1
|
Yan H, Kuerbanjiang M, Muheyati D, Yang Z, Han J. Wheat bran oil ameliorates high-fat diet-induced obesity in rats with alterations in gut microbiota and liver metabolite profile. Nutr Metab (Lond) 2024; 21:84. [PMID: 39455992 PMCID: PMC11515275 DOI: 10.1186/s12986-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Obesity is one of the public health issues that seriously threatens human health. This study aimed to investigate the effects of wheat bran oil (WBO) on body weight and fat/lipid accumulation in high-fat diet (HFD)-induced obese rats and further explore the possible mechanisms by microbiome and metabolome analyses. METHODS Fifty Sprague-Dawley (SD) rats were fed either a normal chow diet (B group, n = 10) or HFD (n = 40) for 14 weeks to establish an obesity model. The HFD-induced obese rats were further divided into four groups and given WBO at 0 mL/kg (M group), 1.25 mL/kg (WBO-L group), 2.5 mL/kg (WBO-M group), and 5 mL/kg (WBO-H group) by oral gavage for 9 weeks. The body weight of rats was weighed weekly. The gut microbiota structure was analyzed using 16 S rDNA high-throughput sequencing. The liver metabolite profile was determined using UHPLC-QE-MS non-target metabolomics technology. RESULTS In this study, WBO treatment reduced body weight gain, fat and lipid accumulation, and ameliorated hepatic steatosis and inflammation. WBO treatment increased the relative abundance of Romboutsia and Allobaculum and decreased that of Candidatus_Saccharimonas, Alloprevotella, Rikenellaceae_RC9_gut_group, Alistipes, Parabacteroides, UCG-005, Helicobacter, Colidextribacter, and Parasutterella compared with the M group. A total of 22 liver metabolites were significantly altered by WBO treatment, which were mainly involved in taurine and hypotaurine metabolism, nicotinate and nicotunamide metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and ether lipid metabolism. CONCLUSIONS WBO alleviated body weight gain and fat/lipid accumulation in HFD-induced obese rats, which may be related to altered gut microbiota and liver metabolites.
Collapse
Affiliation(s)
- Huan Yan
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China
| | - Maierheba Kuerbanjiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Dina Muheyati
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhong Yang
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China.
| | - Jia Han
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
2
|
Guo X, Wang Y, Zhu Z, Li L. The Role of Plant Extracts in Enhancing Nutrition and Health for Dogs and Cats: Safety, Benefits, and Applications. Vet Sci 2024; 11:426. [PMID: 39330805 PMCID: PMC11435925 DOI: 10.3390/vetsci11090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Plant extracts, derived from various natural sources, encompass primary and secondary metabolites, which include plant polysaccharides, polyphenols, alkaloids, flavonoids, glycosides, terpenes, and volatile oils. These compounds exhibit a range of biological activities such as antioxidant, anti-inflammatory, and antimicrobial functions. Currently, polyphenols and other bioactive compounds are being incorporated into the diets of farm animals, fish, and pets to promote health benefits. Despite this, the application and potential of plant extracts in canine and feline nutrition have not been comprehensively explored. Many aspects of the mechanisms underlying the action of these plant metabolites remain to be analyzed and elucidated. Furthermore, leveraging natural plant extracts for the treatment of clinical conditions in dogs and cats is a crucial component of clinical nutrition. Consequently, this review aims to highlight the impact of plant extracts on overall health, gastrointestinal health, immune health, cardiovascular health, redox balance, and pathology in dogs and cats.
Collapse
Affiliation(s)
- Xinzi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yifei Wang
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zhaoxuan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
3
|
Su J, Tan Q, Wu S, Zhou F, Xu C, Zhao H, Lin C, Deng X, Xie L, Lin X, Ye H, Yang M. Administration of turmeric kombucha ameliorates lipopolysaccharide-induced sepsis by attenuating inflammation and modulating gut microbiota. Front Microbiol 2024; 15:1452190. [PMID: 39282561 PMCID: PMC11392888 DOI: 10.3389/fmicb.2024.1452190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Our research team previously reported the immunomodulatory effects of kombucha fermentation liquid. This study investigated the protective effects of turmeric kombucha (TK) against lipopolysaccharide (LPS)-induced sepsis and its impact on the intestinal microbiota of mice. A turmeric culture medium without kombucha served as the control (TW). Non-targeted metabolomics analysis was employed to analyze the compositional differences between TK and TW. Qualitative analysis identified 590 unique metabolites that distinguished TK from TW. TK improved survival from 40 to 90%, enhanced thermoregulation, and reduced pro-inflammatory factor expression and inflammatory cell infiltration in the lung tissue, suppressing the NF-κB signaling pathway. TK also altered the microbiome, promoting Allobaculum growth. Our findings shed light on the protective effects and underlying mechanisms of TK in mitigating LPS-induced sepsis, highlighting TK as a promising anti-inflammatory agent and revealing new functions of kombucha prepared through traditional fermentation methods.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chen Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Liu Y, Long Y, Fang J, Liu G. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate. Nutrients 2024; 16:2074. [PMID: 38999821 PMCID: PMC11243004 DOI: 10.3390/nu16132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Liversidge BD, Gomez DE, Dodd SAS, MacNicol JL, Adolphe JL, Blois SL, Verbrugghe A. Comparison of the fecal microbiota of adult healthy dogs fed a plant-based (vegan) or an animal-based diet. Front Microbiol 2024; 15:1367493. [PMID: 38694809 PMCID: PMC11061427 DOI: 10.3389/fmicb.2024.1367493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Purpose Pet guardians are increasingly seeking vegan dog foods. However, research on the impact of these diets on gastrointestinal (GI) physiology and health is limited. In humans, vegan diets modify the GI microbiota, increasing beneficial digestive microorganisms. This study aimed to examine the canine fecal microbiota in response to a vegan diet compared to an animal-based diet. Methods Sixty-one client-owned healthy adult dogs completed a randomized, double-blinded longitudinal study. Dogs were randomly assigned into two groups that were fed either a commercial extruded animal-based diet (MEAT, n = 30) or an experimental extruded vegan diet (PLANT, n = 31) for 12 weeks. Fecal collections occurred at the start of the experimental period and after 3 months of exclusively feeding either diet. Bacterial DNA was extracted from the feces, and the V4 region of the 16S rRNA gene was amplified using PCR and sequenced on Illumina MiSeq. Beta-diversity was measured using Jaccard and Bray-Curtis distances, and the PERMANOVA was used to assess for differences in fecal microbiota within and between groups. Alpha-diversity indices for richness, evenness, and diversity, as well as relative abundance, were calculated and compared between groups. Results Beta-diversity differences occurred between diet groups at exit time-point with differences on Bray-Curtis distances at the family and genus levels (p = 0.007 and p = 0.001, respectively), and for the Jaccard distance at the family and genus level (p = 0.006 and p = 0.011, respectively). Significant differences in alpha-diversity occurred when comparing the PLANT to the MEAT group at the exit time-point with the PLANT group having a lower evenness (p = 0.012), but no significant differences in richness (p = 0.188), or diversity (p = 0.06). At exit-timepoint, compared to the MEAT group, the relative abundance of Fusobacterium, Bacteroides, and Campylobacter was lower in the PLANT group. The relative abundance of Fusobacterium decreased over time in the PLANT group, while no change was observed in the MEAT group. Conclusion These results indicate that vegan diets may change the canine gut microbiota. Future studies are warranted to confirm our results and determine long-term effects of vegan diets on the canine gut microbiome.
Collapse
Affiliation(s)
- Brooklynn D. Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. S. Dodd
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Petcurean Pet Nutrition, Chilliwack, BC, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
8
|
Zong Y, Zhao H, Wang T. mbDecoda: a debiased approach to compositional data analysis for microbiome surveys. Brief Bioinform 2024; 25:bbae205. [PMID: 38701410 PMCID: PMC11066923 DOI: 10.1093/bib/bbae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Potentially pathogenic or probiotic microbes can be identified by comparing their abundance levels between healthy and diseased populations, or more broadly, by linking microbiome composition with clinical phenotypes or environmental factors. However, in microbiome studies, feature tables provide relative rather than absolute abundance of each feature in each sample, as the microbial loads of the samples and the ratios of sequencing depth to microbial load are both unknown and subject to considerable variation. Moreover, microbiome abundance data are count-valued, often over-dispersed and contain a substantial proportion of zeros. To carry out differential abundance analysis while addressing these challenges, we introduce mbDecoda, a model-based approach for debiased analysis of sparse compositions of microbiomes. mbDecoda employs a zero-inflated negative binomial model, linking mean abundance to the variable of interest through a log link function, and it accommodates the adjustment for confounding factors. To efficiently obtain maximum likelihood estimates of model parameters, an Expectation Maximization algorithm is developed. A minimum coverage interval approach is then proposed to rectify compositional bias, enabling accurate and reliable absolute abundance analysis. Through extensive simulation studies and analysis of real-world microbiome datasets, we demonstrate that mbDecoda compares favorably with state-of-the-art methods in terms of effectiveness, robustness and reproducibility.
Collapse
Affiliation(s)
- Yuxuan Zong
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Biostatistics, Yale University, New Haven, CT
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Statistics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Konechnyi Y, Rumynska T, Yushyn I, Holota S, Turkina V, Ryviuk Rydel M, Sękowska A, Salyha Y, Korniychuk O, Lesyk R. A New 4-Thiazolidinone Derivative (Les-6490) as a Gut Microbiota Modulator: Antimicrobial and Prebiotic Perspectives. Antibiotics (Basel) 2024; 13:291. [PMID: 38666967 PMCID: PMC11047727 DOI: 10.3390/antibiotics13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
A novel 4-thiazolidinone derivative Les-6490 (pyrazol-4-thiazolidinone hybrid) was designed, synthesized, and characterized by spectral data. The compound was screened for its antimicrobial activity against some pathogenic bacteria and fungi and showed activity against Staphylococcus and Saccharomyces cerevisiae (the Minimum Inhibitory Concentration (MIC) 820 μM). The compound was studied in the rat adjuvant arthritis model (Freund's Adjuvant) in vivo. Parietal and fecal microbial composition using 16S rRNA metagenome sequences was checked. We employed a range of analytical techniques, including Taxonomic Profiling (Taxa Analysis), Diversity Metrics (Alpha and Beta Diversity Analysis), Multivariate Statistical Methods (Principal Coordinates Analysis, Principal Component Analysis, Non-Metric Multidimensional Scaling), Clustering Analysis (Unweighted Pair-group Method with Arithmetic Mean), and Comparative Statistical Approaches (Community Differences Analysis, Between Group Variation Analysis, Metastat Analysis). The compound significantly impacted an increasing level of anti-inflammatory microorganisms (Blautia, Faecalibacterium prausnitzii, Succivibrionaceae, and Coriobacteriales) relative recovery of fecal microbiota composition. Anti-Treponemal activity in vivo was also noted. The tested compound Les-6490 has potential prebiotic activity with an indirect anti-inflammatory effect.
Collapse
Affiliation(s)
- Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Tetyana Rumynska
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University, 13 Volya Ave., 43025 Lutsk, Ukraine
| | - Vira Turkina
- Research Institute of Epidemiology and Hygiene, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine;
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Mariana Ryviuk Rydel
- Department of Intellectual Property, Information and Corporate Law, Ivan Franko National University of Lviv, 1 Universytetska St., 79000 Lviv, Ukraine;
- Department of Scientific and Medical Information and Intellectual Property, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Alicja Sękowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Maria Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Yuriy Salyha
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Olena Korniychuk
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
10
|
Su Y, Hu K, Li D, Guo H, Sun L, Xie Z. Microbial-Transferred Metabolites and Improvement of Biological Activities of Green Tea Catechins by Human Gut Microbiota. Foods 2024; 13:792. [PMID: 38472905 DOI: 10.3390/foods13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Green tea catechins (GTCs) are dietary polyphenols with broad bioactivities that undergo extensive microbial metabolism in the human gut. However, microbial-transferred metabolites and their health benefits are not fully understood. Herein, the microbial metabolism of GTCs by human fecal microbiota and dynamic alteration of the microbiota were integrally investigated via in vitro anaerobic fermentation. The results showed that the human gut microbiota exhibited a strong metabolic effect on GTCs via UHPLC-MS/MS analysis. A total of 35 microbial-transferred metabolites were identified, far more than were identified in previous studies. Among them, five metabolites, namely EGCG quinone, EGC quinone, ECG quinone, EC quinone, and mono-oxygenated EGCG, were identified for the first time in fermented GTCs with the human gut microbiota. Consequently, corresponding metabolic pathways were proposed. Notably, the antioxidant, α-amylase, and α-glucosidase inhibitory activities of the GTCs sample increased after fermentation compared to those of the initial unfermented sample. The results of the 16S rRNA gene sequence analysis showed that the GTCs significantly altered gut microbial diversity and enriched the abundancy of Eubacterium, Flavonifractor, etc., which may be further involved in the metabolisms of GTCs. Thus, these findings contribute to a better understanding of the interactions between GTCs and gut microbiota, as well as the health benefits of green tea consumption.
Collapse
Affiliation(s)
- You Su
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kaiyin Hu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Center for Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Li Sun
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Balouei F, Stefanon B, Martello E, Atuahene D, Sandri M, Meineri G. Supplementation with Silybum marianum Extract, Synbiotics, Omega-3 Fatty Acids, Vitamins, and Minerals: Impact on Biochemical Markers and Fecal Microbiome in Overweight Dogs. Animals (Basel) 2024; 14:579. [PMID: 38396547 PMCID: PMC10886211 DOI: 10.3390/ani14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Overweight and obese dogs can develop metabolic dysfunction, characterized by an inflammatory response and involvement of liver functions. If a modulation of the gut microbiome and its interaction with the gut-liver axis is implicated in the development of metabolic dysfunction, exploration becomes necessary. Over the past decade, diverse therapeutic approaches have emerged to target pathogenic factors involved in metabolic dysfunction. This study investigated the impact of a supplement with hepatoprotective activity, containing extracts of Silybum marianum, prebiotics, probiotics, n-3 polyunsaturated fatty acids, vitamins, and minerals on hematological markers of liver functions and inflammation, as well as on the intestinal microbiota of 10 overweight adult dogs over a 35-day time span. Animals underwent clinical and laboratory evaluations every 7 days, both before the administration of the supplement (T0) and after 7, 14, 21, 28, and 35 days (T1, T2, T3, T4, and T5). In comparison to T0, a significant (p < 0.05) decrease in ALP, glucose, direct bilirubin, and CRP was observed from T3 to T5. The alpha diversity of the fecal microbiota significantly decreased (p < 0.05) only at T1, with high variability observed between dogs. Total short-chain fatty acid and lactic acid were also lower at T1 (p < 0.05) compared to the other times of sampling. The beta diversity of the fecal microbiota failed to show a clear pattern in relation to the sampling times. These results of blood parameters in overweight dogs show a reduction of the inflammation and an improvement of metabolic status during the study period, but the effective contribution of the supplement in this clinical outcome deserves further investigation. Furthermore, the considerable individual variability observed in the microbiome hinders the confident detection of supplement effects.
Collapse
Affiliation(s)
- Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham City Hospital Campus, Nottingham NG5 1PB, UK;
| | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| | - Misa Sandri
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy; (F.B.); (M.S.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, 10095 Turin, Italy; (D.A.); (G.M.)
| |
Collapse
|
12
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Li L, Chen J, Sun H, Niu Q, Zhao Y, Yang X, Sun Q. Orm2 Deficiency Aggravates High-Fat Diet-Induced Obesity through Gut Microbial Dysbiosis and Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300236. [PMID: 37853937 DOI: 10.1002/mnfr.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/09/2023] [Indexed: 10/20/2023]
Abstract
SCOPE Orosomucoid 2 (Orm2) is a hepatocyte-secreted protein that plays a crucial role in regulating obesity-type metabolic disease and immunity. The imbalance of gut microbiota is one of the causes of obesity, but the mechanism of the relationship between Orm2 and gut microbiota in obesity remains unclear. METHODS AND RESULTS Orm2-/- (Orm2 knockout) mice on a normal diet developed spontaneous obesity and metabolic disturbances at the 20th week. Through 16S rRNA gene sequencing, the study finds that the gut microbiota of Orm2-/- mice has a different microbial composition compared to wild type (WT) mice. Furthermore, a high-fat diet (HFD) for 16 weeks exacerbates obesity in Orm2-/- mice. Lack of Orm2 promotes dysregulation of gut microbiota under the HFD, especially a reduction of Clostridium spp. Supplementation with Clostridium butyricum alleviates obesity and alters the gut microbial composition in WT mice, but has minimal effects on Orm2-/- mice. In contrast, co-housing of Orm2-/- mice with WT mice rescues Orm2-/- obesity by reducing pathogenic bacteria and mitigating intestinal inflammation. CONCLUSION These findings suggest Orm2 deficiency exacerbates HFD-induced gut microbiota disturbance and intestinal inflammation, providing a novel insight into the complex bacterial flora but not a single probiotic administration in the therapeutic strategy of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Niu
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
14
|
Meng S, An Y, Wang Y, Wang S, Wang H, Shao Q, Dou M, He L, Zhang C. Tea polyphenols protect bovine intestinal epithelial cells from the adverse effects of heat-stress in vitro. Anim Biotechnol 2023; 34:3934-3945. [PMID: 37647094 DOI: 10.1080/10495398.2023.2244569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Heat-stress (HS) leads to impaired gut health, adversely affecting milk production of dairy cows. In the present study, we investigated the protective effects of tea polyphenols (TP) against HS-induced damage in bovine intestinal epithelial cells (BIECs) and explored the underlying mechanisms. Primary BIECs were isolated from bovine duodenum, cultured and treated as follows: (1) control cells incubated in complete medium at 37 °C for 12 h, (2) TP group incubated in medium containing 100 μg/mL TP at 37 °C for 12 h, (3) HS group incubated in medium at 37 °C for 6 h followed by 6 h at 42 °C, and (4) HS + TP group incubated with 100 μg/mL TP for 6 h at 37 °C and 6 h at 42 °C. TP improved cell viability and antioxidant capacity, and decreased apoptosis and LDH activity. TP led to upregulation of Nrf2 and its target antioxidant genes HO-1, NQO1 and SOD1 expression. TP significantly decreased the expression of proinflammatory cytokine genes (NF-κB, IL-6 and TNF-α), and increased expression of the anti-inflammatory cytokine gene, IL-10. The above results suggested that TP protected BIECs from HS-induced adverse effects by alleviating oxidative stress and inflammatory responses, indicating that TP can alleviate HS-induced intestinal damage in dairy cows.
Collapse
Affiliation(s)
- Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuexin Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| |
Collapse
|
15
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
16
|
Santos D, Vargas BK, Frota EG, Biduski B, Lopes ST, Gutkoski JP, Dos Santos LF, Ritterbusch GA, Barcelos RP, Somacal S, Emanuelli T, Bertolin TE. Gut Microbiota Modulation by Bioactive Compounds from Ilex paraguariensis: an In Vivo Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:796-802. [PMID: 37919536 DOI: 10.1007/s11130-023-01117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Yerba-mate (Ilex paraguariensis) is recognized for its biocompounds and bioactive properties. This study aimed to assess the potential of yerba-mate extract to modulate the intestinal microbiota in rats. After the ethical committee approval (CEUA - UPF, number 025/2018), the Wistar rats were given a daily dose of 3.29 mg of phenolic compounds per animal for 45 days. The antioxidant activity of the extract was assessed by ABTS and FRAP assays and the total phenolic compounds was measured at different pH levels. Identification and quantification of chlorogenic acid isomers were carried out using high-performance liquid chromatography (HPLC). Intestinal microbiota modulation was evaluated by administering the yerba-mate extract or water (control) to Wistar rats via intragastric gavage and its efficiency was measured through PCR. The antioxidant capacity of the yerba-mate extract was 64.53 ± 0.26 μmol Trolox/mL (ABTS) and 52.96 ± 0.86 μmol Trolox/mL (FRAP). The total phenolic compounds showed higher levels at pH 7.5 compared to pH 2.0. Chlorogenic acid isomers were found in greater abundance, with a concentration of 14.22 g/100 g. The administration of the extract resulted in positive modulation of the intestinal microbiota, specifically for the genera Lactobacillus sp. and Prevotella sp. The increase of these genera is related to the promotion of homeostasis of the gut microbiota. Therefore, these findings indicate that yerba-mate extract possesses significant antioxidant activity and can effectively modulate the intestinal microbiota in rats. These results support the potential use of yerba-mate as an alternative for controlling and preventing diseases associated with intestinal dysbiosis.
Collapse
Affiliation(s)
- Daiane Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Bruna Krieger Vargas
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Elionio Galvão Frota
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Bárbara Biduski
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil.
- Food Quality and Sensory Science Department, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland.
| | - Samuel Teixeira Lopes
- Graduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Júlia Pedó Gutkoski
- Graduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Lára Franco Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Giseli Aparecida Ritterbusch
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Rômulo Pillon Barcelos
- Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Choi SR, Lee H, Singh D, Cho D, Chung JO, Roh JH, Kim WG, Lee CH. Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria. J Microbiol Biotechnol 2023; 33:1317-1328. [PMID: 37435870 PMCID: PMC10619559 DOI: 10.4014/jmb.2306.06014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.
Collapse
Affiliation(s)
- Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Donghyun Cho
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Jin-Oh Chung
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
18
|
Nelson CE, Aramouni FM, Goering MJ, Bortoluzzi EM, Knapp LA, Herrera-Ibata DM, Li KW, Jermoumi R, Hooker JA, Sturek J, Byrd JP, Wu H, Trinetta V, Alloosh M, Sturek M, Jaberi-Douraki M, Hulbert LE. Adult Ossabaw Pigs Prefer Fermented Sorghum Tea over Isocaloric Sweetened Water. Animals (Basel) 2023; 13:3253. [PMID: 37893977 PMCID: PMC10603632 DOI: 10.3390/ani13203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Ossabaw pigs (n = 11; 5-gilts, 6-barrows; age 15.6 ± 0.62 SD months) were exposed to a three-choice preference maze to evaluate preference for fermented sorghum teas (FSTs). After conditioning, pigs were exposed, in four sessions, to choices of white FST, sumac FST, and roasted sumac-FST. Then, pigs were exposed, in three sessions, to choices of deionized H2O (-control; avoidance), isocaloric control (+control; deionized H2O and sucrose), and blended FST (3Tea) (equal portions: white, sumac, and roasted sumac). When tea type was evaluated, no clear preference behaviors for tea type were observed (p > 0.10). When the 3Tea and controls were evaluated, pigs consumed minimal control (p < 0.01;18.0 ± 2.21% SEM), and they consumed great but similar volumes of +control and 3Tea (96.6 and 99.0 ± 2.21% SEM, respectively). Likewise, head-in-bowl duration was the least for -control, but 3Tea was the greatest (p < 0.01; 5.6 and 31.9 ± 1.87% SEM, respectively). Head-in-bowl duration for +control was less than 3Tea (p < 0.01; 27.6 vs. 31.9 ± 1.87% SEM). Exploration duration was the greatest in the area with the -control (p < 0.01; 7.1 ± 1.45% SEM), but 3Tea and +control exploration were not different from each other (1.4 and 3.0 ± 1.45% SEM, respectively). Regardless of tea type, adult pigs show preference for FST, even over +control. Adult pigs likely prefer the complexity of flavors, rather than the sweetness alone.
Collapse
Affiliation(s)
- Catherine E. Nelson
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Fadi M. Aramouni
- United States Department of Agriculture-Agriculture Resource Services Center for Grain and Animal Research, Manhattan, KS 66502, USA
| | - Mikayla J. Goering
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Eduarda M. Bortoluzzi
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Laura A. Knapp
- United States Department of Agriculture-Agriculture Resource Services Center for Grain and Animal Research, Manhattan, KS 66502, USA
| | | | - Ka Wang Li
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Joshua Sturek
- CorVus Biomedical, LLC, Crawfordsville, IN 47933, USA
| | - James P. Byrd
- CorVus Biomedical, LLC, Crawfordsville, IN 47933, USA
| | - Hui Wu
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Valentina Trinetta
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Michael Sturek
- CorVus Biomedical, LLC, Crawfordsville, IN 47933, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Majid Jaberi-Douraki
- Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
- Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506, USA
- FARAD Program, Kansas State University, Olathe, KS 66061, USA
| | - Lindsey E. Hulbert
- Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
19
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
20
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
21
|
Zhao Z, Zhao F, Cairang Z, Zhou Z, Du Q, Wang J, Zhao F, Wang Q, Li Z, Zhang X. Role of dietary tea polyphenols on growth performance and gut health benefits in juvenile hybrid sturgeon (Acipenser baerii ♀ × A. schrenckii ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108911. [PMID: 37394018 DOI: 10.1016/j.fsi.2023.108911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The present study aimed to evaluate the effects of dietary TPs on growth performance, intestinal digestion, microflora and immunity in juvenile hybrid sturgeon. A total of 450 fish (97.20 ± 0.18 g) were randomly divided into a standard diet (TP-0) or four treatments consisting of a standard diet supplemented with four concentrations of TPs (mg/kg): 100 (TP-100), 300 (TP-300), 500 (TP-500), and 1000 (TP-1000) for 56 days. The TP-300 significantly increased weight gain rate (WGR) and specific growth rate (SGR) (p < 0.05), and TP-1000 significantly increased the feed conversion ratio (FCR) (p < 0.05). TP-300 and TP-500 significantly increased intestinal trypsin, amylase, and lipase activities (p < 0.05). Besides, TP-300 significantly enhanced total antioxidant capacity (T-AOC) and the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) content (p < 0.05). Moreover, TP-300 decreased the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin 8 (IL-8), and interleukin 1β(IL-1β) compared with TP-0 and TP-1000 (p < 0.05). In addition, the intestinal microbiota diversity in the TP-300 group was observably higher, the dominant microbiota was Bacteroidota, Cyanobacteria, Proteobacteria and Firmicutes at the phylum level, Enterobacteriaceae, Nostocaceae and Clostridiaceae at the family level. The relative abundances of potential probiotics including Rhodobacteraceae and potential pathogens especially Clostridiaceae were the highest, and lowest, respectively. In conclusion, TP-300 altered the abundance of microbial taxa, resulting in enhancing the intestinal digestion, antioxidant status and non-specific immunity to improve the growth performance in juvenile hybrid sturgeon.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China.
| | - Fei Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Zhuoma Cairang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Zhou Zhou
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Qiang Du
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Jinle Wang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Feng Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Qifu Wang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Zhengyou Li
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Xiaoping Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China.
| |
Collapse
|
22
|
Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr 2023; 10:1202378. [PMID: 37448666 PMCID: PMC10336229 DOI: 10.3389/fnut.2023.1202378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is the most important factor contributing to cardiovascular diseases (CVDs), and the incidence and severity of cardiovascular events tend to increase with age. Currently, CVD is the leading cause of death in the global population. In-depth analysis of the mechanisms and interventions of cardiovascular aging and related diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) are the general term for the polyhydroxy compounds contained in tea leaves, whose main components are catechins, flavonoids, flavonols, anthocyanins, phenolic acids, condensed phenolic acids and polymeric phenols. Among them, catechins are the main components of TPs. In this article, we provide a detailed review of the classification and composition of teas, as well as an overview of the causes of aging-related CVDs. Then, we focus on ten aspects of the effects of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery of endothelial function, anti-thrombosis, myocardial protective effect, to improve CVDs and the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kai Li
- General Surgery Department, The First People’s Hospital of Tai’an City, Tai’an, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
24
|
Han C, Shen Z, Cui T, Ai SS, Gao RR, Liu Y, Sui GY, Hu HZ, Li W. Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the "gut-kidney axis". JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116257. [PMID: 36787845 DOI: 10.1016/j.jep.2023.116257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi (YSHS) granule is an effective prescription widely used in traditional Chinese medicine to treat diabetic kidney disease (DKD), its exact efficacy in treating DKD has been confirmed but the underlying regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To explore the mechanism by which YSHS granule regulates intestinal flora and serum metabolites and then regulates renal mRNA expression through the "gut-kidney axis", so as to improve DKD. MATERIALS AND METHODS 40 rats were divided into five groups: Normal group (N) (normal saline), model group (M) (STZ + normal saline), YSHS granule low-dose group (YL) (STZ + 2.27 g kg-1 d-1), YSHS granule high-dose group (YH) (STZ + 5.54g kg-1 d-1) and valsartan group (V) (STZ + 7.38mg kg-1 d-1). After 6 weeks, changes in blood glucose, blood lipids, and renal function related indexes were observed, as well as pathological changes in the kidney and colon. Intestinal microbiota was sequenced by 16S rDNA, serum differential metabolites were identified by LC-MS/MS, and renal differences in mRNA expression were observed by RNA-seq. Further, through the association analysis of intestinal differential microbiota, serum differential metabolites and kidney differential mRNAs, the target flora, target metabolites and target genes of YSHS granule were screened and verified, and the "gut-metabolism-transcription" co-expression network was constructed. RESULTS In group M, blood glucose, blood lipid and proteinuria were increased, inflammation, oxidative stress and renal function were aggravated, with the proliferation of mesangial matrix, vacuolar degeneration of renal tubules, accumulation of collagen and lipid, and increased intestinal permeability, and YSHS granule and valsartan improved these disorders to varying degrees. High dose of YSHS granule improved the diversity and abundance of flora, decreased the F/B value, greatly increased the abundance of Lactobacillus and Lactobacillus_murinus, and decreased the abundance of Prevoella UCG_001. 14 target metabolites of YSHS granule were identified, which were mainly enriched in 20 KEGG pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis. 96 target mRNAs of YSHS granule were also identified. The enriched top 20 pathways were closely related to glucose and lipid metabolism, of which a total of 21 differential mRNAs were expressed. Further correlation analysis revealed that Lactobacillus, Lactobacillus_murinus and Prevotella UCG_001 were highly correlated with Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis pathways. At the same time, 6 pathways including Glycerophospholipid metabolism, Arachidonic acid metabolism, Purine metabolism, Primary bile acid biosynthesis, Ascorbate and aldarate metabolism and Galactose metabolism were co-enriched by the target metabolites and the target mRNAs of YSHS granule, including 7 differential metabolites such as phosphatidylethanolamine and 7 differential genes such as Adcy3. The 7 differential metabolites had high predictive value of AUC, and the validation of 7 differential genes were highly consistent with the sequencing results. CONCLUSION YSHS granule could improve DKD through the "gut-kidney axis". Lactobacillus and Lactobacillus_murinus were the main driving forces. 6 pathways related to glucose and lipid metabolism, especially Glycerophospholipid metabolism, may be an important follow-up response and regulatory mechanism.
Collapse
Affiliation(s)
- Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Shen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, 250200, China
| | - Shan-Shan Ai
- Jining Medical University, Jining, 272067, China
| | - Ran-Ran Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Gui-Yuan Sui
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hong-Zhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
25
|
Xiang Q, Liu Y, Wu Z, Wang R, Zhang X. New hints for improving sleep: Tea polyphenols mediate gut microbiota to regulate circadian disturbances. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| |
Collapse
|
26
|
Liu PP, Feng L, Xu YQ, Zheng L, Yin P, Ye F, Gui AH, Wang SP, Wang XP, Teng J, Xue JJ, Gao SW, Zheng PC. Characterization of stale odor in green tea formed during storage: Unraveling improvements arising from reprocessing by baking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Wu YY, Gou W, Yan Y, Liu CY, Yang Y, Chen D, Xie K, Jiang Z, Fu Y, Zhu HL, Zheng JS, Chen YM. Gut microbiota and acylcarnitine metabolites connect the beneficial association between equol and adiposity in adults: a prospective cohort study. Am J Clin Nutr 2022; 116:1831-1841. [PMID: 36095141 DOI: 10.1093/ajcn/nqac252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Many studies have investigated the effects of soy isoflavones on weight control, but few have focused on the role of equol, a gut-derived metabolite of daidzein with greater bioavailability than other soy isoflavones. OBJECTIVES This study examined the association of equol production with obesity and explored the mediating roles of equol-related gut microbiota and microbial carnitine metabolites. METHODS This 6.6-y prospective study included 2958 Chinese adults (2011 females and 947 males) aged 60.6 ± 6.0 y (mean ± SD) at baseline. Urinary equol and isoflavones were measured using HPLC-tandem MS. BMI, percentage fat mass (%FM), and serum triglycerides (TGs) were assessed every 3 y. Metagenomics sequencing and assessment of carnitine metabolites in feces were performed in a subsample of 897 participants. RESULTS Urinary equol, but not daidzein and genistein, was independently and inversely associated with the obesity-related indicators of BMI, %FM, and a biomarker (TGs). Equol producers (EPs) had lower odds of adiposity conditions and a reduced risk of 6.6-y obesity progression than non-EPs among total participants. Gut microbial analyses indicated that EPs had higher microbiome species richness (P = 3.42 × 10-5) and significantly different β-diversity of gut microbiota compared with the non-EP group (P = 0.001), with 20 of 162 species differing significantly. EPs (compared with non-EPs) had higher abundances of Alistipes senegalensis and Coprococcus catus but lower abundances of Ruminococcus gnavus (false discovery rate <0.05). Among the 7 determined fecal acylcarnitine metabolites, palmitoylcarnitine, oleylcarnitine 18:1, and stearylcarnitine were inversely associated with EPs but positively correlated with obesity conditions and progression. Path analyses indicated that the beneficial association between equol and obesity might be mediated by gut microbiota and decreased production of 3 acylcarnitines in feces. CONCLUSIONS This study suggests a beneficial association between equol and obesity, mediated by the gut microbiome and acylcarnitines, in adults.This trial was registered at clinicaltrials.gov as NCT03179657.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chun-Ying Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Keliang Xie
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
29
|
Deng B, Tao L, Wang Y. Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Front Microbiol 2022; 13:997056. [PMID: 36532443 PMCID: PMC9751351 DOI: 10.3389/fmicb.2022.997056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) has become recognized as a crucial element in preserving human fitness and influencing disease consequences. Commensal and pathogenic gut microorganisms are correlated with pathological progress in atherosclerosis (AS). GM may thus be a promising therapeutic target for AS. Natural products with cardioprotective qualities might improve the inflammation of AS by modulating the GM ecosystem, opening new avenues for researches and therapies. However, it is unclear what components of natural products are useful and what the actual mechanisms are. In this review, we have summarized the natural products relieving inflammation of AS by regulating the GM balance and active metabolites produced by GM.
Collapse
Affiliation(s)
- Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Santos D, Frota EG, Vargas BK, Tonieto Gris CC, Santos LFD, Bertolin TE. What is the role of phenolic compounds of yerba mate (Ilex paraguariensis) in gut microbiota? PHYTOCHEMISTRY 2022; 203:113341. [PMID: 35952769 DOI: 10.1016/j.phytochem.2022.113341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Diet actively influences gut microbiota and body homeostasis. The predominance of beneficial species results in symbiosis, while dysbiosis is characterized by an imbalance between microbial communities. Food plays a key role in this dynamic and in promoting the health of individuals. Ilex paraguariensis, also known as yerba mate, is a traditional plant from Latin America that has a complex matrix of bioactive substances, including methylxanthines, triterpenes, saponins, and phenolics. The consumption of yerba mate is associated with antioxidant, cardioprotective, anti-inflammatory, and anti-obesity effects. However, to the best of our knowledge, there have been no studies on yerba mate as a modulating agent of intestinal microbiota. Phenolics are the major compounds in yerba mate and have been reported to act in modulating the microbiome. In this review, we explore the activity of yerba mate as a possible stimulant of gut microbiota and present its main phenolics and their biological effects. We also propose different mechanisms of action of these phenolics and possible doses for their effectiveness.
Collapse
Affiliation(s)
- Daiane Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Elionio Galvão Frota
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Bruna Krieger Vargas
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Cintia Cassia Tonieto Gris
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Lára Franco Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Lim JM, Yoo YJ, Lee SH, Jang TH, Seralathan KK, Lee EY, Tae HJ, Yim EJ, Jeong DY, Oh BT. Anti-inflammatory, anti-lipogenesis, and anti-obesity benefits of fermented Aronia vinegar evaluated in 3T3-L1 cells and high-fat diet induced C57BL/6 mice. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2124263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Seong-Hyeon Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Eui-Yong Lee
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Eun-Jung Yim
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
33
|
Fecal microbiota and metabolomics revealed the effect of long-term consumption of gallic acid on canine lipid metabolism and gut health. Food Chem X 2022; 15:100377. [PMID: 36211749 PMCID: PMC9532725 DOI: 10.1016/j.fochx.2022.100377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Long-term consumption of 0.02%∼0.08% GA had no negative effect on canine body condition. GA intervention improved anti-oxidative and anti-inflammatory capacities. 0.08% GA regulated lipid metabolism in serum. 0.08% GA increased the relative abundance of SCFAs-producing bacteria. 0.08% GA regulated carbohydrate metabolism in fece.
Gallic acid (GA) is a natural polyphenolic compound with many health benefits. To assess the potential risk of long-term consumption of GA to gut health, healthy dogs were fed a basal diet supplemented with GA (0%, 0.02%, 0.04%, and 0.08%) for 45 d, and fecal microbiota and metabolomics were evaluated. This study demonstrated that GA supplementation regulated serum lipid metabolism by reducing serum triglyceride, fat digestibility, and Bacteroidetes/Firmicutes ratio. In addition, the relative abundance of Parasutterella was significantly lower, and the SCFAs-producing bacteria were increased along with fecal acetate and total SCFAs contents accumulation in the 0.08% GA group. Metabolomics data further elucidated that 0.08% GA significantly affected carbohydrate metabolism by downregulating succinic acid in fece, thereby alleviating inflammation and oxidative stress. Overall, this study confirmed the beneficial effects of long-term consumption of GA on lipid metabolism and gut health, and the optimal level of GA supplementation was 0.08%.
Collapse
|
34
|
Jiedu-Yizhi Formula Alleviates Neuroinflammation in AD Rats by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4023006. [PMID: 35958910 PMCID: PMC9357688 DOI: 10.1155/2022/4023006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
Background The Jiedu-Yizhi formula (JDYZF) is a Chinese herbal prescription used to treat Alzheimer's disease (AD). It was previously confirmed that JDYZF can inhibit the expression of pyroptosis-related proteins in the hippocampus of AD rats and inhibit gut inflammation in AD rats. Therefore, it is hypothesized that JDYZF has a regulatory effect on the gut microbiota. Methods In this study, an AD rat model was prepared by bilateral hippocampal injection of Aβ25-35 and AD rats received high, medium, and low doses of JDYZF orally for 8 weeks. The body weights of the AD rats were observed to assess the effect of JDYZF. The 16S rRNA sequencing technique was used to study the regulation of the gut microbiota by JDYZF in AD rats. Immunohistochemical staining was used to observe the expression levels of Caspase-1 and Caspase-11 in the hippocampus. Results JDYZF reduced body weight in AD rats, and this effect may be related to JDYZF regulating body-weight-related gut microbes. The 16S rRNA analysis showed that JDYZF increased the diversity of the gut microbiota in AD rats. At the phylum level, JDYZF increased the abundances of Bacteroidota and Actinobacteriota and decreased the abundances of Firmicutes, Campilobacterota, and Desulfobacterota. At the genus level, the abundances of Lactobacillus, Prevotella, Bacteroides, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Blautia were increased and the abundances of Lachnospiraceae-NK4A136-group, Anaerobiospirillum, Turicibacter, Oscillibacter, Desulfovibrio, Helicobacter, and Intestinimonas were decreased. At the species level, the abundances of Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus faecis were increased and the abundances of Helicobacter rodentium and Ruminococcus_sp_N15.MGS-57 were decreased. Immunohistochemistry showed that JDYZF reduced the levels of Caspase-1- and Caspase-11-positive staining. Conclusion JDYZF has a regulatory effect on the gut microbiota of AD rats, which may represent the basis for the anti-inflammatory effect of JDYZF.
Collapse
|
35
|
Metabolomics Analysis Reveals the Effects of Compound Fuzhuan Brick Tea (CFBT) on Regulating Dyslipidemia and Metabolic Disorders in Mice Induced by High-Fat Diet. Nutrients 2022; 14:nu14061128. [PMID: 35334785 PMCID: PMC8952331 DOI: 10.3390/nu14061128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/10/2022] Open
Abstract
Background: It is well known that obesity induced by high-fat diet (HFD) poses a serious threat to people’s health. Fuzhuan brick tea, one of the most popular beverages, is reported to possess a significant effect on regulating lipid metabolism, attributed to its many bioactive ingredients. However, the efficacy and mechanism of compound Fuzhuan brick tea (CFBT) made from Fuzhuan brick tea and other six Chinese herbal medicines are still not well defined. Methods: Sixty mice were divided into six groups: normal control group (CK), high-fat model group (NK), positive control group with anti-hyperlipidemic drug (YK), CFBT at low-(FL), medium-(FM) and high-(FH) dosage. Intervening for 30 days, conventional indexes analysis combined with metabolomics were performed to evaluate the changes in biochemical indexes and liver metabolic profiles in mice submitted to HFD. Results: CFBT treatment was able to ameliorate obesity, serum biochemical parameters, antioxidant activity and hepatic steatosis. In addition, significant alterations in the liver tissue metabolic profiles were observed, with most of these associated with inflammation, glucose and lipid metabolism. Conclusions: This study provides evidence that consumption of CFBT is capable of preventing dyslipidemia, reducing weight gain, restoring liver injury, as well as improving metabolic disorders.
Collapse
|
36
|
Xu S, Wang Y, Wang J, Geng W. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods 2022; 11:foods11050754. [PMID: 35267387 PMCID: PMC8909623 DOI: 10.3390/foods11050754] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Kombucha, which is rich in tea polyphenols and organic acid, is a kind of acidic tea soup beverage fermented by acetic acid bacteria, yeasts, lactic acid bacteria. Kombucha has been reported to possess anti-diabetic activity, but the underlying mechanism was not well understood. In this study, a high-fat, high-sugar diet combined with streptozotocin (STZ) injection was used to induce T2DM model in mice. After four weeks of kombucha intervention, the physiological and biochemical index were measured to determine the diabetes-related indicators. High-throughput sequencing technology was used to analyze the changes in gut microbiota from the feces. The results showed that four weeks of kombucha intervention increased the abundance of SCFAs-producing bacteria and reduced the abundance of gram-negative bacteria and pathogenic bacteria. The improvement in gut microbiota reduced the damage of intestinal barrier, thereby reducing the displacement of lipopolysaccharide (LPS) and inhibiting the occurrence of inflammation and insulin resistance in vivo. In addition, the increased levels of SCFAs-producing bacteria, and thus increasing the SCFAs, improved islet β cell function by promoting the secretion of gastrointestinal hormones (GLP-1/PYY). This study methodically uncovered the hypoglycemic mechanism of kombucha through gut microbiota intervention, and the result suggested that kombucha may be introduced as a new functional drink for T2DM prevention and treatment.
Collapse
|
37
|
Li C, Niu M, Guo Z, Liu P, Zheng Y, Liu D, Yang S, Wang W, Li Y, Hou H. A Mild Causal Relationship Between Tea Consumption and Obesity in General Population: A Two-Sample Mendelian Randomization Study. Front Genet 2022; 13:795049. [PMID: 35281810 PMCID: PMC8907656 DOI: 10.3389/fgene.2022.795049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/25/2022] [Indexed: 12/08/2022] Open
Abstract
Evidence from observational studies for the effect of tea consumption on obesity is inconclusive. This study aimed to verify the causal association between tea consumption and obesity through a two-sample Mendelian randomization (MR) analysis in general population-based datasets. The genetic instruments, single nucleotide polymorphisms (SNPs) associated with tea consumption habits, were obtained from genome-wide association studies (GWAS): UK Biobank, Nurses' Health Study, Health Professionals Follow-up Study, and Women's Genome Health Study. The effect of the genetic instruments on obesity was analyzed using the UK Biobank dataset (among ∼500,000 participants). The causal relationship between tea consumption and obesity was analyzed by five methods of MR analyses: inverse variance weighted (IVW) method, MR-Egger regression method, weighted median estimator (WME), weighted mode, and simple mode. Ninety-one SNPs were identified as genetic instruments in our study. A mild causation was found by IVW (odds ratio [OR] = 0.998, 95% confidence interval [CI] = 0.996 to 1.000, p = 0.049]), which is commonly used in two-sample MR analysis, indicating that tea consumption has a statistically significant but medically weak effect on obesity control. However, the other four approaches did not show significance. Since there was no heterogeneity and pleiotropy in this study, the IVW approach has the priority of recommendation. Further studies are needed to clarify the effects of tea consumption on obesity-related health problems in detail.
Collapse
Affiliation(s)
- Cancan Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Mingyun Niu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zheng Guo
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Pengcheng Liu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yulu Zheng
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Yuanmin Li
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
38
|
Cavalcanti MH, Roseira JPS, Leandro EDS, Arruda SF. Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PLoS One 2022; 17:e0262270. [PMID: 35081143 PMCID: PMC8791513 DOI: 10.1371/journal.pone.0262270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Coffee beans contain high polyphenol content, which have the potential to modulate the intestinal microbiota, and possibly attenuate weight gain and the associated dyslipidemia. This study investigated the effect of freeze-dried coffee solution (FCS) consumption on physiological parameters, lipid profile, and microbiota of Wistar rats fed a high-fat diet (HF) or control diet (CT). FCS combined with a high-fat diet increased the fecal and cecal Bifidobacterium spp. population and decreased the cecal Escherichia coli population and intestinal Il1b mRNA level. Regardless of the diet type, FCS increased the serum high-density lipoprotein cholesterol (HDL-C); however, it did not affect body weight, food intake, low-density lipoprotein, triglycerides, fecal bile acids, and intestinal Il6 mRNA levels. The high-fat diet increased weight gain, hepatic cholesterol and triglycerides, fecal bile acids, and the fecal and cecal Lactobacillus spp. population, and reduced food intake, the fecal E. coli population, and intestinal Il6 mRNA level. The results suggest that FCS consumption exhibits positive health effects in rats fed a high-fat diet by increasing Bifidobacterium spp. population and HDL-C reverse cholesterol transport, and by reducing Il1b mRNA level. However, FCS administration at a dose of 0.39 g/100 g diet over an eight-week period was not effective in controlling food intake, and consequently, preventing weight gain in rats of high-fat diet-induced obesity model.
Collapse
Affiliation(s)
- Marilia Hermes Cavalcanti
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| | | | - Eliana dos Santos Leandro
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Sandra Fernandes Arruda
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
39
|
Pan SY, Nie Q, Tai HC, Song XL, Tong YF, Zhang LJF, Wu XW, Lin ZH, Zhang YY, Ye DY, Zhang Y, Wang XY, Zhu PL, Chu ZS, Yu ZL, Liang C. Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 2022; 17:27. [PMID: 35193642 PMCID: PMC8861626 DOI: 10.1186/s13020-022-00571-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. Methods We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word “tea”, and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea’s history, culture, customs, experimental studies, and markets. Results China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people’s health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world’s top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. Conclusions Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Hai-Chuan Tai
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yu-Fan Tong
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Long-Jian-Feng Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Wei Wu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Zhao-Heng Lin
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yong-Yu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Du-Yun Ye
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pei-Li Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhu-Sheng Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China. .,EnKang Pharmaceuticals (Guangzhou) Ltd, Guangzhou, China.
| |
Collapse
|
40
|
Gao M, Peng X, Tang J, Deng J, Wang F, Zhang Y, Zhao P, Kan H, Liu Y. Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages. J Inflamm Res 2022; 15:851-864. [PMID: 35177920 PMCID: PMC8843420 DOI: 10.2147/jir.s349981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results Twelve phenolic constituents including (–)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
Collapse
Affiliation(s)
- Miaozi Gao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
| | - Xiaowei Peng
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
- Correspondence: Ping Zhao; Yun Liu, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, #300, Bailong Road, Kunming, 650224, People’s Republic of China, Email ;
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| |
Collapse
|
41
|
Song X, Liu L, Peng S, Liu T, Chen Y, Jia R, Zou Y, Li L, Zhao X, Liang X, Tang H, Yin Z. Resveratrol regulates intestinal barrier function in cyclophosphamide-induced immunosuppressed mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1205-1215. [PMID: 34346509 DOI: 10.1002/jsfa.11458] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resveratrol, a kind of polyphenolic phytoalexin, can be obtained from numerous natural foods. Although resveratrol is demonstrated to have various bioactivities, little is known about the regulation of intestinal barrier function under immunosuppression. The present study is aimed at investigating the regulatory effect of resveratrol on intestinal barrier function in immunosuppression in mice induced by cyclophosphamide. RESULTS The effects of resveratrol on intestinal biological barrier were evaluated by 16S rRNA and metagenome sequencing analysis. The results showed that resveratrol could improve diversity of the intestinal microbiota and intestinal flora structure by increasing the abundance of probiotics, and resveratrol regulated the function of gut microbiota to resist immunosuppression. Resveratrol could significantly upregulate the secretion of secretory immunoglobulin A and promote the transcriptional levels of test cytokines, including tumor necrosis factor α, interferon γ, interleukin 4 and interleukin 6 in jejunum and ileum mucosa, suggesting improved intestinal immune barrier by resveratrol. The mRNA and protein levels of tight junction proteins involved in intestinal physical barrier function, including zonula occludens 1 (ZO-1), claudin 1 and occludin, were increased after resveratrol treatment. The protein levels of toll-like receptor 4 (TLR4), phosphorylation nuclear factor kappa-B (NF-κB-p65) and inhibitor of nuclear factor kappa-B kinase α were decreased by resveratrol treatment when compared with the untreated group, indicating inhibition of the TLR4/NF-ĸB signaling pathway. CONCLUSION These results provide new insights into regulation of the intestinal barrier function by resveratrol under immunosuppression and potential applications of resveratrol in recovering intestinal function. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lin Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuwei Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
Mohajeri M, Mohajery R, Nemati A, Pourfarzi F. The difference in the dietary inflammatory index, functional food, and antioxidants intake between COVID -19 patients and healthy persons. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND: The healthy diet is important to maintain immunity against infection. This study aimed to assess and compare the consumption of functional foods, some antioxidants, and dietary inflammatory index between Iranian COVID-19 patients and healthy persons. METHODS: This case-control study was conducted between 1000 (500 cases and 500 controls) adults aged 18–65years in Iran, that were sampling based on the snowball method and their information was collected electronically. The dietary intake was assessed using the Food Frequency Questionnaire (FFQ). RESULTS: There was a significant difference (p = 0.044) in vitamin D consumption between healthy people and COVID-19 patients. Vitamin E intake in healthy participants was significantly (p = 0.041) more than COVID-19 patients. There was a significant difference in Zinc (p = 0.011), selenium (p = 0.021), and vitamin C (p = 0.023) between healthy persons and COVID-19 patients. Healthy participants’ consumption of onion (56.5±7.82 g/day), garlic (4.32±0.01 g/day) and oat (6.32±0.71 g/day) was significantly (p≤0.05) more than COVID-19 patients. With the increase of each unit in the score of the dietary inflammatory index, the risk of COVID-19 incidence increased 1.63 times (OR = 1.63 95% CI: 1.54–1.72). There was an inverse association between the consumption of antioxidants and functional foods with the risk of COVID-19 incidence in the study population (p≤0.05). CONCLUSION: Healthy people consumption of antioxidants and functional foods was more than COVID-19 patients and there was a significant inverse association between the risk of COVID- 19 incidence with the consumption of functional foods and antioxidants. Increasing the dietary inflammatory index score increased the risk of COVID- 19 incidence. There is a need for further clinical trials to confirm the effect of consuming functional foods and antioxidants on the prevention or treatment of COVID-19.
Collapse
Affiliation(s)
- Mahsa Mohajeri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Academic Center for Education, Culture and Research, Ardabil, Iran
| | - Reza Mohajery
- Academic Center for Education, Culture and Research, Ardabil, Iran
- Energy Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Nemati
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
43
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
44
|
Su X, Yu W, Liu A, Wang C, Li X, Gao J, Liu X, Jiang W, Yang Y, Lv S. San-Huang-Yi-Shen Capsule Ameliorates Diabetic Nephropathy in Rats Through Modulating the Gut Microbiota and Overall Metabolism. Front Pharmacol 2022; 12:808867. [PMID: 35058786 PMCID: PMC8764181 DOI: 10.3389/fphar.2021.808867] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic nephropathy (DN) in clinic. However, the mechanisms of SHYS on DN remain unknown. In this study, we used a high-fat diet (HFD) combined with streptozotocin (STZ) injection to establish a DN rat model. Next, we used 16S rRNA sequencing and untargeted metabolomics to study the potential mechanisms of SHYS on DN. Our results showed that SHYS treatment alleviated the body weight loss, hyperglycemia, proteinuria, pathological changes in kidney in DN rats. SHYS could also inhibite the oxidative stress and inflammatory response in kidney. 16S rRNA sequencing analysis showed that SHYS affected the beta diversity of gut microbiota community in DN model rats. SHYX could also decrease the Firmicutes to Bacteroidetes (F to B) ratio in phylum level. In genus level, SHYX treatment affected the relative abundances of Lactobacillus, Ruminococcaceae UCG-005, Allobaculum, Anaerovibrio, Bacteroides and Candidatus_Saccharimonas. Untargeted metabolomics analysis showed that SHYX treatment altered the serum metabolic profile in DN model rats through affecting the levels of guanidineacetic acid, L-kynurenine, prostaglandin F1α, threonine, creatine, acetylcholine and other 21 kind of metabolites. These metabolites are mainly involved in glycerophospholipid metabolism, tryptophan metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and D-glutamine and D-glutamate metabolism pathways. Spearman correlation analysis showed that Lactobacillus, Candidatus_Saccharimonas, Ruminococcaceae UCG-005, Anaerovibrio, Bacteroides, and Christensenellaceae_R-7_group were closely correlated with most of physiological data and the differential metabolites following SHYS treatment. In conclusion, our study revealed multiple ameliorative effects of SHYS on DN including the alleviation of hyperglycemia and the improvement of renal function, pathological changes in kidney, oxidative stress, and the inflammatory response. The mechanism of SHYS on DN may be related to the improvement of gut microbiota which regulates arginine biosynthesis, TCA cycle, tyrosine metabolism, and arginine and proline metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuquan Lv
- Cangzhou Hospital of Integrated TCM and Western Medicine of Hebei Province, Cangzhou, China
| |
Collapse
|
45
|
Ma H, Hu Y, Zhang B, Shao Z, Roura E, Wang S. Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Lu X, Jing Y, Li Y, Zhang N, Zhang W, Cao Y. The differential modulatory effects of Eurotium cristatum on the gut microbiota of obese dogs and mice are associated with improvements in metabolic disturbances. Food Funct 2021; 12:12812-12825. [PMID: 34860235 DOI: 10.1039/d1fo02886c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a disease in humans and companion animals that can cause many chronic diseases. Eurotium cristatum (E. cristatum) is a dominant fungus in Fuzhuan tea. In this study, we aimed to investigate the possibility that E. cristatum may reduce diet-induced obesity by regulating the gut microbiota and measuring the differences in the gut microbiota of obese mice and dogs under E. cristatum supplementation. High-fat diet-fed C57BL/6J mice and beagle dogs were supplemented with live E. cristatum for 8 or 12 weeks. Faecal microbiota transplantation (FMT) and 16S rRNA sequencing were used to evaluate the relationship between the anti-obesity effect of E. cristatum and the gut microbiota. The results suggested that live E. cristatum reduced obesity and metabolic disorders in obese mice and dogs. 16S rRNA sequencing results revealed that E. cristatum decreased the Firmicutes/Bacteroidetes (F/B) ratio and the abundance of members of the Firmicutes phylum, including Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus intestinalis, in obese mice, but the opposite was true in obese dogs. Furthermore, to investigate whether the antiobesity effect of E. cristatum can be attributed to gut microbiota, FMT and 16S rRNA sequencing were employed. The FMT trial confirmed that the anti-obesity effect of E. cristatum was mediated by modulating gut dysbiosis. In addition, we isolated live E. cristatum from faeces and found the β-hydroxy acid metabolite of monacolin K (MKA) in E. cristatum culture. Our research implies that E. cristatum has the potential to treat obesity as a novel probiotic.
Collapse
Affiliation(s)
- Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yue Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yanyi Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
47
|
Sayers B, Wijeyesekera A, Gibson G. Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Li J, Chen Q, Zhai X, Wang D, Hou Y, Tang M. Green tea aqueous extract (GTAE) prevents high-fat diet-induced obesity by activating fat browning. Food Sci Nutr 2021; 9:6548-6558. [PMID: 34925784 PMCID: PMC8645728 DOI: 10.1002/fsn3.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022] Open
Abstract
Adipose browning leads to increased energy expenditure and reduced adiposity and has, therefore, become an attractive therapeutic strategy for obesity. In this study, we elucidated the effect of green tea aqueous extract (GTAE) on the browning of inguinal white adipose tissue (Ing-WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-fed mice. The main phytochemical components identified in GTAE through high-performance liquid chromatography (HPLC) included (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin, (-)-epigallocatechin-3-gallate, caffeine, (-)-epicatechin, (-)-gallocatechin gallate, and (-)-epicatechin-3-gallate. Daily supplementation with 1% GTAE for 12 weeks markedly reduced bodyweight gain, systemic inflammation, oxidative stress, and improved insulin resistance. Additionally, histological analysis revealed that dietary supplementation with 1% GTAE reversed HFD-induced adipocyte size and hepatic steatosis. These effects were associated with activation of browning in the Ing-WAT and BAT, which mediate systemic metabolic dysfunction in HFD-fed mice. Taken together, our data support the use of GTAE, a natural product, for the attenuation of obesity through the activation of fat browning.
Collapse
Affiliation(s)
- Jie Li
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Qiyang Chen
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Xiuming Zhai
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Dan Wang
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Yujia Hou
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Min Tang
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| |
Collapse
|
49
|
Cappelli K, Ferlisi F, Mecocci S, Maranesi M, Trabalza-Marinucci M, Zerani M, Dal Bosco A, Acuti G. Dietary Supplementation of Olive Mill Waste Water Polyphenols in Rabbits: Evaluation of the Potential Effects on Hepatic Apoptosis, Inflammation and Metabolism through RT-qPCR Approach. Animals (Basel) 2021; 11:2932. [PMID: 34679953 PMCID: PMC8532769 DOI: 10.3390/ani11102932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
Agro-industrial processing for the production of food or non-food products generates a wide range of by-products and residues rich in bioactive compounds including polyphenols. The concentration of these by-products is sometimes higher than in the original raw material as in the case of olive mill waste water (OMWW), one of the main by-products of olive oil extraction. Polyphenols are secondary plant metabolites that regulate the expression of specific inflammatory genes, transcriptional factors and pro/anti-apoptotic molecules, thus modulating the signaling pathways essential for cell health and homeostasis. The liver plays a key role in regulating homeostasis by responding to dietary changes in order to maintain nutritional and physiological states. In this study a nutrigenomic approach was adopted, which focuses on the effects of diet-health-gene interactions and the modulation of cellular processes, in order to evaluate the expression of the genes (AGER, BAX, COX2, IL1B, PPARA, PPARG, SIRT1, TNFA) involved in these interactions in the livers of rabbits fed with a diet supplemented with OMWW (POL) or without supplements (control, CTR). The RT-qPCR analysis showed the down-regulation of SIRT1, TNFA, AGER, BAX and PPARA transcripts in the POL group compared to the CTR group. These results show that OMWW dietary supplementation prevents cell death and tissue deterioration in rabbits.
Collapse
Affiliation(s)
- Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Flavia Ferlisi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Massimo Trabalza-Marinucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 74, 06100 Perugia, Italy;
| | - Gabriele Acuti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy; (K.C.); (F.F.); (S.M.); (M.Z.); (G.A.)
| |
Collapse
|
50
|
Cyanidin-3-O-galactoside from Aronia melanocarpa attenuates high-fat diet-induced obesity and inflammation via AMPK, STAT3, and NF-κB p65 signaling pathways in Sprague-Dawley rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|