1
|
Herynek Š, Svoboda J, Huličiak M, Peleg Y, Škultétyová Ľ, Mikulecký P, Schneider B. Increasing recombinant protein production in E. coli via FACS-based selection of N-terminal coding DNA libraries. FEBS J 2025; 292:1070-1085. [PMID: 39726159 PMCID: PMC11880969 DOI: 10.1111/febs.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins. Most of the previous research has been limited to selecting from a few rationally designed sequences. In contrast, we used a directed evolution-based methodology, screening large numbers of diversified sequences derived from DNA libraries coding for the N-termini of investigated proteins. To facilitate the identification of cells with increased expression of the target construct, we cloned a GFP gene at the C-terminus of the expressed genes and used fluorescent activated cell sorting (FACS) to separate cells based on their fluorescence. By following this systematic workflow, we successfully elevated the yield of soluble recombinant proteins of multiple constructs up to over 30-fold.
Collapse
Affiliation(s)
- Štěpán Herynek
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| | - Jakub Svoboda
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| | - Maroš Huličiak
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF)Weizmann Institute of ScienceRehovotIsrael
| | - Ľubica Škultétyová
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| | - Pavel Mikulecký
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEVPragueCzech Republic
| |
Collapse
|
2
|
Farberov S, Ziv O, Lau JY, Ben-Tov Perry R, Lubelsky Y, Miska E, Kudla G, Ulitsky I. Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity. Nat Struct Mol Biol 2025; 32:287-299. [PMID: 39327473 DOI: 10.1038/s41594-024-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated for their important functions in mammalian cells. However, how their functional capacities are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation and stability of hundreds of messenger RNAs and, consequently, a regulator of genomic stability and aging. Here we probed the RNA structure and long-range RNA-RNA interactions formed by human NORAD inside cells under different stressful conditions. We discovered a highly modular structure consisting of well-defined domains that contribute independently to NORAD function. Following arsenite stress, most structural domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules. We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding sites along NORAD and consequently contributes to the derepression of Pumilio targets. We then applied these structural principles to design an effective artificial decoy for the let-7 microRNA. Our work demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and how structural principles can be employed for the rational design of lncRNAs with desired activities.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Ziv
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Eleven Therapeutics, Cambridge, UK.
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Adámková K, Trundová M, Kovaľ T, Husťáková B, Kolenko P, Dušková J, Skálová T, Dohnálek J. Substrate preference, RNA binding and active site versatility of Stenotrophomonas maltophilia nuclease SmNuc1, explained by a structural study. FEBS J 2025; 292:129-152. [PMID: 39361520 PMCID: PMC11705217 DOI: 10.1111/febs.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
Nucleases of the S1/P1 family have important applications in biotechnology and molecular biology. We have performed structural analyses of SmNuc1 nuclease from Stenotrophomonas maltophilia, including RNA cleavage product binding and mutagenesis in a newly discovered flexible Arg74-motif, involved in substrate binding and product release and likely contributing to the high catalytic rate. The Arg74Gln mutation shifts substrate preference towards RNA. Purine nucleotide binding differs compared to pyrimidines, confirming the plasticity of the active site. The enzyme-product interactions indicate a gradual, stepwise product release. The activity of SmNuc1 towards c-di-GMP in crystal resulted in a distinguished complex with the emerging product 5'-GMP. This enzyme from an opportunistic pathogen relies on specific architecture enabling high performance under broad conditions, attractive for biotechnologies.
Collapse
Affiliation(s)
- Kristýna Adámková
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
- Department of Biochemistry and MicrobiologyUniversity of Chemistry and TechnologyPrague 6Czech Republic
| | - Mária Trundová
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| | - Tomáš Kovaľ
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| | - Blanka Husťáková
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| | - Petr Kolenko
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
- Czech Technical University in PragueCzech Republic
| | - Jarmila Dušková
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| | - Tereza Skálová
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| | - Jan Dohnálek
- Institute of BiotechnologyCzech Academy of SciencesVestecCzech Republic
| |
Collapse
|
4
|
Brezovská B, Narasimhan S, Šiková M, Šanderová H, Kovaľ T, Borah N, Shoman M, Pospíšilová D, Vaňková Hausnerová V, Tužinčin D, Černý M, Komárek J, Janoušková M, Kambová M, Halada P, Křenková A, Hubálek M, Trundová M, Dohnálek J, Hnilicová J, Žídek L, Krásný L. MoaB2, a newly identified transcription factor, binds to σ A in Mycobacterium smegmatis. J Bacteriol 2024; 206:e0006624. [PMID: 39499088 PMCID: PMC11656743 DOI: 10.1128/jb.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
In mycobacteria, σA is the primary sigma factor. This essential protein binds to RNA polymerase (RNAP) and mediates transcription initiation of housekeeping genes. Our knowledge about this factor in mycobacteria is limited. Here, we performed an unbiased search for interacting partners of Mycobacterium smegmatis σA. The search revealed a number of proteins; prominent among them was MoaB2. The σA-MoaB2 interaction was validated and characterized by several approaches, revealing that it likely does not require RNAP and is specific, as alternative σ factors (e.g., closely related σB) do not interact with MoaB2. The structure of MoaB2 was solved by X-ray crystallography. By immunoprecipitation and nuclear magnetic resonance, the unique, unstructured N-terminal domain of σA was identified to play a role in the σA-MoaB2 interaction. Functional experiments then showed that MoaB2 inhibits σA-dependent (but not σB-dependent) transcription and may increase the stability of σA in the cell. We propose that MoaB2, by sequestering σA, has a potential to modulate gene expression. In summary, this study has uncovered a new binding partner of mycobacterial σA, paving the way for future investigation of this phenomenon.IMPORTANCEMycobacteria cause serious human diseases such as tuberculosis and leprosy. The mycobacterial transcription machinery is unique, containing transcription factors such as RbpA, CarD, and the RNA polymerase (RNAP) core-interacting small RNA Ms1. Here, we extend our knowledge of the mycobacterial transcription apparatus by identifying MoaB2 as an interacting partner of σA, the primary sigma factor, and characterize its effects on transcription and σA stability. This information expands our knowledge of interacting partners of subunits of mycobacterial RNAP, providing opportunities for future development of antimycobacterial compounds.
Collapse
Affiliation(s)
- Barbora Brezovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Subhash Narasimhan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Debora Pospíšilová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Dávid Tužinčin
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martin Černý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Jan Komárek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Žídek
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Peri L, Matzov D, Huxley DR, Rainish A, Fierro F, Sapir L, Pfeiffer T, Waterloo L, Hübner H, Peleg Y, Gmeiner P, McCormick PJ, Weikert D, Niv MY, Shalev-Benami M. A bitter anti-inflammatory drug binds at two distinct sites of a human bitter taste GPCR. Nat Commun 2024; 15:9991. [PMID: 39557861 PMCID: PMC11574016 DOI: 10.1038/s41467-024-54157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs) expressed orally and extraorally, elicit signaling in response to a large set of tastants. Among 25 functional TAS2Rs encoded in the human genome, TAS2R14 is the most promiscuous, and responds to hundreds of chemically diverse ligands. Here we present the cryo-electron microscopy (cryo-EM) structure of the human TAS2R14 in complex with its signaling partner gustducin, and bound to flufenamic acid (FFA), a clinically approved nonsteroidal anti-inflammatory drug. The structure reveals an unusual binding mode, where two copies of FFA are bound at distinct pockets: one at the canonical receptor site within the trans-membrane bundle, and the other in the intracellular facet, bridging the receptor with gustducin. Together with a pocket-specific BRET-based ligand binding assay, these results illuminate bitter taste signaling and provide tools for a site-targeted compound design.
Collapse
Affiliation(s)
- Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Donna Matzov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominic R Huxley
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Alon Rainish
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Liel Sapir
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Tara Pfeiffer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Waterloo
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAUNeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
- Department of Pharmacology and Therapeutics, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- FAUNeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel.
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Duchin Rapp Y, Lipsman V, Yuda L, Kublanov IV, Matsliyah D, Segev E. Algal exudates promote conjugation in marine Roseobacters. mBio 2024; 15:e0106224. [PMID: 39189747 PMCID: PMC11481893 DOI: 10.1128/mbio.01062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Horizontal gene transfer (HGT) is a pivotal mechanism driving bacterial evolution, conferring adaptability within dynamic marine ecosystems. Among HGT mechanisms, conjugation mediated by type IV secretion systems (T4SSs) plays a central role in the ecological success of marine bacteria. However, the conditions promoting conjugation events in the marine environment are not well-understood. Roseobacters, abundant marine bacteria commonly associated with algae, possess a multitude of T4SSs. Many Roseobacters are heterotrophic bacteria that rely on algal secreted compounds to support their growth. These compounds attract bacteria, facilitating colonization and attachment to algal cells. Algae and their metabolites bring bacteria into close proximity, potentially promoting bacterial HGT. Investigation across various Roseobacters revealed that algal exudates indeed enhance plasmid transfer through conjugation. While algal exudates do not influence the transcription of bacterial conjugative machinery genes, they promote bacterial attachment, potentially stabilizing proximity and facilitating HGT. Notably, under conditions where attachment is less advantageous, the impact of algal exudates on conjugation is reduced. These findings suggest that algae enhance bacterial conjugation primarily by fostering attachment and highlight the importance of studying bacterial HGT within the context of algal-bacterial interactions. IMPORTANCE This study explores how algal-bacterial interactions influence horizontal gene transfer (HGT) among marine bacteria. HGT, a key driver of bacterial evolution, is facilitated by conjugation mediated by type IV secretion systems (T4SSs). Through investigating Roseobacters, abundant marine bacteria often found to be associated with algae, the study reveals that algal exudates enhance plasmid transfer via conjugation. This enhancement is attributed to the promotion of bacterial attachment by algal compounds, emphasizing the role of algal-bacterial interactions in shaping genetic exchange within dynamic marine ecosystems. Understanding these mechanisms is crucial for elucidating bacterial adaptability and evolution in the marine environment.
Collapse
Affiliation(s)
- Yemima Duchin Rapp
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya V. Kublanov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Matsliyah
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Kovaľ T, Borah N, Sudzinová P, Brezovská B, Šanderová H, Vaňková Hausnerová V, Křenková A, Hubálek M, Trundová M, Adámková K, Dušková J, Schwarz M, Wiedermannová J, Dohnálek J, Krásný L, Kouba T. Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun 2024; 15:8740. [PMID: 39384756 PMCID: PMC11464796 DOI: 10.1038/s41467-024-52891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
Collapse
Affiliation(s)
- Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Nabajyoti Borah
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Barbora Brezovská
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Viola Vaňková Hausnerová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Kristýna Adámková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Marek Schwarz
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
8
|
Khanijou JK, Hee YT, Scipion CPM, Chen X, Selvarajoo K. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. NPJ Syst Biol Appl 2024; 10:109. [PMID: 39353984 PMCID: PMC11445242 DOI: 10.1038/s41540-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Yan Ting Hee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore
| | | | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Singapore.
| |
Collapse
|
9
|
Meron S, Peleg S, Shenberger Y, Hofmann L, Gevorkyan-Airapetov L, Ruthstein S. Tracking Disordered Extracellular Domains of Membrane Proteins in the Cell with Cu(II)-Based Spin Labels. J Phys Chem B 2024; 128:8908-8914. [PMID: 39231533 PMCID: PMC11421077 DOI: 10.1021/acs.jpcb.4c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these structures are missing information on the disordered extracellular domains of hCtr1. Extracellular domains are sensing or interacting with the environment outside of the cell and therefore play an essential role in any transmembrane protein. Especially in hCtr1, the extracellular domain functions as a gating mechanism for copper ions. Here, we performed EPR experiments revealing structural information about the extracellular N-terminal domain of the full-length hCtr1 in vitro and in situ in insect cells and cell membrane fragments. The comparison revealed that the extracellular domains of the in situ and native membrane hCtr1 are further apart than the structure of the purified protein. These method-related differences highlight the significance of studying membrane proteins in their native environment.
Collapse
Affiliation(s)
- Shelly Meron
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Shahaf Peleg
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Yulia Shenberger
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lukas Hofmann
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lada Gevorkyan-Airapetov
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| |
Collapse
|
10
|
Reingewertz TH, Ben-Maimon M, Zafrir Z, Tuller T, Horovitz A. Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding. Protein Sci 2024; 33:e5087. [PMID: 39074255 DOI: 10.1002/pro.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.
Collapse
Affiliation(s)
- Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miki Ben-Maimon
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Ma Y, Wang S, Hong B, Feng L, Wang J. Construction and Mechanism Exploration of Highly Efficient System for Bacterial Ghosts Preparation Based on Engineered Phage ID52 Lysis Protein E. Vaccines (Basel) 2024; 12:472. [PMID: 38793723 PMCID: PMC11126076 DOI: 10.3390/vaccines12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology. In this study, we screened out the most effective lysis protein ID52-E-W4A among 13 mutants based on phage ID52 lysis protein E and optimized the liquid culture medium for preparing Escherichia coli Nissle 1917 (EcN). The results revealed a significantly higher lysis rate of ID52-E-W4A compared to that of ID52-E in the 2xYT medium. Furthermore, EcN BGs were cultivated in a fermenter, achieving an initial OD600 as high as 6.0 after optimization, indicating enhanced BG production. Moreover, the yield of ID52-E-W4A-induced BGs reached 67.0%, contrasting with only a 3.1% yield from φX174-E-induced BGs. The extended applicability of the lysis protein ID52-E-W4A was demonstrated through the preparation of Salmonella pullorum ghosts and Salmonella choleraesuis ghosts. Knocking out the molecular chaperone gene slyD and dnaJ revealed that ID52-mediated BGs could still undergo lysis. Conversely, overexpression of integral membrane enzyme gene mraY resulted in the loss of lysis activity for ID52-E, suggesting that the lysis protein ID52-E may no longer rely on SlyD or DnaJ to function, with MraY potentially being the target of ID52-E. This study introduces a novel approach utilizing ID52-E-W4A for recombinant expression, accelerating the BG formation and thereby enhancing BG yield and productivity.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China (J.W.)
| | | | | | | | | |
Collapse
|
13
|
Lyu L, Chen Q, Xue H, Mustafa S, Manzoor Shah A, Huang Q, Zhang Y, Wang S, Zhao ZK. Modularly engineering Rhodotorula toruloides for α-terpineol production. Front Bioeng Biotechnol 2024; 11:1310069. [PMID: 38312511 PMCID: PMC10835275 DOI: 10.3389/fbioe.2023.1310069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
α-Terpineol is a monoterpenoid alcohol that has been widely used in the flavor, fragrance, and pharmaceutical industries because of its sensory and biological properties. However, few studies have focused on the microbial production of α-terpineol. The oleaginous yeast Rhodotorula toruloides is endowed with a natural mevalonate pathway and is a promising host in synthetic biology and biorefinery. The primary objective of this work was to engineer R. toruloides for the direct biosynthesis of α-terpineol. The improvement in monoterpenoid production was achieved through the implementation of modular engineering strategies, which included the enhancement of precursor supply, blocking of downstream pathways, and disruption of competing pathways. The results of these three methods showed varying degrees of favorable outcomes in enhancing α-terpineol production. The engineered strain 5L6HE5, with competitive pathway disruption and increased substrate supply, reached the highest product titer of 1.5 mg/L, indicating that reducing lipid accumulation is an efficient method in R. toruloides engineering for terpenoid synthesis. This study reveals the potential of R. toruloides as a host platform for the synthesis of α-terpineol as well as other monoterpenoid compounds.
Collapse
Affiliation(s)
- Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sumayya Mustafa
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Avizemer Z, Martí-Gómez C, Hoch SY, McCandlish DM, Fleishman SJ. Evolutionary paths that link orthogonal pairs of binding proteins. RESEARCH SQUARE 2023:rs.3.rs-2836905. [PMID: 37131620 PMCID: PMC10153392 DOI: 10.21203/rs.3.rs-2836905/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs. Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their affinity exceeds the threshold required for function1-4. Thus, homologous and high-specificity binding pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the required affinity in each intermediate5,6? Until now, a fully functional single-mutation path that connects two orthogonal pairs has only been described where the pairs were mutationally close thus enabling experimental enumeration of all intermediates2. We present an atomistic and graph-theoretical framework for discovering low molecular strain single-mutation paths that connect two extant pairs, enabling enumeration beyond experimental capability. We apply it to two orthogonal bacterial colicin endonuclease-immunity pairs separated by 17 interface mutations7. We were not able to find a strain-free and functional path in the sequence space defined by the two extant pairs. But including mutations that bridge amino acids that cannot be exchanged through single-nucleotide mutations led us to a strain-free 19-mutation trajectory that is completely viable in vivo. Our experiments show that the specificity switch is remarkably abrupt, resulting from only one radical mutation on each partner. Furthermore, each of the critical specificity-switch mutations increases fitness, demonstrating that functional divergence could be driven by positive Darwinian selection. These results reveal how even radical functional changes in an epistatic fitness landscape may evolve.
Collapse
Affiliation(s)
- Ziv Avizemer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Shlomo Yakir Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
15
|
Li J, Li Y, Li Y, Ma Y, Xu W, Wang J. An enhanced activity and thermostability of chimeric Bst DNA polymerase for isothermal amplification applications. Appl Microbiol Biotechnol 2023; 107:6527-6540. [PMID: 37672070 DOI: 10.1007/s00253-023-12751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a widely used method for clinical diagnosis, customs quarantine, and disease prevention. However, the low catalytic activity of Bst DNA polymerase has made it challenging to develop rapid and reliable point-of-care testing. Herein, we developed a series of Bst DNA polymerase mutants with enhanced activity by predicting and analyzing the activity sites. Among these mutants, single mutants K431D and K431E showed a 1.93- and 2.03-fold increase in catalytic efficiency, respectively. We also created a chimeric protein by fusing the DNA-binding domain of DNA ligase from Pyrococcus abyssi (DBD), namely DBD-K431E, which enabled real-time LAMP at high temperatures up to 73 ℃ and remained active after heating at 70 ℃ for 8 h. The chimeric DBD-K431E remained active in the presence of 50 U/mL heparin, 10% ethanol, and up to 100 mM NaCl, and showed higher activity in 110 mM (NH4)2SO4, 110 mM KCl, and 12 mM MgSO4. Notably, it generated a fluorescence signal during the detection of Salmonella typhimurium at 2 × 102 ag/μL of genomic DNA and 1.24 CFU/mL of bacterial colony, outperforming the wild type and the commercial counterpart Bst 2.0. Our results suggest that the DBD-K431E variant could be a promising tool for general molecular biology research and clinical diagnostics. KEY POINTS: • Residue K431 is probably a key site of Bst DNA polymerase activity • The chimeric DBD-K431E is more inhibitor tolerant and thermostable than Bst-LF • The DBD-K431E variant can detect Salmonella typhimurium at 102 ag/μL or 100 CFU/mL.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Kowalczyk B, Petzold M, Kaczyński Z, Szuster-Ciesielska A, Luchowski R, Gruszecki WI, Fuchs B, Galuska CE, Choma A, Tarasiuk J, Palusińska-Szysz M. Lipopolysaccharide of Legionella pneumophila Serogroup 1 Facilitates Interaction with Host Cells. Int J Mol Sci 2023; 24:14602. [PMID: 37834049 PMCID: PMC10572746 DOI: 10.3390/ijms241914602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Legionella pneumophila is the primary causative agent of Legionnaires' disease. The mutant-type strain interrupted in the ORF7 gene region responsible for the lipopolysaccharide biosynthesis of the L. pneumophila strain Heysham-1, lacking the O-acetyl groups attached to the rhamnose of the core part, showed a higher surface polarity compared with the wild-type strain. The measurement of excitation energy transfer between fluorophores located on the surface of bacteria and eukaryotic cells showed that, at an early stage of interaction with host cells, the mutant exhibited weaker interactions with Acanthamoeba castellanii cells and THP-1-derived macrophages. The mutant displayed reduced adherence to macrophages but enhanced adherence to A. castellanii, suggesting that the O-acetyl group of the LPS core region plays a crucial role in facilitating interaction with macrophages. The lack of core rhamnose O-acetyl groups made it easier for the bacteria to multiply in amoebae and macrophages. The mutant induced TNF-α production more strongly compared with the wild-type strain. The mutant synthesized twice as many ceramides Cer(t34:0) and Cer(t38:0) than the wild-type strain. The study showed that the internal sugars of the LPS core region of L. pneumophila sg 1 can interact with eukaryotic cell surface receptors and mediate in contacting and attaching bacteria to host cells as well as modulating the immune response to infection.
Collapse
Affiliation(s)
- Bożena Kowalczyk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Markus Petzold
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, University of Technology Dresden, 01069 Dresden, Germany;
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland;
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Wiesław I. Gruszecki
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Beate Fuchs
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Christina E. Galuska
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Jacek Tarasiuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| |
Collapse
|
17
|
Roy M, Fleisher RC, Alexandrov AI, Horovitz A. Reduced ADP off-rate by the yeast CCT2 double mutation T394P/R510H which causes Leber congenital amaurosis in humans. Commun Biol 2023; 6:888. [PMID: 37644231 PMCID: PMC10465592 DOI: 10.1038/s42003-023-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
The CCT/TRiC chaperonin is found in the cytosol of all eukaryotic cells and assists protein folding in an ATP-dependent manner. The heterozygous double mutation T400P and R516H in subunit CCT2 is known to cause Leber congenital amaurosis (LCA), a hereditary congenital retinopathy. This double mutation also renders the function of subunit CCT2, when it is outside of the CCT/TRiC complex, to be defective in promoting autophagy. Here, we show using steady-state and transient kinetic analysis that the corresponding double mutation in subunit CCT2 from Saccharomyces cerevisiae reduces the off-rate of ADP during ATP hydrolysis by CCT/TRiC. We also report that the ATPase activity of CCT/TRiC is stimulated by a non-folded substrate. Our results suggest that the closed state of CCT/TRiC is stabilized by the double mutation owing to the slower off-rate of ADP, thereby impeding the exit of CCT2 from the complex that is required for its function in autophagy.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rachel C Fleisher
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Alexandrov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
18
|
Yang L, Wagner T, Mechaly A, Boyko A, Bruch EM, Megrian D, Gubellini F, Alzari PM, Bellinzoni M. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat Commun 2023; 14:4851. [PMID: 37563123 PMCID: PMC10415282 DOI: 10.1038/s41467-023-40253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.
Collapse
Affiliation(s)
- Lu Yang
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, 430207, PR China
| | - Tristan Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359, Bremen, Germany
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plateforme de Cristallographie, F-75015, Paris, France
| | - Alexandra Boyko
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- BostonGene, Yerevan, Armenia
| | - Eduardo M Bruch
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Sanofi, In vitro Biology, Integrated Drug Discovery, 350 Water St, Cambridge, MA, 02141, USA
| | - Daniela Megrian
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France.
| |
Collapse
|
19
|
Kabirova M, Reichenstein M, Borovok N, Sheinin A, Gorobets D, Michaelevski I. Abl2 Kinase Differentially Regulates iGluRs Current Activity and Synaptic Localization. Cell Mol Neurobiol 2023; 43:2785-2799. [PMID: 36689065 PMCID: PMC11410115 DOI: 10.1007/s10571-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Abelson non-receptor tyrosine kinases (Abl1 and Abl2) are established cellular signaling proteins, implicated in cytoskeletal reorganization essential for modulation of cell morphology and motility. During development of the central nervous system, Abl kinases play fundamental roles in neurulation and neurite outgrowth, relaying information from axon guidance cues and growth factor receptors to promote cytoskeletal rearrangements. In mature neurons, Abl kinases localize to pre- and postsynaptic compartments and are involved in regulation of synaptic stability and plasticity. Although emerging evidence indicates interchangeability of these isoforms in managing of cellular functions, in healthy adult neurons, Abl1 contribution is less elucidated, while Abl2 is required for optimal synaptic functioning. Our previous study demonstrated compartmentalization of Abl1 to the presynapse and Abl2 to the postsynapse and characterized their modulatory effect on spontaneous excitatory synaptic transmission. Here, we further delineate the role of Abl2 on regulation of the postsynaptic component of miniature excitatory postsynaptic current (mEPSC). Our findings show that both acute and prolonged activation of Abl2, in line with reduction of mEPSC amplitude, also decrease AMPA and NMDA current amplitudes. In contrast with the current-detrimental effect, prolonged Abl2 activity stabilizes spines, particularly contributing to maintenance of active synapses at distal (perhaps apical) segments of dendrites. Hence, we propose that attenuation of ion currents via ionotropic glutamatergic receptors by Abl2 kinase derives from either reduction of the receptor sensitivity for glutamate or is due to alteration of channel gating mechanisms. Abl2 and excitatory postsynapses: Abl2 expression level affects active excitatory synapse density on distal dendrites, while Abl2 activity impacts current density through AMPA and NMDA receptors.
Collapse
Affiliation(s)
- M Kabirova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel
| | - M Reichenstein
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69788, Tel Aviv, Israel
| | - N Borovok
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel
| | - A Sheinin
- Sagol School of Neuroscience, Tel Aviv University, 69788, Tel Aviv, Israel
| | - D Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel
- The Adelson School of Medicine, Ariel University, 4070000, Ariel, Israel
| | - I Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, 4070000, Ariel, Israel.
- Integrated Brain Science Center at Ariel University, 4070000, Ariel, Israel.
- Department of Biological Chemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, 69788, Tel Aviv, Israel.
- The Adelson School of Medicine, Ariel University, 4070000, Ariel, Israel.
| |
Collapse
|
20
|
Zare-Mehrjerdi O, Trader G, Kirik V. Overlap extension cloning of PCR products into a Gateway-compatible plasmid vector. Biotechniques 2023. [PMID: 37424091 PMCID: PMC10388215 DOI: 10.2144/btn-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
A PCR cloning method that combines a dual selection pGATE-1 plasmid vector and an improved overlap extension cloning was developed. This efficient and cost-effective method allows for the introduction of DNA fragments into the Gateway cloning pipeline. The cloning efficiency is facilitated by a dual selection that includes the ccdB gene and gentamicin resistance. For users of the Gateway cloning system, substantial cost saving comes from eliminating BP recombination and ligation reactions to introduce DNA fragments into pDONR or pENTR vectors. Beyond the Gateway technology, this recombination-based cloning system can be used to efficiently clone PCR amplicons by adding 24-base pair adaptor sequences that are utilized by bacterial homologous recombination mechanism.
Collapse
Affiliation(s)
- Omid Zare-Mehrjerdi
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Gracie Trader
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Viktor Kirik
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| |
Collapse
|
21
|
Margenat M, Betancour G, Irving V, Costábile A, García-Cedrés T, Portela MM, Carrión F, Herrera FE, Villarino A. Characteristics of Mycobacterium tuberculosis PtpA interaction and activity on the alpha subunit of human mitochondrial trifunctional protein, a key enzyme of lipid metabolism. Front Cell Infect Microbiol 2023; 13:1095060. [PMID: 37424790 PMCID: PMC10325834 DOI: 10.3389/fcimb.2023.1095060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
During Mycobacterium tuberculosis (Mtb) infection, the virulence factor PtpA belonging to the protein tyrosine phosphatase family is delivered into the cytosol of the macrophage. PtpA interacts with numerous eukaryotic proteins modulating phagosome maturation, innate immune response, apoptosis, and potentially host-lipid metabolism, as previously reported by our group. In vitro, the human trifunctional protein enzyme (hTFP) is a bona fide PtpA substrate, a key enzyme of mitochondrial β-oxidation of long-chain fatty acids, containing two alpha and two beta subunits arranged in a tetramer structure. Interestingly, it has been described that the alpha subunit of hTFP (ECHA, hTFPα) is no longer detected in mitochondria during macrophage infection with the virulent Mtb H37Rv. To better understand if PtpA could be the bacterial factor responsible for this effect, in the present work, we studied in-depth the PtpA activity and interaction with hTFPα. With this aim, we performed docking and in vitro dephosphorylation assays defining the P-Tyr-271 as the potential target of mycobacterial PtpA, a residue located in the helix-10 of hTFPα, previously described as relevant for its mitochondrial membrane localization and activity. Phylogenetic analysis showed that Tyr-271 is absent in TFPα of bacteria and is present in more complex eukaryotic organisms. These results suggest that this residue is a specific PtpA target, and its phosphorylation state is a way of regulating its subcellular localization. We also showed that phosphorylation of Tyr-271 can be catalyzed by Jak kinase. In addition, we found by molecular dynamics that PtpA and hTFPα form a stable protein complex through the PtpA active site, and we determined the dissociation equilibrium constant. Finally, a detailed study of PtpA interaction with ubiquitin, a reported PtpA activator, showed that additional factors are required to explain a ubiquitin-mediated activation of PtpA. Altogether, our results provide further evidence supporting that PtpA could be the bacterial factor that dephosphorylates hTFPα during infection, potentially affecting its mitochondrial localization or β-oxidation activity.
Collapse
Affiliation(s)
- Mariana Margenat
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Gabriela Betancour
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vivian Irving
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Tania García-Cedrés
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - María Magdalena Portela
- Instituto de Biología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando E. Herrera
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas-Universidad Nacional del Litoral – CONICET, Santa Fe, Argentina
| | - Andrea Villarino
- Instituto de Biología, Sección Bioquímica, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
22
|
Kalavacherla T, Buschmann S, Schleker ESM, Michel H, Reinhart C. Purification and characterization of eukaryotic ATP-dependent transporters homologously expressed in Pichia pastoris for structural studies by cryo-electron microscopy. Protein Expr Purif 2023; 204:106230. [PMID: 36632890 DOI: 10.1016/j.pep.2023.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
Membrane proteins play an essential role in all living organisms. Although there have been numerous efforts in the past to elucidate the structure and function of eukaryotic primary active transporters, knowledge about the majority of these membrane proteins is still minimal. This is often due to their low availability and complex handling. In this study, we homologously expressed three ATP-dependent transport proteins, STE6-2p, NEO1-p, and YPK9-p, in Pichia pastoris and subsequently optimized the solubilization and purification processes. Sequential use of different mild detergents and utilization of hydrophilic matrices in the purification procedure allowed us to obtain all three transporters monodisperse and in high purity, enabling initial structural analysis by cryo-electron microscopy. Using the respective substrates, we determined the specific activity of all target proteins using an ATPase assay. This study opens the door to further functional and structural studies of this pharmacologically important class of membrane proteins.
Collapse
Affiliation(s)
- Tejaswi Kalavacherla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438, Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438, Frankfurt am Main, Germany
| | - E Sabine M Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438, Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438, Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Ahmad M, Ha JH, Mayse LA, Presti MF, Wolfe AJ, Moody KJ, Loh SN, Movileanu L. A generalizable nanopore sensor for highly specific protein detection at single-molecule precision. Nat Commun 2023; 14:1374. [PMID: 36941245 PMCID: PMC10027671 DOI: 10.1038/s41467-023-36944-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior. Here, we formulate a class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. The outcomes of this work could impact biomedical diagnostics by providing a fundamental basis for biomarker detection in biofluids.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Lauren A Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kelsey J Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA.
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA.
- The BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
24
|
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan. Int J Mol Sci 2023; 24:ijms24065480. [PMID: 36982553 PMCID: PMC10049358 DOI: 10.3390/ijms24065480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future.
Collapse
|
25
|
Liang S, Zhang Y, Lyu L, Wang S, Zhao ZK. Secretory expression of β-1,3-glucomannanase in the oleaginous yeast Rhodosporidium toruloides for improved lipid extraction. BIORESOUR BIOPROCESS 2023; 10:16. [PMID: 38647878 PMCID: PMC10991151 DOI: 10.1186/s40643-023-00639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Lipids produced by oleaginous yeasts are considered as sustainable sources for the production of biofuels and oleochemicals. The red yeast Rhodosporidium toruloides can accumulate lipids to over 70% of its dry cell mass. To facilitate lipid extraction, a recombinant β-1,3-glucomannanase, MAN5C, has been applied to partially breakdown R. toruloides cell wall. In this study, R. toruloides NP11 was engineered for secretory expression of MAN5C to simplify the lipid extraction process. Specifically, a cassette contained a codon-optimized gene MAN5C was integrated into the genome of R. toruloides by Agrobacterium-mediated transformation. The engineered strain NP11-MAN5C was found with proper expression and secretion of active MAN5C, yet no notable compromise in terms of cell growth and lipid production. When NP11-MAN5C cell cultures were extracted with ethyl acetate without any pretreatment, 20% of total lipids were recovered, 4.3-fold higher than that of the parental strain NP11. When the cells were heat-treated followed by extraction with ethyl acetate in the presence of the culture broth supernatants, up to 93% of total lipids were recovered, confirming beneficial effects of MAN5C produced in situ. This study provides a new strategy to engineer oleaginous yeasts for more viable lipid extraction and down-stream processes.
Collapse
Affiliation(s)
- Shiyu Liang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China.
| |
Collapse
|
26
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
27
|
Lima S, Blanco J, Olivieri F, Imelio JA, Nieves M, Carrión F, Alvarez B, Buschiazzo A, Marti MA, Trajtenberg F. An allosteric switch ensures efficient unidirectional information transmission by the histidine kinase DesK from Bacillus subtilis. Sci Signal 2023; 16:eabo7588. [PMID: 36693130 DOI: 10.1126/scisignal.abo7588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphorylation carries chemical information in biological systems. In two-component systems (TCSs), the sensor histidine kinase and the response regulator are connected through phosphoryl transfer reactions that may be uni- or bidirectional. Directionality enables the construction of complex regulatory networks that optimize signal propagation and ensure the forward flow of information. We combined x-ray crystallography, hybrid quantum mechanics/molecular mechanics (QM/MM) simulations, and systems-integrative kinetic modeling approaches to study phosphoryl flow through the Bacillus subtilis thermosensing TCS DesK-DesR. The allosteric regulation of the histidine kinase DesK was critical to avoid back transfer of phosphoryl groups and futile phosphorylation-dephosphorylation cycles by isolating phosphatase, autokinase, and phosphotransferase activities. Interactions between the kinase's ATP-binding domain and the regulator's receiver domain placed the regulator in two distinct positions in the phosphotransferase and phosphatase complexes, thereby determining whether a key glutamine residue in DesK was properly situated to assist in the dephosphorylation reaction. Moreover, an energetically unfavorable phosphotransferase conformation when DesK was not phosphorylated minimized reverse phosphoryl transfer. DesR dimerization and a dissociative phosphoryl transfer reaction also enforced the direction of phosphoryl flow. Shorter or longer distances between the phosphoryl acceptor and donor residues shifted the phosphoryl transfer equilibrium by modulating the stabilizing effect of the Mg2+ cofactor. These mechanisms control the directionality of signal transmission and show how structure-encoded allostery stores and transmits information in signaling systems.
Collapse
Affiliation(s)
- Sofía Lima
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan Blanco
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Olivieri
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan A Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Nieves
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Département de Microbiologie, Institut Pasteur, Paris, France
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
28
|
Moraes MI, Iglesias C, Teixeira IS, Milagre HM, Giordano SR, Milagre CD. Biotransformations of nitriles mediated by in vivo nitrile hydratase of Rhodococcus erythropolis ATCC 4277 heterologously expressed in E. Coli. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
30
|
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, Reinhart C. Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules. Proc Natl Acad Sci U S A 2022; 119:e2202822119. [PMID: 36256814 PMCID: PMC9618074 DOI: 10.1073/pnas.2202822119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.
Collapse
Affiliation(s)
- E. Sabine M. Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Song DA, Alber S, Doron-Mandel E, Schmid V, Albus CA, Leitner O, Hamawi H, Oses-Prieto JA, Dezorella N, Burlingame AL, Fainzilber M, Rishal I. A New Monoclonal Antibody Enables BAR Analysis of Subcellular Importin β1 Interactomes. Mol Cell Proteomics 2022; 21:100418. [PMID: 36180036 PMCID: PMC9630795 DOI: 10.1016/j.mcpro.2022.100418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Importin β1 (KPNB1) is a nucleocytoplasmic transport factor with critical roles in both cytoplasmic and nucleocytoplasmic transport, hence there is keen interest in the characterization of its subcellular interactomes. We found limited efficiency of BioID in the detection of importin complex cargos and therefore generated a highly specific and sensitive anti-KPNB1 monoclonal antibody to enable biotinylation by antibody recognition analysis of importin β1 interactomes. The monoclonal antibody recognizes an epitope comprising residues 301-320 of human KPBN1 and strikingly is highly specific for cytoplasmic KPNB1 in diverse applications, with little reaction with KPNB1 in the nucleus. Biotinylation by antibody recognition with this novel antibody revealed numerous new interactors of importin β1, expanding the KPNB1 interactome to cytoplasmic and signaling complexes that highlight potential new functions for the importins complex beyond nucleocytoplasmic transport. Data are available via ProteomeXchange with identifier PXD032728.
Collapse
Affiliation(s)
- Didi-Andreas Song
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ella Doron-Mandel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Schmid
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Christin A. Albus
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Orith Leitner
- Life Science Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Hedva Hamawi
- Life Science Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel,For correspondence: Ida Rishal
| |
Collapse
|
33
|
Yifrach E, Holbrook‐Smith D, Bürgi J, Othman A, Eisenstein M, van Roermund CWT, Visser W, Tirosh A, Rudowitz M, Bibi C, Galor S, Weill U, Fadel A, Peleg Y, Erdmann R, Waterham HR, Wanders RJA, Wilmanns M, Zamboni N, Schuldiner M, Zalckvar E. Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 2022; 18:e11186. [PMID: 36164978 PMCID: PMC9513677 DOI: 10.15252/msb.202211186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.
Collapse
Affiliation(s)
- Eden Yifrach
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Jérôme Bürgi
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
| | - Alaa Othman
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Miriam Eisenstein
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Carlo WT van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Wouter Visser
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Asa Tirosh
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Markus Rudowitz
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Chen Bibi
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Shahar Galor
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Uri Weill
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Amir Fadel
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Matthias Wilmanns
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
- University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Maya Schuldiner
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Einat Zalckvar
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
34
|
Ogran A, Havkin-Solomon T, Becker-Herman S, David K, Shachar I, Dikstein R. Polysome-CAGE of TCL1-driven chronic lymphocytic leukemia revealed multiple N-terminally altered epigenetic regulators and a translation stress signature. eLife 2022; 11:e77714. [PMID: 35939046 PMCID: PMC9359700 DOI: 10.7554/elife.77714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
The transformation of normal to malignant cells is accompanied by substantial changes in gene expression programs through diverse mechanisms. Here, we examined the changes in the landscape of transcription start sites and alternative promoter (AP) usage and their impact on the translatome in TCL1-driven chronic lymphocytic leukemia (CLL). Our findings revealed a marked elevation of APs in CLL B cells from Eµ-Tcl1 transgenic mice, which are particularly enriched with intra-genic promoters that generate N-terminally truncated or modified proteins. Intra-genic promoter activation is mediated by (1) loss of function of 'closed chromatin' epigenetic regulators due to the generation of inactive N-terminally modified isoforms or reduced expression; (2) upregulation of transcription factors, including c-Myc, targeting the intra-genic promoters and their associated enhancers. Exogenous expression of Tcl1 in MEFs is sufficient to induce intra-genic promoters of epigenetic regulators and promote c-Myc expression. We further found a dramatic translation downregulation of transcripts bearing CNY cap-proximal trinucleotides, reminiscent of cells undergoing metabolic stress. These findings uncovered the role of Tcl1 oncogenic function in altering promoter usage and mRNA translation in leukemogenesis.
Collapse
Affiliation(s)
- Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Tal Havkin-Solomon
- Department of Biomolecular Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | | | - Keren David
- Department of Immunology, The Weizmann Institute of ScienceRehovotIsrael
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
35
|
Wang M, Deng Z, Li Y, Ma Y, Wang J. Design and characterization of a novel lytic protein against Clostridium difficile. Appl Microbiol Biotechnol 2022; 106:4511-4521. [PMID: 35699735 PMCID: PMC9194777 DOI: 10.1007/s00253-022-12010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Abstract Clostridium difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing anaerobe that can cause nosocomial antibiotic-associated intestinal disease. Autolysin is a lytic enzyme that hydrolyzes peptidoglycans of the bacterial cell wall, with a catalytic domain and cell wall–binding domains, proven to be involved in bacterial cell wall remodeling and cell division. Although autolysins in C. difficile have been reported, the autolysins have failed to yield impressive results when used as exogenous lytic agents. In this study, we expressed and characterized the binding domains (Cwp19-BD and Acd-BD) and catalytic domains (Cwp19-CD, Acd-CD, and Cwl-CD) of C. difficile autolysins, and the domains with the best binding specificity and lytic activity were selected towards C. difficile to design a novel lytic protein Cwl-CWB2. Cwl-CWB2 showed good biosafety with significantly low hemolysis and without cytotoxicity. The results of fluorescence analysis and lytic assay demonstrated that Cwl-CWB2 has higher binding specificity and stronger lytic activity with a minimum inhibitory concentration at 13.39 ± 5.80 μg/mL against living C. difficile cells, which is significantly stronger than commercial lysozyme (3333.33 ± 1443.37 μg/mL) and other reported C. difficile autolysins. Besides, Cwl-CWB2 exhibited good stability as about 75% of the lytic activity was still retained when incubated at 37 °C for 96 h, which is considered to be a potential antimicrobial agent to combat C. difficile. Key points • Several binding domains and catalytic domains, deriving from several Clostridium difficile autolysins, were expressed, purified, and functionally characterized. • A novel C. difficile lytic protein Cwl-CWB2 was designed from C. difficile autolysins. • The binding specificity and lytic activity of Cwl-CWB2 against C. difficile showed advantages compared with other reported C. difficile autolysins. • Cwl-CWB2 exhibited significantly low hemolysis and cytotoxicity against normal-derived colon mucosa 460 cell. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12010-0.
Collapse
Affiliation(s)
- Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zifeng Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Tal L, Palayam M, Ron M, Young A, Britt A, Shabek N. A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. NATURE PLANTS 2022; 8:561-573. [PMID: 35484202 DOI: 10.1038/s41477-022-01145-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that regulate numerous processes of growth and development. SL perception and signal activation involves interaction between F-box E3 ubiquitin ligase D3/MAX2 and DWARF14 (D14) α/β-hydrolase in a SL-dependent manner and targeting of D53/SMXL6/7/8 transcriptional repressors (SMXLs) for proteasome-mediated degradation. D3/MAX2 has been shown to exist in multiple conformational states in which the C-terminal helix (CTH) undergoes a closed-to-open dynamics and regulates D14 binding and SL perception. Despite the multiple modes of D3-D14 interactions found in vitro, the residues that regulate the conformational switch of D3/MAX2 CTH in targeting D53/SMXLs and the subsequent effect on SL signalling remain unclear. Here we elucidate the functional dynamics of ASK1-D3/MAX2 in SL signalling by leveraging conformational switch mutants in vitro and in plants. We report the crystal structure of a dislodged CTH of the ASK1-D3 mutant and demonstrate that disruptions in CTH plasticity via either CRISPR-Cas9 genome editing or expression of point mutation mutants result in impairment of SL signalling. We show that the conformational switch in ASK1-D3/MAX2 CTH directly regulates ubiquitin-mediated protein degradation. A dislodged conformation involved in D53/SMXLs SL-dependent recruitment and ubiquitination and an engaged conformation are required for the release of polyubiquitinated D53/SMXLs and subsequently D14 for proteasomal degradation. Finally, we uncovered an organic acid metabolite that can directly trigger the D3/MAX2 CTH conformational switch. Our findings unravel a new regulatory function of a SKP1-CUL1-F-box ubiquitin ligase in plant signalling.
Collapse
Affiliation(s)
- Lior Tal
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA
| | - Mily Ron
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA
| | - Aleczander Young
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA
| | - Anne Britt
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
37
|
Walke G, Aupič J, Kashoua H, Janoš P, Meron S, Shenberger Y, Qasem Z, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophys J 2022; 121:1194-1204. [PMID: 35202609 PMCID: PMC9034245 DOI: 10.1016/j.bpj.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.
Collapse
Affiliation(s)
- Gulshan Walke
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Jana Aupič
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Hadeel Kashoua
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Pavel Janoš
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Shelly Meron
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zena Qasem
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
38
|
Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 2022; 40:1143-1149. [PMID: 35102291 DOI: 10.1038/s41587-021-01162-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Imaging of gene-expression patterns in live animals is difficult to achieve with fluorescent proteins because tissues are opaque to visible light. Imaging of transgene expression with magnetic resonance imaging (MRI), which penetrates to deep tissues, has been limited by single reporter visualization capabilities. Moreover, the low-throughput capacity of MRI limits large-scale mutagenesis strategies to improve existing reporters. Here we develop an MRI system, called GeneREFORM, comprising orthogonal reporters for two-color imaging of transgene expression in deep tissues. Starting from two promiscuous deoxyribonucleoside kinases, we computationally designed highly active, orthogonal enzymes ('reporter genes') that specifically phosphorylate two MRI-detectable synthetic deoxyribonucleosides ('reporter probes'). Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes, and their distribution is displayed as pseudo-colored MRI maps based on dynamic proton exchange for noninvasive visualization of transgene expression. We envision that future extensions of GeneREFORM will pave the way to multiplexed deep-tissue mapping of gene expression in live animals.
Collapse
|
39
|
Expression, Purification, and Characterization of the Recombinant, Two-Component, Response Regulator ArlR from Fusobacterium nucleatum. Appl Biochem Biotechnol 2022; 194:2093-2107. [PMID: 35029789 DOI: 10.1007/s12010-021-03785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Fusobacterium nucleatum is associated with the incidence and development of multiple diseases, such as periodontitis and colorectal cancer (CRC). Until now, studies have proved only a few proteins to be associated with such pathogenic diseases. The two-component system is one of the most prevalent forms of bacterial signal transduction related to intestinal diseases. Here, we report a novel, recombinant, two-component, response regulator protein ArlR from the genome of F. nucleatum strain ATCC 25,586. We optimized the expression and purification conditions of ArlR; in addition, we characterized the interaction of this response regulator protein with the corresponding histidine kinase and DNA sequence. The full-length ArlR was successfully expressed in six E. coli host strains. However, optimum expression conditions of ArlR were present only in E. coli strain BL21 CodonPlus (DE3) RIL that was later induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) for 8 h at 25 °C. The SDS-PAGE analysis revealed the molecular weight of the recombinant protein as 27.3 kDa with approximately 90% purity after gel filtration chromatography. Because ArlR was biologically active after its purification, it accepted the corresponding phosphorylated histidine kinase phosphate group and bound to the analogous DNA sequence. The binding constant between ArlR and the corresponding histidine kinase was about 2.1 μM, whereas the binding constant between ArlR and its operon was 6.4 μM. Altogether, these results illustrate an effective expression and purification method for the novel two-component system protein ArlR.
Collapse
|
40
|
Bandyopadhyay B, Peleg Y. Application of Restriction Free (RF) Cloning in Circular Permutation. Methods Mol Biol 2022; 2461:149-163. [PMID: 35727449 DOI: 10.1007/978-1-0716-2152-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The restriction free (RF) cloning has emerged as one of the highly efficient techniques in the area of genetic engineering. RF cloning has wide range of applications in plasmid DNA manipulation including cloning of a single gene, simultaneous assembly of multiple DNA fragments, and mutagenesis from single to multiple simultaneous alterations of a target DNA. Recently, we have developed a new technique of circular permutation using RF cloning. Circular permutation is widely used to investigate the mechanisms of protein folding and function. Previously, restriction enzyme based cloning was used to introduce circular permutation. Our RF cloning method made the protocol faster and more cost-effective. In this chapter, we describe a step-by-step protocol for generating circular permutants using RF methodology.
Collapse
|
41
|
Mayer M, Winer L, Karniel A, Pinner E, Yardeni EH, Morgenstern D, Bibi E. Co-translational membrane targeting and holo-translocon docking of ribosomes translating the SRP receptor. J Mol Biol 2022; 434:167459. [DOI: 10.1016/j.jmb.2022.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
42
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
43
|
Goldsmith M, Barad S, Peleg Y, Albeck S, Dym O, Brandis A, Mehlman T, Reich Z. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). RSC Chem Biol 2022; 3:320-333. [PMID: 35359497 PMCID: PMC8905533 DOI: 10.1039/d1cb00202c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Oxalic acid is a small metabolite that can be found in many plants in which it serves as protection from herbivores, a chelator of metal ions, a regulator of calcium...
Collapse
Affiliation(s)
- Moshe Goldsmith
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| | - Shiri Barad
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| | - Yoav Peleg
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Shira Albeck
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Orly Dym
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Alexander Brandis
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Tevie Mehlman
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ziv Reich
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| |
Collapse
|
44
|
Knockout of Arabidopsis thaliana VEP1, Encoding a PRISE (Progesterone 5β-Reductase/Iridoid Synthase-Like Enzyme), Leads to Metabolic Changes in Response to Exogenous Methyl Vinyl Ketone (MVK). Metabolites 2021; 12:metabo12010011. [PMID: 35050133 PMCID: PMC8778713 DOI: 10.3390/metabo12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why—or why not—certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more “accidental” roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.
Collapse
|
45
|
Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc Natl Acad Sci U S A 2021; 118:2112107118. [PMID: 34819376 DOI: 10.1073/pnas.2112107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.
Collapse
|
46
|
Dilip D, Louis V, Savithri HS, Namitha PM. Restriction-free cloning for molecular manipulation and augmented expression of banana bunchy top viral coat protein. 3 Biotech 2021; 11:471. [PMID: 34745822 PMCID: PMC8536813 DOI: 10.1007/s13205-021-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Banana bunchy top virus (BBTV) causing bunchy top disease, is one of the most devastating diseases of banana and plantain. All the six genomic components of isolates from different parts of the world have been well characterised, with most of the studies focusing on replicase gene and coat protein gene. Overexpression of coat protein (CP) in Escherichia coli system can contribute significantly in structural as well as immunological studies. In the present investigation, the full length BBTV CP was cloned to pGEX-4T-2 expression vector and overexpressed in various Escherichia coli strains to obtain high quality and quantity of the CP. An augmented overexpression and stability of recombinant coat protein was achieved by molecular manipulation of the clone by restriction-free (RF) cloning platform. The RF cloning was employed to replace the thrombin cleavage site in the vector backbone, which was also present in the protein of interest, and to incorporate TEV protease site to cleave fusion protein at this specific site, and separate the affinity tag. The RF method allows direct transformation of the PCR product to undergo ligation in vivo and obtain the transformants thereby avoiding the restriction digestion and ligation of the product to the linearized plasmid. From a litre culture, 1.084 mg/ml of fusion protein with GST tag was obtained after GSH sepharose affinity column chromatography. The fluorescence spectra indicated partial disordered tertiary structure of the fusion protein. Cleavage of tag was attempted using TEV protease overexpressed and purified in the laboratory. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03017-x.
Collapse
Affiliation(s)
- Darsana Dilip
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656 India
| | - Vimi Louis
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, New Biological Sciences Building, Bangalore, 560012 India
| | - P. M. Namitha
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| |
Collapse
|
47
|
Klein J, Horn E, Ernst M, Leykauf T, Leupold T, Dorfner M, Wolf L, Ignatova A, Kreis W, Munkert J. RNAi-mediated gene knockdown of progesterone 5β-reductases in Digitalis lanata reduces 5β-cardenolide content. PLANT CELL REPORTS 2021; 40:1631-1646. [PMID: 34146141 PMCID: PMC8376734 DOI: 10.1007/s00299-021-02707-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 05/28/2023]
Abstract
Studying RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) in 5β-cardenolide formation. Progesterone 5β-reductases (P5βR) are assumed to catalyze the reduction of progesterone to 5β-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5β-cardenolides. P5βRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5βRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5βR1 (AY585867.1) and DlP5βR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5β-cardenolide formation, we here established several RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5βR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5βR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5βR2-RNAi lines but not in Dl P5βR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5βR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).
Collapse
Affiliation(s)
- Jan Klein
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Elisa Horn
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Mona Ernst
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Tim Leykauf
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Tamara Leupold
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Maja Dorfner
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Laura Wolf
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Anastasiia Ignatova
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
48
|
Degani N, Lubelsky Y, Perry RBT, Ainbinder E, Ulitsky I. Highly conserved and cis-acting lncRNAs produced from paralogous regions in the center of HOXA and HOXB clusters in the endoderm lineage. PLoS Genet 2021; 17:e1009681. [PMID: 34280202 PMCID: PMC8330917 DOI: 10.1371/journal.pgen.1009681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/03/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in gene regulatory networks acting in early development. There has been rapid turnover of lncRNA loci during vertebrate evolution, with few human lncRNAs conserved beyond mammals. The sequences of these rare deeply conserved lncRNAs are typically not similar to each other. Here, we characterize HOXA-AS3 and HOXB-AS3, lncRNAs produced from the central regions of the HOXA and HOXB clusters. Sequence-similar orthologs of both lncRNAs are found in multiple vertebrate species and there is evident sequence similarity between their promoters, suggesting that the production of these lncRNAs predates the duplication of the HOX clusters at the root of the vertebrate lineage. This conservation extends to similar expression patterns of the two lncRNAs, in particular in cells transiently arising during early development or in the adult colon. Functionally, the RNA products of HOXA-AS3 and HOXB-AS3 regulate the expression of their overlapping HOX5-7 genes both in HT-29 cells and during differentiation of human embryonic stem cells. Beyond production of paralogous protein-coding and microRNA genes, the regulatory program in the HOX clusters therefore also relies on paralogous lncRNAs acting in restricted spatial and temporal windows of embryonic development and cell differentiation.
Collapse
Affiliation(s)
- Neta Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilites, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
49
|
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library creation: Which one will you choose?: A guide for novices and experts to introduce genetic diversity. Bioessays 2021; 43:e2100052. [PMID: 34263468 DOI: 10.1002/bies.202100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada.,Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Daniela Quaglia
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada.,School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
Xiang K, Bartel DP. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife 2021; 10:66493. [PMID: 34213414 PMCID: PMC8253595 DOI: 10.7554/elife.66493] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
In animal oocytes and early embryos, mRNA poly(A)-tail length strongly influences translational efficiency (TE), but later in development this coupling between tail length and TE disappears. Here, we elucidate how this coupling is first established and why it disappears. Overexpressing cytoplasmic poly(A)-binding protein (PABPC) in Xenopus oocytes specifically improved translation of short-tailed mRNAs, thereby diminishing coupling between tail length and TE. Thus, strong coupling requires limiting PABPC, implying that in coupled systems longer-tail mRNAs better compete for limiting PABPC. In addition to expressing excess PABPC, post-embryonic mammalian cell lines had two other properties that prevented strong coupling: terminal-uridylation-dependent destabilization of mRNAs lacking bound PABPC, and a regulatory regime wherein PABPC contributes minimally to TE. Thus, these results revealed three fundamental mechanistic requirements for coupling and defined the context-dependent functions for PABPC, which promotes TE but not mRNA stability in coupled systems and mRNA stability but not TE in uncoupled systems. Cells are microscopic biological factories that are constantly creating new proteins. To do so, a cell must first convert its master genetic blueprint, the DNA, into strands of messenger RNA or mRNA. These strands are subsequently translated to make proteins. Cells have two ways to adjust the number of proteins they generate so they do not produce too many or too few: by changing how many mRNA molecules are available for translation, and by regulating how efficiently they translate these mRNA molecules into proteins. In animals, both unfertilized eggs and early-stage embryos lack the ability to create or destroy mRNAs, and consequently cannot adjust the number of mRNA molecules available for translation. These cells can therefore only regulate how efficiently each mRNA is translated. They do this by changing the length of the so-called poly(A) tail at the end of each mRNA molecule, which is made up of a long stretch of repeating adenosine nucleotides. The mRNAs with longer poly(A) tails are translated more efficiently than those with shorter poly(A) tails. However, this difference disappears in older embryos, when both long and short poly(A) tails are translated with equal efficiency, and it is largely unknown why. To find out more, Xiang and Bartel studied frog eggs, and discovered that artificially raising levels of a protein that binds poly(A) tails, also known as PABPC, improved the translation of short-tailed mRNAs to create a situation in which both short- and long-tailed mRNAs were translated with near-equal efficiency. This suggested that short- and long-tailed mRNAs compete for limited amounts of the translation-enhancing PABPC, and that long-tailed mRNAs are better at it than short-tailed mRNAs. Further investigation revealed that eggs also had to establish the right conditions for PABPC to enhance translation and had to protect mRNAs not associated with PABPC from being destroyed before they could be translated. Overall, Xiang and Bartel found that in eggs and early embryos, PABPC and poly(A) tails enhanced the translation of mRNAs but did not influence their stability, whereas later in development, they enhanced mRNA stability but not translation. This research provides new insights into how protein production is controlled at different stages of animal development, from unfertilized eggs to older embryos. Understanding how this process is regulated during normal development is crucial for gaining insights into how it can become dysfunctional and cause disease. These findings may therefore have important implications for research into areas such as infertility, reproductive medicine and rare genetic diseases.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|