1
|
Lomakin IB, Devarkar SC, Freniere C, Bunick CG. Practical Guide for Implementing Cryogenic Electron Microscopy Structure Determination in Dermatology Research. J Invest Dermatol 2025; 145:22-31. [PMID: 39601740 DOI: 10.1016/j.jid.2024.10.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) and cryogenic electron tomography allow determination of structures of biological macromolecules in their native state in solution at atomic or near-atomic resolution. Recent advances in cryo-EM, that is, the "resolution revolution," and the establishment of national centers for cryo-EM data collection have remarkably expanded its applicability to practically all areas of health-related research. In this methods review, we highlighted the basics of single-particle cryo-EM and its application in the research of macromolecules and macromolecular complexes related to dermatology. We further illustrated a few examples of how this approach can be incorporated into drug development and study.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Kang HJ, Krumm BE, Tassou A, Geron M, DiBerto JF, Kapolka NJ, Gumpper RH, Sakamoto K, Dewran Kocak D, Olsen RHJ, Huang XP, Zhang S, Huang KL, Zaidi SA, Nguyen MT, Jo MJ, Katritch V, Fay JF, Scherrer G, Roth BL. Structure-guided design of a peripherally restricted chemogenetic system. Cell 2024; 187:7433-7449.e20. [PMID: 39631393 DOI: 10.1016/j.cell.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remotely controlling cellular signaling, neural activity, behavior, and physiology. Using a structure-guided approach, we provide a peripherally restricted Gi-DREADD, hydroxycarboxylic acid receptor DREADD (HCAD), whose native receptor is minimally expressed in the brain, and a chemical actuator that does not cross the blood-brain barrier (BBB). This was accomplished by combined mutagenesis, analoging via an ultra-large make-on-demand library, structural determination of the designed DREADD receptor via cryoelectron microscopy (cryo-EM), and validation of HCAD function. Expression and activation of HCAD in dorsal root ganglion (DRG) neurons inhibit action potential (AP) firing and reduce both acute and tissue-injury-induced inflammatory pain. The HCAD chemogenetic system expands the possibilities for studying numerous peripheral systems with little adverse effects on the central nervous system (CNS). The structure-guided approach used to generate HCAD also has the potential to accelerate the development of emerging chemogenetic tools for basic and translational sciences.
Collapse
Affiliation(s)
- Hye Jin Kang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Kapolka
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan H Gumpper
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kensuke Sakamoto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D Dewran Kocak
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH-PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - MyV T Nguyen
- Department of Quantitative and Computational Biology, Department of Chemistry, Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Min Jeong Jo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Jonathan F Fay
- Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Elferich J, Kong L, Zottig X, Grigorieff N. CTFFIND5 provides improved insight into quality, tilt, and thickness of TEM samples. eLife 2024; 13:RP97227. [PMID: 39704651 DOI: 10.7554/elife.97227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Images taken by transmission electron microscopes are usually affected by lens aberrations and image defocus, among other factors. These distortions can be modeled in reciprocal space using the contrast transfer function (CTF). Accurate estimation and correction of the CTF is essential for restoring the high-resolution signal in cryogenic electron microscopy (cryoEM). Previously, we described the implementation of algorithms for this task in the cisTEM software package (Grant et al., 2018). Here we show that taking sample characteristics, such as thickness and tilt, into account can improve CTF estimation. This is particularly important when imaging cellular samples, where measurement of sample thickness and geometry derived from accurate modeling of the Thon ring pattern helps judging the quality of the sample. This improved CTF estimation has been implemented in CTFFIND5, a new version of the cisTEM program CTFFIND. We evaluated the accuracy of these estimates using images of tilted aquaporin crystals and eukaryotic cells thinned by focused ion beam milling. We estimate that with micrographs of sufficient quality CTFFIND5 can measure sample tilt with an accuracy of 3° and sample thickness with an accuracy of 5 nm.
Collapse
Affiliation(s)
- Johannes Elferich
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Lingli Kong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Ximena Zottig
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, United States
| |
Collapse
|
4
|
Szomek M, Akkerman V, Lauritsen L, Walther HL, Juhl AD, Thaysen K, Egebjerg JM, Covey DF, Lehmann M, Wessig P, Foster AJ, Poolman B, Werner S, Schneider G, Müller P, Wüstner D. Ergosterol promotes aggregation of natamycin in the yeast plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184350. [PMID: 38806103 DOI: 10.1016/j.bbamem.2024.184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, USA
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Alexander J Foster
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
5
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa H. Cryo-EM unveils kinesin KIF1A's processivity mechanism and the impact of its pathogenic variant P305L. Nat Commun 2024; 15:5530. [PMID: 38956021 PMCID: PMC11219953 DOI: 10.1038/s41467-024-48720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
Affiliation(s)
- Matthieu P M H Benoit
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Hernando Sosa
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Egebjerg JM, Szomek M, Thaysen K, Juhl AD, Kozakijevic S, Werner S, Pratsch C, Schneider G, Kapishnikov S, Ekman A, Röttger R, Wüstner D. Automated quantification of vacuole fusion and lipophagy in Saccharomyces cerevisiae from fluorescence and cryo-soft X-ray microscopy data using deep learning. Autophagy 2024; 20:902-922. [PMID: 37908116 PMCID: PMC11062380 DOI: 10.1080/15548627.2023.2270378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
During starvation in the yeast Saccharomyces cerevisiae vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast. We focus on yeast homologs of mammalian NPC1 (NPC intracellular cholesterol transporter 1; Ncr1 in yeast) and NPC2 proteins, whose dysfunction leads to Niemann Pick type C (NPC) disease in humans. We developed a convolutional neural network (CNN) model which classifies fully fused versus partially fused vacuoles based on fluorescence images of stained cells. This CNN, named Deep Yeast Fusion Network (DYFNet), revealed that cells lacking Ncr1 (ncr1∆ cells) or Npc2 (npc2∆ cells) have a reduced capacity for vacuole fusion. Using a second CNN model, we implemented a pipeline named LipoSeg to perform automated instance segmentation of LDs and vacuoles from high-resolution reconstructions of X-ray tomograms. From that, we obtained 3D renderings of LDs inside and outside of the vacuole in a fully automated manner and additionally measured droplet volume, number, and distribution. We find that ncr1∆ and npc2∆ cells could ingest LDs into vacuoles normally but showed compromised degradation of LDs and accumulation of lipid vesicles inside vacuoles. Our new method is versatile and allows for analysis of vacuole fusion, droplet size and lipophagy in intact cells.Abbreviations: BODIPY493/503: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-Indacene; BPS: bathophenanthrolinedisulfonic acid disodium salt hydrate; CNN: convolutional neural network; DHE; dehydroergosterol; npc2∆, yeast deficient in Npc2; DSC, Dice similarity coefficient; EM, electron microscopy; EVs, extracellular vesicles; FIB-SEM, focused ion beam milling-scanning electron microscopy; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-[4-{diethylamino} phenyl] hexatrienyl)-pyridinium dibromide; LDs, lipid droplets; Ncr1, yeast homolog of human NPC1 protein; ncr1∆, yeast deficient in Ncr1; NPC, Niemann Pick type C; NPC2, Niemann Pick type C homolog; OD600, optical density at 600 nm; ReLU, rectifier linear unit; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; SXT, soft X-ray tomography; UV, ultraviolet; YPD, yeast extract peptone dextrose.
Collapse
Affiliation(s)
- Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Suzana Kozakijevic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Stephan Werner
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Christoph Pratsch
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Gerd Schneider
- Department of X‑Ray Microscopy, Helmholtz-Zentrum Berlin, Germany and Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
| | - Sergey Kapishnikov
- SiriusXT, 9A Holly Ave. Stillorgan Industrial Park, Blackrock, Co, Dublin, Ireland
| | - Axel Ekman
- Department of Biological and Environmental Science and Nanoscience Centre, University of Jyväskylä, Jyväskylä, Finland
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557002. [PMID: 37745391 PMCID: PMC10515777 DOI: 10.1101/2023.09.09.557002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Anat Levit Kaplan
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Current address: Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ivan S Kondratov
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyїv 02094, Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, Kyїv 02660, Ukraine
| | - Yurii S Moroz
- Chemspace (www.chem-space.com), Chervonotkatska Street 85, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyїv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Peter Gmeiner
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Brian K Shoichet
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
8
|
Moller E, Britt M, Zhou F, Yang H, Anshkin A, Ernst R, Sukharev S, Matthies D. Polymer-extracted structure of the mechanosensitive channel MscS reveals the role of protein-lipid interactions in the gating cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576751. [PMID: 38328078 PMCID: PMC10849555 DOI: 10.1101/2024.01.22.576751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane protein structure determination is not only technically challenging but is further complicated by the removal or displacement of lipids, which can result in non-native conformations or a strong preference for certain states at the exclusion of others. This is especially applicable to mechanosensitive channels (MSC's) that evolved to gate in response to subtle changes in membrane tension transmitted through the lipid bilayer. E. coli MscS, a model bacterial system, is an ancestral member of the large family of MSCs found across all phyla of walled organisms. As a tension sensor, MscS is very sensitive and highly adaptive; it readily opens under super-threshold tension and closes under no tension, but under lower tensions, it slowly inactivates and can only recover when tension is released. However, existing cryo-EM structures do not explain the entire functional gating cycle of open, closed, and inactivated states. A central question in the field has been the assignment of the frequently observed non-conductive conformation to either a closed or inactivated state. Here, we present a 3 Å MscS structure in native nanodiscs obtained with Glyco-DIBMA polymer extraction, eliminating the lipid removal step that is common to all previous structures. Besides the protein in the non-conductive conformation, we observe well-resolved densities of four endogenous phospholipid molecules intercalating between the lipid-facing and pore-lining helices in preferred orientations. Mutations of positively charged residues coordinating these lipids inhibit MscS inactivation, whereas removal of a negative charge near the lipid-filled crevice increases inactivation. The functional data allows us to assign this class of structures to the inactivated state. This structure reveals preserved lipids in their native locations, and the functional effects of their destabilization illustrate a novel inactivation mechanism based on an uncoupling of the peripheral tension-sensing helices from the gate.
Collapse
|
9
|
Pumroy RA, De Jesús-Pérez JJ, Protopopova AD, Rocereta JA, Fluck EC, Fricke T, Lee BH, Rohacs T, Leffler A, Moiseenkova-Bell V. Molecular details of ruthenium red pore block in TRPV channels. EMBO Rep 2024; 25:506-523. [PMID: 38225355 PMCID: PMC10897480 DOI: 10.1038/s44319-023-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna D Protopopova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia A Rocereta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tabea Fricke
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Bo-Hyun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju, Korea
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Andreas Leffler
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2715:431-470. [PMID: 37930544 DOI: 10.1007/978-1-0716-3445-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structural studies of bio-complexes using single particle cryo-Electron Microscopy (cryo-EM) is nowadays a well-established technique in structural biology and has become competitive with X-ray crystallography. Development of digital registration systems for electron microscopy images and algorithms for the fast and efficient processing of the recorded images and their following analysis has facilitated the determination of structures at near-atomic resolution. The latest advances in EM have enabled the determination of protein complex structures at 1.4-3 Å resolution for an extremely broad range of sizes (from ~100 kDa up to hundreds of MDa (Bartesaghi et al., Science 348(6239):1147-1151, 2015; Herzik et al., Nat Commun 10:1032, 2019; Wu et al., J Struct Biol X 4:100020, 2020; Zhang et al., Nat Commun 10:5511, 2019; Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020; https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year )). In 2022, nearly 1200 structures deposited to the EMDB database were at a resolution of better than 3 Å ( https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year ).To date, the highest resolutions have been achieved for apoferritin, which comprises a homo-oligomer of high point group symmetry (O432) and has rigid organization together with high stability (Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020). It has been used as a test object for the assessments of modern cryo-microscopes and processing methods during the last 5 years. In contrast to apoferritin bacterial secretion systems are typical examples of multi protein complexes exhibiting high flexibility owing to their functions relating to the transportation of small molecules, proteins, and DNA into the extracellular space or target cells. This makes their structural characterization extremely challenging (Barlow, Methods Mol Biol 532:397-411, 2009; Costa et al., Nat Rev Microbiol 13:343-359, 2015). The most feasible approach to reveal their spatial organization and functional modification is cryo-electron microscopy (EM). During the last decade, structural cryo-EM has become broadly used for the analysis of the bio-complexes that comprise multiple components and are not amenable to crystallization (Lyumkis, J Biol Chem 294:5181-5197, 2019; Orlova and Saibil, Methods Enzymol 482:321-341, 2010; Orlova and Saibil, Chem Rev 111(12):7710-7748, 2011).In this review, we will describe the basics of sample preparation for cryo-EM, the principles of digital data collection, and the logistics of image analysis focusing on the common steps required for reconstructions of both small and large biological complexes together with refinement of their structures to nearly atomic resolution. The workflow of processing will be illustrated by examples of EM analysis of Type IV Secretion System.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Kévin Macé
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Adam Redzej
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Gabriel Waksman
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Elena V Orlova
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
11
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa HJ. Cryo-EM Unveils the Processivity Mechanism of Kinesin KIF1A and the Impact of its Pathogenic Variant P305L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526913. [PMID: 36778368 PMCID: PMC9915623 DOI: 10.1101/2023.02.02.526913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.4 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
|
12
|
Wüstner D, Dupont Juhl A, Egebjerg JM, Werner S, McNally J, Schneider G. Kinetic modelling of sterol transport between plasma membrane and endo-lysosomes based on quantitative fluorescence and X-ray imaging data. Front Cell Dev Biol 2023; 11:1144936. [PMID: 38020900 PMCID: PMC10644255 DOI: 10.3389/fcell.2023.1144936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Niemann Pick type C1 and C2 (NPC1 and NPC2) are two sterol-binding proteins which, together, orchestrate cholesterol transport through late endosomes and lysosomes (LE/LYSs). NPC2 can facilitate sterol exchange between model membranes severalfold, but how this is connected to its function in cells is poorly understood. Using fluorescent analogs of cholesterol and quantitative fluorescence microscopy, we have recently measured the transport kinetics of sterol between plasma membrane (PM), recycling endosomes (REs) and LE/LYSs in control and NPC2 deficient fibroblasts. Here, we use kinetic modeling of this data to determine rate constants for sterol transport between intracellular compartments. Our model predicts that sterol is trapped in intraluminal vesicles (ILVs) of LE/LYSs in the absence of NPC2, causing delayed sterol export from LE/LYSs in NPC2 deficient fibroblasts. Using soft X-ray tomography, we confirm, that LE/LYSs of NPC2 deficient cells but not of control cells contain enlarged, carbon-rich intraluminal vesicular structures, supporting our model prediction of lipid accumulation in ILVs. By including sterol export via exocytosis of ILVs as exosomes and by release of vesicles-ectosomes-from the PM, we can reconcile measured sterol efflux kinetics and show that both pathways can be reciprocally regulated by the intraluminal sterol transfer activity of NPC2 inside LE/LYSs. Our results thereby connect the in vitro function of NPC2 as sterol transfer protein between membranes with its in vivo function.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - James McNally
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| |
Collapse
|
13
|
Hover S, Charlton FW, Hellert J, Swanson JJ, Mankouri J, Barr JN, Fontana J. Organisation of the orthobunyavirus tripodal spike and the structural changes induced by low pH and K + during entry. Nat Commun 2023; 14:5885. [PMID: 37735161 PMCID: PMC10514341 DOI: 10.1038/s41467-023-41205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Following endocytosis, enveloped viruses employ the changing environment of maturing endosomes as cues to promote endosomal escape, a process often mediated by viral glycoproteins. We previously showed that both high [K+] and low pH promote entry of Bunyamwera virus (BUNV), the prototypical bunyavirus. Here, we use sub-tomogram averaging and AlphaFold, to generate a pseudo-atomic model of the whole BUNV glycoprotein envelope. We unambiguously locate the Gc fusion domain and its chaperone Gn within the floor domain of the spike. Furthermore, viral incubation at low pH and high [K+], reminiscent of endocytic conditions, results in a dramatic rearrangement of the BUNV envelope. Structural and biochemical assays indicate that pH 6.3/K+ in the absence of a target membrane elicits a fusion-capable triggered intermediate state of BUNV GPs; but the same conditions induce fusion when target membranes are present. Taken together, we provide mechanistic understanding of the requirements for bunyavirus entry.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Frank W Charlton
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jan Hellert
- Centre for Structural Systems Biology, Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607, Hamburg, Germany
| | - Jessica J Swanson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
14
|
Ranaivoson FM, Crozet V, Benoit MPMH, Abdalla Mohammed Khalid A, Kikuti C, Sirkia H, El Marjou A, Miserey-Lenkei S, Asenjo AB, Sosa H, Schmidt CF, Rosenfeld SS, Houdusse A. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol 2023; 13:230122. [PMID: 37726093 PMCID: PMC10508983 DOI: 10.1098/rsob.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
Collapse
Affiliation(s)
- Fanomezana Moutse Ranaivoson
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Vincent Crozet
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | | | | | - Carlos Kikuti
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Helena Sirkia
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ahmed El Marjou
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Stéphanie Miserey-Lenkei
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ana B. Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph F. Schmidt
- Third Institute of Physics-Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | | | - Anne Houdusse
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| |
Collapse
|
15
|
Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. eLife 2023; 12:RP87672. [PMID: 37503920 PMCID: PMC10382156 DOI: 10.7554/elife.87672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Nuclear processes depend on the organization of chromatin, whose basic units are cylinder-shaped complexes called nucleosomes. A subset of mammalian nucleosomes in situ (inside cells) resembles the canonical structure determined in vitro 25 years ago. Nucleosome structure in situ is otherwise poorly understood. Using cryo-electron tomography (cryo-ET) and 3D classification analysis of budding yeast cells, here we find that canonical nucleosomes account for less than 10% of total nucleosomes expected in situ. In a strain in which H2A-GFP is the sole source of histone H2A, class averages that resemble canonical nucleosomes both with and without GFP densities are found ex vivo (in nuclear lysates), but not in situ. These data suggest that the budding yeast intranuclear environment favors multiple non-canonical nucleosome conformations. Using the structural observations here and the results of previous genomics and biochemical studies, we propose a model in which the average budding yeast nucleosome's DNA is partially detached in situ.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Shujun Cai
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Alex J Noble
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Jon K Chen
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Jian Shi
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Lu Gan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| |
Collapse
|
16
|
Conesa P, Fonseca YC, Jiménez de la Morena J, Sharov G, de la Rosa-Trevín JM, Cuervo A, García Mena A, Rodríguez de Francisco B, del Hoyo D, Herreros D, Marchan D, Strelak D, Fernández-Giménez E, Ramírez-Aportela E, de Isidro-Gómez FP, Sánchez I, Krieger J, Vilas JL, del Cano L, Gragera M, Iceta M, Martínez M, Losana P, Melero R, Marabini R, Carazo JM, Sorzano COS. Scipion3: A workflow engine for cryo-electron microscopy image processing and structural biology. BIOLOGICAL IMAGING 2023; 3:e13. [PMID: 38510163 PMCID: PMC10951921 DOI: 10.1017/s2633903x23000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 03/22/2024]
Abstract
Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main characteristics are: (a) interoperability, (b) smart object model, (c) gluing operations, (d) comparison operations, (e) wide set of domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility, (o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.
Collapse
Affiliation(s)
- Pablo Conesa
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | | | | | - Grigory Sharov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Ana Cuervo
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | | | | | | | - David Herreros
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Daniel Marchan
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - David Strelak
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
- Masaryk University, Brno, Czech Republic
| | | | | | | | - Irene Sánchez
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - James Krieger
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | | | - Laura del Cano
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Marcos Gragera
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Mikel Iceta
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | | | - Roberto Melero
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Roberto Marabini
- National Center of Biotechnology (CNB-CSIC), Madrid, Spain
- Superior Polytechnic School, Autonomous University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
17
|
Kim HHS, Uddin MR, Xu M, Chang YW. Computational Methods Toward Unbiased Pattern Mining and Structure Determination in Cryo-Electron Tomography Data. J Mol Biol 2023; 435:168068. [PMID: 37003470 PMCID: PMC10164694 DOI: 10.1016/j.jmb.2023.168068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular structures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular complexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data generally involves isolating regions or particles of interest from tomograms, organizing them into related groups, and rendering final structures through subtomogram averaging. Template-matching and reference-based structure determination are popular analysis methods but are vulnerable to biases and can often require significant user input. Most importantly, these approaches cannot identify novel complexes that reside within the imaged cellular environment. To reliably extract and resolve structures of interest, efficient and unbiased approaches are therefore of great value. This review highlights notable computational software and discusses how they contribute to making automated structural pattern discovery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessibility are also presented.
Collapse
Affiliation(s)
- Hannah Hyun-Sook Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. https://twitter.com/hannahinthelab
| | - Mostofa Rafid Uddin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. https://twitter.com/duran_rafid
| | - Min Xu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Krumm BE, DiBerto JF, Olsen RHJ, Kang HJ, Slocum ST, Zhang S, Strachan RT, Huang XP, Slosky LM, Pinkerton AB, Barak LS, Caron MG, Kenakin T, Fay JF, Roth BL. Neurotensin Receptor Allosterism Revealed in Complex with a Biased Allosteric Modulator. Biochemistry 2023; 62:1233-1248. [PMID: 36917754 DOI: 10.1021/acs.biochem.3c00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The NTSR1 neurotensin receptor (NTSR1) is a G protein-coupled receptor (GPCR) found in the brain and peripheral tissues with neurotensin (NTS) being its endogenous peptide ligand. In the brain, NTS modulates dopamine neuronal activity, induces opioid-independent analgesia, and regulates food intake. Recent studies indicate that biasing NTSR1 toward β-arrestin signaling can attenuate the actions of psychostimulants and other drugs of abuse. Here, we provide the cryoEM structures of NTSR1 ternary complexes with heterotrimeric Gq and GoA with and without the brain-penetrant small-molecule SBI-553. In functional studies, we discovered that SBI-553 displays complex allosteric actions exemplified by negative allosteric modulation for G proteins that are Gα subunit selective and positive allosteric modulation and agonism for β-arrestin translocation at NTSR1. Detailed structural analysis of the allosteric binding site illuminated the structural determinants for biased allosteric modulation of SBI-553 on NTSR1.
Collapse
Affiliation(s)
- Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United States
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United States
- Departments of Medicine and Neurobiology, Duke University, Durham, North Carolina 27710, United States
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7365, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, United States
| |
Collapse
|
19
|
Lopez AJ, Andreadaki M, Vahokoski J, Deligianni E, Calder LJ, Camerini S, Freitag A, Bergmann U, Rosenthal PB, Sidén-Kiamos I, Kursula I. Structure and function of Plasmodium actin II in the parasite mosquito stages. PLoS Pathog 2023; 19:e1011174. [PMID: 36877739 PMCID: PMC10019781 DOI: 10.1371/journal.ppat.1011174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 μM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.
Collapse
Affiliation(s)
- Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Anika Freitag
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- * E-mail: (ISK); (IK)
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail: (ISK); (IK)
| |
Collapse
|
20
|
Burton-Smith RN, Murata K. Cryo-electron Microscopy of Protein Cages. Methods Mol Biol 2023; 2671:173-210. [PMID: 37308646 DOI: 10.1007/978-1-0716-3222-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages are one of the most widely studied objects in the field of cryogenic electron microscopy-encompassing natural and synthetic constructs, from enzymes assisting protein folding such as chaperonin to virus capsids. Tremendous diversity of morphology and function is demonstrated by the structure and role of proteins, some of which are nearly ubiquitous, while others are present in few organisms. Protein cages are often highly symmetrical, which helps improve the resolution obtained by cryo-electron microscopy (cryo-EM). Cryo-EM is the study of vitrified samples using an electron probe to image the subject. A sample is rapidly frozen in a thin layer on a porous grid, attempting to keep the sample as close to a native state as possible. This grid is kept at cryogenic temperatures throughout imaging in an electron microscope. Once image acquisition is complete, a variety of software packages may be employed to carry out analysis and reconstruction of three-dimensional structures from the two-dimensional micrograph images. Cryo-EM can be used on samples that are too large or too heterogeneous to be amenable to other structural biology techniques like NMR or X-ray crystallography. In recent years, advances in both hardware and software have provided significant improvements to the results obtained using cryo-EM, recently demonstrating true atomic resolution from vitrified aqueous samples. Here, we review these advances in cryo-EM, especially in that of protein cages, and introduce several tips for situations we have experienced.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.
- National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan.
| |
Collapse
|
21
|
A novel capsid protein network allows the characteristic internal membrane structure of Marseilleviridae giant viruses. Sci Rep 2022; 12:21428. [PMID: 36504202 PMCID: PMC9742146 DOI: 10.1038/s41598-022-24651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marseilleviridae is a family of giant viruses, showing a characteristic internal membrane with extrusions underneath the icosahedral vertices. However, such large objects, with a maximum diameter of 250 nm are technically difficult to examine at sub-nanometre resolution by cryo-electron microscopy. Here, we tested the utility of 1 MV high-voltage cryo-EM (cryo-HVEM) for single particle structural analysis (SPA) of giant viruses using tokyovirus, a species of Marseilleviridae, and revealed the capsid structure at 7.7 Å resolution. The capsid enclosing the viral DNA consisted primarily of four layers: (1) major capsid proteins (MCPs) and penton proteins, (2) minor capsid proteins (mCPs), (3) scaffold protein components (ScPCs), and (4) internal membrane. The mCPs showed a novel capsid lattice consisting of eight protein components. ScPCs connecting the icosahedral vertices supported the formation of the membrane extrusions, and possibly act like tape measure proteins reported in other giant viruses. The density on top of the MCP trimer was suggested to include glycoproteins. This is the first attempt at cryo-HVEM SPA. We found the primary limitations to be the lack of automated data acquisition and software support for collection and processing and thus achievable resolution. However, the results pave the way for using cryo-HVEM for structural analysis of larger biological specimens.
Collapse
|
22
|
Zhang S, Gumpper RH, Huang XP, Liu Y, Krumm BE, Cao C, Fay JF, Roth BL. Molecular basis for selective activation of DREADD-based chemogenetics. Nature 2022; 612:354-362. [PMID: 36450989 DOI: 10.1038/s41586-022-05489-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) represent a powerful chemogenetic technology for the remote control of neuronal activity and cellular signalling1-4. The muscarinic receptor-based DREADDs are the most widely used chemogenetic tools in neuroscience research. The Gq-coupled DREADD (hM3Dq) is used to enhance neuronal activity, whereas the Gi/o-coupled DREADD (hM4Di) is utilized to inhibit neuronal activity5. Here we report four DREADD-related cryogenic electron microscopy high-resolution structures: a hM3Dq-miniGq complex and a hM4Di-miniGo complex bound to deschloroclozapine; a hM3Dq-miniGq complex bound to clozapine-N-oxide; and a hM3R-miniGq complex bound to iperoxo. Complemented with mutagenesis, functional and computational simulation data, our structures reveal key details of the recognition of DREADD chemogenetic actuators and the molecular basis for activation. These findings should accelerate the structure-guided discovery of next-generation chemogenetic tools.
Collapse
Affiliation(s)
- Shicheng Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan H Gumpper
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Can Cao
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Lee H, Baxter AJ, Bator CM, Fane BA, Hafenstein SL. Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System. J Virol 2022; 96:e0099022. [PMID: 36255280 PMCID: PMC9645218 DOI: 10.1128/jvi.00990-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a Microviridae subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built de novo. Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8's C-terminus and a portion of VP1's N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. IMPORTANCE There is a dramatic structural and morphogenetic divide within the Microviridae. The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa.
Collapse
Affiliation(s)
- Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Alexis J. Baxter
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Carol M. Bator
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bentley A. Fane
- The BIO5 Institute, Keating Building, University of Arizona, Tucson, Arizona, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
24
|
Mamizu N, Yasunaga T. Estimation of Projection Parameter Distribution and Initial Model Generation in Single-Particle Analysis. Microscopy (Oxf) 2022; 71:347-356. [PMID: 35904535 DOI: 10.1093/jmicro/dfac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study focused on the problem of projection parameter search in 3D reconstruction using single-particle analysis. We treated the sampling distribution for the parameter search as a prior distribution and designed a probabilistic model for efficient parameter estimation. Using our method, we showed that it is possible to perform 3D reconstruction from synthetic and actual electron microscope images using an initial model, and to generate the initial model itself. We also examined whether the optimization function used in the stochastic gradient descent method can be applied with loose constraints to improve the convergence of initial model generation and confirmed the effect. In order to investigate the advantage of generating a smooth sampling distribution from the stochastic model, we compared the distribution of estimated projection directions with the conventional method of performing a global search using spherical gridding. As a result, our method, which is simple in both mathematical model and implementation, showed no algorithmic artifacts.
Collapse
Affiliation(s)
- Nobuya Mamizu
- Imaging Technology Division, System in Frontier Inc., 2-8-3 Shinsuzuharu Bldg.4F Akebono-cho Tachikawa-shi, Tokyo 190-0012
| | - Takuo Yasunaga
- Department of Physics and Information Technology, Kyushu Institute of Technology Faculty of Computer Science and Systems Engineering, 680-4 Kawazu Iizuka-shi, Fukuoka 820-8502
| |
Collapse
|
25
|
Villalta A, Schmitt A, Estrozi LF, Quemin ERJ, Alempic JM, Lartigue A, Pražák V, Belmudes L, Vasishtan D, Colmant AMG, Honoré FA, Couté Y, Grünewald K, Abergel C. The giant mimivirus 1.2 Mb genome is elegantly organized into a 30-nm diameter helical protein shield. eLife 2022; 11:e77607. [PMID: 35900198 PMCID: PMC9512402 DOI: 10.7554/elife.77607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.
Collapse
Affiliation(s)
- Alejandro Villalta
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Alain Schmitt
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Leandro F Estrozi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS)GrenobleFrance
| | - Emmanuelle RJ Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
| | - Jean-Marie Alempic
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Audrey Lartigue
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Lucid Belmudes
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Agathe MG Colmant
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Flora A Honoré
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Chantal Abergel
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| |
Collapse
|
26
|
Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nat Commun 2022; 13:4198. [PMID: 35859148 PMCID: PMC9300613 DOI: 10.1038/s41467-022-31794-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matthieu P M H Benoit
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caitlin Doubleday
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Irsa Shoukat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
27
|
Zhang S, Chen H, Zhang C, Yang Y, Popov P, Liu J, Krumm BE, Cao C, Kim K, Xiong Y, Katritch V, Shoichet BK, Jin J, Fay JF, Roth BL. Inactive and active state structures template selective tools for the human 5-HT 5A receptor. Nat Struct Mol Biol 2022; 29:677-687. [PMID: 35835867 PMCID: PMC9299520 DOI: 10.1038/s41594-022-00796-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023]
Abstract
Serotonin receptors are important targets for established therapeutics and drug development as they are expressed throughout the human body and play key roles in cell signaling. There are 12 serotonergic G protein-coupled receptor members encoded in the human genome, of which the 5-hydroxytryptamine (5-HT)5A receptor (5-HT5AR) is the least understood and lacks selective tool compounds. Here, we report four high-resolution (2.73-2.80 Å) structures of human 5-HT5ARs, including an inactive state structure bound to an antagonist AS2674723 by crystallization and active state structures bound to a partial agonist lisuride and two full agonists, 5-carboxamidotryptamine (5-CT) and methylergometrine, by cryo-EM. Leveraging the new structures, we developed a highly selective and potent antagonist for 5-HT5AR. Collectively, these findings both enhance our understanding of this enigmatic receptor and provide a roadmap for structure-based drug discovery for 5-HT5AR.
Collapse
Affiliation(s)
- Shicheng Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Yang
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Petr Popov
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Can Cao
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vsevolod Katritch
- Departments of Quantitative and Computational Biology and Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Heymann BJ. Bsoft: Image Processing for Structural Biology. Bio Protoc 2022; 12:e4393. [PMID: 35800093 PMCID: PMC9081485 DOI: 10.21769/bioprotoc.4393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Bsoft is a software package primarily developed for processing electron micrographs, with the goal of determining the structures of biologically relevant molecules, molecular assemblies, and parts of cells. However, it incorporates many ways to deal with images, from the mundane to very sophisticated algorithms. This article is an introduction into its use, illustrating that it is an extensive toolbox, for manipulating and understanding images. Bsoft has over 150 programs, allowing the user an infinite number of ways to process images. These programs can be executed on the command line, or through the interactive program called brun. The main visualization program is bshow, providing numerous ways to manipulate and interpret images. The primary aim is to provide the user with powerful capabilities, including processing large numbers of images. An important additional aim is to make it as accessible as possible, making it easier to deal with image formats and features, and enhance productivity.
Collapse
Affiliation(s)
- Bernard J. Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick Office of Scientific Operations, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA,
*For correspondence:
| |
Collapse
|
29
|
Ma OX, Chong WG, Lee JKE, Cai S, Siebert CA, Howe A, Zhang P, Shi J, Surana U, Gan L. Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS One 2022; 17:e0266035. [PMID: 35421110 PMCID: PMC9009673 DOI: 10.1371/journal.pone.0266035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022] Open
Abstract
In meiosis, cells undergo two sequential rounds of cell division, termed meiosis I and meiosis II. Textbook models of the meiosis I substage called pachytene show that nuclei have conspicuous 100-nm-wide, ladder-like synaptonemal complexes and ordered chromatin loops. It remains unknown if these cells have any other large, meiosis-related intranuclear structures. Here we present cryo-ET analysis of frozen-hydrated budding yeast cells before, during, and after pachytene. We found no cryo-ET densities that resemble dense ladder-like structures or ordered chromatin loops. Instead, we found large numbers of 12-nm-wide triple-helices that pack into ordered bundles. These structures, herein called meiotic triple helices (MTHs), are present in meiotic cells, but not in interphase cells. MTHs are enriched in the nucleus but not enriched in the cytoplasm. Bundles of MTHs form at the same timeframe as synaptonemal complexes (SCs) in wild-type cells and in mutant cells that are unable to form SCs. These results suggest that in yeast, SCs coexist with previously unreported large, ordered assemblies.
Collapse
Affiliation(s)
- Olivia X. Ma
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wen Guan Chong
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Joy K. E. Lee
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - C. Alistair Siebert
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Peijun Zhang
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
- Biotransformation Innovation Platform, A*STAR, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Vahokoski J, Calder LJ, Lopez AJ, Molloy JE, Kursula I, Rosenthal PB. High-resolution structures of malaria parasite actomyosin and actin filaments. PLoS Pathog 2022; 18:e1010408. [PMID: 35377914 PMCID: PMC9037914 DOI: 10.1371/journal.ppat.1010408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/25/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.
Collapse
Affiliation(s)
- Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justin E. Molloy
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
31
|
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 2022; 604:541-545. [PMID: 35388215 PMCID: PMC9635844 DOI: 10.1038/s41586-022-04545-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023]
Abstract
Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.
Collapse
Affiliation(s)
- Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
32
|
Nadeem A, Berg A, Pace H, Alam A, Toh E, Ådén J, Zlatkov N, Myint SL, Persson K, Gröbner G, Sjöstedt A, Bally M, Barandun J, Uhlin BE, Wai SN. Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae. eLife 2022; 11:73439. [PMID: 35131030 PMCID: PMC8824476 DOI: 10.7554/elife.73439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
Collapse
Affiliation(s)
- Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hudson Pace
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Athar Alam
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Eric Toh
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Ådén
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Gerhard Gröbner
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Marta Bally
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Qi X, Schmiege P, Esparza L, Li X. Expression, Purification, and Structure Determination of Human PTCH1-HH-N Complexes. Methods Mol Biol 2022; 2374:107-120. [PMID: 34562247 DOI: 10.1007/978-1-0716-1701-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Patched-1 (PTCH1), a tumor suppressor, serves as the receptor of Hedgehog (HH) ligand and negatively regulates the HH signaling pathway. Mutations of PTCH1 are implicated in many human cancers. Structural investigation revealed the mechanism of PTCH1-mediated HH signal regulation, further facilitating the therapeutic development of cancers. Here, we describe the expression and purification of a nearly full-length functional PTCH1 variant, PTCH1*. With purified PTCH1* protein, two forms of PTCH1*-Sonic Hedgehog (SHH) complexes were assembled, and their structures subsequently determined by cryo-electron microscope (cryo-EM).
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leticia Esparza
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Li S, Fernandez JJ, Fabritius AS, Agard DA, Winey M. Electron cryo-tomography structure of axonemal doublet microtubule from Tetrahymena thermophila. Life Sci Alliance 2022; 5:5/3/e202101225. [PMID: 34969817 PMCID: PMC8742875 DOI: 10.26508/lsa.202101225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Doublet microtubules (DMTs) provide a scaffold for axoneme assembly in motile cilia. Aside from α/β tubulins, the DMT comprises a large number of non-tubulin proteins in the luminal wall of DMTs, collectively named the microtubule inner proteins (MIPs). We used cryoET to study axoneme DMT isolated from Tetrahymena We present the structures of DMT at nanometer and sub-nanometer resolution. The structures confirm that MIP RIB72A/B binds to the luminal wall of DMT by multiple DM10 domains. We found FAP115, an MIP-containing multiple EF-hand domains, located at the interface of four-tubulin dimers in the lumen of A-tubule. It contacts both lateral and longitudinal tubulin interfaces and playing a critical role in DMT stability. We observed substantial structure heterogeneity in DMT in an FAP115 knockout strain, showing extensive structural defects beyond the FAP115-binding site. The defects propagate along the axoneme. Finally, by comparing DMT structures from Tetrahymena and Chlamydomonas, we have identified a number of conserved MIPs as well as MIPs that are unique to each organism. This conservation and diversity of the DMT structures might be linked to their specific functions. Our work provides structural insights essential for understanding the roles of MIPs during motile cilium assembly and function, as well as their relationships to human ciliopathies.
Collapse
Affiliation(s)
- Sam Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Jose-Jesus Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
35
|
Han L, Qu Q, Aydin D, Panova O, Robertson MJ, Xu Y, Dror RO, Skiniotis G, Feng L. Structure and mechanism of the SGLT family of glucose transporters. Nature 2021; 601:274-279. [PMID: 34880492 DOI: 10.1038/s41586-021-04211-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Glucose is a primary energy source in living cells. The discovery in 1960s that a sodium gradient powers the active uptake of glucose in the intestine1 heralded the concept of a secondary active transporter that can catalyse the movement of a substrate against an electrochemical gradient by harnessing energy from another coupled substrate. Subsequently, coupled Na+/glucose transport was found to be mediated by sodium-glucose cotransporters2,3 (SGLTs). SGLTs are responsible for active glucose and galactose absorption in the intestine and for glucose reabsorption in the kidney4, and are targeted by multiple drugs to treat diabetes5. Several members within the SGLT family transport key metabolites other than glucose2. Here we report cryo-electron microscopy structures of the prototypic human SGLT1 and a related monocarboxylate transporter SMCT1 from the same family. The structures, together with molecular dynamics simulations and functional studies, define the architecture of SGLTs, uncover the mechanism of substrate binding and selectivity, and shed light on water permeability of SGLT1. These results provide insights into the multifaceted functions of SGLTs.
Collapse
Affiliation(s)
- Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Deniz Aydin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature 2021; 600:170-175. [PMID: 34789874 PMCID: PMC9150435 DOI: 10.1038/s41586-021-04126-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- Humans
- Models, Molecular
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/ultrastructure
- Pruritus/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/ultrastructure
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Byron W Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian J Bender
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joel Karpiak
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Lily Y Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Mol Cell 2021; 81:4650-4662.e4. [PMID: 34715014 DOI: 10.1016/j.molcel.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.
Collapse
Affiliation(s)
- Jordan Tillinghast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Sydney Drury
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Darren Bowser
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Alana Benn
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Kenneth Pak Kin Lee
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
38
|
Kim K, Narayanan J, Sen A, Chellam S. Virus Removal and Inactivation Mechanisms during Iron Electrocoagulation: Capsid and Genome Damages and Electro-Fenton Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13198-13208. [PMID: 34546747 DOI: 10.1021/acs.est.0c04438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Virus destabilization and inactivation are critical considerations in providing safe drinking water. We demonstrate that iron electrocoagulation simultaneously removed (via sweep flocculation) and inactivated a non-enveloped virus surrogate (MS2 bacteriophage) under slightly acidic conditions, resulting in highly effective virus control (e.g., 5-logs at 20 mg Fe/L and pH 6.4 in 30 min). Electrocoagulation simultaneously generated H2O2 and Fe(II) that can potentially trigger electro-Fenton reactions to produce reactive oxygen species such as •OH and high valent oxoiron(IV) that are capable of inactivating viruses. To date, viral attenuation during water treatment has been largely probed by evaluating infective virions (as plaque forming units) or genomic damage (via the quantitative polymerase chain reaction). In addition to these existing means of assessing virus attenuation, a novel technique of correlating transmission electron micrographs of electrocoagulated MS2 with their computationally altered three-dimensional electron density maps was developed to provide direct visual evidence of capsid morphological damages during electrocoagulation. The majority of coliphages lost at least 10-60% of the capsid protein missing a minimum of one of the 5-fold and two of 3- and 2-fold regions upon electrocoagulation, revealing substantial localized capsid deformation. Attenuated total reflectance-Fourier transform infrared spectroscopy revealed potential oxidation of viral coat proteins and modification of their secondary structures that were attributed to reactive oxygen species. Iron electrocoagulation simultaneously disinfects and coagulates non-enveloped viruses (unlike conventional coagulation), adding to the robustness of multiple barriers necessary for public health protection and appears to be a promising technology for small-scale distributed water treatment.
Collapse
Affiliation(s)
- Kyungho Kim
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| | - Jothikumar Narayanan
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329, United States
| | - Anindito Sen
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843-2257, United States
| | - Shankararaman Chellam
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
39
|
Pintilie G, Chiu W. Validation, analysis and annotation of cryo-EM structures. Acta Crystallogr D Struct Biol 2021; 77:1142-1152. [PMID: 34473085 PMCID: PMC8411978 DOI: 10.1107/s2059798321006069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2021] [Indexed: 11/08/2023] Open
Abstract
The process of turning 2D micrographs into 3D atomic models of the imaged macromolecules has been under rapid development and scrutiny in the field of cryo-EM. Here, some important methods for validation at several stages in this process are described. Firstly, how Fourier shell correlation of two independent maps and phase randomization beyond a certain frequency address the assessment of map resolution is reviewed. Techniques for local resolution estimation and map sharpening are also touched upon. The topic of validating models which are either built de novo or based on a known atomic structure fitted into a cryo-EM map is then approached. Map-model comparison using Q-scores and Fourier shell correlation plots is used to assure the agreement of the model with the observed map density. The importance of annotating the model with B factors to account for the resolvability of individual atoms in the map is illustrated. Finally, the timely topic of detecting and validating water molecules and metal ions in maps that have surpassed ∼2 Å resolution is described.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
40
|
Scaramuzza S, Castaño-Díez D. Step-by-step guide to efficient subtomogram averaging of virus-like particles with Dynamo. PLoS Biol 2021; 19:e3001318. [PMID: 34437529 PMCID: PMC8389376 DOI: 10.1371/journal.pbio.3001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Subtomogram averaging (STA) is a powerful image processing technique in electron tomography used to determine the 3D structure of macromolecular complexes in their native environments. It is a fast growing technique with increasing importance in structural biology. The computational aspect of STA is very complex and depends on a large number of variables. We noticed a lack of detailed guides for STA processing. Also, current publications in this field often lack a documentation that is practical enough to reproduce the results with reasonable effort, which is necessary for the scientific community to grow. We therefore provide a complete, detailed, and fully reproducible processing protocol that covers all aspects of particle picking and particle alignment in STA. The command line-based workflow is fully based on the popular Dynamo software for STA. Within this workflow, we also demonstrate how large parts of the processing pipeline can be streamlined and automatized for increased throughput. This protocol is aimed at users on all levels. It can be used for training purposes, or it can serve as basis to design user-specific projects by taking advantage of the flexibility of Dynamo by modifying and expanding the given pipeline. The protocol is successfully validated using the Electron Microscopy Public Image Archive (EMPIAR) database entry 10164 from immature HIV-1 virus-like particles (VLPs) that describe a geometry often seen in electron tomography.
Collapse
|
41
|
Improving a Rapid Alignment Method of Tomography Projections by a Parallel Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The high resolution of synchrotron cryo-nano tomography can be easily undermined by setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added to the solution to provide a set of landmarks for a manual alignment. However, the spatial distribution of these reference points within the sample is difficult to control, resulting in many datasets without a sufficient amount of such critical features for tracking. Fast automatic methods based on tomography consistency are thus desirable, especially for biological samples, where regular, high contrast features can be scarce. Current off-the-shelf implementations of such classes of algorithms are slow if used on a real-world high-resolution dataset. In this paper, we present a fast implementation of a consistency-based alignment algorithm especially tailored to a multi-GPU system. Our implementation is released as open-source.
Collapse
|
42
|
Abstract
In the recent years, the protein databank has been fueled by the exponential growth of high-resolution electron cryo-microscopy (cryo-EM) structures. This trend will be further accelerated through the continuous software and method developments and the increasing availability of imaging centers, which will open cryo-EM to a wide array of researchers with their diverse scientific goals and questions. Especially for structural biology of membrane proteins, cryo-EM offers significant advantages as it can overcome multiple limitations of classical methods. Most importantly, in cryo-EM, the sample is prepared as a vitrified suspension, which abolishes the need for crystallization, reduces the required sample amount and allows usage of a wide arsenal of hydrophobic environments. Despite recent improvements, high-resolution cryo-EM still poses some significant challenges, and standardized procedures, especially for the characterization of membrane proteins, are missing. While there can be no ultimate recipe toward a high-resolution cryo-EM structure for every membrane protein, certain factors seem to be universally relevant. Here, we share the protocols that have been successfully used in our laboratory. We hope that this may be a useful resource to other researchers in the field and may increase their chances of success.
Collapse
Affiliation(s)
- Dovile Januliene
- Max-Planck Institute of Biophysics, Frankfurt, Germany.,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany
| | - Arne Moeller
- Max-Planck Institute of Biophysics, Frankfurt, Germany. .,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
43
|
Benoit MP, Asenjo AB, Paydar M, Dhakal S, Kwok BH, Sosa H. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nat Commun 2021; 12:3637. [PMID: 34131133 PMCID: PMC8206134 DOI: 10.1038/s41467-021-23581-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
Collapse
Affiliation(s)
- Matthieu P.M.H. Benoit
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Ana B. Asenjo
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Mohammadjavad Paydar
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Sabin Dhakal
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Benjamin H. Kwok
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hernando Sosa
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| |
Collapse
|
44
|
Vanden Broeck A, Lotz C, Drillien R, Haas L, Bedez C, Lamour V. Structural basis for allosteric regulation of Human Topoisomerase IIα. Nat Commun 2021; 12:2962. [PMID: 34016969 PMCID: PMC8137924 DOI: 10.1038/s41467-021-23136-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/15/2021] [Indexed: 12/01/2022] Open
Abstract
The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human Topo IIα nucleoprotein complex in different conformations solved at subnanometer resolutions (3.6-7.4 Å). Our data unveils the molecular determinants that fine tune the allosteric connections between the ATPase domain and the DNA binding/cleavage domain. Strikingly, the reconstruction of the DNA-binding/cleavage domain uncovers a linker leading to the CTD, which plays a critical role in modulating the enzyme's activities and opens perspective for the analysis of post-translational modifications.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Christophe Lotz
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Robert Drillien
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Léa Haas
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Claire Bedez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Valérie Lamour
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
- Department of Integrated Structural Biology, IGBMC, Illkirch, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
45
|
Juhl AD, Heegaard CW, Werner S, Schneider G, Krishnan K, Covey DF, Wüstner D. Quantitative imaging of membrane contact sites for sterol transfer between endo-lysosomes and mitochondria in living cells. Sci Rep 2021; 11:8927. [PMID: 33903617 PMCID: PMC8076251 DOI: 10.1038/s41598-021-87876-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/31/2021] [Indexed: 01/25/2023] Open
Abstract
Mitochondria receive cholesterol from late endosomes and lysosomes (LE/LYSs) or from the plasma membrane for production of oxysterols and steroid hormones. This process depends on the endo-lysosomal sterol transfer protein Niemann Pick C2 (NPC2). Using the intrinsically fluorescent cholesterol analog, cholestatrienol, we directly observe sterol transport to mitochondria in fibroblasts upon treating NPC2 deficient human fibroblasts with NPC2 protein. Soft X-ray tomography reveals the ultrastructure of mitochondria and discloses close contact to endosome-like organelles. Using fluorescence microscopy, we localize endo-lysosomes containing NPC2 relative to mitochondria based on the Euclidian distance transform and use statistical inference to show that about 30% of such LE/LYSs are in contact to mitochondria in human fibroblasts. Using Markov Chain Monte Carlo image simulations, we show that interaction between both organelle types, a defining feature of membrane contact sites (MCSs) can give rise to the observed spatial organelle distribution. We devise a protocol to determine the surface fraction of endo-lysosomes in contact with mitochondria and show that this fraction does not depend on functional NPC1 or NPC2 proteins. Finally, we localize MCSs between LE/LYSs containing NPC2 and mitochondria in time-lapse image sequences and show that they either form transiently or remain stable for tens of seconds. Lasting MCSs between endo-lysosomes containing NPC2 and mitochondria move by slow anomalous sub-diffusion, providing location and time for sterol transport between both organelles. Our quantitative imaging strategy will be of high value for characterizing the dynamics and function of MCSs between various organelles in living cells.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, 8000, Aarhus C, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
46
|
Below 3 Å structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Sci Rep 2021; 11:8395. [PMID: 33863933 PMCID: PMC8052451 DOI: 10.1038/s41598-021-87183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the structural analysis of protein complexes by cryo-electron microscopy (cryo-EM) single particle analysis (SPA) has had great impact as a biophysical method. Many results of cryo-EM SPA are based on data acquired on state-of-the-art cryo-electron microscopes customized for SPA. These are currently only available in limited locations around the world, where securing machine time is highly competitive. One potential solution for this time-competitive situation is to reuse existing multi-purpose equipment, although this comes with performance limitations. Here, a multi-purpose TEM with a side entry cryo-holder was used to evaluate the potential of high-resolution SPA, resulting in a 3 Å resolution map of apoferritin with local resolution extending to 2.6 Å. This map clearly showed two positions of an aromatic side chain. Further, examination of optimal imaging conditions depending on two different multi-purpose electron microscope and camera combinations was carried out, demonstrating that higher magnifications are not always necessary or desirable. Since automation is effectively a requirement for large-scale data collection, and augmenting the multi-purpose equipment is possible, we expanded testing by acquiring data with SerialEM using a β-galactosidase test sample. This study demonstrates the possibilities of more widely available and established electron microscopes, and their applications for cryo-EM SPA.
Collapse
|
47
|
Beckers M, Mann D, Sachse C. Structural interpretation of cryo-EM image reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:26-36. [PMID: 32735944 DOI: 10.1016/j.pbiomolbio.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is an atomic model that should faithfully represent the computed image reconstruction. Although the principal approach of atomic model building and refinement from maps resembles that of the X-ray crystallographic methods, there are important differences due to the unique properties resulting from the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM image reconstruction to the atomic model. We give an overview of (i) resolution determination methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast optimization including complementary map types that can help in identifying ambiguous density features, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods originally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates has become an integral and important part of the cryo-EM structure determination work-flow that routinely delivers atomic models.
Collapse
Affiliation(s)
- Maximilian Beckers
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany; Candidate for Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany; Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Chemistry Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
48
|
Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, Bhabha G. LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope. Cell 2021; 181:653-664.e19. [PMID: 32359438 DOI: 10.1016/j.cell.2020.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
Abstract
Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide, which acts as a barrier and contributes to antibiotic resistance. The systems that mediate phospholipid trafficking across the periplasm, such as MCE (Mammalian Cell Entry) transporters, have not been well characterized. Our ~3.5 Å cryo-EM structure of the E. coli MCE protein LetB reveals an ~0.6 megadalton complex that consists of seven stacked rings, with a central hydrophobic tunnel sufficiently long to span the periplasm. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Our results support a model in which LetB establishes a physical link between the two membranes and creates a hydrophobic pathway for the translocation of lipids across the periplasm.
Collapse
Affiliation(s)
- Georgia L Isom
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Mark R MacRae
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Collin T McManus
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
49
|
Aiyer S, Zhang C, Baldwin PR, Lyumkis D. Evaluating Local and Directional Resolution of Cryo-EM Density Maps. Methods Mol Biol 2021; 2215:161-187. [PMID: 33368004 PMCID: PMC8294179 DOI: 10.1007/978-1-0716-0966-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A systematic and quantitative evaluation of cryo-EM maps is necessary to judge their quality and to capture all possible sources of error. A single value for global resolution is insufficient to accurately describe the quality of a reconstructed density. We describe the estimation and evaluation of two additional resolution measures, local and directional resolution, using methods based on the Fourier shell correlation (FSC). We apply the protocol to samples that encompass different types of pathologies a user is expected to encounter and provide analyses on how to interpret the output files and resulting maps. Implementation of these tools will facilitate density interpretation and can guide the user in adapting their experiments to improve the quality of cryo-EM maps, and by extension atomic models.
Collapse
Affiliation(s)
- Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Philp R Baldwin
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
50
|
Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. J Virol 2020; 94:JVI.01534-20. [PMID: 32967953 DOI: 10.1128/jvi.01534-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC. To define the roles and structures of the CVSC proteins in virus assembly and DNA packaging, we isolated a number of recombinant viruses expressing pUL25, pUL17, and pUL36 fused with green or red fluorescent proteins as well as viruses with specific deletions in the CVSC genes. Biochemical and structural studies of these mutants demonstrated that (i) four of the helices in the CVSC helix bundle can be attributed to two copies each of pUL36 and pUL25, (ii) pUL17 and pUL6 are required for capsid binding of the terminase complex in the nucleus, (iii) pUL17 is important for determining the site of the first cleavage reaction generating replicated genomes with termini derived from the long-arm component of the herpes simplex virus 1 (HSV-1) genome, (iv) pUL36 serves no direct role in cleavage/packaging, (v) cleavage and stable packaging of the viral genome involve an ordered interaction of the terminase complex and pUL25 with pUL17 at the portal vertex, and (vi) packaging of the viral genome results in a dramatic displacement of the portal.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, concatemeric viral DNA into preformed capsids. A key knowledge gap is how the capsid engages the replicated viral genome and the subsequent packaging of a unit-length HSV genome. Here, biochemical and structural studies focused on the unique portal vertex of wild-type HSV and packaging mutants provide insights into the mechanism of HSV genome packaging. The significance of our research is in identifying the portal proteins pUL6 and pUL17 as key viral factors for engaging the terminase complex with the capsid and the subsequent cleavage, packaging, and stable incorporation of the viral genome in the HSV-1 capsid.
Collapse
|