1
|
Tao H, Wu Y, Liu S, Yang S, Xu X. Over-expression of LsEXPA6, a lettuce expansin gene, improves cadmium stress tolerance in transgenic Arabidopsis. Gene 2025; 933:148927. [PMID: 39255860 DOI: 10.1016/j.gene.2024.148927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Cadmium (Cd) is a harmful heavy metal that is highly toxic to plants and animals. Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. We investigated lettuce's expansin gene LsEXPA6 and found that LsEXPA6 overexpression Arabidopsis lines were much more resistant to cadmium stress. Our results revealed that the root system of the expa6 mutant was suppressed under cadmium stress, resulting in shorter plant height, reduced biomass, and a significant increase in cadmium content in the plants compared with wild-type plants, whereas LsEXPA6 overexpression lines had a well-developed root system and reduced cadmium accumulation in the roots and shoots of the plants. The above results indicated that overexpression of LsEXPA6 affected root development and reduced Cd absorption in Arabidopsis. In addition, the higher absorption capacity of nutrients, increased antioxidant enzymes activities, improved chlorophyll and photosynthetic function in the overexpression Arabidopsis plants, supported the Cd stress tolerance mechanism. Taken together, these results provided a new insight on the role of expansin proteins in the tolerance of plants to Cd stress by root cell elongation.
Collapse
Affiliation(s)
- Huifang Tao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongzhen Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sixuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuxue Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Liu X, Wang T, Ruan Y, Xie X, Tan C, Guo Y, Li B, Qu L, Deng L, Li M, Liu C. Comparative Metabolome and Transcriptome Analysis of Rapeseed ( Brassica napus L.) Cotyledons in Response to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2212. [PMID: 39204648 PMCID: PMC11360269 DOI: 10.3390/plants13162212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant (GX74) and -sensitive (XY15) rapeseeds. The mesophyll cells in cold-treated XY15 were severely damaged compared to slightly damaged cells in GX74. The fructose, glucose, malondialdehyde, and proline contents increased after cold stress in both genotypes; however, GX74 had significantly higher content than XY15. The pyruvic acid content increased after cold stress in GX74, but decreased in XY15. Metabolome analysis detected 590 compounds, of which 32 and 74 were differentially accumulated in GX74 (CK vs. cold stress) and XY15 (CK vs. cold stressed). Arachidonic acid and magnoflorine were the most up-accumulated metabolites in GX74 subjected to cold stress compared to CK. There were 461 and 1481 differentially expressed genes (DEGs) specific to XY15 and GX74 rapeseeds, respectively. Generally, the commonly expressed genes had higher expressions in GX74 compared to XY15 in CK and cold stress conditions. The expression changes in DEGs related to photosynthesis-antenna proteins, chlorophyll biosynthesis, and sugar biosynthesis-related pathways were consistent with the fructose and glucose levels in cotyledons. Compared to XY15, GX74 showed upregulation of a higher number of genes/transcripts related to arachidonic acid, pyruvic acid, arginine and proline biosynthesis, cell wall changes, reactive oxygen species scavenging, cold-responsive pathways, and phytohormone-related pathways. Taken together, our results provide a detailed overview of the cold stress responses in rapeseed cotyledons.
Collapse
Affiliation(s)
- Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Xiang Xie
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengfang Tan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Li Y, Zhang Y, Cui J, Wang X, Li M, Zhang L, Kang J. Genome-Wide Identification, Phylogenetic and Expression Analysis of Expansin Gene Family in Medicago sativa L. Int J Mol Sci 2024; 25:4700. [PMID: 38731920 PMCID: PMC11083626 DOI: 10.3390/ijms25094700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Expansins, a class of cell-wall-loosening proteins that regulate plant growth and stress resistance, have been studied in a variety of plant species. However, little is known about the Expansins present in alfalfa (Medicago sativa L.) due to the complexity of its tetraploidy. Based on the alfalfa (cultivar "XinjiangDaye") reference genome, we identified 168 Expansin members (MsEXPs). Phylogenetic analysis showed that MsEXPs consist of four subfamilies: MsEXPAs (123), MsEXPBs (25), MsEXLAs (2), and MsEXLBs (18). MsEXPAs, which account for 73.2% of MsEXPs, and are divided into twelve groups (EXPA-I-EXPA-XII). Of these, EXPA-XI members are specific to Medicago trunctula and alfalfa. Gene composition analysis revealed that the members of each individual subfamily shared a similar structure. Interestingly, about 56.3% of the cis-acting elements were predicted to be associated with abiotic stress, and the majority were MYB- and MYC-binding motifs, accounting for 33.9% and 36.0%, respectively. Our short-term treatment (≤24 h) with NaCl (200 mM) or PEG (polyethylene glycol, 15%) showed that the transcriptional levels of 12 MsEXPs in seedlings were significantly altered at the tested time point(s), indicating that MsEXPs are osmotic-responsive. These findings imply the potential functions of MsEXPs in alfalfa adaptation to high salinity and/or drought. Future studies on MsEXP expression profiles under long-term (>24 h) stress treatment would provide valuable information on their involvement in the response of alfalfa to abiotic stress.
Collapse
Affiliation(s)
- Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Yangyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jing Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| |
Collapse
|
4
|
Guo F, Guo J, El-Kassaby YA, Wang G. Genome-Wide Identification of Expansin Gene Family and Their Response under Hormone Exposure in Ginkgo biloba L. Int J Mol Sci 2023; 24:ijms24065901. [PMID: 36982974 PMCID: PMC10053239 DOI: 10.3390/ijms24065901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues' growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.
Collapse
Affiliation(s)
- Fangyun Guo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Guo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Guibin Wang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Shrestha N, Hu H, Shrestha K, Doust AN. Pearl millet response to drought: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1059574. [PMID: 36844091 PMCID: PMC9955113 DOI: 10.3389/fpls.2023.1059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The C4 grass pearl millet is one of the most drought tolerant cereals and is primarily grown in marginal areas where annual rainfall is low and intermittent. It was domesticated in sub-Saharan Africa, and several studies have found that it uses a combination of morphological and physiological traits to successfully resist drought. This review explores the short term and long-term responses of pearl millet that enables it to either tolerate, avoid, escape, or recover from drought stress. The response to short term drought reveals fine tuning of osmotic adjustment, stomatal conductance, and ROS scavenging ability, along with ABA and ethylene transduction. Equally important are longer term developmental plasticity in tillering, root development, leaf adaptations and flowering time that can both help avoid the worst water stress and recover some of the yield losses via asynchronous tiller production. We examine genes related to drought resistance that were identified through individual transcriptomic studies and through our combined analysis of previous studies. From the combined analysis, we found 94 genes that were differentially expressed in both vegetative and reproductive stages under drought stress. Among them is a tight cluster of genes that are directly related to biotic and abiotic stress, as well as carbon metabolism, and hormonal pathways. We suggest that knowledge of gene expression patterns in tiller buds, inflorescences and rooting tips will be important for understanding the growth responses of pearl millet and the trade-offs at play in the response of this crop to drought. Much remains to be learnt about how pearl millet's unique combination of genetic and physiological mechanisms allow it to achieve such high drought tolerance, and the answers to be found may well be useful for crops other than just pearl millet.
Collapse
Affiliation(s)
- Nikee Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hao Hu
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Kumar Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
6
|
Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Pereira DG, Grandis A, Macedo LLP, Macedo AF, Gomes ACMM, Arraes FBM, Togawa RC, do Carmo Costa MM, Marcelino-Guimaraes FC, Silva MCM, Floh EIS, Buckeridge MS, de Almeida Engler J, Grossi-de-Sa MF. Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita. PLANT CELL REPORTS 2023; 42:137-152. [PMID: 36348064 DOI: 10.1007/s00299-022-02941-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification. Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses. Plant-parasitic nematodes (PPN) can alter the expression profile of several expansin genes in infected root cells. Studies have shown that overexpression or downregulation of particular expansin genes can reduce plant susceptibility to PPNs. Root-knot nematodes (RKN) are obligate sedentary endoparasites of the genus Meloidogyne spp. of which M. incognita is one of the most reported species. Herein, using a transcriptome dataset and real-time PCR assays were identified an expansin A gene (GmEXPA1; Glyma.02G109100) that is upregulated in the soybean nematode-resistant genotype PI595099 compared to the susceptible cultivar BRS133 during plant parasitism by M. incognita. To understand the role of the GmEXPA1 gene during the interaction between soybean plant and M. incognita were generated stable A. thaliana and N. tabacum transgenic lines. Remarkably, both A. thaliana and N. tabacum transgenic lines overexpressing the GmEXPA1 gene showed reduced susceptibility to M. incognita. Furthermore, plant growth, biomass accumulation, and seed yield were not affected in these transgenic lines. Interestingly, significant upregulation of the NtACC oxidase and NtEFE26 genes, involved in ethylene biosynthesis, and NtCCR and Nt4CL genes, involved in lignin biosynthesis, was observed in roots of the N. tabacum transgenic lines, which also showed higher lignin content. These data suggested a possible link between GmEXPA1 gene expression and increased lignification of the root cell wall. Therefore, these data support that engineering of the GmEXPA1 gene in soybean offers a powerful biotechnology tool to assist in RKN management.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Clidia Eduarda Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Reneida Aparecida Godinho Mendes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Debora Gonçalves Pereira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Adriana Grandis
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Amanda Ferreira Macedo
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | - Fabrício Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Marcos Mota do Carmo Costa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
| | - Francismar Corrêa Marcelino-Guimaraes
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
- Embrapa Soybean, Londrina, PR, 86001-970, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Eny Iochevet Segal Floh
- Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | | | - Janice de Almeida Engler
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-901, Brazil.
- National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil.
- Catholic University of Brasília, Brasília, DF, 71966-700, Brazil.
| |
Collapse
|
7
|
Cai T, Chen H, Yan L, Zhang C, Deng Y, Wu S, Yang Q, Pan R, Raza A, Chen S, Zhuang W. The root-specific NtR12 promoter-based expression of RIP increased the resistance against bacterial wilt disease in tobacco. Mol Biol Rep 2022; 49:11503-11514. [PMID: 36097128 DOI: 10.1007/s11033-022-07817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.
Collapse
Affiliation(s)
- Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ye Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengxin Wu
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Shunhui Chen
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
del Olmo I, Romero I, Alvarez MD, Tarradas R, Sanchez-Ballesta MT, Escribano MI, Merodio C. Transcriptomic analysis of CO 2-treated strawberries ( Fragaria vesca) with enhanced resistance to softening and oxidative stress at consumption. FRONTIERS IN PLANT SCIENCE 2022; 13:983976. [PMID: 36061763 PMCID: PMC9437593 DOI: 10.3389/fpls.2022.983976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
One of the greatest threats to wild strawberries (Fragaria vesca Mara des Bois) after harvest is the highly perishability at ambient temperature. Breeders have successfully met the quality demands of consumers, but the prevention of waste after harvest in fleshy fruits is still pending. Most of the waste is due to the accelerated progress of senescence-like process after harvest linked to a rapid loss of water and firmness at ambient temperature. The storage life of strawberries increases at low temperature, but their quality is limited by the loss of cell structure. The application of high CO2 concentrations increased firmness during cold storage. However, the key genes related to resistance to softening and cell wall disassembly following transference from cold storage at 20°C remain unclear. Therefore, we performed RNA-seq analysis, constructing a weighted gene co-expression network analysis (WGCNA) to identify which molecular determinants play a role in cell wall integrity, using strawberries with contrasting storage conditions, CO2-cold stored (CCS), air-cold stored (ACS), non-cold stored (NCS) kept at ambient temperature, and intact fruit at harvest (AH). The hub genes associated with the cell wall structural architecture of firmer CO2-treated strawberries revealed xyloglucans stabilization attributed mainly to a down-regulation of Csl E1, XTH 15, Exp-like B1 and the maintenance of expression levels of nucleotide sugars transferases such as GMP and FUT as well as improved lamella integrity linked to a down-regulation of RG-lyase, PL-like and PME. The preservation of cell wall elasticity together with the up-regulation of LEA, EXPA4, and MATE, required to maintain cell turgor, is the mechanisms controlled by high CO2. In stressed air-cold stored strawberries, in addition to an acute softening, there is a preferential transcript accumulation of genes involved in lignin and raffinose pathways. Non-cold stored strawberries kept at 20°C after harvest are characterized by an enrichment in genes mainly involved in oxidative stress and up-expression of genes involved in jasmonate biosynthesis. The present results on transcriptomic analysis of CO2-treated strawberries with enhanced resistance to softening and oxidative stress at consumption will help to improve breeding strategies of both wild and cultivated strawberries.
Collapse
|
9
|
Li J, Liu Z, Gao C, Miao Y, Cui K. Overexpression of DsEXLA2 gene from Dendrocalamus sinicus accelerates the plant growth rate of Arabidopsis. PHYTOCHEMISTRY 2022; 199:113178. [PMID: 35385712 DOI: 10.1016/j.phytochem.2022.113178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Expansins play crucial roles in cell wall loosening and a range of life activities involving cell wall modification. Nevertheless, the biological functions of expansin genes during fast growth of bamboo remain unclear. In this study, Dendrocalamus sinicus, the largest and fastest growing bamboo species in the world, was used as the research material, and the full length of DsEXLA2 was cloned. Bioinformatics analysis revealed that DsEXLA2 contained expansin family typical domains (DPBB_1 and Pollen_allerg_1, CDRC motif) and amino acid sequence was highly conserved among different species. The expression level of DsEXLA2 increased from top section to basal section in different internodes. Subcellular localization verified that DsEXLA2 protein was located in the cell wall. Further genetic transformation studies in Arabidopsis indicated that compared with the wild type, DsEXLA2 overexpressed transgenic plants exhibited higher plant height, thicker stem, larger leaf, and less epidermal hair number and smaller stomatal aperture in the prophase and metaphase of growth. In addition, the cellulose content in the stem of transgenic plants was increased, and cell wall was thickened significantly. Moreover, a total of 1656 differentially expressed genes (DEGs) were identified by RNA-seq. The upregulated genes were predominantly enriched in the plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, lipid metabolism and amino acid metabolism, while the downregulated genes were mainly enriched in energy metabolism, carbohydrate metabolism, plant hormone signal transduction and ribosome. These data implied that overexpression of DsEXLA2 gene accelerates the plant growth rate of Arabidopsis. This study is helpful to reveal the molecular mechanism of DsEXLA2 in culm growth and development of D. sinicus, and to understand the rapid growth of bamboos.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Zirui Liu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Chengjie Gao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Yingchun Miao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Kai Cui
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.
| |
Collapse
|
10
|
Sajad S, Jiang S, Anwar M, Dai Q, Luo Y, Hassan MA, Tetteh C, Song J. Genome-Wide Study of Hsp90 Gene Family in Cabbage ( Brassica oleracea var. capitata L.) and Their Imperative Roles in Response to Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:908511. [PMID: 35812899 PMCID: PMC9258498 DOI: 10.3389/fpls.2022.908511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 05/24/2023]
Abstract
Heat shock protein 90 (Hsp90) plays an important role in plant developmental regulation and defensive reactions. Several plant species have been examined for the Hsp90 family gene. However, the Hsp90 gene family in cabbage has not been well investigated to date. In this study, we have been discovered 12 BoHsp90 genes in cabbage (Brassica oleracea var. capitata L.). These B. oleracea Hsp90 genes were classified into five groups based on phylogenetic analysis. Among the five groups, group one contains five Hsp90 genes, including BoHsp90-1, BoHsp90-2, BoHsp90-6, BoHsp90-10, and BoHsp90-12. Group two contains three Hsp90 genes, including BoHsp90-3, BoHsp90-4, and BoHsp90. Group three only includes one Hsp90 gene, including BoHsp90-9. Group four were consisting of three Hsp90 genes including BoHsp90-5, BoHsp90-7, and BoHsp90-8, and there is no Hsp90 gene from B. oleracea in the fifth group. Synteny analysis showed that a total of 12 BoHsp90 genes have a collinearity relationship with 5 Arabidopsis genes and 10 Brassica rapa genes. The promoter evaluation revealed that the promoters of B. oleracea Hsp90 genes included environmental stress-related and hormone-responsive cis-elements. RNA-seq data analysis indicates that tissue-specific expression of BoHsp90-9 and BoHsp90-5 were highly expressed in stems, leaves, silique, and flowers. Furthermore, the expression pattern of B. oleracea BoHsp90 exhibited that BoHsp90-2, BoHsp90-3, BoHsp90-7, BoHsp90-9, BoHsp90-10, and BoHsp90-11 were induced under cold stress, which indicates these Hsp90 genes perform a vital role in cold acclimation and supports in the continual of normal growth and development process. The cabbage Hsp90 gene family was found to be differentially expressed in response to cold stress, suggesting that these genes play an important role in cabbage growth and development under cold conditions.
Collapse
Affiliation(s)
- Shoukat Sajad
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Shuhan Jiang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qian Dai
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | - Yuxia Luo
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| | | | - Charles Tetteh
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jianghua Song
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Backiyarani S, Anuradha C, Thangavelu R, Chandrasekar A, Renganathan B, Subeshkumar P, Giribabu P, Muthusamy M, Uma S. Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech 2022; 12:101. [PMID: 35463044 PMCID: PMC8960517 DOI: 10.1007/s13205-021-03106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Expansin, a cell wall-modifying gene family, has been well characterized and its role in biotic and abiotic stress resistance has been proven in many monocots, but not yet studied in banana, a unique model crop. Banana is one of the staple food crops in developing countries and its production is highly influenced by various biotic and abiotic factors. Characterizing the expansin genes of the ancestor genome (M. acuminata and M. balbisiana) of present day cultivated banana will enlighten their role in growth and development, and stress responses. In the present study, 58 (MaEXPs) and 55 (MbaEXPs) putative expansin genes were identified in A and B genome, respectively, and were grouped in four subfamilies based on phylogenetic analysis. Gene structure and its duplications revealed that EXPA genes are highly conserved and are under negative selection whereas the presence of more number of introns in other subfamilies revealed that they are diversifying. Expression profiling of expansin genes showed a distinct expression pattern for biotic and abiotic stress conditions. This study revealed that among the expansin subfamilies, EXPAs contributed significantly towards stress-resistant mechanism. The differential expression of MaEXPA18 and MaEXPA26 under drought stress conditions in the contrasting cultivar suggested their role in drought-tolerant mechanism. Most of the MaEXPA genes are differentially expressed in the root lesion nematode contrasting cultivars which speculated that this expansin subfamily might be the susceptible factor. The downregulation of MaEXPLA6 in resistant cultivar during Sigatoka leaf spot infection suggested that by suppressing this gene, resistance may be enhanced in susceptible cultivar. Further, in-depth studies of these genes will lead to gain insight into their role in various stress conditions in banana. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-021-03106-x.
Collapse
Affiliation(s)
- Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Raman Thangavelu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Baratvaj Renganathan
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Parasuraman Subeshkumar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Palaniappan Giribabu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju, 54874 Korea
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
13
|
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:23-42. [PMID: 35020968 DOI: 10.1111/tpj.15669] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
14
|
Alpuerto JB, Fukuda M, Li S, Hussain RMF, Sakane K, Fukao T. The submergence tolerance regulator SUB1A differentially coordinates molecular adaptation to submergence in mature and growing leaves of rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:71-87. [PMID: 34978355 DOI: 10.1111/tpj.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A typical adaptive response to submergence regulated by SUB1A, the ethylene-responsive transcription factor gene, is the restricted elongation of the uppermost leaves. However, the molecular and physiological functions of SUB1A have been characterized using entire shoot tissues, most of which are mature leaves that do not elongate under submergence. We aimed to identify leaf-type-specific and overlapping adaptations coordinated in SUB1A-dependent and -independent manners. To this end, we compared the transcriptomic and hormonal responses to submergence between mature and growing leaves using rice genotypes with and without SUB1A. Monosaccharide, branched-chain amino acid, and nucleoside metabolism, associated with ATP synthesis, were commonly activated in both leaf types regardless of genotype. In both leaf types, pathways involved in carbohydrate and nitrogen metabolism were suppressed by SUB1A, with more severe restriction in growing leaves that have a greater energy demand if SUB1A is absent. In growing leaves, accumulation of and responsiveness to growth-regulating hormones were properly modulated by SUB1A, which correlated with restricted elongation. In mature leaves, submergence-induced auxin accumulation was suppressed by SUB1A. This study demonstrates that different sets of hormonal pathways, both of which are modulated by SUB1A, contribute to distinct adaptive responses to submergence in mature and growing rice leaves.
Collapse
Affiliation(s)
- Jasper B Alpuerto
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mika Fukuda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana M F Hussain
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kodai Sakane
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| | - Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| |
Collapse
|
15
|
Zhang R, Zhi H, Li Y, Guo E, Feng G, Tang S, Guo W, Zhang L, Jia G, Diao X. Response of Multiple Tissues to Drought Revealed by a Weighted Gene Co-Expression Network Analysis in Foxtail Millet [ Setaria italica (L.) P. Beauv.]. FRONTIERS IN PLANT SCIENCE 2022; 12:746166. [PMID: 35095942 PMCID: PMC8790073 DOI: 10.3389/fpls.2021.746166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Characterization of drought-tolerance mechanisms during the jointing stage in foxtail millet under water-limited conditions is essential for improving the grain yield of this C4 crop species. In this trial, two drought-tolerant and two drought-sensitive cultivars were examined using transcriptomic dissections of three tissues (root, stem, and leaf) under naturally occurring water-limited conditions. We detected a total of 32,170 expressed genes and characterized 13,552 differentially expressed genes (DEGs) correlated with drought treatment. The majority of DEGs were identified in the root tissue, followed by leaf and stem tissues, and the number of DEGs identified in the stems of drought-sensitive cultivars was about two times higher than the drought-tolerant ones. A total of 127 differentially expressed transcription factors (DETFs) with different drought-responsive patterns were identified between drought-tolerant and drought-sensitive genotypes (including MYB, b-ZIP, ERF, and WRKY). Furthermore, a total of 34 modules were constructed for all expressed genes using a weighted gene co-expression network analysis (WGCNA), and seven modules were closely related to the drought treatment. A total of 1,343 hub genes (including RAB18, LEA14, and RD22) were detected in the drought-related module, and cell cycle and DNA replication-related transcriptional pathways were identified as vital regulators of drought tolerance in foxtail millet. The results of this study provide a comprehensive overview of how Setaria italica copes with drought-inflicted environments during the jointing stage through transcriptional regulating strategies in different organs and lays a foundation for the improvement of drought-tolerant cereal cultivars through genomic editing approaches in the future.
Collapse
Affiliation(s)
- Renliang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhui Li
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Erhu Guo
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Guojun Feng
- Research Institute of Grain Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixia Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Arslan B, İncili ÇY, Ulu F, Horuz E, Bayarslan AU, Öçal M, Kalyoncuoğlu E, Baloglu MC, Altunoglu YC. Comparative genomic analysis of expansin superfamily gene members in zucchini and cucumber and their expression profiles under different abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2739-2756. [PMID: 35035133 PMCID: PMC8720134 DOI: 10.1007/s12298-021-01108-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
UNLABELLED Zucchini and cucumber belong to the Cucurbitaceae family, a group of economical and nutritious food plants that is consumed worldwide. Expansin superfamily proteins are generally localized in the cell wall of plants and are known to possess an effect on cell wall modification by causing the expansion of this region. Although the whole genome sequences of cucumber and zucchini plants have been resolved, the determination and characterization of expansin superfamily members in these plants using whole genomic data have not been implemented yet. In the current study, a genome-wide analysis of zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) genomes was performed to determine the expansin superfamily genes. In total, 49 and 41 expansin genes were identified in zucchini and cucumber genomes, respectively. All expansin superfamily members were subjected to further bioinformatics analysis including gene and protein structure, ontology of the proteins, phylogenetic relations and conserved motifs, orthologous relations with other plants, targeting miRNAs of those genes and in silico gene expression profiles. In addition, various abiotic stress responses of zucchini and cucumber expansin genes were examined to determine their roles in stress tolerance. CsEXPB-04 and CsEXPA-11 from cucumber and CpEXPA-20 and CpEXPLA-14 from zucchini can be candidate genes for abiotic stress response and tolerance in addition to their roles in the normal developmental processes, which are supported by the gene expression analysis. This work can provide new perspectives for the roles of expansin superfamily genes and offers comprehensive knowledge for future studies investigating the modes of action of expansin proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01108-w.
Collapse
Affiliation(s)
- Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Mustafa Öçal
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Elif Kalyoncuoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
17
|
Genome-Wide Identification of Hsp90 Gene Family in Perennial Ryegrass and Expression Analysis under Various Abiotic Stresses. PLANTS 2021; 10:plants10112509. [PMID: 34834872 PMCID: PMC8622807 DOI: 10.3390/plants10112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The heat shock protein 90 (Hsp90) is a protein produced in plants in response to stress. This study identified and analyzed Hsp90 gene family members in the perennial ryegrass genome. From the results, eight Hsp90 proteins were obtained and their MW, pI and number of amino acid bases varied. The amino acid bases ranged from 526 to 862. The CDS also ranged from 20 (LpHsp0-4) to 1 (LpHsp90-5). The least number of CDS regions was 1 (LpHsp90-5) with 528 kb amino acids, while the highest was 20 (LpHsp90-4) with 862 kb amino acids, which showed diversity among the protein sequences. The phylogenetic tree revealed that Hsp90 genes in Lolium perenne, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon could be divided into two groups with five paralogous gene pairs and three orthologous gene pairs. The expression analysis after perennial ryegrass was subjected to heat, salt, chromium (Cr), cadmium (Cd), polyethylene glycol (PEG) and abscisic acid (ABA) revealed that LpHsp90 genes were generally highly expressed under heat stress, but only two LpHsp90 proteins were expressed under Cr stresses. Additionally, the expression of the LpHsp90 proteins differed at each time point in all treatments. This study provides the basis for an understanding of the functions of LpHsp90 proteins in abiotic stress studies and in plant breeding.
Collapse
|
18
|
Morales-Quintana L, Barrera A, Hereme R, Jara K, Rivera-Mora C, Valenzuela-Riffo F, Gundel PE, Pollmann S, Ramos P. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:465-476. [PMID: 34717178 DOI: 10.1016/j.plaphy.2021.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, 3467987, Chile
| | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Karla Jara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Pedro E Gundel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - CONICET), Argentina
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
19
|
Genome-wide identification of expansin gene family in barley and drought-related expansins identification based on RNA-seq. Genetica 2021; 149:283-297. [PMID: 34643833 DOI: 10.1007/s10709-021-00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Expansins are cell wall loosening proteins and involved in various developmental processes and abiotic stress. No systematic research, however, has been conducted on expansin genes family in barley. A total of 46 expansins were identified and could be classified into three subfamilies in Hordeum vulgare: HvEXPA, HvEXPB, and HvEXLA. All expansin proteins contained two conserved domains: DPBB_1 and Pollen_allerg_1. Expansins, in the same subfamily, share similar motifs composition and exon-intron organization; but greater differences were found among different subfamilies. Expansins are distributed unevenly on 7 barley chromosomes; tandem duplicates, including the collinear tandem array, contribute to the forming of the expansin genes family in barley with few whole-genome duplication events. Most HvEXPAs mainly expressed in embryonic and root tissues. HvEXPBs and HvEXLAs showed different expression patterns in 16 tissues during different developmental stages. In response to water deficit, expansins in wild barley were more sensitive than that in cultivated barley; the expressions of HvEXPB5 and HvEXPB6 were significantly induced in wild barley under drought stress. Our study provides a comprehensive and systematic analysis of the barley expansin genes in genome-wide level. This information will lay a solid foundation for further functional exploration of expansin genes in plant development and drought stress tolerance.
Collapse
|
20
|
Schaarschmidt S, Glaubitz U, Erban A, Kopka J, Zuther E. Differentiation of the High Night Temperature Response in Leaf Segments of Rice Cultivars with Contrasting Tolerance. Int J Mol Sci 2021; 22:ijms221910451. [PMID: 34638787 PMCID: PMC8508630 DOI: 10.3390/ijms221910451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
High night temperatures (HNT) affect rice yield in the field and induce chlorosis symptoms in leaves in controlled chamber experiments. However, little is known about molecular changes in leaf segments under these conditions. Transcript and metabolite profiling were performed for leaf segments of six rice cultivars with different HNT sensitivity. The metabolite profile of the sheath revealed a lower metabolite abundance compared to segments of the leaf blade. Furthermore, pre-adaptation to stress under control conditions was detected in the sheath, whereas this segment was only slightly affected by HNT. No unique significant transcriptomic changes were observed in the leaf base, including the basal growth zone at HNT conditions. Instead, selected metabolites showed correlations with HNT sensitivity in the base. The middle part and the tip were most highly affected by HNT in sensitive cultivars on the transcriptomic level with higher expression of jasmonic acid signaling related genes, genes encoding enzymes involved in flavonoid metabolism and a gene encoding galactinol synthase. In addition, gene expression of expansins known to improve stress tolerance increased in tolerant and sensitive cultivars. The investigation of the different leaf segments indicated highly segment specific responses to HNT. Molecular key players for HNT sensitivity were identified.
Collapse
|
21
|
Gomez Mansur NM, Pena LB, Bossio AE, Lewi DM, Beznec AY, Blumwald E, Arbona V, Gómez-Cadenas A, Benavides MP, Gallego SM. An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. PHYSIOLOGIA PLANTARUM 2021; 173:223-234. [PMID: 33629739 DOI: 10.1111/ppl.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.
Collapse
Affiliation(s)
- Nabila M Gomez Mansur
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Adrián E Bossio
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Dalia M Lewi
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Ailin Y Beznec
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, California, USA
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - María P Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
22
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
23
|
Song Q, You L, Liu Y, Zhang J, Yang X. Endogenous accumulation of glycine betaine confers improved low temperature resistance on transplastomic potato plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1105-1116. [PMID: 32690130 DOI: 10.1071/fp20059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Glycine betaine (GB) plays a crucial role in plant response to abiotic stress, and its accumulation in chloroplasts is more effective than in the cytosol in improving the resistance of transgenic plants. Here, we report that the codA gene from Arthrobacter globiformis, which encodes a choline oxidase catalysing the conversion of choline to GB, was successfully introduced into the plastid genome of potato (Solanum tuberosum L.). Transgenic plants with plastid expression of codA showed increased tolerance to low temperature stress compared with the wild type (WT). Further studies revealed that under low temperature stress condition, transgenic plants presented a significantly higher photosynthetic performance by regulating the electron transport and energy distribution in PSII, and higher antioxidant enzyme activities and lower O2- and H2O2 accumulation than did the WT plants. A higher expression of the COR genes was also observed in transgenic plants. Our results suggest that chloroplast biosynthesis of GB could be an effective strategy for the engineering of plants with increased resistance to low temperature stress.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Lili You
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China; and Corresponding author. ;
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; and Corresponding author. ;
| |
Collapse
|
24
|
Yang J, Zhang G, An J, Li Q, Chen Y, Zhao X, Wu J, Wang Y, Hao Q, Wang W, Wang W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110596. [PMID: 32771153 DOI: 10.1016/j.plantsci.2020.110596] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Expansins loosen plant cell walls and are involved in cell enlargement and various abiotic stresses. In previous studies, we cloned the expansin gene TaEXPA2 from the wheat cultivar HF9703. Here, we studied its function and regulation in wheat drought stress tolerance. The results indicated that TaEXPA2-overexpressing wheat plants (OE) exhibited drought tolerant phenotypes, whereas down-regulation of TaEXPA2 by RNA interference (RNAi) resulted in elevated drought sensitivity, as measured by survival rate, photosynthetic rate and water containing ability under drought stress. Overexpression of TaEXPA2 enhanced the antioxidant capacity in wheat plants, via elevation of antioxidant enzyme activity and the increase of the transcripts of some ROS scavenging enzyme-related genes. Further investigation revealed that TaEXPA2 positively influenced lateral root formation under drought conditions. A MYB transcription factor of wheat named TaMPS activates TaEXPA2 expression directly by binding to its promoter. Overexpression of TaMPS in Arabidopsis conferred drought tolerance associated with improved lateral root number, and the close homolog genes of TaEXPA2 were up-regulated in Arabidopsis roots overexpressing TaMPS, which suggest that TaMPS may function as one of the regulator of TaEXPA2 gene expression in the root lateral development under drought stress. These findings suggest that TaEXPA2 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Junjiao Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jie An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
25
|
Upadhyay D, Budhlakoti N, Singh AK, Bansal R, Kumari J, Chaudhary N, Padaria JC, Sareen S, Kumar S. Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation. 3 Biotech 2020; 10:281. [PMID: 32550100 PMCID: PMC7266904 DOI: 10.1007/s13205-020-02264-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Drought is one of the major constraints in wheat production and causes a huge loss at grain-filling stage. In this study we highlighted the response of different wheat genotypes under drought stress at the grain-filling stage. Field experiments were conducted to evaluate 72 wheat (Triticum aestivum L.) genotypes under two water regimes: irrigated and drought condition. Four wheat genotypes, two each of drought tolerant (IC36761A, IC128335) and drought-susceptible category (IC335732 and IC138852) were selected on the basis of agronomic traits and drought susceptibility index (DSI), to understand their morphological, biochemical and molecular basis of drought stress tolerance. Among agronomic traits, productive tillers followed by biomass had high percent reduction under drought stress, thus drought stress had a great impact. Antioxidant activity (AO), total phenolic and proline content were found to be significantly higher in IC128335 genotype. Differential expression pattern of transcription factors of ten genes revealed that transcription factor qTaWRKY2 followed by qTaDREB, qTaEXPB23 and qTaAPEX might be utilized for developing wheat varieties resistant to drought stress. Understanding the role of TFs would be helpful to decipher the molecular mechanism involved in drought stress. Identified genotypes (IC128335 and IC36761A) may be useful as parental material for future breeding program to generate new drought-tolerant varieties.
Collapse
Affiliation(s)
- Deepali Upadhyay
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
- Amity University Uttar Pradesh, Noida, 201 313 India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110 012 India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - Ruchi Bansal
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | | | | | - Sindhu Sareen
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132 001 India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| |
Collapse
|
26
|
Muthusamy M, Kim JY, Yoon EK, Kim JA, Lee SI. BrEXLB1, a Brassica rapa Expansin-Like B1 Gene is Associated with Root Development, Drought Stress Response, and Seed Germination. Genes (Basel) 2020; 11:genes11040404. [PMID: 32276441 PMCID: PMC7230339 DOI: 10.3390/genes11040404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Expansins are structural proteins prevalent in cell walls, participate in cell growth and stress responses by interacting with internal and external signals perceived by the genetic networks of plants. Herein, we investigated the Brassica rapa expansin-like B1 (BrEXLB1) interaction with phytohormones (IAA, ABA, Ethephon, CK, GA3, SA, and JA), genes (Bra001852, Bra001958, and Bra003006), biotic (Turnip mosaic Virus (TuMV), Pectobacterium carotovorum, clubroot disease), and abiotic stress (salt, oxidative, osmotic, and drought) conditions by either cDNA microarray or qRT-PCR assays. In addition, we also unraveled the potential role of BrEXLB1 in root growth, drought stress response, and seed germination in transgenic Arabidopsis and B. rapa lines. The qRT-PCR results displayed that BrEXLB1 expression was differentially influenced by hormones, and biotic and abiotic stress conditions; upregulated by IAA, ABA, SA, ethylene, drought, salt, osmotic, and oxidative conditions; and downregulated by clubroot disease, P. carotovorum, and TuMV infections. Among the tissues, prominent expression was observed in roots indicating the possible role in root growth. The root phenotyping followed by confocal imaging of root tips in Arabidopsis lines showed that BrEXLB1 overexpression increases the size of the root elongation zone and induce primary root growth. Conversely, it reduced the seed germination rate. Further analyses with transgenic B. rapa lines overexpressing BrEXLB1 sense (OX) and antisense transcripts (OX-AS) confirmed that BrEXLB1 overexpression is positively associated with drought tolerance and photosynthesis during vegetative growth phases of B. rapa plants. Moreover, the altered expression of BrEXLB1 in transgenic lines differentially influenced the expression of predicted BrEXLB1 interacting genes like Bra001852 and Bra003006. Collectively, this study revealed that BrEXLB1 is associated with root development, drought tolerance, photosynthesis, and seed germination.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Joo Yeol Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Eun Kyung Yoon
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
27
|
Ye Z, Sangireddy SR, Yu CL, Hui D, Howe K, Fish T, Thannhauser TW, Zhou S. Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes 2020; 8:3. [PMID: 32092968 PMCID: PMC7151713 DOI: 10.3390/proteomes8010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Kevin Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | | | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| |
Collapse
|
28
|
Jadamba C, Kang K, Paek NC, Lee SI, Yoo SC. Overexpression of Rice Expansin7 ( Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int J Mol Sci 2020; 21:ijms21020454. [PMID: 31936829 PMCID: PMC7013816 DOI: 10.3390/ijms21020454] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.
Collapse
Affiliation(s)
- Chuluuntsetseg Jadamba
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea
- Correspondence: (S.I.L.); (S.-C.Y.)
| | - Soo-Cheul Yoo
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
- Correspondence: (S.I.L.); (S.-C.Y.)
| |
Collapse
|
29
|
Zhang M, Liu H, Wang Q, Liu S, Zhang Y. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase 5 gene from Malus domestica enhances oxidative stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:269-277. [PMID: 31783202 DOI: 10.1016/j.plaphy.2019.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 05/11/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the first rate-limiting enzyme regulating the synthesis of terpenoids upstream of the mevalonate (MVA) pathway. In higher plants, members of the HMGR genes families play an important role in plant growth and development and in response to various environmental stresses. In the present study, a novel HMGR gene, designated MdHMGR5, was isolated from apple (Malus domestica L.) and characterized. Expression of MdHMGR5 enhanced the activity of HMGR enzyme in transgenic Arabidopsis thaliana L. plants. Under oxidative stress, transgenic A. thaliana plants over-expressing MdHMGR5 had a higher germination rate, a longer main root length, higher chlorophyll and proline content, and higher activities of antioxidant enzymes. On the other hand, malondialdehyde (MDA) content, relative conductivity and reactive oxygen species (ROS) production rate were significantly lower than in wild type plants. These results indicated that over-expression of MdHMGR5 enhanced plant tolerance to oxidative stress by scavenging ROS in transgenic plants. Over-expression of MdHMGR5 also affected the expression levels of genes in mevalonic acid and 2C-methyl-D-erythritol 4-phosphate (MVA and MEP) pathways of A. thaliana plants. These results indicate that over-expression of MdHMGR5 enhances tolerance to oxidative stress by maintaining photosynthesis and scavenging ROS in transgenic A. thaliana plants.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an, 271018, China
| | - Heng Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an, 271018, China
| | - Qing Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an, 271018, China
| | - Shaohua Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an, 271018, China
| | - Yuanhu Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Tai'an, 271018, China.
| |
Collapse
|
30
|
Morris WL, Ducreux LJM, Morris J, Campbell R, Usman M, Hedley PE, Prat S, Taylor MA. Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5703-5714. [PMID: 31328229 PMCID: PMC6812706 DOI: 10.1093/jxb/erz336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/12/2019] [Indexed: 05/17/2023]
Abstract
For many potato cultivars, tuber yield is optimal at average daytime temperatures in the range 14-22 °C. Above this range, tuber yield is reduced for most cultivars. We previously reported that moderately elevated temperature increases steady-state expression of the core circadian clock gene TIMING OF CAB EXPRESSION 1 (StTOC1) in developing tubers, whereas expression of the StSP6A tuberization signal is reduced, along with tuber yield. In this study we provide evidence that StTOC1 links environmental signalling with potato tuberization by suppressing StSP6A autoactivation in the stolons. We show that transgenic lines silenced in StTOC1 expression exhibit enhanced StSP6A transcript levels and changes in gene expression in developing tubers that are indicative of an elevated sink strength. Nodal cuttings of StTOC1 antisense lines displayed increased tuber yields at moderately elevated temperatures, whereas tuber yield and StSP6A expression were reduced in StTOC1 overexpressor lines. Here we identify a number of StTOC1 binding partners and demonstrate that suppression of StSP6A expression is independent of StTOC1 complex formation with the potato homolog StPIF3. Down-regulation of StTOC1 thus provides a strategy to mitigate the effects of elevated temperature on tuber yield.
Collapse
Affiliation(s)
| | | | | | | | - Muhammad Usman
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Salomé Prat
- Centro Nacional de Biotecnología, Darwin 3, Campus de Cantoblanco, Madrid, Spain
| | - Mark A Taylor
- The James Hutton Institute, Invergowrie, Dundee, UK
- Correspondence:
| |
Collapse
|
31
|
Expression of Two α-Type Expansins from Ammopiptanthus nanus in Arabidopsis thaliana Enhance Tolerance to Cold and Drought Stresses. Int J Mol Sci 2019; 20:ijms20215255. [PMID: 31652768 PMCID: PMC6862469 DOI: 10.3390/ijms20215255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Expansins, cell-wall loosening proteins, play an important role in plant growth and development and abiotic stress tolerance. Ammopiptanthus nanus (A. nanus) is an important plant to study to understand stress resistance in forestry. In our previous study, two α-type expansins from A. nanus were cloned and named AnEXPA1 and AnEXPA2. In this study, we found that they responded to different abiotic stress and hormone signals. It suggests that they may play different roles in response to abiotic stress. Their promoters show some of the same element responses to abiotic stress and hormones, but some special elements were identified between the expansins that could be essential for their expression. In order to further testify the reliability of the above results, we conducted an analysis of β-glucuronidase (GUS) dyeing. The analysis showed that AnEXPA1 was only induced by cold stress, whereas AnEXPA2 responded to hormone induction. AnEXPA1 and AnEXPA2 transgenic Arabidopsis plants showed better tolerance to cold and drought stresses. Moreover, the ability to scavenge reactive oxygen species (ROS) was significantly improved in the transgenic plants, and expansin activity was enhanced. These results suggested that AnEXPA1 and AnEXPA2 play an important role in the response to abiotic stress. Our research contributes to a better understanding of the regulatory network of expansins and may benefit agricultural production.
Collapse
|
32
|
Feng X, Xu Y, Peng L, Yu X, Zhao Q, Feng S, Zhao Z, Li F, Hu B. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153004. [PMID: 31279220 DOI: 10.1016/j.jplph.2019.153004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 05/15/2023]
Abstract
Low temperature is one of the primary causes of economic loss in agricultural production, and in this regard, expansin proteins are known to play important roles in plant growth and responses to various abiotic stresses and plant hormones. In order to elucidate the roles of expansin genes in the response of Dongnongdongmai 2 (D2), a highly cold-resistant winter wheat variety, to low-temperature stress, we exposed plants to a temperature of 4℃ and analysed the transcriptome of tillering nodes. Expression levels of TaEXPB7-B were significantly increased in response to both low-temperature stress and abscisic acid (ABA) treatment. To further confirm these observations, we transformed Arabidopsis plants with the β-glucuronidase (GUS) gene driven by the TaEXPB7-B promoter. GUS staining results revealed that TaEXPB7-B showed similar responses to low-temperature and ABA treatments. Our transcriptome data indicated that the AREB/ABF transcription factor gene TaWABI5 was also induced by low temperature in D2. Yeast one-hybrid experiments demonstrated that TaWABI5 binds to an ABRE cis-element in the TaEXPB7-B promoter, and overexpression of TaWABI5 in wheat protoplasts enhanced the expression of endogenous TaEXPB7-B by 7.7-fold, implying that TaWABI5 plays important roles in regulating the expression of TaEXPB7-B. Cytological data obtained from the transient expression of 35S::TaEXPB7-B-eYFP in onion epidermal cells indicated that TaEXPB7-B is cell wall localised. Overexpression of TaEXPB7-B in Arabidopsis promoted a significant increase in plant growth and increased lignin and cellulose contents. Moreover, TaEXPB7-B conferred enhanced antioxidant and osmotic regulation in transgenic Arabidopsis, thereby increasing the tolerance and survival of plants under conditions of low-temperature stress.
Collapse
Affiliation(s)
- Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lina Peng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyu Yu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaoqin Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanshan Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziyi Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baozhong Hu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China; Harbin University, Harbin, 150086, PR China.
| |
Collapse
|
33
|
Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 2019; 14:e0219837. [PMID: 31318935 PMCID: PMC6638956 DOI: 10.1371/journal.pone.0219837] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expansin is a type of cell wall elongation and stress relaxation protein involved in various developmental processes and stress resistances in plant. In this study, we identified 36 potato (Solanum tuberosum L.) genes belonging to the expansin (StEXP) gene family from the genome reference. These genes included 24 α-expansins (StEXPAs), five β-expansins (StEXPBs), one expansin-like A (StEXLA) and six expansin-like B (StEXLBs). The RNA-Seq analysis conducted from a variety of tissue types showed 34 expansins differentially expressed among tissues, some of which only expressed in specific tissues. Most of the StEXPAs and StEXPB2 transcripts were more abundant in young tuber compared with other tissues, suggesting they likely play a role in tuber development. There were 31 genes, especially StEXLB6, showed differential expression under the treatments of ABA, IAA and GA3, as well as under the drought and heat stresses, indicating they were likely involved in potato stress resistance. In addition, the gene co-expression analysis indicated the StEXLBs likely contribute to a wider range of stress resistances compared with other genes. We found the StEXLA and six StEXLBs expressed differently under a range of abiotic stresses (salt, alkaline, heavy metals, drought, heat, and cold stresses), which likely participated in the associated signaling pathways. Comparing with the control group, potato growing under the drought or heat stresses exhibited up-regulation of the all six StEXLB genes in leaves, whereas, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 showed relatively higher expression levels in roots. This suggested these genes likely played a role in the drought and heat tolerance. Overall, this study has shown the potential role of the StEXP genes in potato growth and stress tolerance, and provided fundamental resources for the future studies in potato breeding.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming, China
- * E-mail:
| |
Collapse
|
34
|
Wang W, Xu Y, Chen T, Xing L, Xu K, Xu Y, Ji D, Chen C, Xie C. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:168-179. [PMID: 30690352 DOI: 10.1016/j.scitotenv.2019.01.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Intertidal macroalgae are highly resistant to hypersaline stress conditions. However, the underlying mechanism remains unknown. In the present study, the mechanism behind Pyropia haitanensis responses to two hypersaline stress conditions [100‰ (HSS_100) and 110‰ (HSS_110)] was investigated via analyses of physiological and transcriptomic changes. We observed that the differences between the responses of Py. haitanensis to HSS_100 and HSS_110 conditions involved the following three aspects: osmotic regulation, ionic homeostasis, and adjustment to secondary stresses. First, the water retention of Py. haitanensis was maintained through increased expansin production under HSS_100 conditions, while cell wall pectin needed to be protected from hydrolysis via the increased abundance of a pectin methylesterase inhibitor under HSS_110 conditions. Meanwhile, Py. haitanensis achieved stable and rapid osmotic adjustments because of the coordinated accumulation of inorganic ions (K+, Na+, and Cl-) and organic osmolytes (glycine betaine and trehalose) under HSS_100 conditions, but not under HSS_110 conditions. Second, Py. haitanensis maintained a higher K+/Na+ ratio under HSS_100 conditions than under HSS_110 conditions, mainly via the export of Na+ into the apoplast rather than compartmentalizing it into the vacuoles, and the enhanced uptake and retention of K+. However, K+/Na+ homeostasis was not completely disrupted during a short-term exposure to HSS_110 conditions. Finally, the Py. haitanensis antioxidant system scavenged more ROS and synthesized more heat shock proteins under HSS_100 conditions than under HSS_110 conditions, although thalli may have been able to maintain a certain redox balance during a short-term exposure to HSS_110 conditions. These differences may explain why Py. haitanensis can adapt to HSS_100 conditions rather than HSS_110 conditions, and also why the thalli exposed to HSS_110 conditions can recover after being transferred to normal seawater. Thus, the data presented herein may elucidate the mechanisms enabling Pyropia species to tolerate the sudden and periodic changes in salinity typical of intertidal systems.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - TianXiang Chen
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Lei Xing
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China.
| |
Collapse
|
35
|
Lenk I, Fisher LHC, Vickers M, Akinyemi A, Didion T, Swain M, Jensen CS, Mur LAJ, Bosch M. Transcriptional and Metabolomic Analyses Indicate that Cell Wall Properties are Associated with Drought Tolerance in Brachypodium distachyon. Int J Mol Sci 2019; 20:E1758. [PMID: 30974727 PMCID: PMC6479473 DOI: 10.3390/ijms20071758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.
Collapse
Affiliation(s)
- Ingo Lenk
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Lorraine H C Fisher
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Martin Vickers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Aderemi Akinyemi
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Thomas Didion
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Martin Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | | | - Luis A J Mur
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Maurice Bosch
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| |
Collapse
|
36
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Abstract
Farmland cadmium (Cd) contamination has adverse impacts on both wheat grain yield and people’s well-being through food consumption. Safe farming using low-Cd cultivars has been proposed as a promising approach to address the farmland Cd pollution problem. To date, several dozen low-Cd wheat cultivars have been screened worldwide based on a Cd inhibition test, representing candidates for wheat Cd minimization. Unfortunately, the breeding of low-Cd wheat cultivars with desired traits or enhanced Cd exclusion has not been extensively explored. Moreover, the wheat Cd inhibition test for variety screening and conventional breeding is expensive and time-consuming. As an alternative, low-Cd wheat cultivars that were developed with molecular genetics and breeding approaches can be promising, typically by the association of marker-assisted selection (MAS) with conventional breeding practices. In this review, we provide a synthetics view of the background and knowledge basis for the breeding of low-Cd wheat cultivars.
Collapse
|
38
|
Chen LJ, Zou WS, Fei CY, Wu G, Li XY, Lin HH, Xi DH. α-Expansin EXPA4 Positively Regulates Abiotic Stress Tolerance but Negatively Regulates Pathogen Resistance in Nicotiana tabacum. PLANT & CELL PHYSIOLOGY 2018; 59:2317-2330. [PMID: 30124953 DOI: 10.1093/pcp/pcy155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/30/2018] [Indexed: 05/08/2023]
Abstract
Since they function as cell wall-loosening proteins, expansins can affect plant growth, developmental processes and environmental stress responses. Our previous study demonstrated that changes in Nicotiana tabacum α-expansin 4 (EXPA4) expression affect the sensitivity of tobacco to Tobacco mosaic virus [recombinant TMV encoding green fluorescent protein (TMV-GFP)] infection by Agrobacterium-mediated transient expression. In this study, to characterize the function of tobacco EXPA4 further, EXPA4 RNA interfernce (RNAi) mutants and overexpression lines were generated and assayed for their tolerance to abiotic stress and resistance to pathogens. First, the differential phenotypes and histomorphology of transgenic plants with altered EXPA4 expression indicated that EXPA4 is essential for normal tobacco growth and development. By utilizing tobacco EXPA4 mutants with abiotic stress, it was demonstrated that RNAi mutants have increased hypersensitivity to salt and drought stress. In contrast, the overexpression of EXPA4 in tobacco conferred greater tolerance to salt and drought stress, as indicated by less cell damage, higher fresh weight, higher soluble sugar and proline accumulation, and higher expression levels of several stress-responsive genes. In addition, the overexpression lines were more susceptible to the viral pathogen TMV-GFP when compared with the wild type or RNAi mutants. The induction of the antioxidant system, several defense-associated phytohormones and gene expression was down-regulated in overexpression lines but up-regulated in RNAi mutants when compared with the wild type following TMV-GFP infection. In addition, EXPA4 overexpression also accelerated the disease development of Pseudomonas syringae DC3000 on tobacco. Taken together, these results suggested that EXPA4 appears to be important in tobacco growth and responses to abiotic and biotic stress.
Collapse
Affiliation(s)
- Li-Juan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Wen-Shan Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Chun-Yan Fei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Guo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Xin-Yuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - De-Hui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
39
|
Tan J, Wang M, Shi Z, Miao X. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. PLANT CELL REPORTS 2018; 37:993-1002. [PMID: 29619515 DOI: 10.1007/s00299-018-2284-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
OsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.
Collapse
Affiliation(s)
- Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meiling Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
40
|
Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, Wang W. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:245-256. [PMID: 29576078 DOI: 10.1016/j.plantsci.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a severe and toxic heavy metal pollutant that affects plant growth and development. In this study, we found that the expression of an expansin gene, TaEXPA2, was upregulated in wheat leaves under CdCl2 toxicity. We characterized the involvement of TaEXPA2 in conferring Cd tolerance. Tobacco plants overexpressing TaEXPA2 showed higher germination rate, root elongation, and biomass accumulation compared to the wild-type (WT) plants upon CdCl2 treatment. The improved photosynthetic parameters and lesser cellular damage in transgenic plants exposed to Cd compared to that in the WT plants suggest that TaEXPA2 overexpression improves Cd tolerance in plants. Furthermore, we noticed that Cd was efficiently effluxed out of the cytoplasm in the transgenic plants owing to the enhanced activities of H+-ATPase, V-ATPase, and PPase, which helped in conferring Cd tolerance. Moreover, Cd concentration and ROS accumulation were lower in the transgenic plants than in WT plants as a consequence of enhanced antioxidant enzyme activities in the former. In addition, atexpa2, an Arabidopsis mutant, exhibited lower biomass and shorter primary root compared to its WT under Cd toxicity; however, the phenotype was recovered upon expression of TaEXPA2 in these mutants. Our results demonstrate that TaEXPA2 confers tolerance to Cd toxicity. The changed absorption/transportation of Cd and the antioxidative capacity may be involved in the improved tolerance of the transgenic plants with overexpression of TaEXPA2 to CdCl2 toxicity.
Collapse
Affiliation(s)
- Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Jie An
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Zhongxian Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
41
|
Chen Y, Ren Y, Zhang G, An J, Yang J, Wang Y, Wang W. Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:190-198. [PMID: 29414315 DOI: 10.1016/j.plaphy.2018.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/02/2023]
Abstract
Expansins play an important role in plant stress tolerance. In a previous study, we cloned the wheat expansin gene TaEXPA2. Here, we analyze its involvement in oxidative stress tolerance. First, we observed that the expression of TaEXPA2 in wheat seedlings was upregulated during H2O2 stress. Then, we assembled a TaEXPA2 gene expression vector, transformed it to Arabidopsis, and obtained transgenic plants overexpressing TaEXPA2 (labeled OE). When exposed to H2O2, both OE and wild-type (Col) plants were damaged by oxidative stress, as indicated by decolored leaves and increased malondialdehyde (MDA) content. Damage in OE plants was less severe than in Col plants (WT), and this was accompanied by higher activity of cell wall peroxidase (POD) enzymes, including soluble POD, ionically bound POD, and covalently bound POD. The expansin activities of the OE plants were also higher than WT under oxidative stress. We further obtained the Arabidopsis mutant atexpa2 (AtEXPA2 is homologous to TaEXPA2), and found that the antioxidant ability of atexpa2 was lower than that in Col plants, accompanied by depressed activity of POD enzymes and expansins in cell walls. We transformed wheat TaEXPA2 to atexpa2 and obtained plants (labeled Rs) capable of recovering the antioxidant capacity. Oxidative stress tolerance in Rs plants was higher than that of Col plants, and the Rs plants also had higher levels of cell wall POD enzyme and expansin activity. Finally, we identified 13 POD genes in Arabidopsis thaliana and analyzed their expression patterns using quantitative real-time PCR. The expression of 4 of these genes (AtPOD31, AtPOD33, AtPOD34 and AtPOD71) was significantly upregulated during exposure to H2O2. We speculate that the 4 genes upregulated by H2O2 treatment are involved in the increased activity of POD in the cell wall. We suggest that TaEXPA2 may regulate antioxidant capacity in plants by regulating the activity of cell wall peroxidase.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Jie An
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
42
|
Chen LJ, Zou WS, Wu G, Lin HH, Xi DH. Tobacco alpha-expansin EXPA4 plays a role in Nicotiana benthamiana defence against Tobacco mosaic virus. PLANTA 2018; 247:355-368. [PMID: 28993946 DOI: 10.1007/s00425-017-2785-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION Tobacco EXPA4 plays a role in Nicotiana benthamiana defence against virus attack and affects antioxidative metabolism and phytohormone-mediated immunity responses in tobacco. Expansins are cell wall-loosening proteins known for their endogenous functions in cell wall extensibility during plant growth. The effects of expansins on plant growth, developmental processes and environment stress responses have been well studied. However, the exploration of expansins in plant virus resistance is rarely reported. In the present study, virus-induced gene silencing (VIGS) and Agrobacterium-mediated transient overexpression were conducted to investigate the role of Nicotiana tabacum alpha-expansin 4 (EXPA4) in modulating Tobacco mosaic virus (TMV-GFP) resistance in Nicotiana benthamiana. The results indicated that silencing of EXPA4 reduced the sensitivity of N. benthamiana to TMV-GFP, and EXPA4 overexpression accelerated virus reproduction on tobacco. In addition, our data suggested that the changes of virus accumulation in response to EXPA4 expression levels could further affect the antioxidative metabolism and phytohormone-related pathways in tobacco induced by virus inoculation. EXPA4-silenced plants with TMV-GFP have enhanced antioxidant enzymes activities, which were down-regulated in virus-inoculated 35S:EXPA4 plants. Salicylic acid accumulation and SA-mediated defence genes induced by TMV-GFP were up-regulated in EXPA4-silenced plants, but depressed in 35S:EXPA4 plants. Furthermore, a VIGS approach was used in combination with exogenous phytohormone treatments, suggesting that EXPA4 has different responses to different phytohormones. Taken together, these results suggested that EXPA4 plays a role in tobacco defence against viral pathogens.
Collapse
Affiliation(s)
- Li-Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Wen-Shan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Guo Wu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
43
|
|
44
|
Guimaraes LA, Mota APZ, Araujo ACG, de Alencar Figueiredo LF, Pereira BM, de Passos Saraiva MA, Silva RB, Danchin EGJ, Guimaraes PM, Brasileiro ACM. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. PLANT MOLECULAR BIOLOGY 2017; 94:79-96. [PMID: 28243841 PMCID: PMC5437183 DOI: 10.1007/s11103-017-0594-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/13/2017] [Indexed: 05/08/2023]
Abstract
Expansins are plant cell wall-loosening proteins involved in adaptive responses to environmental stimuli and various developmental processes. The first genome-wide analysis of the expansin superfamily in the Arachis genus identified 40 members in A. duranensis and 44 in A. ipaënsis, the wild progenitors of cultivated peanut (A. hypogaea). These expansins were further characterized regarding their subfamily classification, distribution along the genomes, duplication events, molecular structure, and phylogeny. A RNA-seq expression analysis in different Arachis species showed that the majority of these expansins are modulated in response to diverse stresses such as water deficit, root-knot nematode (RKN) infection, and UV exposure, with an expansin-like B gene (AraEXLB8) displaying a highly distinct stress-responsive expression profile. Further analysis of the AraEXLB8 coding sequences showed high conservation across the Arachis genotypes, with eight haplotypes identified. The modulation of AraEXLB8 expression in response to the aforementioned stresses was confirmed by qRT-PCR analysis in distinct Arachis genotypes, whilst in situ hybridization revealed transcripts in different root tissues according to the stress imposed. The overexpression of AraEXLB8 in soybean (Glycine max) composite plants remarkably decreased the number of galls in transformed hairy roots inoculated with RKN. This study improves the current understanding of the molecular evolution, divergence, and gene expression of expansins in Arachis, and provides molecular and functional insights into the role of expansin-like B, the less-studied plant expansin subfamily.
Collapse
Affiliation(s)
- Larissa Arrais Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | - Ana Paula Zotta Mota
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
- Universidade do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Claudia Guerra Araujo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | | | - Bruna Medeiros Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
- Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | | | - Raquel Bispo Silva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
- Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRA, University of Nice Sophia Antipolis, CNRS, 06900, Sophia Antipolis, France
| | - Patricia Messenberg Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Final W5 Norte, Brasília, DF, CP 02372, Brazil
| | | |
Collapse
|
45
|
Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways. Food Chem 2017; 221:1077-1087. [DOI: 10.1016/j.foodchem.2016.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
|
46
|
Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na + /K + and antioxidant competence. PHYSIOLOGIA PLANTARUM 2017; 159:161-177. [PMID: 27545692 DOI: 10.1111/ppl.12492] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 05/13/2023]
Abstract
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+ /K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yangyang Han
- Plastic Surgery Institute of Weifang Medical University, Weifang, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Hanhan Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| |
Collapse
|
47
|
Francin-Allami M, Lollier V, Pavlovic M, San Clemente H, Rogniaux H, Jamet E, Guillon F, Larré C. Understanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach. Proteomes 2016; 4:E21. [PMID: 28248231 PMCID: PMC5217356 DOI: 10.3390/proteomes4030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022] Open
Abstract
Brachypodiumdistachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contain few pectins and xyloglucans. Cell walls play an important role in grain physiology. The modifications of cell wall polysaccharides that occur during grain development and filling are key in the determination of the size and weight of the cereal grains. The mechanisms required for cell wall assembly and remodelling are poorly understood, especially in cereals. To provide a better understanding of these processes, we purified the cell wall at three developmental stages of the B. distachyon grain. The proteins were then extracted, and a quantitative and comparative LC-MS/MS analysis was performed to investigate the protein profile changes during grain development. Over 466 cell wall proteins (CWPs) were identified and classified according to their predicted functions. This work highlights the different proteome profiles that we could relate to the main phases of grain development and to the reorganization of cell wall polysaccharides that occurs during these different developmental stages. These results provide a good springboard to pursue functional validation to better understand the role of CWPs in the assembly and remodelling of the grain cell wall of cereals.
Collapse
Affiliation(s)
| | - Virginie Lollier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Marija Pavlovic
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Hélène Rogniaux
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Colette Larré
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| |
Collapse
|
48
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Chakraborty S, Nascimento R, Zaini PA, Gouran H, Rao BJ, Goulart LR, Dandekar AM. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa. PeerJ 2016; 4:e2007. [PMID: 27257535 PMCID: PMC4888286 DOI: 10.7717/peerj.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Rafael Nascimento
- Department of Plant Sciences, University of California, Davis (UC Davis), CA, United States of America; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama , Uberlândia Minas Gerais , Brazil
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra , India
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California, Davis (UC Davis), CA, United States of America
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| |
Collapse
|
50
|
Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. PLANT CELL REPORTS 2016; 35:949-65. [PMID: 26888755 PMCID: PMC4833835 DOI: 10.1007/s00299-016-1948-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance. The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.
Collapse
Affiliation(s)
- Prince Marowa
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|