biology Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
16
|
Zhong H, Wei S, Kang M, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu M, Liu S. Effects of different storage conditions on microbial community and quality changes of greater amberjack (Seriola dumerili) fillets. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
17
|
Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clin Nutr 2022; 41:2333-2344. [DOI: 10.1016/j.clnu.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2022]
|
18
|
Gut Microbiota Composition in Undernourished Children Associated with Diet and Sociodemographic Factors: A Case–Control Study in Indonesia. Microorganisms 2022; 10:microorganisms10091748. [PMID: 36144350 PMCID: PMC9502830 DOI: 10.3390/microorganisms10091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3–V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.
Collapse
|
19
|
Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr 2022; 63:7357-7377. [PMID: 35238258 DOI: 10.1080/10408398.2022.2045894] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.
Collapse
Affiliation(s)
- Sima Ghaffari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
20
|
Amabebe E, Anumba DO. Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. REPRODUCTION AND FERTILITY 2022; 2:R1-R12. [PMID: 35128441 PMCID: PMC8812459 DOI: 10.1530/raf-20-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Altered gut microbiota (dysbiosis), inflammation and weight gain are pivotal to the success of normal pregnancy. These are features of metabolic syndrome that ordinarily increase the risk of type 2 diabetes in non-pregnant individuals. Though gut microbiota influences host energy metabolism and homeostasis, the outcome (healthy or unhealthy) varies depending on pregnancy status. In a healthy pregnancy, the gut microbiota is altered to promote metabolic and immunological changes beneficial to the mother and foetus but could connote a disease state in non-pregnant individuals. During the later stages of gestation, metabolic syndrome-like features, that is, obesity-related gut dysbiotic microbiota, increased insulin resistance, and elevated pro-inflammatory cytokines, promote energy storage in adipose tissue for rapid foetal growth and development, and in preparation for energy-consuming processes such as parturition and lactation. The origin of this gestation-associated host–microbial interaction is still elusive. Therefore, this review critically examined the host–microbial interactions in the gastrointestinal tract of pregnant women at late gestation (third trimester) that shift host metabolism in favour of a diabetogenic or metabolic syndrome-like phenotype. Whether the diabetogenic effects of such interactions are indeed beneficial to both mother and foetus was also discussed with plausible mechanistic pathways and associations highlighted.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Swaminathan G, Citron M, Xiao J, Norton JE, Reens AL, Topçuoğlu BD, Maritz JM, Lee KJ, Freed DC, Weber TM, White CH, Kadam M, Spofford E, Bryant-Hall E, Salituro G, Kommineni S, Liang X, Danilchanka O, Fontenot JA, Woelk CH, Gutierrez DA, Hazuda DJ, Hannigan GD. Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome. Vaccines (Basel) 2021; 9:vaccines9111340. [PMID: 34835271 PMCID: PMC8619314 DOI: 10.3390/vaccines9111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence demonstrates a connection between microbiome composition and suboptimal response to vaccines (vaccine hyporesponse). Harnessing the interaction between microbes and the immune system could provide novel therapeutic strategies for improving vaccine response. Currently we do not fully understand the mechanisms and dynamics by which the microbiome influences vaccine response. Using both mouse and non-human primate models, we report that short-term oral treatment with a single antibiotic (vancomycin) results in the disruption of the gut microbiome and this correlates with a decrease in systemic levels of antigen-specific IgG upon subsequent parenteral vaccination. We further show that recovery of microbial diversity before vaccination prevents antibiotic-induced vaccine hyporesponse, and that the antigen specific IgG response correlates with the recovery of microbiome diversity. RNA sequencing analysis of small intestine, spleen, whole blood, and secondary lymphoid organs from antibiotic treated mice revealed a dramatic impact on the immune system, and a muted inflammatory signature is correlated with loss of bacteria from Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. These results suggest that microbially modulated immune pathways may be leveraged to promote vaccine response and will inform future vaccine design and development strategies.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| | - Michael Citron
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Jianying Xiao
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Begüm D. Topçuoğlu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Julia M. Maritz
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Keun-Joong Lee
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Daniel C. Freed
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Teresa M. Weber
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Cory H. White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Mahika Kadam
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Erin Spofford
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Erin Bryant-Hall
- Safety Assessment and Laboratory Animal Research, MRL, Merck & Co. Inc., Boston, MA 02115, USA; (E.S.); (E.B.-H.)
| | - Gino Salituro
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, MRL, Merck & Co. Inc., Rahway, NJ 07065, USA; (K.-J.L.); (G.S.)
| | - Sushma Kommineni
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Olga Danilchanka
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Jane A. Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70503, USA;
| | - Christopher H. Woelk
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Dario A. Gutierrez
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, PA 19486, USA; (M.C.); (J.X.); (D.C.F.); (T.M.W.)
| | - Geoffrey D. Hannigan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA; (J.E.N.J.); (A.L.R.); (B.D.T.); (J.M.M.); (C.H.W.); (M.K.); (S.K.); (X.L.); (O.D.); (C.H.W.); (D.A.G.); (D.J.H.)
- Correspondence: (G.S.); (G.D.H.)
| |
Collapse
|
22
|
Liu C, He Q, Zeng L, Shen L, Luo Q, Zhang W, Zhou X, Wan J. Digestion-Promoting Effects and Mechanisms of Dashanzha Pill Based on Raw and Charred Crataegi Fructus. Chem Biodivers 2021; 18:e2100705. [PMID: 34710267 DOI: 10.1002/cbdv.202100705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that a high-fat diet (HFD) can influence endoplasmic reticulum (ER) stress and gut microbiota. Crataegi Fructus is a traditional Chinese herb widely used in formulas for dyspepsia, with Dashanzha Pill composed of raw Crataegi Fructus (DR) being a representative drug. Processing products of Crataegi Fructus, however, have a stronger pro-digestive effect, and we hypothesized that Dashanzha Pill composed of charred Crataegi Fructus (DC) is more effective. We found that the contents of glucose 1-phosphate and luteolin in DR and DC were substantially different via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry. DC outperformed DR in improving histopathological changes, increasing gastrin and motilin, and decreasing vasoactive intestinal peptides in rats with HFD induced dyspepsia. Fecal microbiota analysis revealed that DC could restore the disturbed intestinal microbiota composition, including that of Bacteroides, Akkermansia, and Intestinimonas to normal levels. Furthermore, DC significantly reduced the mRNA and protein levels of glucose-regulated protein 78, protein kinase R-like ER kinase, and eukaryotic initiation factor 2α. Taken together, DC outperformed DR in relieving dyspepsia by regulating gut microbiota and alleviating ER stress.
Collapse
Affiliation(s)
- Cui Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Linlin Zeng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Ling Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qiaomei Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Wentao Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Xia Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Jun Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| |
Collapse
|
23
|
In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. Probiotics Antimicrob Proteins 2021; 12:517-534. [PMID: 31218544 DOI: 10.1007/s12602-019-09563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.
Collapse
|
24
|
Orso G, Solovyev MM, Facchiano S, Tyrikova E, Sateriale D, Kashinskaya E, Pagliarulo C, Hoseinifar HS, Simonov E, Varricchio E, Paolucci M, Imperatore R. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals (Basel) 2021; 11:ani11061538. [PMID: 34070355 PMCID: PMC8228309 DOI: 10.3390/ani11061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary With the increase in global population the production of animal proteins becomes increasingly crucial. Aquaculture is the first animal protein supply industry for human consumption. Intensive farming techniques are employed to increase productivity, but these may cause stressful conditions for fish, resulting in impaired growth and poor health conditions. Intestinal inflammation is one of the most common diseases of fish in intensive farming. Intestinal inflammation is usually accompanied by an alteration of the microbiota or dysbiosis. Inflammation and dysbiosis are so tightly intertwined that inflammation may contribute to or result from dysregulation of gut microbiota. Natural substances of plant origin rich in bioactive molecules or more simply phytochemicals, have been proved to be able to reduce inflammation and improve the general health status in various commercially relevant species. In this study, we evaluated the effect of tannins, a class of polyphenols, the most abundant phytochemicals, on intestinal inflammation and microbiota in zebrafish (Danio rerio), a small freshwater fish become an attractive biomedicine and aquaculture animal model during the last decades. The zebrafish has been employed in a vast array of studies aiming at investigating the essential processes underlying intestinal inflammation and injury due to its conservative gut morphology and functions. In this study, we administered a diet enriched with chestnut shell extract rich in tannins to a zebrafish model of intestinal inflammation. The treatment ameliorated the damaged intestinal morphophysiology and the microbiota asset. Our results sustain that products of natural origin with low environmental impact and low cost, such as tannins, may help to ease some of the critical issues affecting the aquaculture sector. Abstract The aim of the present study was to test the possible ameliorative efficacy of phytochemicals such as tannins on intestinal inflammation and dysbiosis. The effect of a chestnut shell (Castanea sativa) extract (CSE) rich in polyphenols, mainly represented by tannins, on k-carrageenan-induced intestinal inflammation in adult zebrafish (Danio rerio) was tested in a feeding trial. Intestinal inflammation was induced by 0.1% k-carrageenan added to the diet for 10 days. CSE was administered for 10 days after k-carrageenan induced inflammation. The intestinal morphology and histopathology, cytokine expression, and microbiota were analyzed. The k-carrageenan treatment led to gut lumen expansion, reduction of intestinal folds, and increase of the goblet cells number, accompanied by the upregulation of pro-inflammatory factors (TNFα, COX2) and alteration in the number and ratio of taxonomic groups of bacteria. CSE counteracted the inflammatory status enhancing the growth of health helpful bacteria (Enterobacteriaceae and Pseudomonas), decreasing the pro-inflammatory factors, and activating the anti-inflammatory cytokine IL-10. In conclusion, CSE acted as a prebiotic on zebrafish gut microbiota, sustaining the use of tannins as food additives to ameliorate the intestinal inflammation. Our results may be relevant for both aquaculture and medical clinic fields.
Collapse
Affiliation(s)
- Graziella Orso
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Mikhail M. Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| | - Serena Facchiano
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Evgeniia Tyrikova
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Department of Natural Sciences, Novosibirsk State University, 630091 Novosibirsk, Russia
| | - Daniela Sateriale
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
| | - Caterina Pagliarulo
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Hossein S. Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, 49138-15739 Gorgan, Iran;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
| | - Ettore Varricchio
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Marina Paolucci
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
- Correspondence:
| | - Roberta Imperatore
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| |
Collapse
|
25
|
Wang Y, Jin C, Wang D, Zhou J, Yang G, Shao K, Wang Q, Jin Y. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124639. [PMID: 33246813 DOI: 10.1016/j.jhazmat.2020.124639] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CHL) and procymidone (PRO) are fungicides that exhibit low toxicity and are widely used in many countries. And both fungicides are frequently detected in the food chain. However, the health risk posed by these fungicides is still unclear. Here, 8-week-old male C57BL/6 mice were orally treated with CHL (10, 50 mg/kg/day), PRO (20, 100 mg/kg/day) and CHL+PRO (5+10, 25+50 mg/kg/day) by dietary supplementation for 10 weeks. Hepatic pathological analysis showed that exposure to CHL, PRO and CHL+PRO could cause liver injury. The glucose, triglyceride (TG) levels and the related gene expression to glucolipid metabolism changed significantly. The significantly reduced acylcarnitine levels demonstrated that CHL, PRO and CHL+PRO exposure inhibited fatty acids (FAs) β-oxidation. In addition, CHL and PRO altered the structure of the gut microbiota and destroyed the integrity of the intestinal barrier function. In particular, AF12, Odoribacter, Prevotella and Lactobacillus were highly correlated with carnitine. The results showed that CHL, PRO and CHL+PRO exposure might inhibit FAs β-oxidation by decreasing cystic fibrosis transmembrane conductance regulator (CFTR)-mediated ion transport, indicating that these fungicides disturbed intestinal barrier function associated with glucolipid metabolism disorder. Here, the data also indicated that there was an additive effect between CHL and PRO in mice.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiajie Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
26
|
Gut bacterial profile in Indian children of varying nutritional status: a comparative pilot study. Eur J Nutr 2021; 60:3971-3985. [PMID: 33929588 PMCID: PMC8085102 DOI: 10.1007/s00394-021-02571-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Childhood malnutrition is a multifactorial disease, responsible for nearly half of all deaths in children under five. Lately, the probable association of a dysbiotic gut to malnutrition is also being eagerly investigated. The current study is an attempt to investigate this purported association through assessing the abundance of major gut bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria), probionts (Bifidobacteria and Lactobacillus), butyrogens (Faecalibacterium and Roseburia) and pathogens (Escherichia and Klebsiella). METHODS The study was conducted in the suburbs of Chandigarh, India in the year 2017. The children enrolled in the study were part of Anganwadis (Rural Child Care Centres) set up under Integrated Child Development Scheme (ICDS) of Government of India where community-based management approach is being widely used for treatment of malnutrition. We used qPCR based absolute quantification as well as the 16S rRNA amplicon sequencing approach for our study. The study population included 30 children in the age group of 2-5 years who were categorized into three groups Healthy, Moderate Acute Malnutrition (MAM) and Severe Acute Malnutrition (SAM), with 10 children in each group. The selection of participants was made based on Z scores. Further, statistical tools like the One-way ANOVA, PCA and PLSDA were employed to analyze and compare the gut bacterial profile. RESULTS Our investigation through the qPCR (Absolute quantification) approach revealed a significantly higher abundance of Actinobacteria in healthy, in comparison to children suffering from Severe Acute Malnutrition (SAM). Consequently, the same trend was also reflected with respect to Bifidobacterium, a prominent member of the Actinobacteria phylum. Conversely, a significant higher abundance of Lactobacillus with the diminishing nutritional status was recorded. Escherichia showed a significant higher abundance in healthy subjects compared to the malnourished; however, no such difference in abundance of Klebsiella was observed. The other target phyla [Bacteroidetes, Firmicutes and Proteobacteria] and genera (Faecalibacterium and Roseburia) showed differences in abundance; however, these were non-significant. Similarly, the bacterial taxonomy analysis of 16S rRNA gene amplicon sequencing data revealed the higher abundance of phylum Actinobacteria and its member Bifidobacterium with lower prevalence of Lactobacillus in healthy children. CONCLUSION The pattern of gut microbiota profile in malnourished subjects suggests a dysbiotic gut depleted in Bifidobacteria, a core member of the consortia of beneficial anaerobes of the healthy child gut.
Collapse
|
27
|
Guo N, Wu Q, Shi F, Niu J, Zhang T, Degen AA, Fang Q, Ding L, Shang Z, Zhang Z, Long R. Seasonal dynamics of diet-gut microbiota interaction in adaptation of yaks to life at high altitude. NPJ Biofilms Microbiomes 2021; 7:38. [PMID: 33879801 PMCID: PMC8058075 DOI: 10.1038/s41522-021-00207-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Dietary selection and intake affect the survival and health of mammals under extreme environmental conditions. It has been suggested that dietary composition is a key driver of gut microbiota variation; however, how gut microbiota respond to seasonal dietary changes under extreme natural conditions remains poorly understood. Sequencing plant trnL (UAA) region and 16S rRNA gene analysis were employed to determine dietary composition and gut microbiota in freely grazing yaks on the Tibetan plateau. Dietary composition was more diverse in winter than in summer, while Gramineae and Rosaceae were consumed frequently all year. Turnover of seasonal diet and gut microbiota composition occurred consistently. Yaks shifted enterotypes in response to dietary change between warm and cold seasons to best utilize nitrogen and energy, in particular in the harsh cold season. Our findings provide insights into understanding seasonal changes of diet–microbiota linkages in the adaptation of mammals to high altitudes.
Collapse
Affiliation(s)
- Na Guo
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Fuyu Shi
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
| | - Jiahuan Niu
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qiangen Fang
- College of Grassland Science/Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Luming Ding
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
| | - Zhanhuan Shang
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China. .,State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ruijun Long
- School of Life Science, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
28
|
Gut Microbiota and Short-Chain Fatty Acid Profile between Normal and Moderate Malnutrition Children in Yogyakarta, Indonesia. Microorganisms 2021; 9:microorganisms9010127. [PMID: 33430510 PMCID: PMC7826765 DOI: 10.3390/microorganisms9010127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Malnutrition has been associated with the gut microbiota composition and the gastrointestinal environment. This study aimed to evaluate whether there is a difference in the gut microbiota profile between the normal and undernutrition (considered moderate malnutrition) children and evaluate the gastrointestinal environment observed from the short-chain fatty acid (SCFA) profile. Ten days' observations were done between normal (n:13) and undernutrition (n:15) children. The subject's diet was recorded using a food record. Analysis of the gut microbiota was performed using 16S rRNA gene sequencing targeting the V3-V4 variables region, while the SCFA profile was analyzed using gas chromatography. The result shows that the undernutrition group's energy intake was lower than in the normal group. Although there was no difference in diversity index and overall gut composition, overexpression of the genera Methanobrevibacter, Anaerococcus, Eubacterium, and Succinivibrio was observed in the undernutrition group. Meanwhile, in the normal group, Ruminococcus and Fusobacterium were found. In both groups, there was also the dominant of Prevotella enterotype. Gastrointestinal conditions in the normal group tended to be more acidic compared to the undernutrition group. It occurs due to the high concentration of propionate and butyric acids.
Collapse
|
29
|
Ronan V, Yeasin R, Claud EC. Childhood Development and the Microbiome-The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology 2021; 160:495-506. [PMID: 33307032 PMCID: PMC8714606 DOI: 10.1053/j.gastro.2020.08.065] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
The composition of the intestinal microbiome affects health from the prenatal period throughout childhood, and many diseases have been associated with dysbiosis. The gut microbiome is constantly changing, from birth throughout adulthood, and several variables affect its development and content. Features of the intestinal microbiota can affect development of the brain, immune system, and lungs, as well as body growth. We review the development of the gut microbiome, proponents of dysbiosis, and interactions of the microbiota with other organs. The gut microbiome should be thought of as an organ system that has important effects on childhood development. Dysbiosis has been associated with diseases in children and adults, including autism, attention deficit hyperactivity disorder, asthma, and allergies.
Collapse
Affiliation(s)
- Victoria Ronan
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Rummanu Yeasin
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Windsor University School of Medicine, Cayon, St Kitts, West Indies
| | - Erika C Claud
- Department of Pediatrics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
30
|
Soni KG, Dike PN, Suh JH, Halder T, Edwards PT, Foong JPP, Conner ME, Preidis GA. Early-life malnutrition causes gastrointestinal dysmotility that is sexually dimorphic. Neurogastroenterol Motil 2020; 32:e13936. [PMID: 33021011 PMCID: PMC7688589 DOI: 10.1111/nmo.13936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Slow gastrointestinal (GI) transit occurs in moderate-to-severe malnutrition. Mechanisms underlying malnutrition-associated dysmotility remain unknown, partially due to lack of animal models. This study sought to characterize GI dysmotility in mouse models of malnutrition. METHODS Neonatal mice were malnourished by timed maternal separation. Alternatively, low-protein, low-fat diet was administered to dams, with malnourished neonates tested at two weeks or weaned to the same chow and tested as young adults. We determined total GI transit time by carmine red gavage, colonic motility by rectal bead latency, and both gastric emptying and small bowel motility with fluorescein isothiocyanate-conjugated dextran. We assessed histology with light microscopy, ex vivo contractility and permeability with force-transduction and Ussing chamber studies, and gut microbiota composition by 16S rDNA sequencing. KEY RESULTS Both models of neonatal malnutrition and young adult malnourished males but not females exhibited moderate growth faltering, stunting, and grossly abnormal stomachs. Progression of fluorescent dye was impaired in both neonatal models of malnutrition, whereas gastric emptying was delayed only in maternally separated pups and malnourished young adult females. Malnourished young adult males but not females had atrophic GI mucosa, exaggerated intestinal contractile responses, and increased gut barrier permeability. These sex-specific abnormalities were associated with altered gut microbial communities. CONCLUSIONS & INFERENCES Multiple models of early-life malnutrition exhibit delayed upper GI transit. Malnutrition affects young adult males more profoundly than females. These models will facilitate future studies to identify mechanisms underlying malnutrition-induced pathophysiology and sex-specific regulatory effects.
Collapse
Affiliation(s)
- Krishnakant G. Soni
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Peace N. Dike
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Ji Ho Suh
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Tripti Halder
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Price T. Edwards
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Jaime P. P. Foong
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret E. Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
31
|
Toe LC, Kerckhof FM, De Bodt J, Morel FB, Ouedraogo JB, Kolsteren P, Van de Wiele T. A prebiotic-enhanced lipid-based nutrient supplement (LNSp) increases Bifidobacterium relative abundance and enhances short-chain fatty acid production in simulated colonic microbiota from undernourished infants. FEMS Microbiol Ecol 2020; 96:5858895. [PMID: 32568403 DOI: 10.1093/femsec/fiaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Undernutrition remains a public health problem in the developing world with an attributable under-five death proportion of 45%. Lower gut microbiota diversity and poor metabolic output are associated with undernutrition and new therapeutic paths may come from steering gut microbiota composition and functionality. Using a dynamic gut model, the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), we investigated the effect of a lipid-based nutrient supplement enriched with prebiotics (LNSp), compared to LNS alone and control treatment, on the composition and metabolic functionality of fecal microbiota from three infants suffering from undernutrition. LNS elicited a significant increase in acetate and branched-chain fatty acid production, and a higher relative abundance of the genera Prevotella, Megasphaera, Acinetobacter, Acidaminococcus and Pseudomonas. In contrast, LNSp treatment resulted in a significant 9-fold increase in Bifidobacterium relative abundance and a decrease in that of potential pathogens and detrimental bacteria such as Enterobacteriaceae spp. and Bilophila sp. Moreover, the LNSp treatment resulted in a significantly higher production of acetate, butyrate and propionate, as compared to control and LNS. Our results suggest that provision of prebiotic-enhanced LNS to undernourished children could be a possible strategy to steer the microbiota toward a more beneficial composition and metabolic activity. Further in vivo investigations are needed to assess these effects and their repercussion on nutritional status.
Collapse
Affiliation(s)
- Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,Institut de Recherche en Sciences de la Santé, Avenue de la Liberté 399, Bobo-Dioulasso, Burkina Faso
| | | | - Jana De Bodt
- Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Fanny B Morel
- Nutriset SAS, Hameau du Bois Ricard, CS 80035, 76770 Malaunay, France
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Avenue de la Liberté 399, Bobo-Dioulasso, Burkina Faso
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Gómez-Gallego C, García-Mantrana I, Martínez-Costa C, Salminen S, Isolauri E, Collado MC. The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. Annu Rev Nutr 2020; 39:267-290. [PMID: 31433738 DOI: 10.1146/annurev-nutr-082117-051716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants' health outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Izaskun García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; ,
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, 46010 Valencia, Spain.,Pediatric Gastroenterology and Nutrition Section, Hospital Clinico Universitario Valencia, INCLIVA,46010 Valencia, Spain;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Erika Isolauri
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, FI-20500 Turku, Finland; .,Department of Clinical Sciences, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; , .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| |
Collapse
|
33
|
Wei X, Zhang L, Zhang R, Koci M, Si D, Ahmad B, Cheng J, Wang J, Aihemaiti M, Zhang M. A Novel Cecropin-LL37 Hybrid Peptide Protects Mice Against EHEC Infection-Mediated Changes in Gut Microbiota, Intestinal Inflammation, and Impairment of Mucosal Barrier Functions. Front Immunol 2020; 11:1361. [PMID: 32695115 PMCID: PMC7338479 DOI: 10.3389/fimmu.2020.01361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Intestinal inflammation can cause impaired epithelial barrier function and disrupt immune homeostasis, which increases the risks of developing many highly fatal diseases. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes intestinal infections worldwide and is a major pathogen that induces intestinal inflammation. Various antibacterial peptides have been described as having the potential to suppress and treat pathogen-induced intestinal inflammation. Cecropin A (1–8)-LL37 (17–30) (C-L), a novel hybrid peptide designed in our laboratory that combines the active center of C with the core functional region of L, shows superior antibacterial properties and minimized cytotoxicity compared to its parental peptides. Herein, to examine whether C-L could inhibit pathogen-induced intestinal inflammation, we investigated the anti-inflammatory effects of C-L in EHEC O157:H7-infected mice. C-L treatment improved the microbiota composition and microbial community balance in mouse intestines. The hybrid peptide exhibited improved anti-inflammatory effects than did the antibiotic, enrofloxacin. Hybrid peptide treated infected mice demonstrated reduced clinical signs of inflammation, reduced weight loss, reduced expression of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)], reduced apoptosis, and reduced markers of jejunal epithelial barrier function. The peptide also affected the MyD88–nuclear factor κB signaling pathway, thereby modulating inflammatory responses upon EHEC stimulation. Collectively, these findings suggest that the novel hybrid peptide C-L could be developed into a new anti-inflammatory agent for use in animals or humans.
Collapse
Affiliation(s)
- Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lulu Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Matthew Koci
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junhao Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Maierhaba Aihemaiti
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Manyi Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Martínez-Oca P, Robles-Vera I, Sánchez-Roncero A, Escrivá F, Pérez-Vizcaíno F, Duarte J, Álvarez C, Fernández-Millán E. Gut DYSBIOSIS and altered barrier function precedes the appearance of metabolic syndrome in a rat model of nutrient-induced catch-up growth. J Nutr Biochem 2020; 81:108383. [PMID: 32388252 DOI: 10.1016/j.jnutbio.2020.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Nutritional restriction early in life followed by catch-up growth has been associated with increased risk of metabolic syndrome in adulthood. To elucidate whether altered gut colonization underlies the mechanisms responsible of this predisposition gut microbiome was studied before or afterwards catch-up growth. Offspring of dams fed ad libitum (C) or undernourished during pregnancy and suckling (U), were weaned onto high-fat diet (HFD) for 22 weeks (CHF and UHF, respectively) or continued on their diet. HF-feeding induced glucose intolerance (P<.05), insulin resistance (P<.001), and white adipose tissue inflammation (P<.001) in UHF rats compared to CHF. Analyses of gut microbial composition before catch-up growth revealed reduced F/B ratio and significant expansion of the mucolytic genera Akkermansia (P<.05) and Desulfovibrio (P<.05) in U pups. Although relative abundance of Akkermansia remained elevated to adulthood in U rats, HFD normalized its levels to C and CHF. Food-restriction increased intestinal permeability causing disorganization on the tight-junction proteins of colonic epithelium, Zonula Occludens-1 (ZO-1) and occludin, and reducing the mucus thickness layer in U adult rats. The levels of ZO-1 and occludin were not recovered in U rats after HF-feeding. This event was correlated with increased circulating levels of bacterial lipopolysaccharides in both U and UHF adult rats. Even more, serum lipopolysaccharides were already elevated in U rats compared to C group (P<.001) at weaning. Thus, gut dysbiosis and chronic endotoxemia observed in U rats, even before catch-up growth, might anticipate a pro-inflammatory milieu promoting metabolic diseases when fed hyperlipidic diets.
Collapse
Affiliation(s)
- P Martínez-Oca
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - I Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - A Sánchez-Roncero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Escrivá
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, Spain; Ciber Enfermedades Respiratorias (Ciberes, ISCIII) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - J Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Ciber de Enfermedades Cardiovasculares (CiberCV, ISCIII), Granada, Spain
| | - C Álvarez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| | - E Fernández-Millán
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| |
Collapse
|
35
|
Qin W, Song P, Lin G, Huang Y, Wang L, Zhou X, Li S, Zhang T. Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Front Microbiol 2020; 11:125. [PMID: 32117147 PMCID: PMC7018712 DOI: 10.3389/fmicb.2020.00125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/20/2020] [Indexed: 12/23/2022] Open
Abstract
Due to the increased economic demand for livestock, the number of livestock is increasing. Because of human interference, the survival of wild animals is threatened in the face of competition, particularly in co-inhabited grazing pastures. This may lead to differences in the adaptability between wild and domestic animals, as well as nutritional deficiencies in wild animals. The gut microbiota is closely associated with host health, nutrition, and adaptability. However, the gut microbiota diversity and functions in domestic and wild animals in co-inhabited areas are unclear. To reveal the adaptability of wild and domestic animals in co-inhabited areas based on gut microbiota, we assessed the gut microbiota diversity. This study was based on the V3–V4 region of 16S rRNA and gut microbiota functions according to the metagenome analysis of fresh fecal samples in wild goitered gazelles (Gazella subgutturosa) and domestic sheep (Ovis aries) in the Qaidam Basin. The wild and domestic species showed significant differences in alpha- and beta-diversities. Specifically, the alpha-diversity was lower in goitered gazelles. We speculated that the nutritional and habitat status of the goitered gazelles were worse. The gut microbiota functions in the gazelles were enriched in metabolism and cellular processes based on the KEGG database. In summary, we reasoned that gut microbiota can improve the adaptability of goitered gazelles through energy maintenance by the functions of gut microbiota in the face of nutritional deficiencies. These findings highlight the importance of gut microbiota diversity to improve the adaptability of goitered gazelles, laying a foundation for the conservation of wild goitered gazelles. In addition, we further provide management suggestions for domestic sheep in co-inhabited grazing pastures.
Collapse
Affiliation(s)
- Wen Qin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji'an, China
| | - YanGan Huang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | | | - Shengqing Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
36
|
Zhang S, Lin L, Liu W, Zou B, Cai Y, Liu D, Xiao D, Chen J, Li P, Zhong Y, Liao Q, Xie Z. Shen-Ling-Bai-Zhu-San alleviates functional dyspepsia in rats and modulates the composition of the gut microbiota. Nutr Res 2019; 71:89-99. [DOI: 10.1016/j.nutres.2019.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
|
37
|
Effects of sialylated lactulose on the mouse intestinal microbiome using Illumina high-throughput sequencing. Appl Microbiol Biotechnol 2019; 103:9067-9076. [DOI: 10.1007/s00253-019-10169-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023]
|
38
|
The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019; 11:nu11081943. [PMID: 31426593 PMCID: PMC6723943 DOI: 10.3390/nu11081943] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.
Collapse
|
39
|
Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth - First 1000 Days and Beyond. Trends Microbiol 2018; 27:131-147. [PMID: 30529020 DOI: 10.1016/j.tim.2018.09.008] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The assembly of microbial communities within the gastrointestinal tract during early life plays a critical role in immune, endocrine, metabolic, and other host developmental pathways. Environmental insults during this period, such as food insecurity and infections, can disrupt this optimal microbial succession, which may contribute to lifelong and intergenerational deficits in growth and development. Here, we review the human microbiome in the first 1000 days - referring to the period from conception to 2 years of age - and using a developmental model, we examine the role of early microbial succession in growth and development. We propose that an 'undernourished' microbiome is intergenerational, thereby perpetuating growth impairments into successive generations. We also identify and discuss the intertwining host-microbe-environment interactions occurring prenatally and during early infancy, which may impair the trajectories of healthy growth and development, and explore their potential as novel microbial targets for intervention.
Collapse
Affiliation(s)
- Ruairi C Robertson
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK.
| | - Amee R Manges
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada; British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Prendergast
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
40
|
Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MDLÁ, Palacios-González B, Menjivar M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Front Microbiol 2018; 9:2494. [PMID: 30386323 PMCID: PMC6198253 DOI: 10.3389/fmicb.2018.02494] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Mexico is experiencing an epidemiological and nutritional transition period, and Mexican children are often affected by the double burden of malnutrition, which includes undernutrition (13.6% of children) and obesity (15.3%). The gut microbiome is a complex and metabolically active community of organisms that influences the host phenotype. Although previous studies have shown alterations in the gut microbiota in undernourished children, the affected bacterial communities remain unknown. The present study investigated and compared the bacterial richness and diversity of the fecal microbiota in groups of undernourished (n = 12), obese (n = 12), and normalweight (control) (n = 12) Mexican school-age children. We used next-generation sequencing to analyze the V3–V4 region of the bacterial 16S rRNA gene, and we also investigated whether there were correlations between diet and relevant bacteria. The undernourished and obese groups showed lower bacterial richness and diversity than the normalweight group. Enterotype 1 correlated positively with dietary fat intake in the obese group and with carbohydrate intake in the undernourished group. The results showed that undernourished children had significantly higher levels of bacteria in the Firmicutes phylum and in the Lachnospiraceae family than obese children, while the Proteobacteria phylum was overrepresented in the obese group. The level of Lachnospiraceae correlated negatively with energy consumption and positively with leptin level. This is the first study to examine the gut microbial community structure in undernourished and obese Mexican children living in low-income neighborhoods. Our analysis revealed distinct taxonomic profiles for undernourished and obese children.
Collapse
Affiliation(s)
- Eder Orlando Méndez-Salazar
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México - Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Berenice Palacios-González
- Unidad de Vinculación Científica de la Facultad de Medicina UNAM-INMEGEN, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marta Menjivar
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México - Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Antibiotic treatment of rat dams affects bacterial colonization and causes decreased weight gain in pups. Commun Biol 2018; 1:145. [PMID: 30272021 PMCID: PMC6137057 DOI: 10.1038/s42003-018-0140-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Intergenerational transmission of bacteria during birth initiates the natural successional development of the intestinal microbiota in mammals. This process can be disrupted by antibiotic exposure, potentially affecting early-life microbiota-dependent metabolic programming. In the present study, we specifically investigate the metabolic consequences of exposing neonate Wistar rats to an antibiotic-perturbed low-diversity microbiota from birth until weaning, without exposing the pups directly to antibiotics. Here, we show that pups born from both amoxicillin and vancomycin-treated dams gain less weight than controls. This was concordant with lower feed intake as well as increased colonic expression of the PYY satiety hormone gene at weaning. The weight difference persists into adulthood even though the initial differences in gut microbiota subsided. Our results demonstrate that early-life exposure to an antibiotic-perturbed low-diversity microbiota is sufficient to cause changes in body weight persisting into adulthood.
Collapse
|
42
|
Ren D, Gong S, Shu J, Zhu J, Liu H, Chen P. Effects of mixed lactic acid bacteria on intestinal microbiota of mice infected with Staphylococcus aureus. BMC Microbiol 2018; 18:109. [PMID: 30189834 PMCID: PMC6127954 DOI: 10.1186/s12866-018-1245-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The stability of intestinal microorganisms plays an important role in human health, as the intestines perform important functions in the human body. Staphylococcus aureus is a Gram-positive, facultative anaerobic bacteria, it causes human infection worldwide, and is a major pathogen that causes intestinal infection. Mixed lactic acid bacteria (LAB) may have potential in the prevention and treatment of S. aureus infection. In the present study, we examined the effects of mixed LAB treatment on intestinal microbiota modulation in mice infected with S. aureus. Results High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene showed that the mixed LAB maintained the richness and diversity of the microbiota in the mouse intestine. By establishing operational taxonomic units and using rarefaction analysis, rank-abundance distribution curves, heat maps, Venn diagrams, bacterial community structures, and hierarchical clustering analysis, Bacteroidales, Lachnospiraceae, Bacteroides and Prevotellaceae were the most abundant taxa in the samples, we found that the composition of the intestinal microbiota was similar between the protection group administered mixed LAB and the negative control group. Conclusions Staphylococcus aureus destroys the stable intestinal microbiota structure of mice, treatment with mixed LAB could prevent S. aureus infection in mice and improve the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Shengjie Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jingyan Shu
- Veterinary Science Department, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hongyan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
43
|
Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:1-8. [PMID: 29574035 DOI: 10.1016/j.cbpc.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/28/2023]
Abstract
Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that has been associated with a wide range of toxic effects in humans and environmental animals. Here, effects of short time exposure to 10 and 30 μg/L Pb on gut microbiota and hepatic metabolism were analyzed in adult male zebrafish. We observed that both 10 and 30 μg/L Pb increased the volume of mucus in the gut. At phylum level, the abundance of α-Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut when treated with 30 μg/L Pb for 7 days. In addition, the 16S rRNA gene sequencing for V3-V4 region revealed a significant change in the richness and diversity of gut microbiota in 30 μg/L Pb exposed group. A more depth analysis, at the genus level, discovered that 52 gut microbes identified by operational taxonomic unit analysis were changed significantly in 30 μg/L Pb treated group. Based on GC/MS metabolomics analysis, a total of 41 metabolites were significantly altered in 30 μg/L Pb treatment group. These changed metabolites were mainly associated with the pathways of glucose and lipid metabolism, amino acid metabolism, nucleotide metabolism. In addition, we also confirmed that the transcription of some genes related to glycolysis and lipid metabolism, including Gk, Aco, Acc1, Fas, Apo and Dgat, decreased significantly in the liver of zebrafish when exposed to 30 μg/L Pb for 7 days. Our results observed that Pb could cause gut microbiota dysbiosis and hepatic metabolic disorder in zebrafish.
Collapse
Affiliation(s)
- Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liang Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jicong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingchun Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
44
|
Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr 2018; 58:909-930. [PMID: 29644395 PMCID: PMC6499750 DOI: 10.1007/s00394-018-1679-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Nutritional restrictions during the first 1000 days of life can impair or delay the physical and cognitive development of the individual and have long-term consequences for their health. Metabolic phenotyping (metabolomics/metabonomics) simultaneously measures a diverse range of low molecular weight metabolites in a sample providing a comprehensive assessment of the individual's biochemical status. There are a growing number of studies applying such approaches to characterize the metabolic derangements induced by various forms of early-life malnutrition. This includes acute and chronic undernutrition and specific micronutrient deficiencies. Collectively, these studies highlight the diverse and dynamic metabolic disruptions resulting from various forms of nutritional deficiencies. Perturbations were observed in many pathways including those involved in energy, amino acid, and bile acid metabolism, the metabolic interactions between the gut microbiota and the host, and changes in metabolites associated with gut health. The information gleaned from such studies provides novel insights into the mechanisms linking malnutrition with developmental impairments and assists in the elucidation of candidate biomarkers to identify individuals at risk of developmental shortfalls. As the metabolic profile represents a snapshot of the biochemical status of an individual at a given time, there is great potential to use this information to tailor interventional strategies specifically to the metabolic needs of the individual.
Collapse
|
45
|
Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids. Clin Nutr 2018; 38:615-630. [PMID: 29496274 DOI: 10.1016/j.clnu.2018.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
The gut microbiome affects the health status of the host through different mechanisms and is associated with a wide variety of diseases. Both childhood undernutrition and obesity are linked to alterations in composition and functionality of the gut microbiome. One of the possible mechanisms underlying the interplay between microbiota and host metabolism is through appetite-regulating hormones (including leptin, ghrelin, glucagon-like peptide-1). Short chain fatty acids, the end product of bacterial fermentation of non-digestible carbohydrates, might be able to alter energy harvest and metabolism through enteroendocrine cell signaling, adipogenesis and insulin-like growth factor-1 production. Elucidating these mechanisms may lead to development of new modulation practices of the gut microbiota as a potential prevention and treatment strategy for childhood malnutrition. The present overview will briefly outline the gut microbiota development in the early life, gut microbiota alterations in childhood undernutrition and obesity, and whether this relationship is causal. Further we will discuss possible underlying mechanisms in relation to the gut-brain axis and short chain fatty acids, and the potential of probiotics, prebiotics and synbiotics for modulating the gut microbiota during childhood as a prevention and treatment strategy against undernutrition and obesity.
Collapse
Affiliation(s)
- Ceyda Tugba Pekmez
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark; Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lena Kirchner Brahe
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
46
|
Jin C, Luo T, Zhu Z, Pan Z, Yang J, Wang W, Fu Z, Jin Y. Imazalil exposure induces gut microbiota dysbiosis and hepatic metabolism disorder in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:85-93. [PMID: 28888875 DOI: 10.1016/j.cbpc.2017.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023]
Abstract
The fungicide imazalil (IMZ) is used extensively to preserve freshness, prevent decay and control fungal infections in fruits, vegetables or other plants. Recently, some studies have reported that the real in aquatic systems have reached very high levels. Here, male adult zebrafish were exposed to 100 and 1000μg/L IMZ for 1, 7, 21days, and the gut microbiota and hepatic metabolism were evaluated. Exposure to a high concentration of IMZ for 21days decreased mucin secretion in the gut. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed a significant increase in the diversity of gut microbiota in male zebrafish. At the phylum level, the composition of Proteobacteria and Bacteroidetes was decreased, while those Fusobacteria and Firmicutes increased in the gut after exposure to 1000μg/L IMZ for 21days. At the genus level, 29 species of microorganisms were significantly changed after IMZ exposure. Based on GC/MS metabolomics analysis, 101 metabolites were observably significantly altered in the 1000μg/L IMZ-treatment group. These changed metabolites were mainly associated with the pathway of glycolysis, amino acid metabolism, and lipid metabolism. In addition, the transcription of some genes related to glycolysis and lipid metabolism, including Aco, Cpt1, Acc1, Srebp1a and Fas, was decreased significantly in the liver of zebrafish when exposed to 100 and 1000μg/L IMZ for 7 or 21days. These results indicated that exposure to IMZ could cause gut microbiota dysbiosis and metabolic disorders in adult zebrafish.
Collapse
Affiliation(s)
- Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhihong Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiajing Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenchao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Ley D, Desseyn JL, Mischke M, Knol J, Turck D, Gottrand F. Early-life origin of intestinal inflammatory disorders. Nutr Rev 2017; 75:175-187. [PMID: 28340001 DOI: 10.1093/nutrit/nuw061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence supports the concept of perinatal programming through which the perinatal environment affects the development of the fetus and infant, thereby modifying the risk profile for disease later in life. Increasing attention is focusing on the role of the early environment in the development of chronic intestinal disorders. Epidemiological studies have highlighted the link between perinatal factors, such as breastfeeding, cesarean delivery, and antibiotic use, and an increased risk for inflammatory bowel disease and/or celiac disease. These links are consistent with the concept of perinatal programming of intestinal inflammatory disorders. Animal models have shown that the early-life environment affects the development of the gastrointestinal tract, but further experimental studies are needed to confirm the long-term effects of the perinatal environment on susceptibility to chronic intestinal disorders later in life. Changes in the development and composition of the intestinal microbiota as well as epigenetic changes are emerging as key mechanisms through which the perinatal environment determines susceptibility to intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Delphine Ley
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | - Jean-Luc Desseyn
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | | | - Jan Knol
- Nutricia Research, Utrecht, The Netherlands.,Laboratory of Microbiology, Wageningen University, The Netherlands
| | - Dominique Turck
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| | - Frédéric Gottrand
- Lille Inflammation Research International Center (LIRIC) - UMR 995 Inserm, University Lille, CHU Lille, Lille, France
| |
Collapse
|
48
|
Bolick DT, Mayneris-Perxachs J, Medlock GL, Kolling GL, Papin JA, Swann JR, Guerrant RL. Increased Urinary Trimethylamine N-Oxide Following Cryptosporidium Infection and Protein Malnutrition Independent of Microbiome Effects. J Infect Dis 2017; 216:64-71. [PMID: 28520899 PMCID: PMC5905612 DOI: 10.1093/infdis/jix234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidium infections have been associated with growth stunting, even in the absence of diarrhea. Having previously detailed the effects of protein deficiency on both microbiome and metabolome in this model, we now describe the specific gut microbial and biochemical effects of Cryptosporidium infection. Protein-deficient mice were infected with Cryptosporidium parvum oocysts for 6-13 days and compared with uninfected controls. Following infection, there was an increase in the urinary excretion of choline- and amino-acid-derived metabolites. Conversely, infection reduced the excretion of the microbial-host cometabolite (3-hydroxyphenyl)propionate-sulfate and disrupted metabolites involved in the tricarboxylic acid (TCA) cycle. Correlation analysis of microbial and biochemical profiles resulted in associations between various microbiota members and TCA cycle metabolites, as well as some microbial-specific degradation products. However, no correlation was observed between the majority of the infection-associated metabolites and the fecal bacteria, suggesting that these biochemical perturbations are independent of concurrent changes in the relative abundance of members of the microbiota. We conclude that cryptosporidial infection in protein-deficient mice can mimic some metabolic changes seen in malnourished children and may help elucidate our understanding of long-term metabolic consequences of early childhood enteric infections.
Collapse
Affiliation(s)
- David T Bolick
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| | - Jordi Mayneris-Perxachs
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Greg L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jon R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| |
Collapse
|
49
|
Fluitman KS, De Clercq NC, Keijser BJF, Visser M, Nieuwdorp M, IJzerman RG. The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Rev Endocrinol Metab 2017; 12:215-226. [PMID: 30063458 DOI: 10.1080/17446651.2017.1318060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malnutrition refers to both over- and undernutrition and results from a disruption in energy balance. It affects one in three people worldwide and is associated with increased morbidity and mortality. The intestinal microbiota represents a newly identified factor that might contribute to the development of malnutrition, as it harbors traits that complement the human metabolic and endocrine capabilities, thereby influencing energy balance. Areas covered: In the current review, we aim to give a comprehensive overview on the microbiota, its development and its possible influence on energy balance, with emphasis the role of short-chain fatty acids. We also consider microbial characteristics associated with obesity and undernutrition and evaluate microbial manipulating strategies. The PubMed database was searched using the terms: 'gastrointestinal microbiota', 'volatile fatty acids', 'malnutrition', 'undernutrition', 'obesity', 'insulin resistance', 'prebiotics', 'probiotics', 'antibiotics' and 'fecal microbiota transplantation'. Expert commentary: Microbiota make important contributions to the regulation of energy balance, whereas microbial disturbances might predispose to malnutrition. If we manage to manipulate the microbiota to our benefit, it could lead to preventive or therapeutic strategies targeting malnutrition.
Collapse
Affiliation(s)
- Kristina S Fluitman
- a Department of Internal Medicine , VU University Medical Center , Amsterdam , The Netherlands
- b Wallenburg Laboratory, Department of Molecular and Clinical Medicine , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Nicolien C De Clercq
- c Department of Vascular Medicine , Academic Medical Center , Amsterdam , The Netherlands
| | - Bart J F Keijser
- d Department of Microbiology and Systems biology , TNO earth, Life and Social Sciences , Zeist , The Netherlands
- e Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University , Amsterdam , The Netherlands
| | - Marjolein Visser
- a Department of Internal Medicine , VU University Medical Center , Amsterdam , The Netherlands
- f Department of Health Sciences, Faculty of Earth and Life Sciences , VU University, Amsterdam Public Health Research Institute , Amsterdam , The Netherlands
- g Department of Internal Medicine , Nutrition and Dietetics, VU University Medical Center , Amsterdam , The Netherlands
| | - Max Nieuwdorp
- a Department of Internal Medicine , VU University Medical Center , Amsterdam , The Netherlands
- b Wallenburg Laboratory, Department of Molecular and Clinical Medicine , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
- c Department of Vascular Medicine , Academic Medical Center , Amsterdam , The Netherlands
- h Institute for Cardiovascular Research , VU University Medical Center , Amsterdam , The Netherlands
| | - Richard G IJzerman
- a Department of Internal Medicine , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
50
|
Wang JZ, Du WT, Xu YL, Cheng SZ, Liu ZJ. Gut microbiome-based medical methodologies for early-stage disease prevention. Microb Pathog 2017; 105:122-130. [DOI: 10.1016/j.micpath.2017.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
|