1
|
Kamal MM, Ammar RA, Kassem DH. Silencing of forkhead box protein O-1 (FOXO-1) enhances insulin-producing cell generation from adipose mesenchymal stem cells for diabetes therapy. Life Sci 2024; 344:122579. [PMID: 38518842 DOI: 10.1016/j.lfs.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
AIMS Generation of mature β-cells from MSCs has been a challenge in the field of stem cell therapy of diabetes. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark in regenerative medicine, and provide several advantages compared to other MSCs sources. Forkhead box protein O-1 (FOXO-1) is an important transcription factor for normal development of β-cells, yet its over expression in β-cells may cause glucose intolerance. In this study, we isolated, characterized Ad-MSCs from rat epididymal fat pads, differentiated these MSCs into insulin producing cells (IPCs) and studied the role of FOXO-1 in such differentiation. MATERIALS AND METHODS We examined the expression of FOXO-1 and its nuclear cytoplasmic localization in the generated IPCs. Afterwards we knocked down FOXO-1 using siRNA targeting FOXO-1 (siFOXO-1). The differentiated siFOXO-1 IPCs were compared to non-targeting siRNA (siNT) IPCs regarding expression of β-cell markers by qRT-PCR and western blotting, dithizone (DTZ) staining and glucose stimulated insulin secretion (GSIS). KEY FINDINGS Isolated Ad-MSCs exhibited all characteristics of MSCs and can generate IPCs. FOXO-1 was initially elevated during differentiation followed by a decline towards end of differentiation. FOXO-1 was dephosphorylated and localized to the nucleus upon differentiation into IPCs. Knock down of FOXO-1 improved the expression of β-cell markers in final differentiated IPCs, improved DTZ uptake and showed increased insulin secretion upon challenging with increased glucose concentration. SIGNIFICANCE These results portray FOXO-1 as a hindering factor of generation of IPCs whose down-regulation can generate more mature IPCs for MSCs therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Reham A Ammar
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Saito R, Inagaki A, Nakamura Y, Imura T, Kanai N, Mitsugashira H, Endo Kumata Y, Katano T, Suzuki S, Tokodai K, Kamei T, Unno M, Watanabe K, Tabata Y, Goto M. A Gelatin Hydrogel Nonwoven Fabric Combined With Adipose Tissue-Derived Stem Cells Enhances Subcutaneous Islet Engraftment. Cell Transplant 2024; 33:9636897241251621. [PMID: 38756050 PMCID: PMC11102670 DOI: 10.1177/09636897241251621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.
Collapse
Affiliation(s)
- Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Endo Kumata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takumi Katano
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Tabata
- Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Ahmadi F, Lotfi AS, Navaei-Nigjeh M, Kadivar M. Trimetazidine Preconditioning Potentiates the Effect of Mesenchymal Stem Cells Secretome on the Preservation of Rat Pancreatic Islet Survival and Function In Vitro. Appl Biochem Biotechnol 2023; 195:4796-4817. [PMID: 37184724 DOI: 10.1007/s12010-023-04532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.
Collapse
Affiliation(s)
- Fariborz Ahmadi
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Mikłosz A, Chabowski A. Adipose-derived Mesenchymal Stem Cells Therapy as a new Treatment Option for Diabetes Mellitus. J Clin Endocrinol Metab 2023; 108:1889-1897. [PMID: 36916961 PMCID: PMC10348459 DOI: 10.1210/clinem/dgad142] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The worldwide increase in the prevalence of diabetes mellitus has raised the demand for new therapeutic strategies targeting diabetic symptoms and its chronic complications. Among different treatment options for diabetes, adipose-derived mesenchymal stem cells (ADMSCs) therapy attract the most attention. The therapeutic effects of ADMSCs are based primarily on their paracrine release of immunomodulatory, anti-inflammatory, and trophic factors. Animal models of diabetes as well as human clinical trials have shown that ADMSCs can effectively facilitate endogenous β cell regeneration, preserve residual β cell mass, reduce islet graft rejection, regulate the immune system, and ultimately improve insulin sensitivity or ameliorate insulin resistance in peripheral tissues. Nevertheless, transplantation of mesenchymal stem cells is associated with certain risks; therefore recently much attention has been devoted to ADMSCs derivatives, such as exosomes or conditioned media, as therapeutic agents for the treatment of diabetes. Compared to ADMSCs, cell-free therapy has even better therapeutic potential. This narrative review summarizes recent outcomes and molecular mechanisms of ADMSCs action in the treatment for both type 1 DM and type 2 DM, as well as shows their feasibility, benefits, and current limitations.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
5
|
Sabet Sarvestani F, Tamaddon AM, Yaghoobi R, Geramizadeh B, Abolmaali SS, Kaviani M, Keshtkar S, Pakbaz S, Azarpira N. Indirect co-culture of islet cells in 3D biocompatible collagen/laminin scaffold with angiomiRs transfected mesenchymal stem cells. Cell Biochem Funct 2023; 41:296-308. [PMID: 36815688 DOI: 10.1002/cbf.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Diabetes is an autoimmune disease in which the pancreatic islets produce insufficient insulin. One of the treatment strategies is islet isolation, which may damage these cells as they lack vasculature. Biocompatible scaffolds are one of the efficient techniques for dealing with this issue. The current study is aimed to determine the effect of transfected BM-MSCS with angiomiR-126 and -210 on the survival and functionality of islets loaded into a 3D scaffold via laminin (LMN). AngiomiRs/Poly Ethylenimine polyplexes were transfected into bone marrow-mesenchymal stem cells (BM-MSCs), followed by 3-day indirect co-culturing with islets laden in collagen (Col)-based hydrogel scaffolds containing LMN. Islet proliferation and viability were significantly increased in LMN-containing scaffolds, particularly in the miRNA-126 treated group. Insulin gene expression was superior in Col scaffolds, especially, in the BM-MSCs/miRNA-126 treated group. VEGF was upregulated in the LMN-containing scaffolds in both miRNA-treated groups, specifically in the miRNA-210, leading to VEGF secretion. MiRNAs' target genes showed no downregulation in LMN-free scaffolds; while a drastic downregulation was seen in the LMN-containing scaffolds. The highest insulin secretion was recorded in the Oxidized dextran (Odex)/ColLMN+ group with miRNA-126. LMN-containing biocompatible scaffolds, once combined with angiomiRs and their downstream effectors, promote islets survival and restore function, leading to enhanced angiogenesis and glycemic status.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran, Shiraz, Iran
| | - Ramin Yaghoobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
7
|
Soltani S, Mansouri K, Emami Aleagha MS, Moasefi N, Yavari N, Shakouri SK, Notararigo S, Shojaeian A, Pociot F, Yarani R. Extracellular Vesicle Therapy for Type 1 Diabetes. Front Immunol 2022; 13:865782. [PMID: 35464488 PMCID: PMC9024141 DOI: 10.3389/fimmu.2022.865782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic disorder characterized by immune-mediated destruction of pancreatic insulin-producing β-cells. The primary treatment for T1D is multiple daily insulin injections to control blood sugar levels. Cell-free delivery packets with therapeutic properties, extracellular vesicles (EVs), mainly from stem cells, have recently gained considerable attention for disease treatments. EVs provide a great potential to treat T1D ascribed to their regenerative, anti-inflammatory, and immunomodulatory effects. Here, we summarize the latest EV applications for T1D treatment and highlight opportunities for further investigation.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Notararigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ;
| |
Collapse
|
8
|
Tokuda K, Ikemoto T, Yamashita S, Miyazaki K, Okikawa S, Yamada S, Saito Y, Morine Y, Shimada M. Syngeneically transplanted insulin producing cells differentiated from adipose derived stem cells undergo delayed damage by autoimmune responses in NOD mice. Sci Rep 2022; 12:5852. [PMID: 35393479 PMCID: PMC8991208 DOI: 10.1038/s41598-022-09838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-producing cells (IPCs) generated by our established protocol have reached the non-clinical ‘proof of concept’ stage. Our strategy for their clinical application is the autotransplantation of IPCs into patients with type 1 diabetes mellitus (T1DM). In this context, the autoimmunity that characterized T1DM is important, rather than allorejection. We aimed to determine how these IPCs respond to T1DM autoimmunity. IPCs were generated from the subcutaneous fat tissue of non-obese diabetic (NOD) mice using our protocol. IPCs derived from NOD mice were transplanted under the kidney capsules of NOD mice at the onset of diabetes and the subsequent changes in blood glucose concentration were characterized. Blood glucose decreased within 30 days of transplantation, but increased again after 40–60 days in three of four recipient NOD mice. In tissue samples, the numbers of CD4+ and CD8+ T cells were significantly higher 60 days after transplantation than 30 days after transplantation. In conclusion, IPCs significantly ameliorate the diabetes of mice in the short term, but are damaged by autoimmunity in the longer term, as evidenced by local T cells accumulation. This study provides new insights into potential stem cell therapies for T1DM.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan.
| | - Shoko Yamashita
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shohei Okikawa
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| |
Collapse
|
9
|
Bhardwaj G, Vakani M, Srivastava A, Rawal K, Kalathil A, Gupta S. Influence of metabolically compromised Adipose derived stem cell secretome on islet differentiation and functionality. Exp Cell Res 2022; 410:112970. [PMID: 34896076 DOI: 10.1016/j.yexcr.2021.112970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023]
Abstract
Islet integrity plays a major role in maintaining glucose homeostasis and thus replenishment of damaged islets by differentiation of resident endocrine progenitors into neo islets regulates the islet functionality. Islet differentiation is affected by many factors including crosstalk with various organs by secretome. Adipose derived stem cells (ADSC) secrete a large array of factors in the extracellular milieu that exhibit regulatory effects on other tissues including pancreatic islets. The microenvironment of metabolically compromised human ADSCs (hADSCs) has a detrimental impact on islet functionality. In the present study, the role of secretome was studied on the differentiation of islets. Expression of key transcription factors like HNF-3B, NGN-3, NeuroD, PDX- 1, Maf-A, and GLUT-2 involved in development were differentially regulated in obese hADSC secretome as compared to control hADSC secretome. Islet like cell clusters (ILCCs) functionality and viability were critically hampered under obese hADSC secretome with compromised yield, morphometry, lower expression of C-peptide and Glucagon as well as higher ROS activity and cell death parameters. This study provides considerable insights on two major findings which are (i) exploring the use of hADSC secretome in islet differentiation and (ii) understanding the regulating effect of altered hADSC secretome under a metabolically compromised condition.
Collapse
Affiliation(s)
- Gurprit Bhardwaj
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India.
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Abhay Srivastava
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Komal Rawal
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Amrita Kalathil
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390021, India.
| |
Collapse
|
10
|
Dietrich I, Girdlestone J, Giele H. Differential cytokine expression in direct and indirect co-culture of islets and mesenchymal stromal cells. Cytokine 2021; 150:155779. [PMID: 34923221 DOI: 10.1016/j.cyto.2021.155779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transplantation of allogenic Langerhans islets (ISL) has been employed as an alternative to pancreas transplantation to provide endogenous supply of insulin and treat hypoglycemia unawareness in type 1 diabetes. Nevertheless, the process of islets isolation exposes the islets to hypoxia and other aggressive conditions that results in the recover of less than half of the islets present in the pancreas. Several studies demonstrated that co-culturing islets with mesenchymal stromal cells (MSC) before implantation enhances islets survival and function and this effect is mediated by cytokines. However, it remains unclear if the profile of cytokines secreted by MSC in co-culture with islets changes upon the type of co-culture: direct and indirect. MATERIALS AND METHODS In 3 series of experiments with human islets of 3 different donors, we compared the levels of a panel of cytokines measured in the supernatant of ISL cultured alone, Wharton Jelly MSC (WJMSC) cultured alone, direct co-culture of ISL-WJMSC and indirect co-culture using a permeable transwell membrane to separate ISL and WJMSC. RESULTS Comparing the profile of cytokines secreted by islets alone with islets in direct co- culture with WJMSC, we found higher expression of IL1b, IL17, IFγ, IL4, IL10, IL13, Granulocyte-macrophage colony-stimulating factor (GMCSF) and Leptin, in the supernatant of the co-cultures. In contrast, when comparing islets cultured alone with islets in indirect co-culture with MSC, we found no significant differences in the levels of cytokines we analyzed. CONCLUSION Direct contact between human WJMSC and pancreatic islets is required for elevated expression of a range of immune cytokines, including both those considered inflammatory, and anti-inflammatory.
Collapse
Affiliation(s)
- I Dietrich
- São Paulo University Medical School, Department of Surgery, Av Jurucê 743, Suite 111., São Paulo, São Paulo, Brazil.
| | - J Girdlestone
- Head of Stem Cells and Immunotherapy Laboratory, NHS Blood and Transplant, Oxford, UK; John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9BQ, UK
| | - H Giele
- University of Oxford, Nuffield Department of Surgical Sciences, UK; Oxford University Foundation Hospitals NHS Trust, Oxford OX3 9DU, UK
| |
Collapse
|
11
|
Qu Z, Lou Q, Cooper DKC, Pu Z, Lu Y, Chen J, Ni Y, Zhan Y, Chen J, Li Z, Zhan N, Zeng Y, Tu Z, Cao H, Dai Y, Cai Z, Mou L. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation 2021; 28:e12678. [PMID: 33569837 DOI: 10.1111/xen.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.
Collapse
Affiliation(s)
- Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Lou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zuhui Pu
- Department of Radiology, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenjie Li
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Naiyang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Zeng
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwei Tu
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huayi Cao
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
12
|
Akolpoglu MB, Inceoglu Y, Bozuyuk U, Sousa AR, Oliveira MB, Mano JF, Kizilel S. Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 2020; 269:120627. [PMID: 33401104 DOI: 10.1016/j.biomaterials.2020.120627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Islet transplantation has proved one of the most remarkable transmissions from an experimental curiosity into a routine clinical application for the treatment of type I diabetes (T1D). Current efforts for taking this technology one-step further are now focusing on overcoming islet donor shortage, engraftment, prolonged islet availability, post-transplant vascularization, and coming up with new strategies to eliminate lifelong immunosuppression. To this end, insulin secreting 3D cell clusters composed of different types of cells, also referred as heterocellular islet organoids, spheroids, or pseudoislets, have been engineered to overcome the challenges encountered by the current islet transplantation protocols. β-cells or native islets are accompanied by helper cells, also referred to as accessory cells, to generate a cell cluster that is not only able to accurately secrete insulin in response to glucose, but also superior in terms of other key features (e.g. maintaining a vasculature, longer durability in vivo and not necessitating immunosuppression after transplantation). Over the past decade, numerous 3D cell culture techniques have been integrated to create an engineered heterocellular islet organoid that addresses current obstacles. Here, we first discuss the different cell types used to prepare heterocellular organoids for islet transplantation and their contribution to the organoids design. We then introduce various cell culture techniques that are incorporated to prepare a fully functional and insulin secreting organoids with select features. Finally, we discuss the challenges and present a future outlook for improving clinical outcomes of islet transplantation.
Collapse
Affiliation(s)
- M Birgul Akolpoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ugur Bozuyuk
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
13
|
Keshtkar S, Kaviani M, Sarvestani FS, Ghahremani MH, Aghdaei MH, Al-Abdullah IH, Azarpira N. Exosomes derived from human mesenchymal stem cells preserve mouse islet survival and insulin secretion function. EXCLI JOURNAL 2020; 19:1064-1080. [PMID: 33013264 PMCID: PMC7527509 DOI: 10.17179/excli2020-2451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Islet cell death and loss of function after isolation and before transplantation is considered a key barrier to successful islet transplantation outcomes. Mesenchymal stem cells (MSCs) have been used to protect isolated islets owing to their paracrine potential partially through the secretion of vascular endothelial growth factor (VEGF). The paracrine functions of MSCs are also mediated, at least in part, by the release of extracellular vesicles including exosomes. In the present study, we examined (i) the effect of exosomes from human MSCs on the survival and function of isolated mouse islets and (ii) whether exosomes contain VEGF and the potential impact of exosomal VEGF on the survival of mouse islets. Isolated mouse islets were cultured for three days with MSC-derived exosomes (MSC-Exo), MSCs, or MSC-conditioned media without exosomes (MSC-CM-without-Exo). We investigated the effects of the exosomes, MSCs, and conditioned media on islet viability, apoptosis and function. Besides the expression of apoptotic and pro-survival genes, the production of human and mouse VEGF proteins was evaluated. The MSCs and MSC-Exo, but not the MSC-CM-without-Exo, significantly decreased the percentage of apoptotic cells and increased islet viability following the downregulation of pro-apoptotic genes and the upregulation of pro-survival factors, as well as the promotion of insulin secretion. Human VEGF was observed in the isolated exosomes, and the gene expression and protein production of mouse VEGF significantly increased in islets cultured with MSC-Exo. MSC-derived exosomes are as efficient as parent MSCs for mitigating cell death and improving islet survival and function. This cytoprotective effect was probably mediated by VEGF transfer, suggesting a pivotal strategy for ameliorating islet transplantation outcomes.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA/USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Abstract
OBJECTIVES We aimed to determine whether responsive insulin-producing cells (IPCs) could be generated from adipose-derived stem cells (ADSCs) isolated from patients with type 1 diabetes mellitus (T1DM). METHODS We isolated ADSCs from adipose tissue of 4 patients (one patient with T1DM and 3 nondiabetic patients), who underwent surgery and differentiated them into IPCs with using a 2-step xeno-antigen free, 3-dimensional culture method. Characteristics of isolated ADSCs, in vitro cell quality, programmed cell death ligand-1 (PDL-1) expression, and transplantation into streptozotocin induced diabetic nude mice were investigated. RESULTS Adipose-derived stem cells from T1DM patients and commercially obtained ADSCs showed the same surface markers; CD31CD34CD45CD90CD105CD146. Moreover, the generated IPCs at day 21 demonstrated appropriate autonomous insulin secretion (stimulation index, 3.5; standard deviation, 0.8). Nonfasting blood glucose concentrations of IPC-transplanted mice were normal at 30 days. The normalized rate of IPC-transplanted mice was significantly higher than that of the sham-operated group (P < 0.05). Insulin-producing cells generated from T1DM adipose tissue expressed high levels of PDL-1. CONCLUSIONS Insulin-producing cells obtained from adipose tissue of T1DM patients are capable of secreting insulin long-term and achieve normoglycemia after transplantation. Expression of PDL-1 suggests the potential for immune circumvention.
Collapse
|
15
|
Razavi M, Ren T, Zheng F, Telichko A, Wang J, Dahl JJ, Demirci U, Thakor AS. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Res Ther 2020; 11:405. [PMID: 32948247 PMCID: PMC7501701 DOI: 10.1186/s13287-020-01897-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The aim of this study was to examine the effect of a three-step approach that utilizes the application of adipose tissue-derived mesenchymal stem cells (AD-MSCs), encapsulation, and pulsed focused ultrasound (pFUS) to help the engraftment and function of transplanted islets. METHODS In step 1, islets were co-cultured with AD-MSCs to form a coating of AD-MSCs on islets: here, AD-MSCs had a cytoprotective effect on islets; in step 2, islets coated with AD-MSCs were conformally encapsulated in a thin layer of alginate using a co-axial air-flow method: here, the capsule enabled AD-MSCs to be in close proximity to islets; in step 3, encapsulated islets coated with AD-MSCs were treated with pFUS: here, pFUS enhanced the secretion of insulin from islets as well as stimulated the cytoprotective effect of AD-MSCs. RESULTS Our approach was shown to prevent islet death and preserve islet functionality in vitro. When 175 syngeneic encapsulated islets coated with AD-MSCs were transplanted beneath the kidney capsule of diabetic mice, and then followed every 3 days with pFUS treatment until day 12 post-transplantation, we saw a significant improvement in islet function with diabetic animals re-establishing glycemic control over the course of our study (i.e., 30 days). In addition, our approach was able to enhance islet engraftment by facilitating their revascularization and reducing inflammation. CONCLUSIONS This study demonstrates that our clinically translatable three-step approach is able to improve the function and viability of transplanted islets.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Tanchen Ren
- Department of Radiology, Bio-Acoustic MEMS in Medicine Laboratory (BAMM), Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Fengyang Zheng
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Arsenii Telichko
- Department of Radiology, Dahl Ultrasound Laboratory, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Jing Wang
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Jeremy J Dahl
- Department of Radiology, Dahl Ultrasound Laboratory, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Utkan Demirci
- Department of Radiology, Bio-Acoustic MEMS in Medicine Laboratory (BAMM), Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Radiology, Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
16
|
Kogawa R, Nakamura K, Mochizuki Y. A New Islet Transplantation Method Combining Mesenchymal Stem Cells with Recombinant Peptide Pieces, Microencapsulated Islets, and Mesh Bags. Biomedicines 2020; 8:biomedicines8090299. [PMID: 32825661 PMCID: PMC7555598 DOI: 10.3390/biomedicines8090299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a lack of blood vessels around the transplantation site, and difficulty in removal of the islets. On the other hand, we proposed a cell transplantation technique called CellSaic, which was reported to enhance the vascular induction effect of mesenchymal stem cells (MSCs) in CellSaic form, and to enhance the effect of islet transplantation through co-transplantation. Therefore, we performed islet transplantation in diabetic mice by combining three components—microencapsulated islets, MSC-CellSaic, and a mesh bag that encapsulates them and enables their removal. Mesh pockets were implanted in the peritoneal cavity of Balb/c mice as implantation sites. After 4 weeks of implantation, a pocket was opened and transplanted with (1) pancreatic islets, (2) microencapsulated islets, and (3) microencapsulated islets + MSC-CellSaic. Four weeks of observation of blood glucose levels showed that the MSC-CellSaic co-transplant group showed a marked decrease in blood glucose levels, compared to the other groups. A three-component configuration of microcapsules, MSC-CellSaic, and mesh bag was shown to enhance the efficacy of islet transplantation.
Collapse
|
17
|
Villard O, Armanet M, Couderc G, Bony C, Moreaux J, Noël D, De Vos J, Klein B, Veyrune JL, Wojtusciszyn A. Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Res Ther 2020; 11:158. [PMID: 32303252 PMCID: PMC7165390 DOI: 10.1186/s13287-020-01649-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) represent an interesting tool to improve pancreatic islet transplantation. They have immunomodulatory properties and secrete supportive proteins. However, the functional properties of MSCs vary according to many factors such as donor characteristics, tissue origin, or isolation methods. To counteract this heterogeneity, we aimed to immortalize and characterize adherent cells derived from human pancreatic islets (hISCs), using phenotypic, transcriptomic, and functional analysis. METHODS Adherent cells derived from human islets in culture were infected with a hTERT retrovirus vector and then characterized by microarray hybridization, flow cytometry analysis, and immunofluorescence assays. Osteogenic, adipogenic, and chondrogenic differentiation as well as PBMC proliferation suppression assays were used to compare the functional abilities of hISCs and MSCs. Extracellular matrix (ECM) gene expression profile analysis was performed using the SAM (Significance Analysis of Microarrays) software, and protein expression was confirmed by western blotting. RESULTS hISCs kept an unlimited proliferative potential. They exhibited several properties of MSCs such as CD73, CD90, and CD105 expression and differentiation capacity. From a functional point of view, hISCs inhibited the proliferation of activated peripheral blood mononuclear cells. The transcriptomic profile of hISCs highly clusterized with bone marrow (BM)-MSCs and revealed a differential enrichment of genes involved in the organization of the ECM. Indeed, the expression and secretion profiles of ECM proteins including collagens I, IV, and VI, fibronectin, and laminins, known to be expressed in abundance around and within the islets, were different between hISCs and BM-MSCs. CONCLUSION We generated a new human cell line from pancreatic islets, with MSCs properties and retaining some pancreatic specificities related to the production of ECM proteins. hISCs appear as a very promising tool in islet transplantation by their availability (as a source of inexhaustible source of cells) and ability to secrete a supportive "pancreatic" microenvironment.
Collapse
Affiliation(s)
- Orianne Villard
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Armanet
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Cell Therapy Unit, Hospital Saint- Louis, AP-HP, Paris, France
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland
| | - Guilhem Couderc
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Claire Bony
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Jerome Moreaux
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Daniele Noël
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - John De Vos
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Bernard Klein
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland.
| |
Collapse
|
18
|
de Souza BM, Rodrigues M, de Oliveira FS, da Silva LPA, Bouças AP, Portinho CP, Dos Santos BP, Camassola M, Rocha D, Lysakowski S, Martini J, Leitão CB, Nardi NB, Bauer AC, Crispim D. Improvement of human pancreatic islet quality after co-culture with human adipose-derived stem cells. Mol Cell Endocrinol 2020; 505:110729. [PMID: 31972330 DOI: 10.1016/j.mce.2020.110729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.
Collapse
Affiliation(s)
- Bianca M de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil.
| | - Michelle Rodrigues
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Fernanda S de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liana P A da Silva
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Ana P Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Ciro P Portinho
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Bruno P Dos Santos
- Laboratory for Tissue Bioengineering (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Melissa Camassola
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Dagoberto Rocha
- Post-Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Simone Lysakowski
- Organ Procurement Organization, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Juliano Martini
- Transplant Center, Surgery Department, Hospital Dom Vicente Scherer, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Nance B Nardi
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Li X, Lang H, Li B, Zhang C, Sun N, Lin J, Zhang J. Change in Viability and Function of Pancreatic Islets after Coculture with Mesenchymal Stromal Cells: A Systemic Review and Meta-Analysis. J Diabetes Res 2020; 2020:5860417. [PMID: 32309447 PMCID: PMC7132593 DOI: 10.1155/2020/5860417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is no clear consensus on the effect of coculture of islets with mesenchymal stem cells (MSCs) on islet function and viability. METHODS We conducted a meta-analysis of relevant studies to evaluate the effect of coculture of islets with MSCs on the function and viability of islets, both in vitro and in vivo. We searched PubMed, Embase, and Web of Science databases for all relevant studies that compared the effect of coculture of islets with MSCs on the function and viability of islets (language of publication: English; reference period: January 2000-May 2019). Data pertaining to islet function and viability, concentrations of some cytokines, and in vivo experimental outcomes were extracted and compared. RESULTS Twenty-four articles were included in the meta-analysis. In comparison to islets cultured alone, coculture of islets with MSCs was associated with a significantly higher islet viability [weighted mean difference (WMD), -15.59; -22.34 to -8.83; P < 0.00001], insulin level (WMD, -5.74; -9.29 to -2.19; P = 0.002), insulin secretion index (WMD, -2.45; -3.70 to -1.21; P = 0.0001), and higher concentrations of interleukin-6 (WMD, -1225.66; -2044.47 to -406.86; P = 0.003) and vascular endothelial growth factor (WMD, -1.19; -2.25 to -0.14; P = 0.03). Direct coculture of islets and MSCs significantly increased islet viability (WMD, -19.82; -26.56 to -13.07; P < 0.00001). In the in vivo experiments, coculture of islets with MSCs induced lower fasting blood glucose level (on postoperative days 21 and 28, WMD, 102.60; 27.14 to 178.05; P = 0.008 and WMD, 121.19; 49.56 to 192.82; P = 0.0009) and better glucose tolerance (blood glucose at 30 minutes after intraperitoneal injection of glucose, WMD, 85.92; 5.33 to 166.51; P = 0.04). CONCLUSION Coculture of islets with MSCs improves insulin secretory function of islets and enhances islet viability. Direct coculture of two cells significantly increased islet viability. MSC-based strategy may be beneficial for clinical islet transplantation for type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xiaohang Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122 Liaoning Province, China
| | - Baifeng Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Chengshuo Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Ning Sun
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jianzhen Lin
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jialin Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| |
Collapse
|
20
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Recent progress in porcine islet isolation, culture and engraftment strategies for xenotransplantation. Curr Opin Organ Transplant 2019; 23:633-641. [PMID: 30247169 DOI: 10.1097/mot.0000000000000579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Xenotransplantation of porcine islets is a realistic option to restore β-cell function in type 1 diabetic patients. Among other factors, such as islet donor age (fetal, neonatal and adult) and genotype (wild type and genetically modified), choice of the transplantation site, and immune protection of the islets, efficient strategies for islet isolation, culture and engraftment are critical for the success of islet xenotransplantation. RECENT FINDINGS Neonatal porcine islets (NPIs) are immature at isolation and need to be matured in vitro or in vivo before they become fully functional. Recent developments include a scalable protocol for isolation of clinically relevant batches of NPIs and a stepwise differentiation protocol for directed maturation of NPIs. In addition, different sources of mesenchymal stem cells were shown to support survival and functional maturation of NPIs in vitro and in various transplantation models in vivo. SUMMARY A plethora of different culture media and supplements have been tested; however, a unique best culture system for NPIs is still missing. New insights, for example from single-cell analyses of islets or from stem cell differentiation toward β cells may help to optimize culture of porcine islets for xenotransplantation in an evidence-based manner.
Collapse
|
22
|
In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep 2019; 9:10759. [PMID: 31341242 PMCID: PMC6656749 DOI: 10.1038/s41598-019-47257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
To establish widespread cell therapy for type 1 diabetes mellitus, we aimed to develop an effective protocol for generating insulin-producing cells (IPCs) from adipose-derived stem cells (ADSCs). We established a 3D culture using a human recombinant peptide (RCP) petaloid μ-piece with xeno-antigen free reagents. Briefly, we employed our two-step protocol to differentiate ADSCs in 96-well dishes and cultured cells in xeno-antigen free reagents with 0.1 mg/mL RCP μ-piece for 7 days (step 1), followed by addition of histone deacetylase inhibitor for 14 days (step 2). Generated IPCs were strongly stained with dithizone, anti-insulin antibody at day 21, and microstructures resembling insulin secretory granules were detected by electron microscopy. Glucose stimulation index (maximum value, 4.9) and MAFA mRNA expression were significantly higher in 3D cultured cells compared with conventionally cultured cells (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of streptozotocin-induced diabetic nude mice converted to normoglycaemic state around 14 days after transplantation of 96 IPCs under kidney capsule or intra-mesentery. Histological evaluation revealed that insulin and C-peptide positive structures existed at day 120. Our established xeno-antigen free and RCP petaloid μ-piece 3D culture method for generating IPCs may be suitable for clinical application, due to the proven effectiveness in vitro and in vivo.
Collapse
|
23
|
Adipose-Derived Tissue in the Treatment of Dermal Fibrosis: Antifibrotic Effects of Adipose-Derived Stem Cells. Ann Plast Surg 2019; 80:297-307. [PMID: 29309331 DOI: 10.1097/sap.0000000000001278] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment of hypertrophic scars and other fibrotic skin conditions with autologous fat injections shows promising clinical results; however, the underlying mechanisms of its antifibrotic action have not been comprehensively studied. Adipose-derived stem cells, or stromal cell-derived factors, inherent components of the transplanted fat tissue, seem to be responsible for its therapeutic effects on difficult scars. The mechanisms by which this therapeutic effect takes place are diverse and are mostly mediated by paracrine signaling, which switches on various antifibrotic molecular pathways, modulates the activity of the central profibrotic transforming growth factor β/Smad pathway, and normalizes functioning of fibroblasts and keratinocytes in the recipient site. Direct cell-to-cell communications and differentiation of cell types may also play a positive role in scar treatment, even though they have not been extensively studied in this context. A more thorough understanding of the fat tissue antifibrotic mechanisms of action will turn this treatment from an anecdotal remedy to a more controlled, timely administered technology.
Collapse
|
24
|
Arzouni AA, Vargas-Seymour A, Dhadda PK, Rackham CL, Huang GC, Choudhary P, King AJF, Jones PM. Characterization of the Effects of Mesenchymal Stromal Cells on Mouse and Human Islet Function. Stem Cells Transl Med 2019; 8:935-944. [PMID: 31066521 PMCID: PMC6708063 DOI: 10.1002/sctm.19-0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Islet transplantation has the potential to cure type 1 diabetes, but current transplantation protocols are not optimal and there is extensive loss of islet β‐cell insulin secretory function during the immediate post‐transplantation period. Studies using experimental models of diabetes have shown that the coculture of islets with mesenchymal stromal cells (MSCs) prior to transplantation improves graft function, but several variables differed among research groups (e.g., type of MSCs used and the treatment conditions). We have therefore assessed the effects of MSCs on mouse and human islets by investigating the importance of tissue source for MSCs, the coculture protocol configuration and length, the effect of activated MSCs, and different β‐cell secretory stimuli. MSCs derived from adipose tissue (aMSCs) were the most effective at supporting β‐cell insulin secretion in both mouse and human islets, in a direct contact coculture configuration. Preculture with aMSCs enhanced both phases of glucose‐induced insulin secretion and further enhanced secretory responses to the non‐nutrients carbachol and arginine. These effects required a coculture period of 48–72 hours and were not dependent on activation of the MSCs. Thus, direct contact coculture with autologous, adipose‐derived MSCs for a minimum of 48 hours before implantation is likely to be an effective addition to human islet transplantation protocols. stem cells translational medicine2019;8:935&944
Collapse
Affiliation(s)
- Ahmed A Arzouni
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Andreia Vargas-Seymour
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Paramjeet K Dhadda
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Chloe L Rackham
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Guo-Cai Huang
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Pratik Choudhary
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. J Clin Med 2019; 8:jcm8020249. [PMID: 30781427 PMCID: PMC6406504 DOI: 10.3390/jcm8020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies are efficacious in most patients, some additional therapies are warranted to support the control of blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality, capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for the treatment of T1DM.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Suguru Hasegawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
26
|
Ren G, Rezaee M, Razavi M, Taysir A, Wang J, Thakor AS. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties. Cell Tissue Res 2019; 376:353-364. [PMID: 30707291 DOI: 10.1007/s00441-019-02997-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
A significant proportion of islets are lost following transplantation due to hypoxia and inflammation. We hypothesize that adipose tissue-derived mesenchymal stem cells (AD-MSCs) can rescue a sub-therapeutic number of transplanted islets by helping them establish a new blood supply and reducing inflammation. Diabetic mice received syngeneic transplantation with 75 (minimal), 150 (sub-therapeutic), or 225 (therapeutic) islets, with or without 1 × 106 mouse AD-MSCs. Fasting blood glucose (FBG) values were measured over 6 weeks with tissue samples collected for islet structure and morphology (H&E, insulin/glucagon staining). Histological and immunohistochemical analyses of islets were also performed at 2 weeks in animals transplanted with a sub-therapeutic number of islets, with and without AD-MSCs, to determine new blood vessel formation, the presence of pro-angiogenic factors facilitating revascularization, and the degree of inflammation. AD-MSCs had no beneficial effect on FBG values when co-transplanted with a minimal or therapeutic number of islets. However, AD-MSCs significantly reduced FBG values and restored glycemic control in diabetic animals transplanted with a sub-therapeutic number of islets. Islets co-transplanted with AD-MSCs preserved their native morphology and organization and exhibited less aggregation when compared to islets transplanted alone. In the sub-therapeutic group, AD-MSCs significantly increased islet revascularization and the expression of angiogenic factors including hepatocyte growth factor (HGF) and angiopoietin-1 (Ang-1) while also reducing inflammation. AD-MSCs can rescue the function of islets when transplanted in a sub-therapeutic number, for at least 6 weeks, via their ability to maintain islet architecture while concurrently facilitating islet revascularization and reducing inflammation.
Collapse
Affiliation(s)
- Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Melika Rezaee
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA.,Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Ahmed Taysir
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA.
| |
Collapse
|
27
|
Arzouni AA, Vargas-Seymour A, Nardi N, J F King A, Jones PM. Using Mesenchymal Stromal Cells in Islet Transplantation. Stem Cells Transl Med 2018; 7:559-563. [PMID: 29749717 PMCID: PMC6090510 DOI: 10.1002/sctm.18-0033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation has the potential to cure type 1 diabetes, but current clinical transplantation protocols are inefficient because of the extensive loss of functional islets during the immediate post‐transplantation period. Studies in rodent models have demonstrated that co‐transplanting mesencyhmal stromal cells (MSCs) with islets improves graft functional survival and transplantation outcomes, and some of the beneficial effects of MSCs are attributable to bioactive molecules secreted by MSCs. Clinical islet transplantation is almost exclusively via the hepatic portal vein, which does not facilitate co‐engraftment of islets and MSCs, so attention is currently focused on using cell‐free cocktails of MSC‐derived products to treat islets prior to transplantation. This approach has the potential to overcome many of the technical and regulatory hurdles associated with using MSCs as an adjuvant therapy for human islet transplantation. Stem Cells Translational Medicine2018;7:559–563
Collapse
Affiliation(s)
- Ahmed A Arzouni
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Andreia Vargas-Seymour
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Nance Nardi
- Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Imamura H, Adachi T, Kin T, Ono S, Sakai Y, Adachi T, Soyama A, Hidaka M, Takatsuki M, Shapiro AJ, Eguchi S. An engineered cell sheet composed of human islets and human fibroblast, bone marrow-derived mesenchymal stem cells, or adipose-derived mesenchymal stem cells: An in vitro comparison study. Islets 2018; 10:e1445948. [PMID: 29608395 PMCID: PMC5989879 DOI: 10.1080/19382014.2018.1445948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously reported the utility of engineered cell sheets composed of human islets and supporting cells in vitro and in vivo. It is unclear which type of supporting cell is most suitable for constructing cell sheets with human islets. The present study aimed to compare human fibroblasts, bone marrow-derived mesenchymal stem cells (BM-MSCs), and adipose-derived mesenchymal stem cells (ADSCs) as a supporting source for cell sheets. METHODS Engineered cell sheets were fabricated with human islets using human fibroblasts, BM-MSCs, or ADSCs as supporting cells. The islet viability, recovery rate, glucose-stimulated insulin release (determined by the stimulation index), and cytokine secretion (TGF-β1, IL-6, and VEGF) of groups-including an islet-alone group as a control-were compared. RESULTS All three sheet groups consistently exhibited higher viability, recovery rate, and stimulation index values than the islet-alone group. The ADSC group showed the highest viability and recovery rate among the three sheet groups. There were no discernible differences in the stimulation index values of the groups. The fibroblast group exhibited significantly higher TGF-β1 values in comparison to the other groups. The IL-6 level of the ADSC group was more than five times higher than that of the other groups. The ADSC group showed the VEGF level; however, it did not differ from that of the BM-MSC group to a statistically significant extent. CONCLUSION Engineered cell sheets composed of islets and supporting cells had a cytoprotective effect on islets. These results suggest that individual cell types could be a more attractive source for crafting engineered cell sheets in comparison to islets alone.
Collapse
Affiliation(s)
- Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuya Kin
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Shinichiro Ono
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshiyuki Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - A.M. James Shapiro
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- CONTACT Susumu Eguchi, MD, PhD Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1–7–1 Sakamoto, Nagasaki 852–8501, Japan
| |
Collapse
|
29
|
Ikemoto T, Feng R, Shimada M, Saito Y, Iwahashi S, Morine Y, Imura S. A New 2-Step Acceleration Protocol Using a Histone Deacetylase Inhibitor to Generate Insulin-Producing Cells From Adipose-Derived Mesenchymal Stem Cells. Pancreas 2018; 47. [PMID: 29517636 PMCID: PMC5865483 DOI: 10.1097/mpa.0000000000001017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We aimed to develop a simple protocol for deriving insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ADSCs). We established a 2-step creation method and an acceleration strategy with a histone deacetylase inhibitor that promoted a pro-endocrine pancreatic lineage. METHODS We seeded ADSCs in 96-well dishes and cultured in Dulbecco's modified Eagle's medium/F12 medium containing 1% fetal bovine serum, 1% B27 supplement, 1% N2 supplement, 50-ng/mL human activin A, and 10-nM exendin-4 for step 1 of differentiation (7 days). Then 10-mM nicotinamide and 50-ng/mL human hepatocyte growth factor, with or without 1 mM histone deacetylase inhibitor, were added for step 2 of differentiation (14 days). After the 2-step differentiation was complete, cell morphology, immunohistochemistry, messenger RNA expression, and function were investigated. RESULTS Our new differentiation protocol with the histone deacetylase inhibitor significantly accelerated IPC differentiation compared with the conventional protocol without the histone deacetylase inhibitor (median, 21.6 vs 38.8 days; P < 0.05). It also improved the islet morphology score (P < 0.05) and the glucose stimulation index (3.1). CONCLUSIONS By applying our new and easy 2-step protocol using a histone deacetylase inhibitor, ADSCs may be an effective cell source for differentiation of IPCs.
Collapse
|
30
|
Perteghella S, Vigani B, Mastracci L, Grillo F, Antonioli B, Galuzzi M, Tosca MC, Crivelli B, Preda S, Tripodo G, Marazzi M, Chlapanidas T, Torre ML. Stromal Vascular Fraction Loaded Silk Fibroin Mats Effectively Support the Survival of Diabetic Mice after Pancreatic Islet Transplantation. Macromol Biosci 2017; 17:1700131. [PMID: 28691373 DOI: 10.1002/mabi.201700131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Indexed: 09/19/2023]
Abstract
The aim of this study is to assess whether stromal vascular fraction (SVF)-soaked silk fibroin nonwoven mats (silk-SVF) can preserve the functionality of encapsulated pancreatic endocrine cells (alginate-PECs) after transplantation in the subcutaneous tissue of diabetic mice. Silk scaffolds are selected to create an effective 3D microenvironment for SVF delivery in the subcutaneous tissue before diabetes induction: silk-SVF is subcutaneously implanted in the dorsal area of five healthy animals; after 15 d, mice are treated with streptozotocin to induce diabetes and then alginate-PECs are implanted on the silk-SVF. All animals appear in good health, increasing weight during time, and among them, one presents euglycemia until the end of experiments. On the contrary, when PECs are simultaneously implanted with SVF after diabetes induction, mice are euthanized due to suffering. This work clearly demonstrates that silk-SVF creates a functional niche in subcutaneous tissue and preserves endocrine cell survival and engraftment.
Collapse
Affiliation(s)
- Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Mastracci
- Section of Histopathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), IRCCS San Martino IST Hospital, University of Genoa, Largo R. Benzi 8, 16121, Genoa, Italy
| | - Federica Grillo
- Section of Histopathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), IRCCS San Martino IST Hospital, University of Genoa, Largo R. Benzi 8, 16121, Genoa, Italy
| | - Barbara Antonioli
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Marta Galuzzi
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Marta Cecilia Tosca
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Stefania Preda
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Theodora Chlapanidas
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
31
|
Schive SW, Mirlashari MR, Hasvold G, Wang M, Josefsen D, Gullestad HP, Korsgren O, Foss A, Kvalheim G, Scholz H. Human Adipose-Derived Mesenchymal Stem Cells Respond to Short-Term Hypoxia by Secreting Factors Beneficial for Human Islets In Vitro and Potentiate Antidiabetic Effect In Vivo. CELL MEDICINE 2017; 9:103-116. [PMID: 28713640 DOI: 10.3727/215517917x693401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) release factors beneficial for islets in vitro and protect against hyperglycemia in rodent models of diabetes. Oxygen tension has been shown to induce metabolic changes and alter ASCs' release of soluble factors. The effects of hypoxia on the antidiabetic properties of ASCs have not been explored. To investigate this, we incubated human ASCs for 48 h in 21% (normoxia) or 1% O2 (hypoxia) and compared viability, cell growth, surface markers, differentiation capability, and soluble factors in the conditioned media (CM). Human islets were exposed to CM from ASCs incubated in either normoxia or hypoxia, and islet function and apoptosis after culture with or without proinflammatory cytokines were measured. To test hypoxic preconditioned ASCs' islet protective effects in vivo, ASCs were incubated for 48 h in normoxia or hypoxia before being injected into Balb/c Rag 1-/- immunodeficient mice with streptozotocin-induced insulitis. Progression of diabetes and insulin content of pancreas were measured. We found that incubation in hypoxia was well tolerated by ASCs and that levels of VEGF-A, FGF-2, and bNGF were elevated in CM from ASCs incubated in hypoxia compared to normoxia, while levels of HGF, IL-8, and CXCL1 were reduced. CM from ASCs incubated in hypoxia significantly improved human islet function and reduced apoptosis after culture, and reduced cytokine-induced apoptosis. In our mouse model, pancreas insulin content was higher in both groups receiving ASCs compared to control, but the mice receiving preconditioned ASCs had lower random and fasting blood glucose, as well as improved oral glucose tolerance compared to untreated mice. In conclusion, our in vitro results indicate that the islet protective potential of ASCs improves in hypoxia, and we give insight into factors involved in this. Finally we show that hypoxic preconditioning potentiates ASCs' antidiabetic effect in vivo.
Collapse
Affiliation(s)
- Simen W Schive
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohammad Reza Mirlashari
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway.,¶Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Grete Hasvold
- #Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mengyu Wang
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | - Dag Josefsen
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | | | - Olle Korsgren
- ††Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aksel Foss
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
de Souza BM, Bouças AP, de Oliveira FDS, Reis KP, Ziegelmann P, Bauer AC, Crispim D. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets 2017; 9:30-42. [PMID: 28151049 PMCID: PMC5345749 DOI: 10.1080/19382014.2017.1286434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of viable and functional pancreatic islets is crucial for successful islet transplantation from brain-dead donors. To overcome islet quality loss during culture, some studies have co-cultured islets with mesenchymal stem/stromal cells (MSC). However, it is still uncertain if MSC-secreted factors are enough to improve islet quality or if a physical contact between MSCs and islets is needed. Therefore, we performed a systematic review and meta-analysis to clarify the effect of different culture contact systems of islets with MSCs on viability and insulin secretion outcomes. Pubmed and Embase were searched. Twenty studies fulfilled the eligibility criteria and were included in the qualitative synthesis and/or meta-analysis. For both outcomes, pooled weighted mean differences (WMD) between islet cultured alone (control group) and the co-culture condition were calculated. Viability mean was higher in islets co-cultured with MSCs compared with islet cultured alone [WMD = 18.08 (95% CI 12.59-23.57)]. The improvement in viability was higher in islets co-cultured in indirect or mixed contact with MSCs than in direct physical contact (P <0.001). Moreover, the mean of insulin stimulation index (ISI) was higher in islets from co-culture condition compared with islet cultured alone [WMD = 0.83 (95% CI 0.54-1.13)], independently of contact system. Results from the studies that were analyzed only qualitatively are in accordance with meta-analysis data. Co-culture of islets with MSCs has the potential for protecting islets from injury during culture period. Moreover, culture time appears to influence the beneficial effect of different methods of co-culture on viability and function of islets.
Collapse
Affiliation(s)
- Bianca Marmontel de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda dos Santos de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Pires Reis
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ziegelmann
- Statistics Department and Post-Graduation Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Dietrich I, Crescenzi A, Chaib E, D'Albuquerque LAC. Trophic effects of adipose derived stem cells on Langerhans islets viability--Review. Transplant Rev (Orlando) 2015; 29:121-6. [PMID: 26002997 DOI: 10.1016/j.trre.2015.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022]
Abstract
Langerhans islets transplantation has been proposed to provide an endogenous source of insulin in Type I diabetes. However, the hypoxic stress and the receptor's immune reaction suffered by the implants cause them to fail in sustaining the insulin production along the time. Experimental studies have shown that adipose derived stem cells (ADSCs) can secrete cytokines that activate free radical scavengers, antioxidants and chaperone heat/shock proteins leading to reduction of apoptosis in damaged tissues. Therefore, using the PubMed database, we reviewed the experimental studies that investigated the trophic effects of ADSCs on Langerhans islets viability, in vitro and in vivo, from 2009 to 2014. We excluded articles that investigated the effects of other types of mesenchymal stem cells on β-cell survival as well articles that worked in the differentiation of ADSCs into insulin producing cells. The analysis of the experiments revealed that exposure of islets to ADSCs in vitro, even for a short period of time, can enhance islet cell viability and function. In vivo studies also corroborated the trophic effects of ADSCs leading to the improvement of islet function and reduction of the number of the islets required for controlling the receptor's glucose levels. This review can contribute to guide future experiments looking for a long term diabetes treatment employing ADSC trophic effects for the enhancement of transplanted Langerhans islet viability and functioning.
Collapse
Affiliation(s)
- Isa Dietrich
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil.
| | - Alessandra Crescenzi
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| | - Elezar Chaib
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| | - Luiz Augusto Carneiro D'Albuquerque
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| |
Collapse
|
34
|
Culturing Free-Floating and Fibrin-Embedded Islets with Endothelial Cells: Effects on Insulin Secretion and Apoptosis. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|