1
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
2
|
Kamal MA, Perveen K, Khan F, Sayyed RZ, Hock OG, Bhatt SC, Singh J, Qamar MO. Effect of different levels of EDTA on phytoextraction of heavy metal and growth of Brassica juncea L. Front Microbiol 2023; 14:1228117. [PMID: 37601347 PMCID: PMC10435890 DOI: 10.3389/fmicb.2023.1228117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Heavy metal pollution of soil is a major concern due to its non-biodegradable nature, bioaccumulation, and persistence in the environment. To explore the probable function of EDTA in ameliorating heavy metal toxicity and achieve the sustainable development goal (SDG), Brassica juncea L. seedlings were treated with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg-1) in heavy metal-polluted soil. Plant samples were collected 60 days after sowing; photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and ascorbic acid content, as well as plant biomass, were estimated in plants. Soil and plant samples were also examined for the concentrations of Cd, Cr, Pb, and Hg. Moreover, values of the phytoremediation factor were utilized to assess the accumulation capacity of heavy metals by B. juncea under EDTA treatments. In the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and shoots in a concentration-dependent manner. However, the highest biomass of plants (roots and shoots) was recorded with the application of 2 mM kg-1 EDTA. Moreover, high levels (above 3 mM kg-1) of EDTA concentration have reduced the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a and b) revealed that with an increment in EDTA concentration, accumulation of heavy metals was also increased in the plant, subsequently decreasing the chlorophyll a and b concentration in the plant. TLF was found to be in the order Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and the best dose was 3 mM kg-1 EDTA for Hg and 4 mM kg-1 for Pb, Ni, and Zn. Furthermore, hyperaccumulation of heavy metals enhanced the generation of hydrogen peroxide (H2O2), superoxide anions (O2•-), and lipid peroxidation. It also interrupts mechanisms of the antioxidant defense system. Furthermore, heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. These findings suggest that the exogenous addition of EDTA to the heavy metal-treated seedlings increases the bioavailability of heavy metals for phytoextraction and decreases heavy metal-induced oxidative injuries by restricting heavy metal uptake and components of their antioxidant defense systems.
Collapse
Affiliation(s)
- Mohab Amin Kamal
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faheema Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R. Z. Sayyed
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Ong Ghim Hock
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | | | - Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Mohd Obaid Qamar
- Department of Civil Engineering (Environmental Science and Engineering), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Sun Y, Niu X, Huang Y, Wang L, Liu Z, Guo X, Xu B, Wang C. Role of the tyrosine aminotransferase AccTATN gene in the response to pesticide and heavy metal stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105372. [PMID: 36963941 DOI: 10.1016/j.pestbp.2023.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine aminotransferase (TATN) is the first enzyme involved in the metabolic degradation of tyrosine, and it plays an important role in tyrosine detoxification and helps the body resist oxidative damage. However, the function of TATN in Apis cerana cerana (A. c. cerana) remains unclear. To explore the role of TATN in the response to pesticide and heavy metal stress in A. c. cerana, AccTATN was isolated and identified. AccTATN was highly expressed in the integument and the adult stage. Exposure to multiple pesticides and heavy metal stress upregulated AccTATN expression. RNA interference experiments showed that silencing AccTATN reduced the resistance of A. c. cerana to glyphosate and avermectins stress. The expression of antioxidant-related genes and the activity of antioxidant enzymes were reduced after AccTATN was silenced, leading to the accumulation of oxidative damage. Overexpression of the recombinant AccTATN protein in a prokaryotic system also confirmed its role in heavy metal stress and improved antioxidant capacity. Our study showed that AccTATN may promote resistance to pesticide and heavy metal stress by regulating the antioxidant capacity of A. c. cerana. This study provides a valuable theoretical basis for A. c. cerana conservation.
Collapse
Affiliation(s)
- Yunhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xiaojing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Yuanyuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, PR China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China.
| |
Collapse
|
4
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Li F, Marzouk AS, Dewer Y, Kang H, Wang G. Genome-wide association study of rice leaf metabolites and volatiles. Int J Biol Macromol 2022; 222:2479-2485. [DOI: 10.1016/j.ijbiomac.2022.09.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
6
|
Sharma P, Chouhan R, Bakshi P, Gandhi SG, Kaur R, Sharma A, Bhardwaj R. Amelioration of Chromium-Induced Oxidative Stress by Combined Treatment of Selected Plant-Growth-Promoting Rhizobacteria and Earthworms via Modulating the Expression of Genes Related to Reactive Oxygen Species Metabolism in Brassica juncea. Front Microbiol 2022; 13:802512. [PMID: 35464947 PMCID: PMC9019754 DOI: 10.3389/fmicb.2022.802512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 01/24/2023] Open
Abstract
Chromium (Cr) toxicity leads to the enhanced production of reactive oxygen species (ROS), which are extremely toxic to the plant and must be minimized to protect the plant from oxidative stress. The potential of plant-growth-promoting rhizobacteria (PGPR) and earthworms in plant growth and development has been extensively studied. The present study was aimed at investigating the effect of two PGPR (Pseudomonas aeruginosa and Burkholderia gladioli) along with earthworms (Eisenia fetida) on the antioxidant defense system in Brassica juncea seedlings under Cr stress. The Cr toxicity reduced the fresh and dry weights of seedlings, enhanced the levels of superoxide anion (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), which lead to membrane as well as the nuclear damage and reduced cellular viability in B. juncea seedlings. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were increased; however, a reduction was observed in the activity of catalase (CAT) in the seedlings under Cr stress. Inoculation of the PGPR and the addition of earthworms enhanced the activities of all other antioxidant enzymes except GPOX, in which a reduction of the activity was observed. For total lipid- and water-soluble antioxidants and the non-enzymatic antioxidants, viz., ascorbic acid and glutathione, an enhance accumulation was observed upon the inoculation with PGPR and earthworms. The supplementation of PGPR with earthworms (combined treatment) reduced both the reactive oxygen species (ROS) and the MDA content by modulating the defense system of the plant. The histochemical studies also corroborated that the combined application of PGPR and earthworms reduced O2•-, H2O2, lipid peroxidation, and membrane and nuclear damage and improved cell viability. The expression of key antioxidant enzyme genes, viz., SOD, CAT, POD, APOX, GR, DHAR, and GST showed the upregulation of these genes at post-transcriptional level upon the combined treatment of the PGPR and earthworms, thereby corresponding to the improved plant biomass. However, a reduced expression of RBOH1 gene was noticed in seedlings supplemented under the effect of PGPR and earthworms grown under Cr stress. The results provided sufficient evidence regarding the role of PGPR and earthworms in the amelioration of Cr-induced oxidative stress in B. juncea.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Microbiology, DAV University, Jalandhar, India.,Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Rupinder Kaur
- Department of Biotechnology, DAV College, Amritsar, India
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
7
|
Joshi V, Nimmakayala P, Song Q, Abburi V, Natarajan P, Levi A, Crosby K, Reddy UK. Genome-wide association study and population structure analysis of seed-bound amino acids and total protein in watermelon. PeerJ 2021; 9:e12343. [PMID: 34722000 PMCID: PMC8533027 DOI: 10.7717/peerj.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Watermelon seeds are a powerhouse of value-added traits such as proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly dietary option. Despite the availability of substantial genetic variation, there is no sufficient information on the natural variation in seed-bound amino acids or proteins across the watermelon germplasm. This study aimed to analyze the natural variation in watermelon seed amino acids and total protein and explore underpinning genetic loci by genome-wide association study (GWAS). METHODS The study evaluated the distribution of seed-bound free amino acids and total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus. We used the GWAS approach to associate seed phenotypes with 11,456 single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS). RESULTS Our results demonstrate a significant natural variation in different free amino acids and total protein content across accessions and geographic regions. The accessions with high protein content and proportion of essential amino acids warrant its use for value-added benefits in the food and feed industries via biofortification. The GWAS analysis identified 188 SNPs coinciding with 167 candidate genes associated with watermelon seed-bound amino acids and total protein. Clustering of SNPs associated with individual amino acids found by principal component analysis was independent of the speciation or cultivar groups and was not selected during the domestication of sweet watermelon. The identified candidate genes were involved in metabolic pathways associated with amino acid metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in arginine content, which validate their functional relevance and potential for marker-assisted analysis selection. This study provides a platform for exploring potential gene loci involved in seed-bound amino acids metabolism, useful in genetic analysis and development of watermelon varieties with superior seed nutritional values.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
- Texas A&M AgriLife Research and Extension Center, Uvalde, Texas, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Qiushuo Song
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Amnon Levi
- Vegetable Laboratory, USDA-ARS, Charleston, South Carolina, United States
| | - Kevin Crosby
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| |
Collapse
|
8
|
Rey F, Zacarias L, Rodrigo MJ. Regulation of Tocopherol Biosynthesis During Fruit Maturation of Different Citrus Species. FRONTIERS IN PLANT SCIENCE 2021; 12:743993. [PMID: 34691122 PMCID: PMC8526796 DOI: 10.3389/fpls.2021.743993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/17/2021] [Indexed: 05/04/2023]
Abstract
Tocopherols are plant-derived isoprenoids with vitamin E activity, which are involved in diverse physiological processes in plants. Although their biosynthesis has been extensively investigated in model plants, their synthesis in important fruit crops as Citrus has scarcely been studied. Therefore, the aim of this work was to initiate a physiological and molecular characterization of tocopherol synthesis and accumulation in Citrus fruits during maturation. For that purpose, we selected fruit of the four main commercial species: grapefruit (Citrus paradisi), lemon (Citrus limon), sweet orange (Citrus sinensis), and mandarin (Citrus clementina), and analyzed tocopherol content and the expression profile of 14 genes involved in tocopherol synthesis during fruit maturation in both the flavedo and pulp. The selected genes covered the pathways supplying the tocopherol precursors homogentisate (HGA) (TAT1 and HPPD) and phytyl pyrophosphate (PPP) (VTE5, VTE6, DXS1 and 2, GGPPS1 and 6, and GGDR) and the tocopherol-core pathway (VTE2, VTE3a, VTE3b, VTE1, and VTE4). Tocopherols accumulated mainly as α- and γ-tocopherol, and α-tocopherol was the predominant form in both tissues. Moreover, differences were detected between tissues, among maturation stages and genotypes. Contents were higher in the flavedo than in the pulp during maturation, and while they increased in the flavedo they decreased or were maintained in the pulp. Among genotypes, mature fruit of lemon accumulated the highest tocopherol content in both the flavedo and the pulp, whereas mandarin fruit accumulated the lowest concentrations, and grapefruit and orange had intermediate levels. Higher concentrations in the flavedo were associated with a higher expression of all the genes evaluated, and different genes are suitable candidates to explain the temporal changes in each tissue: (1) in the flavedo, the increase in tocopherols was concomitant with the up-regulation of TAT1 and VTE4, involved in the supply of HGA and the shift of γ- into α-tocopherol, respectively; and (2) in the pulp, changes paralleled the expression of VTE6, DXS2, and GGDR, which regulate PPP availability. Also, certain genes (i.e., VTE6, DXS2, and GGDR) were co-regulated and shared a similar pattern during maturation in both tissues, suggesting they are developmentally modulated.
Collapse
Affiliation(s)
| | | | - María Jesús Rodrigo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
9
|
Busch T, Petersen M. Identification and biochemical characterisation of tyrosine aminotransferase from Anthoceros agrestis unveils the conceivable entry point into rosmarinic acid biosynthesis in hornworts. PLANTA 2021; 253:98. [PMID: 33844079 PMCID: PMC8041713 DOI: 10.1007/s00425-021-03623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Tyrosine aminotransferase (AaTAT) from the hornwort Anthoceros agrestis Paton (Anthocerotaceae) was amplified and expressed in E. coli. The active enzyme is able to accept a wide range of substrates with distinct preference for L-tyrosine, therefore, possibly catalysing the initial step in rosmarinic acid biosynthesis. The presence of rosmarinic acid (RA) in the hornwort A. agrestis is well known, and some attempts have been made to clarify the biosynthesis of this caffeic acid ester in lower plants. Parallel to the biosynthesis in vascular plants, the involvement of tyrosine aminotransferase (EC 2.6.1.5; TAT) as the initial step was assumed. The amplification of a nucleotide sequence putatively encoding AaTAT (Genbank MN922307) and expression in E. coli were successful. The enzyme proved to have a high acceptance of L-tyrosine (Km 0.53 mM) whilst slightly preferring 2-oxoglutarate over phenylpyruvate as co-substrate. Applying L-phenylalanine as a potential amino donor or using oxaloacetate or pyruvate as a replacement for 2-oxoglutarate as amino acceptor resulted in significantly lower catalytic efficiencies in each of these cases. To facilitate further substrate search, two methods were introduced, one using ninhydrin after thin-layer chromatography and the other using derivatisation with o-phthalaldehyde followed by HPLC or LC-MS analysis. Both methods proved to be well applicable and helped to confirm the acceptance of further aromatic and aliphatic amino acids. This work presents the first description of a heterologously expressed TAT from a hornwort (A. agrestis) and describes the possible entry into the biosynthesis of RA and other specialised compounds in a so far neglected representative of terrestrial plants and upcoming new model organism.
Collapse
Affiliation(s)
- Tobias Busch
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Maike Petersen
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
10
|
Adejumo SA, Oniosun B, Akpoilih OA, Adeseko A, Arowo DO. Anatomical changes, osmolytes accumulation and distribution in the native plants growing on Pb-contaminated sites. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1537-1549. [PMID: 32601905 DOI: 10.1007/s10653-020-00649-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Native plants growing on heavy-metal-contaminated sites are the potential candidates for phytoremediation of contaminated sites due to their tolerance and adaptation to toxic environment. For better application of the technology, in-depth knowledge and understanding of the anatomy and physiology of these plant species are essential. In this study, anatomical changes in roots and leaves of various plant species growing on Pb-contaminated sites as well as osmolytes (proline, PR; glycine betaine, GB; and phenolics, PH) production and distribution in different plant parts were investigated. The soil and plant samples were collected in triplicates from two different Pb-contaminated sites, while control plants were collected from the University of Ibadan. The plants were washed and partitioned into different parts for anatomical and biochemical studies, and soil adhering to the roots of different plant species was collected for the determination of Pb contents. Sporobolus pyramidalis, Cynodon dactylon, Imperata cylindrica, Eleusine indica, Gomphrena celosioides, Rhinconspora corymbosa and Echinochloa colona are the plant species common to these contaminated sites. Though with variations based on the site, thick epidermis and sclerenchyma, pronounced and numerous vascular bundles as well as trichomes were some of the anatomical characteristics of these metallophytes from contaminated sites compared to their counterparts from uncontaminated site. These plants also produced PR, GB and PH, with PH being the highest followed by PR and GB. Accumulation in different parts of the plants also varied depending on the plant species and the osmolyte. They were more in the leaf than other plant parts. Among the plant species, Sporobolus pyramidalis had the highest value of proline (3.26 and 2.63 µg/g FW) and glycine betaine (3.44 and 2.23 µg/FW) in the leaf and stem, respectively, followed by Cynodon dactylon having 2.20 and 0.89 µg/g FW proline and 2.02 and 0.94 µg/g FW glycine betaine. On the Pb accumulation in plant, more lead (Pb) was found in the roots than other plant parts. Gomphrena celosioides accumulated the highest Pb (4537.50 and 1081.50 mg/kg) in the root and shoot, respectively, followed by Eleusine indica (3988 and 699.00 mg/kg), while the lowest values were recorded for Echinochloa colona (36.87 and 5.97 mg/kg). In rhizospheric soils, G. celosioides had the highest Pb content (34,405.00 mg/kg) which was higher than other rhizospheric soils. In conclusion, phenolics were produced more in these metallophytes and all the osmolytes were more in leaf than root. Anatomical modifications in response to heavy metal exposure differed between plant species and level of contamination. Lead accumulation in plant also varied depending on plant species.
Collapse
Affiliation(s)
- Sifau A Adejumo
- Environmental Biology Unit, Department of Crop Protection and Environmental Biology Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria.
| | - Bosede Oniosun
- Environmental Biology Unit, Department of Crop Protection and Environmental Biology Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Okemena Agnes Akpoilih
- Environmental Biology Unit, Department of Crop Protection and Environmental Biology Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Abiodun Adeseko
- Environmental Biology Unit, Department of Crop Protection and Environmental Biology Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Dorcas Omotayo Arowo
- Environmental Biology Unit, Department of Crop Protection and Environmental Biology Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
12
|
Zhao Z, Zhang JW, Lu SH, Zhang H, Liu F, Fu B, Zhao MQ, Liu H. Transcriptome divergence between developmental senescence and premature senescence in Nicotiana tabacum L. Sci Rep 2020; 10:20556. [PMID: 33239739 PMCID: PMC7688636 DOI: 10.1038/s41598-020-77395-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
Senescence is a degenerative process triggered by intricate and coordinated regulatory networks, and the mechanisms of age-dependent senescence and stress-induced premature senescence still remain largely elusive. Thus we selected leaf samples of developmental senescence (DS) and premature senescence (PS) to reveal the regulatory divergence. Senescent leaves were confirmed by yellowing symptom and physiological measurement. A total of 1171 and 309 genes (DEGs) were significantly expressed respectively in the whole process of DS and PS. Up-regulated DEGs in PS were mostly related to ion transport, while the down-regulated DEGs were mainly associated with oxidoreductase activity and sesquiterpenoid and triterpenoid biosynthesis. In DS, photosynthesis, precursor metabolites and energy, protein processing in endoplasmic reticulum, flavonoid biosynthesis were notable. Moreover, we found the vital pathways shared by DS and PS, of which the DEGs were analyzed further via protein-protein interaction (PPI) network analysis to explore the alteration responding to two types of senescence. In addition, plant hormone transduction pathway was mapped by related DEGs, suggesting that ABA and ethylene signaling played pivotal roles in formulating the distinction of DS and PS. Finally, we conducted a model containing oxidative stress and ABA signaling as two hub points, which highlighted the major difference and predicted the possible mechanism under DS and PS. This work gained new insight into molecular divergence of developmental senescence and premature senescence and would provide reference on potential mechanism initiating and motivating senescence for further study.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jia-Wen Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shao-Hao Lu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Fang Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Ming-Qin Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Hui Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
13
|
Vitamin E Is Superior to Vitamin C in Delaying Seedling Senescence and Improving Resistance in Arabidopsis Deficient in Macro-Elements. Int J Mol Sci 2020; 21:ijms21197429. [PMID: 33050099 PMCID: PMC7583987 DOI: 10.3390/ijms21197429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three essential macro-elements for plant growth and development. Used to improve yield in agricultural production, the excessive use of chemical fertilizers often leads to increased production costs and ecological environmental pollution. Vitamins C and E are antioxidants that play an important role in alleviating abiotic stress. However, there are few studies on alleviating oxidative stress caused by macro-element deficiency. Here, we used Arabidopsis vitamin E synthesis-deficient mutant vte4 and vitamin C synthesis-deficient mutant vtc1 on which exogenous vitamin E and vitamin C, respectively, were applied at the bolting stage. In the deficiency of macro-elements, the Arabidopsis chlorophyll content decreased, malondialdehyde (MDA) content and relative electric conductivity increased, and reactive oxygen species (ROS) accumulated. The mutants vtc1 and vte4 are more severely stressed than the wild-type plants. Adding exogenous vitamin E was found to better alleviate stress than adding vitamin C. Vitamin C barely affected and vitamin E significantly inhibited the synthesis of ethylene (ETH) and jasmonic acid (JA) genes, thereby reducing the accumulation of ETH and JA that alleviated the senescence caused by macro-element deficiency at the later stage of bolting in Arabidopsis. A deficiency of macro-elements also reduced the yield and germination rate of the seeds, which were more apparent in vtc1 and vte4, and adding exogenous vitamin C and vitamin E, respectively, could restore them. This study reported, for the first time, that vitamin E is better than vitamin C in delaying seedling senescence caused by macro-element deficiency in Arabidopsis.
Collapse
|
14
|
Dissecting the Regulatory Network of Leaf Premature Senescence in Maize ( Zea mays L.) Using Transcriptome Analysis of ZmELS5 Mutant. Genes (Basel) 2019; 10:genes10110944. [PMID: 31752425 PMCID: PMC6895817 DOI: 10.3390/genes10110944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leaf premature senescence largely determines maize (Zea mays L.) grain yield and quality. A natural recessive premature-senescence mutant was selected from the breeding population, and near-isogenic lines were constructed using Jing24 as the recurrent parent. In the near-isogenic lines, the dominant homozygous material was wild-type (WT), and the recessive material of early leaf senescence was the premature-senescence-type ZmELS5. To identify major genes and regulatory mechanisms involved in leaf senescence, a transcriptome analysis of the ZmELS5 and WT near-isogenic lines (NILs) was performed. A total of 8796 differentially expressed transcripts were identified between ZmELS5 and WT, including 3811 up-regulated and 4985 down-regulated transcripts. By combining gene ontology, Kyoto Encyclopedia of Genes and Genomes, gene set, and transcription factor enrichment analyses, key differentially expressed genes were screened. The senescence regulatory network was predicted based on these key differentially expressed genes, which indicated that the senescence process is mainly regulated by bHLH, WRKY, and AP2/EREBP family transcription factors, leading to the accumulations of jasmonic acid and ethylene. This causes stress responses and reductions in the chlorophyll a/b-binding protein activity level. Then, decreased ATP synthase activity leads to increased photosystem II photodamage, ultimately leading to leaf senescence.
Collapse
|
15
|
Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. J Biol Chem 2019; 294:3563-3576. [PMID: 30630953 PMCID: PMC6416433 DOI: 10.1074/jbc.ra118.006539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Plants produce various l-tyrosine (Tyr)-derived compounds that are critical for plant adaptation and have pharmaceutical or nutritional importance for human health. Tyrosine aminotransferases (TATs) catalyze the reversible reaction between Tyr and 4-hydroxyphenylpyruvate (HPP), representing the entry point in plants for both biosynthesis of various natural products and Tyr degradation in the recycling of energy and nutrients. To better understand the roles of TATs and how Tyr is metabolized in planta, here we characterized single and double loss-of-function mutants of TAT1 (At5g53970) and TAT2 (At5g36160) in the model plant Arabidopsis thaliana As reported previously, tat1 mutants exhibited elevated and decreased levels of Tyr and tocopherols, respectively. The tat2 mutation alone had no impact on Tyr and tocopherol levels, but a tat1 tat2 double mutant had increased Tyr accumulation and decreased tocopherol levels under high-light stress compared with the tat1 mutant. Relative to WT and the tat2 mutant, the tat1 mutant displayed increased vulnerability to continuous dark treatment, associated with an early drop in respiratory activity and sucrose depletion. During isotope-labeled Tyr feeding in the dark, we observed that the tat1 mutant exhibits much slower 13C incorporation into tocopherols, fumarate, and other tricarboxylic acid (TCA) cycle intermediates than WT and the tat2 mutant. These results indicate that TAT1 and TAT2 function together in tocopherol biosynthesis, with TAT2 having a lesser role, and that TAT1 plays the major role in Tyr degradation in planta Our study also highlights the importance of Tyr degradation under carbon starvation conditions during dark-induced senescence in plants.
Collapse
Affiliation(s)
- Minmin Wang
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kyoko Toda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Anna Block
- the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida 32608, and
| | - Hiroshi A Maeda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
16
|
Wang H, Dong Q, Duan D, Zhao S, Li M, van Nocker S, Ma F, Mao K. Comprehensive genomic analysis of the TYROSINE AMINOTRANSFERASE (TAT) genes in apple (Malus domestica) allows the identification of MdTAT2 conferring tolerance to drought and osmotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:81-91. [PMID: 30391815 DOI: 10.1016/j.plaphy.2018.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 05/26/2023]
Abstract
Tyrosine aminotransferase (TAT, EC 2.6.1.5) is the first key enzyme that catalyzes the reversible interconversion of tyrosine and 4-hydroxyphenylpyruvate in the tyrosine-derived pathway for syntheses of important secondary metabolites and compounds. Although plant TAT genes have been proposed to be important in response to abiotic stress, there is little information about TAT genes in woody perennial tree species, especially in economic fruit trees. Based on TAT domain searching, sequence homology screening and phylogenetic analysis, we identified four TATs in apple genome. Then, we carried out a detailed phylogenetic analysis of TAT genes from multi-species, focusing on apple (Malus domestica). The result showed that the TAT family comprises three major classes corresponding to genes from angiosperms, mammals, and bacteria. Angiosperm TAT genes could be further divided into six subclasses. Analysis of intron-exon structure revealed that the typical TAT gene contains six introns and seven exons, with exons of similar size at each exon location. Promoter analysis showed that the 5'-flanking region of apple MdTATs contain multiple cis-acting elements including those implicated in light, biotic stress, abiotic stress, and hormone response. MdTATs were expressed to various levels in all apple structures and organs evaluated, and showed distinct expression patterns under water deficit stress. Ectopic expression of MdTAT2 in Arabidopsis or over-expression of MdTAT2 in apple callus tissue conferred enhanced tolerance to drought and osmotic stress. Collectively, these results suggest a role for TAT genes in drought and osmotic stresses and provide valuable information for further research of TAT genes and their function in plants.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China; Shandong Institute of Pomology, Tai'an, 271000, China.
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Steve van Nocker
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China; Department of Horticulture, Michigan State University, East Lansing, 48824, USA.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Gruszka D, Janeczko A, Dziurka M, Pociecha E, Fodor J. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. PHYSIOLOGIA PLANTARUM 2018; 163:155-169. [PMID: 29215730 DOI: 10.1111/ppl.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 05/12/2023]
Abstract
Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Katowice, Poland
| | - Anna Janeczko
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Michal Dziurka
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Krakow, Poland
| | - Jozsef Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
18
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
19
|
T V, Bansal N, Kumari K, Prashat G R, Sreevathsa R, Krishnan V, Kumari S, Dahuja A, Lal SK, Sachdev A, Praveen S. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11054-11064. [PMID: 29121768 DOI: 10.1021/acs.jafc.7b03448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.
Collapse
Affiliation(s)
- Vinutha T
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Navita Bansal
- Division of Biochemistry, IARI , New Delhi 110012, India
| | | | | | - Rohini Sreevathsa
- National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Sweta Kumari
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, IARI , New Delhi 110012, India
| | - S K Lal
- Division of Genetics, IARI , New Delhi 110012, India
| | | | - Shelly Praveen
- Division of Biochemistry, IARI , New Delhi 110012, India
| |
Collapse
|
20
|
Ru M, Wang K, Bai Z, Peng L, He S, Wang Y, Liang Z. A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Sci Rep 2017; 7:4892. [PMID: 28687763 PMCID: PMC5501851 DOI: 10.1038/s41598-017-05290-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Rosmarinic acid (RA) and its derivants are medicinal compounds that comprise the active components of several therapeutics. We isolated and characterised a tyrosine aminotransferase of Prunella vulgaris (PvTAT). Deduced PvTAT was markedly homologous to other known/putative plant TATs. Cytoplasmic localisation of PvTAT was observed in tobacco protoplasts. Recombinantly expressed and purified PvTAT had substrates preference for L-tyrosine and phenylpyruvate, with apparent K m of 0.40 and 0.48 mM, and favoured the conversion of tyrosine to 4-hydroxyphenylpyruvate. In vivo activity was confirmed by functional restoration of the Escherichia coli tyrosine auxotrophic mutant DL39. Agrobacterium rhizogenes-mediated antisense/sense expression of PvTAT in hairy roots was used to evaluate the contribution of PvTAT to RA synthesis. PvTAT were reduced by 46-95% and RA were decreased by 36-91% with low catalytic activity in antisense transgenic hairy root lines; furthermore, PvTAT were increased 0.77-2.6-fold with increased 1.3-1.8-fold RA and strong catalytic activity in sense transgenic hairy root lines compared with wild-type counterparts. The comprehensive physiological and catalytic evidence fills in the gap in RA-producing plants which didn't provide evidence for TAT expression and catalytic activities in vitro and in vivo. That also highlights RA biosynthesis pathway in P. vulgaris and provides useful information to engineer natural products.
Collapse
Affiliation(s)
- Mei Ru
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Kunru Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Zhenqing Bai
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Liang Peng
- College of Pharmacy, Shannxi University of Chinese Medicine, Xi'an, 710000, P.R. China
| | - Shaoxuan He
- Ecological Environmental Monitoring Station, Environmental Protection Agency, Dazu, 402360, P.R. China
| | - Yong Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences&Ministry of Water Resources, Yangling, 712100, P.R. China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310000, P.R. China.
| |
Collapse
|
21
|
Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell'Aversana E, Piccolella S, Fuggi A, Carillo P. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2017; 159:290-312. [PMID: 27653956 DOI: 10.1111/ppl.12513] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 05/03/2023]
Abstract
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Collapse
Affiliation(s)
- Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Loredana F Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Federica Iannuzzi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Antonio Mirto
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Luisa D'Amelia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Emilia Dell'Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
22
|
Scoccianti V, Bucchini AE, Iacobucci M, Ruiz KB, Biondi S. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:25-35. [PMID: 27400061 DOI: 10.1016/j.ecoenv.2016.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.
Collapse
Affiliation(s)
- Valeria Scoccianti
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Anahi E Bucchini
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Marta Iacobucci
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Karina B Ruiz
- Dipartimento BiGeA, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Stefania Biondi
- Dipartimento BiGeA, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
23
|
Navarro-León E, Barrameda-Medina Y, Lentini M, Esposito S, Ruiz JM, Blasco B. Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4(+) assimilation and nitrogen derived protective compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:8-16. [PMID: 27181942 DOI: 10.1016/j.plantsci.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Zinc (Zn) deficiency is a major problem in agricultural crops of many world regions. N metabolism plays an essential role in plants and changes in their availability and their metabolism could seriously affect crop productivity. The main objective of the present work was to perform a comparative analysis of different strategies against Zn deficiency between two plant species of great agronomic interest such as Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. For this, both species were grown in hydroponic culture with different Zn doses: 10μM Zn as control and 0.01μM Zn as deficiency treatment. Zn deficiency treatment decreased foliar Zn concentration, although in greater extent in B. oleracea plants, and caused similar biomass reduction in both species. Zn deficiency negatively affected NO3(-) reduction and NH4(+) assimilation and enhanced photorespiration in both species. Pro and GB concentrations were reduced in L. sativa but they were increased in B. oleracea. Finally, the AAs profile changed in both species, highlighting a great increase in glycine (Gly) concentration in L. sativa plants. We conclude that L. sativa would be more suitable than B. oleracea for growing in soils with low availability of Zn since it is able to accumulate a higher Zn concentration in leaves with similar biomass reduction. However, B. oleracea is able to accumulate N derived protective compounds to cope with Zn deficiency stress.
Collapse
Affiliation(s)
- Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Yurena Barrameda-Medina
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Marco Lentini
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Boulahia K, Carol P, Planchais S, Abrous-Belbachir O. Phaseolus vulgaris L. Seedlings Exposed to Prometryn Herbicide Contaminated Soil Trigger an Oxidative Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3150-60. [PMID: 27019272 DOI: 10.1021/acs.jafc.6b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herbicides from the family of S-triazines, such as prometryn, have been widely used in crop production and can constitute an environmental pollution in both water and soil. As a valuable crop, the common bean (Phaseolus vulgaris L.) is grown all over the world and could be exposed to such herbicides. We wanted to investigate the possible stress sustained by the common bean growing in prometryn-polluted soil. Two situations were observed: when soil was treated with ≥100 μM prometryn, some, but not all, measured growth parameters were affected in a dose-dependent manner. Growth was reduced, and photosynthetic pigments and photosynthetic products were less accumulated when soil was treated with ≥100 μM prometryn. Reactive oxygen species (ROS) produced had a deleterious effect, as seen by the accumulation of oxidized lipid in the form of malondialdehyde (MDA). Higher prometryn (500 μM) concentrations had a disastrous effect, reducing antioxidant activities. At a low (10 μM) concentration, prometryn increased antioxidant enzymatic activities without affecting plant growth or MDA production. Gene expression of proline metabolism genes and proline accumulation confirm that bean plants respond to a stress according to the prometryn concentration. Physiological responses such as antioxidative enzymes APX, CAT, and the enzyme implicated in the metabolization of xenobiotics, GST, were increased at 10 and 100 μM, which indicated a prevention of deleterious effects of prometryn, suggesting that bean is a suitable material both for herbicide pollution sensing and as a crop on a low level of herbicide pollution.
Collapse
Affiliation(s)
- Kerima Boulahia
- Biology Laboratory and Physiology of Organisms (LBPO), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
| | - Pierre Carol
- Institute of Ecology and Environmental Sciences of Paris (iEES), UMR 7618, UPMC CNRS, University Pierre et Marie Curie , Paris, France
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), UMR 7618, UPMC CNRS, University Pierre et Marie Curie , Paris, France
| | - Ouzna Abrous-Belbachir
- Biology Laboratory and Physiology of Organisms (LBPO), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
25
|
Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 2016; 48:1209-20. [DOI: 10.1007/s00726-015-2156-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/13/2015] [Indexed: 01/12/2023]
|
26
|
Gálvez-Valdivieso G, Cardeñosa R, Pineda M, Aguilar M. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:80-88. [PMID: 26454640 DOI: 10.1016/j.jplph.2015.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.
Collapse
Affiliation(s)
- Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Rosa Cardeñosa
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
27
|
Nokhrina K, Ray H, Bock C, Georges F. Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens. GM CROPS & FOOD 2014; 5:120-31. [PMID: 24787279 DOI: 10.4161/gmcr.28942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol-specific phospholipase C2 (PLC2) is a signaling enzyme with hydrolytic activity against membrane-bound phosphoinositides. It catalyzes the cleavage of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2) into two initial second messengers, myo-inositol-1,4,5-trisphosphate (InsP 3) and diacylglycerol (DAG). The former, as well as its fully phosphorylated derivative, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP 6), play a major role in calcium signaling events within the cell, while DAG may be used in the regeneration of phospholipids or as a precursor for phosphatidic acid (PA) biosynthesis, an important signaling molecule involved in both biotic and abiotic types of stress tolerance. Overexpression of the gene for Brassica napus phospholipase C2 (BnPLC2) in Brassica napus has been shown to enhance drought tolerance, modulate multiple genes involved in different processes and favorably affect hormonal levels in different tissues. We, therefore, undertook the current study with a view to examining, at the metabolome level, its effect on both abiotic (low temperature) and biotic (stem white rot disease) types of stress in canola. Thus, while transgenic plants exhibited a significant rise in maltose levels and a concomitant elevation in some unsaturated free fatty acids (FFAs), glycerol, and glycerol 3-phosphate under subzero temperatures, they accumulated high levels of raffinose, stachyose and other sugars as well as some flavonoids under acclimatization conditions. Collectively, overexpression of BnPLC2 appears to have triggered different metabolite patterns consistent with its abiotic and, to a limited extent, biotic stress tolerance phenotypes.
Collapse
Affiliation(s)
- Kateryna Nokhrina
- Plant Biotechnology Institute; National Research Council Canada; Saskatoon, SK Canada
| | - Heather Ray
- Plant Biotechnology Institute; National Research Council Canada; Saskatoon, SK Canada
| | - Cheryl Bock
- Plant Biotechnology Institute; National Research Council Canada; Saskatoon, SK Canada
| | - Fawzy Georges
- Plant Biotechnology Institute; National Research Council Canada; Saskatoon, SK Canada; Department of Biochemistry; College of Medicine; University of Saskatchewan; Saskatoon, SK Canada
| |
Collapse
|
28
|
Bielecka M, Watanabe M, Morcuende R, Scheible WR, Hawkesford MJ, Hesse H, Hoefgen R. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:805. [PMID: 25674096 PMCID: PMC4309162 DOI: 10.3389/fpls.2014.00805] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using 'omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Wroclaw Medical UniversityWroclaw, Poland
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Rosa Morcuende
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | | | - Holger Hesse
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Rainer Hoefgen
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- *Correspondence: Rainer Hoefgen, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany e-mail:
| |
Collapse
|
29
|
Bielecka M, Watanabe M, Morcuende R, Scheible WR, Hawkesford MJ, Hesse H, Hoefgen R. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25674096 DOI: 10.1007/s11105-014-0772-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using 'omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Wroclaw Medical University Wroclaw, Poland ; Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Rosa Morcuende
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany ; Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas Salamanca, Spain
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany ; Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| | | | - Holger Hesse
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| |
Collapse
|
30
|
Quadrana L, Almeida J, Otaiza SN, Duffy T, Corrêa da Silva JV, de Godoy F, Asís R, Bermúdez L, Fernie AR, Carrari F, Rossi M. Transcriptional regulation of tocopherol biosynthesis in tomato. PLANT MOLECULAR BIOLOGY 2013; 81:309-25. [PMID: 23247837 DOI: 10.1007/s11103-012-0001-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/10/2012] [Indexed: 05/21/2023]
Abstract
Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.
Collapse
Affiliation(s)
- Leandro Quadrana
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rose MT, Rose TJ, Pariasca-Tanaka J, Yoshihashi T, Neuweger H, Goesmann A, Frei M, Wissuwa M. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. PLANTA 2012; 236:959-73. [PMID: 22526504 DOI: 10.1007/s00425-012-1648-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/02/2012] [Indexed: 05/24/2023]
Abstract
Plants are routinely subjected to multiple environmental stresses that constrain growth. Zinc (Zn) deficiency and high bicarbonate are two examples that co-occur in many soils used for rice production. Here, the utility of metabolomics in diagnosing the effect of each stress alone and in combination on rice root function is demonstrated, with potential stress tolerance indicators identified through the use of contrasting genotypes. Responses to the dual stress of combined Zn deficiency and bicarbonate excess included greater root solute leakage, reduced dry matter production, lower monosaccharide accumulation and increased concentrations of hydrogen peroxide, phenolics, peroxidase and N-rich metabolites in roots. Both hydrogen peroxide concentration and root solute leakage were correlated with higher levels of citrate, allantoin and stigmasterol. Zn stress resulted in lower levels of the tricarboxylic acid (TCA) cycle intermediate succinate and the aromatic amino acid tyrosine. Bicarbonate stress reduced shoot iron (Fe) concentrations, which was reflected by lower Fe-dependent ascorbate peroxidase activity. Bicarbonate stress also favoured the accumulation of the TCA cycle intermediates malate, fumarate and succinate, along with the non-polar amino acid tyrosine. Genotypic differentiation revealed constitutively higher levels of D-gluconate, 2-oxoglutarate and two unidentified compounds in the Zn-efficient line RIL46 than the Zn-inefficient cultivar IR74, suggesting a possible role for these metabolites in overcoming oxidative stress or improving metal re-distribution.
Collapse
Affiliation(s)
- Michael T Rose
- Crop Production and Environment Division, Japan International Research Centre for Agricultural Science, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T. A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:850-9. [PMID: 22540282 DOI: 10.1111/j.1365-313x.2012.05035.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The metabolic function of the predicted Arabidopsis tyrosine aminotransferase (TAT) encoded by the At5g53970 gene was studied using two independent knock-out mutants. Gas chromatography-mass spectrometry based metabolic profiling revealed a specific increase in tyrosine levels, supporting the proposed function of At5g53970 as a tyrosine-specific aminotransferase not involved in tyrosine biosynthesis, but rather in utilization of tyrosine for other metabolic pathways. The TAT activity of the At5g53970-encoded protein was verified by complementation of the Escherichia coli tyrosine auxotrophic mutant DL39, and in vitro activity of recombinantly expressed and purified At5g53970 was found to be specific for tyrosine. To investigate the physiological role of At5g53970, the consequences of reduction in tyrosine utilization on metabolic pathways having tyrosine as a substrate were analysed. We found that tocopherols were substantially reduced in the mutants and we conclude that At5g53970 encodes a TAT important for the synthesis of tocopherols in Arabidopsis.
Collapse
Affiliation(s)
- David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grossmann K, Hutzler J, Tresch S, Christiansen N, Looser R, Ehrhardt T. On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. PEST MANAGEMENT SCIENCE 2012; 68:482-92. [PMID: 22076790 DOI: 10.1002/ps.2319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The mode of action of the grass herbicides cinmethylin and 5-benzyloxymethyl-1,2-isoxazolines substituted with methylthiophene (methiozolin) or pyridine (ISO1, ISO2) was investigated. RESULTS Physiological profiling using a series of biotests and metabolic profiling in treated duckweed (Lemna paucicostata L.) suggested a common mode of action for the herbicides. Symptoms of growth inhibition and photobleaching of new fronds in Lemna were accompanied with metabolite changes indicating an upregulation of shikimate and tyrosine metabolism, paralleled by decreased plastoquinone and carotenoid synthesis. Supplying Lemna with 10 µM of 4-hydroxyphenylpyruvate (4-HPP) reversed phytotoxic effects of cinmethylin and isoxazolines to a great extent, whereas the addition of L-tyrosine was ineffective. It was hypothesised that the herbicides block the conversion of tyrosine to 4-HPP, catalysed by tyrosine aminotransferase (TAT), in the prenylquinone pathway which provides plastoquinone, a cofactor of phytoene desaturase in carotenoid synthesis. Accordingly, enhanced resistance to ISO1 treatment was observed in Arabidopsis thaliana L. mutants, which overexpress the yeast prephenate dehydrogenase in plastids as a TAT bypass. In addition, the herbicides were able to inhibit TAT7 activity in vitro for the recombinant enzyme of A. thaliana. CONCLUSION The results suggest that TAT7 or another TAT isoenzyme is the putative target of the herbicides.
Collapse
Affiliation(s)
- Klaus Grossmann
- BASF Agricultural Centre Limburgerhof, Limburgerhof, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Lee EJ, Facchini PJ. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. PLANT PHYSIOLOGY 2011; 157:1067-78. [PMID: 21949209 PMCID: PMC3252151 DOI: 10.1104/pp.111.185512] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tyrosine aminotransferase (TyrAT) catalyzes the transamination of L-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and L-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5'-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for L-Tyr and α-ketoglutarate, with apparent K(m) values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of L-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde.
Collapse
|
35
|
Kang K, Park S, Natsagdorj U, Kim YS, Back K. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:247-257. [PMID: 21205035 DOI: 10.1111/j.1365-313x.2011.04486.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During senescence of detached rice leaves, tryptophan (Trp) and Trp-derived secondary metabolites such as serotonin and 4-coumaroylserotonin accumulated in concert with methanol (MeOH) production. This senescence-induced MeOH induction was closely associated with levels of pectin methylesterase (PME)1 mRNA and PME enzyme activity. Exogenous challenge of detached rice leaves with 1% MeOH accelerated Trp and serotonin biosynthesis with induction of the corresponding genes. No other solvents, including ethanol, resulted in a Trp-inducing effect. This MeOH-induced Trp synthesis was positively regulated by abscisic acid but negatively regulated by cytokinin, suggesting hormonal involvement in the action of MeOH. Endogenous overproduction or suppression of MeOH either by PME1 overexpression or RNA interference (RNAi) gene silencing revealed that PME1 overexpressing lines produced twofold higher Trp levels with elevated Trp biosynthetic gene expression, whereas RNAi lines showed twofold reduction in Trp level in healthy control rice leaves, suggesting that MeOH acts as an endogenous elicitor to enhance Trp biosynthesis. Among many transcription factors induced following MeOH treatment, the WRKY family showed significant induction patterns, of which WRKY14 appeared to play a key regulatory role in MeOH-induced Trp and Trp-derived secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Kiyoon Kang
- Department of Biotechnology, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Bioenergy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R. Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:139-150. [PMID: 32480870 DOI: 10.1071/fp10177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/23/2010] [Indexed: 06/11/2023]
Abstract
In this study, we determined the effects of both salinity and high light on the metabolism of durum wheat (Triticum durum Desf. cv. Ofanto) seedlings, with a special emphasis on the potential role of glycine betaine in their protection. Unexpectedly, it appears that high light treatment inhibits the synthesis of glycine betaine, even in the presence of salt stress. Additional solutes such as sugars and especially amino acids could partially compensate for the decrease in its synthesis upon exposure to high light levels. In particular, tyrosine content was strongly increased by high light, this effect being enhanced by salt treatment. Interestingly, a large range of well-known detoxifying molecules were also not induced by salt treatment in high light conditions. Taken together, our results question the role of glycine betaine in salinity tolerance under light conditions close to those encountered by durum wheat seedlings in their natural environment and suggest the importance of other mechanisms, such as the accumulation of minor amino acids.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Danila Parisi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanni Pontecorvo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Massaro
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Grazia Annunziata
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| |
Collapse
|
37
|
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:909-30. [PMID: 20870416 DOI: 10.1016/j.plaphy.2010.08.016] [Citation(s) in RCA: 4467] [Impact Index Per Article: 319.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/28/2010] [Indexed: 05/18/2023]
Abstract
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
38
|
Joshi V, Joung JG, Fei Z, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010; 39:933-47. [DOI: 10.1007/s00726-010-0505-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/25/2010] [Indexed: 11/27/2022]
|
39
|
Noreen Z, Ashraf M. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1764-74. [PMID: 19540015 DOI: 10.1016/j.jplph.2009.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/17/2009] [Accepted: 05/17/2009] [Indexed: 05/07/2023]
Abstract
The present work describes whether the changes in the activities of antioxidant enzymes and the levels of some non-enzymatic antioxidants could be used as markers of salt tolerance in nine genetically diverse pea (Pisum sativum) cultivars. All cultivars were exposed to four levels of NaCl i.e., 0, 40, 80 and 120mM in sand culture. Plant fresh biomass, total phenolics, total soluble proteins, hydrogen peroxide (H(2)O(2)), malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in leaves while different forms of tocopherols (alpha-, gamma- and Delta-tocopherol) in fresh seed of salt-stressed and non-stressed plants were analyzed. On the basis of percent inhibition in shoot biomass at the highest salt level (120mM) cultivars 2001-35, 2001-55 and Climax were ranked as tolerant (percent inhibition less than 60%), 2001-20, 9800-5 and 9800-10 moderately tolerant (percent inhibition 60-70%), and 2001-40, 9200 and Tere 2 salt sensitive (percent inhibition more than 70%). Salt stress markedly enhanced the activities of SOD and POD, levels of total phenolics and gamma- and Delta-tocopherols, and decreased the total soluble proteins and CAT activity, while the internal levels of H(2)O(2) remained unaffected in all pea cultivars. Although salt-induced oxidative stress occurred in all pea cultivars, the response of salt-tolerant and salt-sensitive cultivars with respect to the generation of enzymatic and non-enzymatic metabolites measured in the present study was not consistent. Of different antioxidant enzymes and metabolites analyzed, only CAT activity was found to be a reliable marker of salt tolerance in the set of pea cultivars examined.
Collapse
Affiliation(s)
- Zahra Noreen
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
40
|
Antognoni F, Faudale M, Poli F, Biondi S. Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:161-169. [PMID: 19228323 DOI: 10.1111/j.1438-8677.2008.00110.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tocopherols are lipid-soluble compounds synthesised exclusively by photosynthetic organisms. In this study, in vitro callus cultures were established from two plants that are naturally rich in tocopherols, Amaranthus caudatus and Chenopodium quinoa, in order to examine whether callus cultures were able to produce these compounds at levels comparable to those observed in planta. In both species, cotyledon explants produced the best callus induction and, once established, callus cultures were grown under two different hormonal treatments to check for effects of growth and to induce chloroplast differentiation in the cells. A rapid differentiation of chloroplasts occurred only in C. quinoa cell aggregates grown in the presence of benzyladenine, leading to the production of a homogeneous green callus. In both species, only alpha-tocopherol was produced by callus cultures, although levels were much lower than in planta, and the production was not influenced by the hormonal conditions. Interestingly, cell cultures of the two species responded in different ways to methyl jasmonate (MJ). In A. caudatus cultures, treatment with 100 mum MJ increased the production of alpha-tocopherol up to fivefold, and the inductive effect was influenced by the hormonal composition of the medium. This increase in alpha-tocopherol was associated with a proportional increase in tyrosine aminotransferase (TAT) activity, one of the key enzymes involved in tocopherol biosynthesis. By contrast, in C. quinoa cultures, elicitation with MJ did not have any effect, neither on tocopherol production, nor on TAT activity. These results are discussed in relation to chloroplast differentiation and the interplay between jasmonates and phytohormones.
Collapse
Affiliation(s)
- F Antognoni
- Dipartimento di Biologia evoluzionistica sperimentale, Università di Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
41
|
Abbasi AR, Saur A, Hennig P, Tschiersch H, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence. PLANT, CELL & ENVIRONMENT 2009; 32:144-57. [PMID: 19021891 DOI: 10.1111/j.1365-3040.2008.01907.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
alpha-Tocopherol constitutes the major lipophilic antioxidant in thylakoid membranes, which cooperates with the soluble antioxidant system to alleviate oxidative stress caused by reactive oxygen species (ROS) during oxygenic photosynthesis. Tocopherol accumulates during leaf senescence, indicating the necessity for increased redox buffer capacity in senescent leaves, and tocopherol deficiency has been shown to restrict sugar export from source leaves by inducing callose plugging in the vasculature. We have generated tocopherol-deficient tobacco plants that contain as few as 1% of wild-type (WT) tocopherol in leaves by silencing homogentisate phytyltransferase (HPT). Employing HPT : RNAi plants, we have assessed the importance of tocopherol during leaf senescence and for sugar export. Irrespective of whorl position, the content of free sugars and starch was lower in HPT : RNAi leaves than in WT during the vegetative phase, and no accumulation of callose or a reduction in sugar exudation compared to WT was evident. Based on our observations, we discuss lipid peroxidation as a potential modulator of tocopherol-mediated signalling. Furthermore, senescence was accelerated in lower leaves of HPT transgenics, as indicated by elevated GS1 and reduced rbcS transcript amounts. Oxidative stress was increased in virescent lower source leaves, suggesting that the lack of tocopherol triggers premature senescence.
Collapse
Affiliation(s)
- Ali-Reza Abbasi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 2008; 27:84-93. [PMID: 18950697 DOI: 10.1016/j.biotechadv.2008.09.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 12/31/2022]
Abstract
Salt stress causes multifarious adverse effects in plants. Of them, production of reactive oxygen species (ROS) is a common phenomenon. These ROS are highly reactive because they can interact with a number of cellular molecules and metabolites thereby leading to a number of destructive processes causing cellular damage. Plants possess to a variable extent antioxidant metabolites, enzymes and non-enzymes, that have the ability to detoxify ROS. In the present review, the emphasis of discussion has been on understanding the role of different antioxidants in plants defense against oxidative stress caused by salt stress. The role of different antioxidants as potential selection criteria for improving plant salt tolerance has been critically discussed. With the advances in molecular biology and availability of advanced genetic tools considerable progress has been made in the past two decades in improving salt-induced oxidative stress tolerance in plants by developing transgenic lines with altered levels of antioxidants of different crops. The potential of this approach in counteracting stress-induced oxidative stress has been discussed at length in this review.
Collapse
Affiliation(s)
- M Ashraf
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
43
|
Szymańska R, Kruk J. Gamma-tocopherol dominates in young leaves of runner bean (Phaseolus coccineus) under a variety of growing conditions: the possible functions of gamma-tocopherol. PHYTOCHEMISTRY 2008; 69:2142-2148. [PMID: 18582912 DOI: 10.1016/j.phytochem.2008.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/10/2008] [Accepted: 05/13/2008] [Indexed: 05/26/2023]
Abstract
It has been shown that young leaves of runner bean (Phaseolus coccineus) plants grown under natural conditions have an unusually high content of gamma-tocopherol, accounting for up to 90% of all tocopherols and 50% of the chlorophyll content. The level of gamma-tocopherol gradually decreased during the first two weeks of leaf development. The high content of gamma-tocopherol in young leaves was not significantly influenced by growth conditions. In contrast to seeds, gamma-tocopherol was also the main tocopherol found in light-grown and etiolated primary leaves of runner bean. The obtained results suggest that gamma-tocopherol decline during leaf development is not only due to conversion of gamma- to alpha-tocopherol but probably also due to degradation of gamma-tocopherol to non-tocochromanol compounds. We have also shown that gamma-tocopherol found in young leaves is mainly localized in thylakoid membranes within chloroplast. In the primary leaves subjected to different abiotic stresses, only during simultaneous drought and light stress, gamma-tocopherolquinone, an oxidation product of gamma-tocopherol, was preferentially accumulated. Since one of the other possible functions of gamma-tocopherol could be its action as a nitric oxide scavenger, young leaves were analyzed for the presence of nitro-gamma-tocopherol. However, despite the use of a sensitive detection method, it was not found. The possible physiological function of the increased level of gamma-tocopherol in the young leaves was discussed.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
44
|
Zentgraf U, Hemleben V. Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence? PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Rego JV, Murta SMF, Nirdé P, Nogueira FB, de Andrade HM, Romanha AJ. Trypanosoma cruzi: Characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol 2008; 118:111-7. [PMID: 17678649 DOI: 10.1016/j.exppara.2007.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Various biochemical differences exist between mammalian tyrosine aminotransferase (TAT) and its analogue in Trypanosoma cruzi (TcTAT), the causative agent of Chagas disease. Moreover, TcTAT is over-expressed in strains of the parasite that are resistant to benznidazole (BZ), a drug currently used in chemotherapy. TAT has thus been indicated as a potential target for the development of new chemotherapeutic agents. In the present study, the TcTAT gene has been characterised in 14 BZ-resistant and susceptible strains and clones of T. cruzi. A unique transcript of 2.0kb and similar levels of TcTAT mRNA were observed in all parasite populations. TcTAT gene is organized in a tandem multicopy array and is located on 8 chromosomal bands that vary from 785-2500kb. No amplification of TcTAT was observed in the parasite genome. A 42kDa protein expressed by TcTAT was present in all T. cruzi samples. The results suggest that TcTAT is not directly associated with the T. cruzi drug resistance phenotype. However, it may act as a general secondary compensatory mechanism or stress response factor rather than as a key component of the specific primary resistance mechanism in T. cruzi.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Protozoan/analysis
- Drug Resistance/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Expression Regulation, Enzymologic/genetics
- Nitroimidazoles/pharmacology
- RNA, Messenger/metabolism
- RNA, Protozoan/analysis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Trypanocidal Agents/pharmacology
- Trypanosoma cruzi/drug effects
- Trypanosoma cruzi/enzymology
- Trypanosoma cruzi/genetics
- Tyrosine Transaminase/genetics
- Tyrosine Transaminase/immunology
Collapse
Affiliation(s)
- Juciane V Rego
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, 30190-002, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. PLANT, CELL & ENVIRONMENT 2007; 30:39-52. [PMID: 17177875 DOI: 10.1111/j.1365-3040.2006.01604.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.
Collapse
Affiliation(s)
- Tatiana E Mishina
- Julius-von-Sachs-Institute of Biological Sciences, Department of Botany II, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
47
|
Kalinova J, Triska J, Vrchotova N. Distribution of Vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:5330-5. [PMID: 16848513 DOI: 10.1021/jf060521r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Buckwheat leaves and young parts of the plant are consumed in some countries as a vegetable. Green flour, obtained by milling of the dried plants, is used as a natural food colorant. The distribution of vitamin E, squalene, epicatechin, and rutin (as the most important antioxidants) within buckwheat plants, as well as changes of their content within leaves during the growing season, were determined by GC-MS and HPLC analyses. alpha-Tocopherol was found as the main component of vitamin E in all parts of the plant; epicatechin and squalene were also detected. For the use of buckwheat as an antioxidant source in the human diet, the most suitable part of the plants seems to be the leaves and the flowers at the stage of full flowering due to the considerable amounts of rutin and epicatechin. alpha-Tocopherol content correlates positively with temperature, drought, and duration of solar radiation. Certain differences appear among varieties of buckwheat, especially in their squalene and rutin contents.
Collapse
Affiliation(s)
- Jana Kalinova
- Faculty of Agriculture, University of South Bohemia, Studentska 13, 370 05 Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|