1
|
Zhuang L, Zhao Y, Shen J, Sun L, Hao P, Yang J, Zhang Y, Shen Q. Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods. DISCOVER NANO 2025; 20:48. [PMID: 40029472 DOI: 10.1186/s11671-025-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). The economic impact of PEDV on the global pig industry has been significant, resulting in considerable losses. This paper presents a review of the latest research progress on PEDV genome, molecular epidemiology, vaccine development, and molecular detection methods. It was determined that the genetic diversity of the PEDV spike (S) gene was closely associated with the epidemiological trend of PEDV. The prevalence of S gene variants of different genotypes exhibited variability across regions and pig populations. Epidemiological analyses have demonstrated that PEDV can be transmitted via multiple routes, including direct contact, airborne aerosol, and water source contamination. With regard to vaccine research, the available vaccines can be classified into several categories, including live-attenuated vaccines, inactivated vaccines, subunit vaccines, bacterial vector vaccines, viral vector vaccines, mRNA vaccines, etc. Each of these has distinctive characteristics in terms of immunogenicity, protection efficiency, and safety. Molecular detection methods, including PCR-based methods, isothermal amplification techniques, immunological assays, and biosensors, play an important role in the diagnosis and monitoring of PEDV. Furthermore, this paper examines the current developments in PEDV research and identifies the key areas of future investigation. The objective of this paper is to establish a theoretical foundation for the prevention and control strategies of PED, and to provide a point of reference for further research on the genomics, epidemiology, vaccine development and detection methods of PEDV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Wang B, Han W, Wu D, Jing Y, Ma L, Jiang F, Ji S, Bai L, Yu X, Hou W, Wang S, Wang H. Duplex qPCR for detecting and differentiating porcine epidemic diarrhea virus GI and GII subtypes. Front Microbiol 2025; 16:1475273. [PMID: 39911251 PMCID: PMC11794799 DOI: 10.3389/fmicb.2025.1475273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Porcine epidemic diarrhea virus (PEDV) is a pathogen that causes a highly contagious intestinal disease in pigs, which causes significant economic losses to the pig industry worldwide. PCR is the most commonly used technique for PEDV diagnosis in practical clinics, however, reported works still suffer from shortcomings, for example, most of them cannot differentiate GI and GII subtypes, they suffer from low sensitivity, and some primer sequences are no longer able to match the mutant strains. Methods To address these issues, we conducted a comprehensive analysis by comparing the sequences of the PEDV S protein in the existing NCBI database with a recently isolated epidemic strain of PEDV, named SX0818-2022, of subtype GIIa from Shanxi, China. The conserved sequences of GI and GII subtypes were retrieved to design the primers and probe. Leveraging this information, we developed a TaqMan probe-based quantitative real-time PCR (qPCR) assay that is uniquely tailored to detect both PEDV GI and GII subtypes. Results Additionally, this qPCR can identify PEDV GI and GII subtypes with high sensitivities of 90 copies/μL and 40 copies/μL, respectively (refers to the number of copies of the DNA target per microliter of template in the reaction system), much higher than the previously reported works and especially suitable for early diagnosis and prevention. Besides, excellent specificity and repeatability of the duplex qPCR were verified, thus supporting its potential applications in practical clinics. Discussion Therefore, this work presents a promising tool for PEDV diagnosis, prevention, and control.
Collapse
Affiliation(s)
- Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wang Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Di Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yue Jing
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Li Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Feiyang Jiang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shusen Ji
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Lianmei Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi University, Wuxi, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
3
|
Hu X, Zhang M, Liu Y, Li YT, Li W, Li T, Li J, Xiao X, He Q, Zhang ZY, Zhang GJ. A portable transistor immunosensor for fast identification of porcine epidemic diarrhea virus. J Nanobiotechnology 2024; 22:239. [PMID: 38735951 PMCID: PMC11089749 DOI: 10.1186/s12951-024-02440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.
Collapse
Affiliation(s)
- Xiao Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Yiwei Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, P. R. China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China.
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China.
| |
Collapse
|
4
|
Rivera-Benítez JF, Martínez-Bautista R, González-Martínez R, De la Luz-Armendáriz J, Herrera-Camacho I, Rosas-Murrieta N, Márquez-Valdelamar L, Lara R. Phylogenetic and Molecular Analysis of the Porcine Epidemic Diarrhea Virus in Mexico during the First Reported Outbreaks (2013-2017). Viruses 2024; 16:309. [PMID: 38400084 PMCID: PMC10891996 DOI: 10.3390/v16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The characteristics of the whole PEDV genome that has circulated in Mexico from the first outbreak to the present are unknown. We chose samples obtained from 2013 to 2017 and sequenced them, which enabled us to identify the genetic variation and phylogeny in the virus during the first four years that it circulated in Mexico. A 99% identity was found among the analyzed pandemic strains; however, the 1% difference affected the structure of the S glycoprotein, which is essential for the binding of the virus to the cellular receptor. The S protein induces the most efficacious antibodies; hence, these changes in structure could be implicated in the clinical antecedents of the outbreaks. Antigenic changes could also help PEDV avoid neutralization, even in the presence of previous immunity. The characterization of the complete genome enabled the identification of three circulating strains that have a deletion in ORF1a, which is present in attenuated Asian vaccine strains. The phylogenetic analysis of the complete genome indicates that the first PEDV outbreaks in Mexico were caused by INDEL strains and pandemic strains related to USA strains; however, the possibility of the entry of European strains exists, which may have caused the 2015 and 2016 outbreaks.
Collapse
Affiliation(s)
- José Francisco Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 04010, Mexico
| | | | | | - Jazmín De la Luz-Armendáriz
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, UNAM, Mexico City 04510, Mexico;
| | - Rocio Lara
- Programa de Maestría en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
An ultrasensitive electrochemical sensor for detecting porcine epidemic diarrhea virus based on a Prussian blue-reduced graphene oxide modified glassy carbon electrode. Anal Biochem 2023; 662:115013. [PMID: 36493864 DOI: 10.1016/j.ab.2022.115013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
This study developed a novel, ultrasensitive sandwich-type electrochemical immunosensor for detecting the porcine epidemic diarrhea virus (PEDV). By electrochemical co-deposition of graphene and Prussian blue, a Prussian blue-reduced graphene oxide-modified glassy carbon electrode was made, further modified with PEDV-monoclonal antibodies (mAbs) to create a new PEDV immunosensor using the double antibody sandwich technique. The electrochemical characteristics of several modified electrodes were investigated using cyclic voltammetry (CV). We optimized the pH levels and scan rate. Additionally, we examined specificity, reproducibility, repeatability, accuracy, and stability. The study indicates that the immunosensor has good performance in the concentration range of 1 × 101.88 to 1 × 105.38 TCID50/mL of PEDV, with a detection limit of 1 × 101.93 TCID50/mL at a signal-to-noise ratio of 3σ. The composite membranes produced via co-deposition of graphene and Prussian blue effectively increased electron transport to the glassy carbon electrode, boosted response signals, and increased the sensitivity, specificity, and stability of the immunosensor. The immunosensor could accurately detect PEDV, with results comparable to real-time quantitative PCR. This technique was applied to PEDV detection and served as a model for developing additional immunosensors for detecting hazardous chemicals and pathogenic microbes.
Collapse
|
7
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
8
|
Li R, Tian X, Pang J, Li L, Yuan J, Tian Z, Wang Z. Point-of-Care Tests for Rapid Detection of Porcine Epidemic Diarrhea Virus: A Systematic Review and Meta-Analysis. Viruses 2022; 14:v14071355. [PMID: 35891337 PMCID: PMC9321219 DOI: 10.3390/v14071355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022] Open
Abstract
The timely and accurate diagnosis of porcine epidemic diarrhea virus (PEDV) infection is crucial to reduce the risk of viral transmission. Therefore, the objective of this review was to evaluate the overall diagnostic accuracy of rapid point-of-care tests (POCTs) for PEDV. Studies published before 7 January 2022 were identified by searching PubMed, EMBASE, Springer Link, and Web of Science databases, using subject headings or keywords related to point of care and rapid test diagnostic for PEDV and PED. Two investigators independently extracted data, rated risk of bias, and assessed the quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model were used for performing the meta-analysis. Threshold effect, subgroup analysis, and meta-regression were applied to explore heterogeneity. Of the 2908 records identified, 24 eligible studies involving 3264 specimens were enrolled in the meta-analysis, including 11 studies on evaluation of lateral flow immunochromatography assay (ICA)-based, and 13 on nucleic acid isothermal amplification (NAIA)-based POCTs. The overall pooled sensitivity, specificity and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.92–0.97), 0.96 (95% CI 0.88–0.99) and 480 (95% CI 111–2074), respectively; for ICA-based POCTs and the corresponding values for NAIA-based, POCTs were 0.97 (95% CI 0.94–0.99), 0.98 (95% CI 0.91–0.99) and 1517 (95% CI 290–7943), respectively. The two tests showed highly comparable and satisfactory diagnostic performance in clinical utility. These results support current recommendations for the use of rapid POC tests when PEDV is suspected.
Collapse
Affiliation(s)
- Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence:
| | - Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Zhuangzhuang Tian
- School of International Education, Xinxiang Medical University, Xinxiang 453003, China;
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| |
Collapse
|
9
|
Doerksen T, Christensen T, Lu A, Noll L, Bai J, Henningson J, Palinski R. Assessment of Porcine Rotavirus-associated virome variations in pigs with enteric disease. Vet Microbiol 2022; 270:109447. [PMID: 35561657 DOI: 10.1016/j.vetmic.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
10
|
Rapid and efficient detection methods of pathogenic swine enteric coronaviruses. Appl Microbiol Biotechnol 2020; 104:6091-6100. [PMID: 32430534 PMCID: PMC7235545 DOI: 10.1007/s00253-020-10645-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Abstract Porcine enteric coronaviruses (CoVs) cause highly contagious enteric diarrhea in suckling piglets. These COV infections are characterized by clinical signs of vomiting, watery diarrhea, dehydration, and high morbidity and mortality, resulting in significant economic losses and tremendous threats to the pig farming industry worldwide. Because the clinical manifestations of pigs infected by different CoVs are similar, it is difficult to differentiate between the specific pathogens. Effective high-throughput detection methods are powerful tools used in the prevention and control of diseases. The immune system of piglets is not well developed, so serological methods to detect antibodies against these viruses are not suitable for rapid and early detection. This paper reviews various PCR-based methods used for the rapid and efficient detection of these pathogenic CoVs in swine intestines. Key points Swine enteric coronaviruses (CoVs) emerged and reemerged in past years. Enteric CoVs infect pigs at all ages with high mortality rate in suckling pigs. Rapid and efficient detection methods are needed and critical for diagnosis.
Collapse
|
11
|
Cortey M, Díaz I, Vidal A, Martín-Valls G, Franzo G, Gómez de Nova PJ, Darwich L, Puente H, Carvajal A, Martín M, Mateu E. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet Res 2019; 15:441. [PMID: 31805938 PMCID: PMC6896758 DOI: 10.1186/s12917-019-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diarrhoea is a major cause of death in neonate pigs and most of the viruses that cause it are RNA viruses. Next Generation Sequencing (NGS) deeply characterize the genetic diversity among rapidly mutating virus populations at the interspecific as well as the intraspecific level. The diversity of RNA viruses present in faeces of neonatal piglets suffering from diarrhoea in 47 farms, plus 4 samples from non-diarrhoeic piglets has been evaluated by NGS. Samples were selected among the cases submitted to the Veterinary Diagnostic Laboratories of Infectious Diseases of the Universitat Autònoma de Barcelona (Barcelona, Spain) and Universidad de León (León, Spain). RESULTS The analyses identified the presence of 12 virus species corresponding to 8 genera of RNA viruses. Most samples were co-infected by several viruses. Kobuvirus and Rotavirus were more commonly reported, with Sapovirus, Astrovirus 3, 4 and 5, Enterovirus G, Porcine epidemic diarrhoea virus, Pasivirus and Posavirus being less frequently detected. Most sequences showed a low identity with the sequences deposited in GenBank, allowing us to propose several new VP4 and VP7 genotypes for Rotavirus B and Rotavirus C. CONCLUSIONS Among the cases analysed, Rotaviruses were the main aetiological agents of diarrhoea in neonate pigs. Besides, in a small number of cases Kobuvirus and Sapovirus may also have an aetiological role. Even most animals were co-infected in early life, the association with enteric disease among the other examined viruses was unclear. The NGS method applied successfully characterized the RNA virome present in faeces and detected a high level of unreported intraspecific diversity.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Anna Vidal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Giovanni Franzo
- Department of Animal Medicine Production and Health (MAPS), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Pedro José Gómez de Nova
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Laila Darwich
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Evaluation of the Efficacy of a Recombinant Adenovirus Expressing the Spike Protein of Porcine Epidemic Diarrhea Virus in Pigs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8530273. [PMID: 31687402 PMCID: PMC6800969 DOI: 10.1155/2019/8530273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
In recent years, many studies have shown that recombinant adenovirus live vector-based vaccines are a promising novel vaccine candidate against virus infection. Therefore, in this study, a new type of recombinant adenovirus expressing the spike (S) protein of porcine epidemic diarrhea virus (PEDV), rAd-PEDV-S, was generated, and its characteristics were determined. Then, its efficacy as a vaccine candidate was evaluated in 4-week-old pigs. The results showed that the S protein could be well expressed at a high level in rAd-PEDV-S-infected cells and that the viral titers could reach 1011 PFU/mL. Further animal experimental results showed that rAd-PEDV-S elicited a significant PEDV-specific humoral immune response after vaccination (P < 0.05). In addition, rAd-PEDV-S provided partial protection for pigs against the highly virulent PEDV challenge. The results presented in this study indicate that the adenovirus vector can be used as a vaccine delivery vector for the development of a PEDV vaccine and is a promising novel vaccine candidate for future prevention and control of porcine epidemic diarrhea (PED), but its efficacy still needs to be improved in the future.
Collapse
|
13
|
|
14
|
Liu J, Li LM, Han JQ, Sun TR, Zhao X, Xu RT, Song QY. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Mol Cell Probes 2019; 45:37-42. [PMID: 31004698 DOI: 10.1016/j.mcp.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an important pathogen causing severe watery diarrhea, vomiting, dehydration, and death in sucking piglets. Attenuated vaccines have been used widely in sows in order to protect piglets through passive lactogenic immunity. Rapid and sensitive detection methods for differentiating attenuated vaccine strains from virulent ones are essential and practical in PEDV prevention and control. Based on the deletion mutation in ORF3 gene sequence, a TaqMan probe-based real-time quantitative PCR (TaqMan qPCR) was developed to distinguish PEDV virulent strains from attenuated vaccine ones in this study. The TaqMan qPCR could specifically detect PEDV virulent strain but not attenuated vaccine strain and other viruses. At least 37 DNA copies and PEDV of 0.995 TCID50 could be detected by TaqMan qPCR. The reproducibility was evaluated using various dilution of plasmids carrying PEDV ORF3 gene and virulent PEDV, and the inter-assay coefficient of variation (CV) was less than 0.44%. The TaqMan qPCR was further applied to detect 38 samples including intestines and their contents, fecal swabs, and mesenteric lymph nodes. Meanwhile, indirect immunofluorescence assay (IFA) was employed to detect PEDV-specific antigen. PEDV positive rates were 31.58% (12/38) and 26.32% (10/38) by TaqMan PCR and IFA, respectively, which suggested that the former was more sensitive than the latter. The TaqMan qPCR based on PEDV ORF3 gene could be a valuable tool in diagnose of porcine epidemic diarrhea and in molecular epidemiological study of the virulent PEDV.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Li-Min Li
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Jiu-Qaun Han
- College of Foreign Languages, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Tai-Ran Sun
- Baoding Animal Disease Control and Prevention Center, Baoding, Hebei, 071000, China.
| | - Xue Zhao
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Rui-Tao Xu
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Qin-Ye Song
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
15
|
Zhao Y, Liu F, Li Q, Wu M, Lei L, Pan Z. A multiplex RT-PCR assay for rapid and simultaneous detection of four RNA viruses in swine. J Virol Methods 2019; 269:38-42. [PMID: 30951787 PMCID: PMC7113762 DOI: 10.1016/j.jviromet.2019.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
A multiplex reverse transcription polymerase chain rection (mRT-PCR) was developed for simultaneous detection of four RNA viruses in swine. The conserved target sequences directed to classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis coronavirus (TGEV) were selected based on alignments of genomic sequences and then specific primers were designed. The mRT-PCR assay was developed and evaluated for its specificity and sensitivity. The expected product from the single viral template was amplified by mRT-PCR and no spurious PCR amplification occurred from the genomic RNA or DNA of other pathogens. For single virus or different combinations of two viruses the detection limit of mRT-PCR was consistent with a single RT-PCR wtith 1 × 103 copies. For different combinations of the three viruses or four viruses, sensitivity of PEDV detection partially decreased. All of positive clinical specimens by the mRT-PCR were identically confirmed using Taqman RT-qPCR. Therefore, the mRT-PCR is a useful tool for epidemiological studies and laboratory diagnosis of single virus and/or mixed infections in swine.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mengfan Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Ye Y, Zhu J, Ai Q, Wang C, Liao M, Fan H. Quantitative Proteomics Reveals Changes in Vero Cells in Response to Porcine Epidemic Diarrhea Virus. J Proteome Res 2019; 18:1623-1633. [PMID: 30730140 DOI: 10.1021/acs.jproteome.8b00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Outbreaks of porcine epidemic diarrhea virus (PEDV) have caused significant lethality rates in neonatal piglets, which pose a serious threat to the swine industry worldwide. Available commercial vaccines fail to protect against the emergence of high virulence of PEDV variants. Therefore, the endemic state of the PEDV infection in suckling piglets highlights the urgent need for uncovering the molecular determinants of the disease pathogenesis. In this study, stable isotope labeling by amino acids in cell culture (SILAC), combined with high-performance liquid chromatography/tandem mass spectrometry was performed to determine proteomic differences between PEDV-infected and mock-infected Vero cells at 18 h postinfection. The SILAC-based approach identified 4508 host-cell proteins, of which 120 were significantly up-regulated and 103 were significantly down-regulated at ≥95% confidence. Alterations in the expression of selected proteins were verified by Western blot. Several signaling metabolic pathways including mevalonate pathway I and the superpathway of cholesterol biosynthesis were triggered by the infection of the highly virulent strain and are linked to host innate immunity. 25-HC, an inhibitor of the mevalonate pathway, exhibited potent antiviral activity against PEDV infection. Meanwhile, the cell-cycle-related functions were significantly regulated, which may likely be responsible for the viral replication and pathogenicity of PEDV.
Collapse
Affiliation(s)
- Yu Ye
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Jun Zhu
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China
| | - Qiangyun Ai
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Chengcheng Wang
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Ming Liao
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Huiying Fan
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| |
Collapse
|
17
|
Han HY, Zheng HH, Zhao Y, Tian RB, Xu PL, Hou HL, Chen HY, Yang MF. Development of a SYBR green I-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine epidemic diarrhea virus and porcine circovirus 3. Mol Cell Probes 2019; 44:44-50. [PMID: 30735700 PMCID: PMC7172278 DOI: 10.1016/j.mcp.2019.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
The development of a rapid, specific, and sensitive SYBR Green I-based duplex real-time quantitative PCR assay is described for the simultaneous detection of porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 3 (PCV3). The assay specifically detected PEDV and PCV3, with no fluorescence detected for other non-targeted pig pathogens. The assay showed a good linear relationship, and the limits of detection for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively. The assay exhibited high repeatability and reproducibility, with intra-assay and inter-assay variation coefficients less than 2.0%. A clinical evaluation using intestinal tissue and fecal samples from piglets suffering from diarrhea at different pig farms in China revealed that the singular infection rates of PEDV and PCV3 were 43.94% (29/66) and 16.67% (11/66), respectively, while the co-infection rate of PCV3 with PEDV was 27.27% (18/66). The results indicate this assay is a rapid and reliable diagnostic tool for PEDV and PCV3 monitoring and surveillance in the field, and provides technical support for the quantitative detection of clinical samples infected or co-infected with PEDV and PCV3. PED outbreaks have been resulted in a huge economic loss in the pig farming industry. PCV3 is a novel virus and has been detected in piglets affected with diarrhea. A duplex qPCR assay was developed for the simultaneous detection of PEDV and PCV3. The LOD for this assay were 34.6 copies/μL and 61.2 copies/μL for PEDV and PCV3, respectively.
Collapse
Affiliation(s)
- Hao-Ying Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Run-Bo Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Peng-Li Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hua-Lin Hou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Ming-Fan Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China; Zhengzhou Major Pig Disease Prevention and Control Laboratory, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
18
|
Wang XY, Ji CJ, Zhang X, Xu DP, Zhang DL. Infection, genetic and virulence characteristics of porcine epidemic diarrhea virus in northwest China. INFECTION GENETICS AND EVOLUTION 2018; 62:34-39. [PMID: 29625238 DOI: 10.1016/j.meegid.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
|
19
|
Lara-Romero R, Gómez-Núñez L, Cerriteño-Sánchez JL, Márquez-Valdelamar L, Mendoza-Elvira S, Ramírez-Mendoza H, Rivera-Benítez JF. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013-2016. Virus Genes 2017; 54:215-224. [PMID: 29243063 PMCID: PMC7088687 DOI: 10.1007/s11262-017-1528-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
In Mexico, the first outbreaks suggestive of the circulation of the porcine epidemic diarrhea virus (PEDV) were identified at the beginning of July 2013. To identify the molecular characteristics of the PEDV Spike (S) gene in Mexico, 116 samples of the intestine and diarrhea of piglets with clinical signs of porcine epidemic diarrhea (PED) were obtained. Samples were collected from 14 farms located in six states of Mexico (Jalisco, Puebla, Sonora, Veracruz, Guanajuato, and Michoacán) from 2013 to 2016. To identify PEDV, we used real-time RT-PCR to discriminate between non-INDEL and INDEL strains. We chose samples according to state and year to characterize the S gene. After amplification of the S gene, the obtained products were sequenced and assembled. The complete amino acid sequences of the spike protein were used to perform an epitope analysis, which was used to determine null mutations in regions SS2, SS6, and 2C10 compared to the sequences of G2. A phylogenetic analysis determined the circulation of G2b and INDEL strains in Mexico. However, several mutations were recorded in the collagenase equivalent (COE) region that were related to the change in polarity and charge of the amino acid residues. The PEDV strain circulating in Jalisco in 2016 has an insertion of three amino acids (232LGL234) and one change in the antigenic site of the COE region, and strains from the years 2015 and 2016 changed the index of the surface probability, which could be related to the re-emergence of disease outbreaks.
Collapse
Affiliation(s)
- Rocío Lara-Romero
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.,Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Luis Gómez-Núñez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico
| | | | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, Instituto de Biología, UNAM, Mexico City, Mexico
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - José Francisco Rivera-Benítez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.
| |
Collapse
|
20
|
Hanke D, Pohlmann A, Sauter-Louis C, Höper D, Stadler J, Ritzmann M, Steinrigl A, Schwarz BA, Akimkin V, Fux R, Blome S, Beer M. Porcine Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and Molecular Epidemiology. Viruses 2017; 9:E177. [PMID: 28684708 PMCID: PMC5537669 DOI: 10.3390/v9070177] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.
Collapse
Affiliation(s)
- Dennis Hanke
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, D-17493 Greifswald-Insel Riems, Germany.
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, D-17493 Greifswald-Insel Riems, Germany.
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Institute of Epidemiology, D-17493 Greifswald-Insel Riems, Germany.
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, D-17493 Greifswald-Insel Riems, Germany.
| | - Julia Stadler
- Clinic for Swine, Ludwig-Maximilians-University Munich, D-85764 Oberschleissheim, Germany.
| | - Mathias Ritzmann
- Clinic for Swine, Ludwig-Maximilians-University Munich, D-85764 Oberschleissheim, Germany.
| | - Adi Steinrigl
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, A-2340 Mödling, Austria.
| | | | - Valerij Akimkin
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach, D-70736 Fellbach, Germany, .
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany.
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, D-17493 Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, D-17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
21
|
Zhou X, Zhang T, Song D, Huang T, Peng Q, Chen Y, Li A, Zhang F, Wu Q, Ye Y, Tang Y. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Mol Cell Probes 2017; 33:36-41. [PMID: 28188840 DOI: 10.1016/j.mcp.2017.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/04/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal disease, resulting in substantial economic losses to the swine industry worldwide. In this study, three assays, namely a conventional reverse transcription-polymerase chain reaction (RT-PCR), a SYBR Green I real-time RT-PCR and a TaqMan real-time RT-PCR targeting the highly conserved M gene of PEDV, were developed and evaluated. Then, the analytical specificity, sensitivity and reproducibility of these assays were determined and compared. The TaqMan real-time RT-PCR was 100-fold and 10,000-fold more sensitive than that of the SYBR Green I real-time RT-PCR and the conventional RT-PCR, respectively. The analytical sensitivity of TaqMan real-time RT-PCR was 10 copies/μl of target gene and no cross amplification with other viruses tested was observed. With the features of high specificity, sensitivity, and reproducibility, the TaqMan real-time RT-PCR established in this study could be a useful tool for clinical diagnosis, epidemiological surveys and outbreak investigations of PED.
Collapse
Affiliation(s)
- Xinrong Zhou
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Tiansheng Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Deping Song
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Tao Huang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Qi Peng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Yanjun Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Anqi Li
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Fanfan Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Qiong Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Yu Ye
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| | - Yuxin Tang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China.
| |
Collapse
|
22
|
The Identification and Characterization of Two Novel Epitopes on the Nucleocapsid Protein of the Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:39010. [PMID: 27991537 PMCID: PMC5171872 DOI: 10.1038/srep39010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death, particularly in neonatal piglets. The nucleocapsid protein (N protein) of PEDV presents strong immunogenicity and contributes to the cross-reactivity between PEDV and TGEV. However, the characterization of epitopes on the PEDV N protein remains largely unknown. Here, two monoclonal antibodies (MAbs) specific to the N protein of a PEDV strain, FJzz1/2011, were generated and screened against a partially overlapping library of 24 GST-fusion N protein-truncated constructs. We confirmed that residues 18–133 (designated NEP-D4) and residues 252–262 (designated NEP-D6) were the epitopes targeted by MAbs PN-D4 and PN-D6, respectively. Sequence analysis revealed that these two epitopes were highly conserved among PEDV strains but were significantly different from other members of the Coronavirinae subfamily. Western blot analysis showed that they could be specifically recognized by PEDV antisera but could not be recognized by TGEV hyperimmune antisera. Indirect immunofluorescence (IFA) assays confirmed no cross-reaction between these two MAbs and TGEV. In addition, the freeze-thaw cycle and protease treatment results indicated that NEP-D4 was intrinsically disordered. All these results suggest that these two novel epitopes and their cognate MAbs could serve as the basis for the development of precise diagnostic assays for PEDV.
Collapse
|
23
|
Bertasio C, Giacomini E, Lazzaro M, Perulli S, Papetti A, Lavazza A, Lelli D, Alborali G, Boniotti MB. Porcine Epidemic Diarrhea Virus Shedding and Antibody Response in Swine Farms: A Longitudinal Study. Front Microbiol 2016; 7:2009. [PMID: 28018330 PMCID: PMC5156881 DOI: 10.3389/fmicb.2016.02009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/30/2016] [Indexed: 02/03/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) causes an acute and highly contagious enteric disease characterized by severe enteritis, vomiting, watery diarrhea, and a high mortality rate in seronegative neonatal piglets. In the last few years, PED had a large economic impact on the swine industries in Asia and the US, and in 2014, the PEDV also re-emerged in Europe. Two main PEDV variants circulate worldwide but only the S INDEL variant, considered a mild strain, is spreading in Europe. To gain insights into the pathogenicity of this variant, its viral load and temporal shedding pattern were evaluated in piglets from infected farms. Quantitative real-time PCR (qPCR) targeting the spike gene, was validated according to the minimum information for quantitative real-time PCR experiments guidelines. The qPCR was applied to longitudinal studies conducted in four swine farms naturally infected with the PEDV S INDEL variant. Clinical data, fecal swabs, and blood samples were collected from 103 piglets at 15-30-day intervals for 2-5 months. On all four farms, diarrhea was observed in sows during gestation and in farrowing units, and the mortality rates of piglets were 18, 25, 30, and 35%. Different clinical pictures (0-50% of diarrhea positivity), viral titer levels (mean 5.3-7.2 log10 genome copies/mL), and antibody conditions (30-80% of positivity) were registered among sows on the four farms. The percentage of qPCR positive piglets varied greatly from the beginning (63-100%) to the end (0%) of the infection course. Clinical signs were present in 96% of the qPCR positive animals. Viral loads ranged from 8.5 log10 to 4 log10 genome copies/mL in suckling pigs at 3-6 days of age and were not statistically different among farms, despite the different patterns observed in sows. After 2-3 weeks, only a few piglets still showed detectable viral levels and clinical signs, and they developed antibody responses. Moreover, co-infections with other pathogens and biosecurity procedures limiting the circulation of the virus could have influenced the severity of PED infection. QPCR and clinical data were useful in understanding the dynamics of PEDV infections and, therefore, in implementing appropriate control measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria B. Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell’Emilia Romagna (IZSLER)Brescia, Italy
| |
Collapse
|
24
|
Choudhury B, Dastjerdi A, Doyle N, Frossard JP, Steinbach F. From the field to the lab - An European view on the global spread of PEDV. Virus Res 2016; 226:40-49. [PMID: 27637348 PMCID: PMC7114520 DOI: 10.1016/j.virusres.2016.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a member of the genus Alphacoronavirus, in the family Coronaviridae, of the Nidovirales order and outbreaks of porcine epidemic diarrhoea (PED) were first recorded in England in the 1970s. Intriguingly the virus has since successfully made its way around the globe, while seemingly becoming extinct in parts of Europe before its recent return from Northern America. In this review we are re-evaluating the spread of PEDV, its biology and are looking at lessons learnt from both failure and success. While a new analysis of PEDV genomes demonstrates a wider heterogeneity of PEDV than previously anticipated with at least five rather than two genotypes, biological features of the virus and its replication also point towards credible control strategies to limit the impact of this re-emerging virus.
Collapse
Affiliation(s)
- Bhudipa Choudhury
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Akbar Dastjerdi
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Nicole Doyle
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Jean-Pierre Frossard
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| |
Collapse
|
25
|
Wang L, Hayes J, Byrum B, Zhang Y. US variant porcine epidemic diarrhea virus: histological lesions and genetic characterization. Virus Genes 2016; 52:578-581. [PMID: 27059242 DOI: 10.1007/s11262-016-1334-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/02/2016] [Indexed: 02/07/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) was first recognized in pigs in the United States (US) in May 2013. Since then, the virus has spread to over 30 states and caused significant economic losses in the US swine industry due to the high mortality in newborn piglets less than 2 weeks of age. A mild-variant strain OH851 of PEDV in the US was first reported in January 2014. Here, we report histological changes in the small intestines of five piglets infected with the variant strain OH851 of PEDV. The lesions observed were milder, compared to the US classical strain of PEDV. Our study, for the first time, reports the histological lesions caused by the variant PEDV OH851 strain from a field case. In addition, genomic characterization demonstrated that US variant PEDV is more closely related to European-like strains in the first 1170 nt of the 5' spike gene but to US classical PEDV strains in the remaining genome, suggesting that the variant PEDV strain may derive from a recombinant event between the US classical and European-like PEDV strains.
Collapse
Affiliation(s)
- Leyi Wang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street Building #6, Reynoldsburg, OH, 43068, USA.
| | - Jeff Hayes
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street Building #6, Reynoldsburg, OH, 43068, USA
| | - Beverly Byrum
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street Building #6, Reynoldsburg, OH, 43068, USA
| | - Yan Zhang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street Building #6, Reynoldsburg, OH, 43068, USA.
| |
Collapse
|
26
|
Diel DG, Lawson S, Okda F, Singrey A, Clement T, Fernandes MHV, Christopher-Hennings J, Nelson EA. Porcine epidemic diarrhea virus: An overview of current virological and serological diagnostic methods. Virus Res 2016; 226:60-70. [PMID: 27189041 PMCID: PMC7172987 DOI: 10.1016/j.virusres.2016.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/30/2022]
Abstract
Molecular assays such as rRT-PCR are the method of choice for PEDV diagnosis. Multiplex rRT-PCR allow simultaneous testing for PEDV, TGEV and PDCoV. Serological assays provide valuable information on previous exposure to PEDV and population immunity.
Porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute, highly contagious, and severe enteric disease that leads to high mortality rates in suckling piglets. Therefore, accurate diagnosis of PEDV infection is critical for the implementation of control measures for the virus. Many diagnostic tests have been recently developed and are currently available for the detection of PEDV, its proteins or nucleic acid, including virus isolation, immunofluorescence (IF) or immunohistochemistry (IHC), polymerase chain reaction (PCR) and isothermal amplification assays. Additionally, several serological assays have been developed and are currently used for the detection of antibodies against PEDV. Molecular assays such as real-time reverse transcriptase-PCR (rRT-PCR) became the methods of choice for the diagnosis of PEDV infection, providing sensitive, specific and rapid detection of the virus RNA in clinical samples. Whereas serological assays have been widely used to monitor prior exposure to the virus and to evaluate the efficacy of novel vaccine candidates or vaccination strategies. Here we discuss the properties of current PEDV diagnostic assays and prospects for improving diagnostic strategies in the future.
Collapse
Affiliation(s)
- D G Diel
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - S Lawson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - F Okda
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - A Singrey
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - T Clement
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - M H V Fernandes
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - J Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - E A Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
27
|
Chen F, Ku X, Li Z, Memon AM, Ye S, Zhu Y, Zhou C, Yao L, Meng X, He Q. Genetic characteristics of porcine epidemic diarrhea virus in Chinese mainland, revealing genetic markers of classical and variant virulent parental/attenuated strains. Gene 2016; 588:95-102. [PMID: 27178127 DOI: 10.1016/j.gene.2016.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022]
Abstract
Since October 2010, porcine epidemic diarrhea (PED) caused by variant porcine epidemic diarrhea virus (PEDV) has led great economic losses to the global pig industry, especially in China. To study the genetic characteristics of PEDV strains in Chinese mainland, a total of 603 clinical samples from nine provinces/districts of Chinese mainland from January 2014 to December 2015 were collected for RT-PCR detection and 1-1323bp of S gene of 91 isolates and ORF3 gene of 46 isolates were sequenced. The results showed that the variant PEDV were the dominant pathogens of viral diarrhea diseases in these areas. Six novel variant PEDV strains (FJAX1, FJAX2, HeNPDS1, HeNPDS2, HeNPY3, and HeNPY4) with two amino acids (aa) deletion at the 56-57 aa of S protein were identified. A total of 405 Chinese PEDV strains were subjected to phylogenetic and phylogeographic analysis. The results revealed that the subgroup Va in variant PEDV group were the dominant subgroup and the spread trend of variant PEDV strains seemed to be from the southeast coastal districts to other coastal districts and interior districts. The N-terminal of S gene (1-750bp), to some extent, could represent S1 or full length S gene for phylogenetic, similarity, antigen index, hydrophilicity plot, and differentiation analyses. The 404-472bp of S gene contained the three genetic markers, i.e., "TAA" insertion at 404-405bp, "ACAGGT" deletion at 430-435bp, and "ATA" deletion at 455-457bp can be used to differentiate the classical and variant virulent parental/attenuated PEDV strains and help us to learn the infectious and genetic characteristics of PEDV strains more convenient and cheaper. This study has important implication for understanding the infectious, genetic, and evolutionary aspects of PEDV strains in Chinese mainland.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xugang Ku
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunling Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li Yao
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
28
|
Liu X, Wang Q. Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains. J Virol Methods 2016; 234:137-41. [PMID: 27134071 PMCID: PMC7173223 DOI: 10.1016/j.jviromet.2016.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 11/07/2022]
Abstract
Concurrently, several porcine epidemic diarrhea virus (PEDV) variants are circulating in US swine farms, including the original US and the spike insertion-deletion (S-INDEL) strains. In this study, reverse transcription (RT)-PCR assays for the detection and differentiation of different US PEDV variants were developed based on the differences in the S1 domain of the spike (S) gene. This assay successfully differentiated three PEDV strains: PC22A (the original US virulent), Iowa106 (S-INDEL), and PC177 (S-197DEL) that was derived from cell culture adaptation and has a 197 amino acid-deletion in the S1 domain. The assays did not amplify the porcine deltacoronavirus OH-FD22 strain or transmissible gastroenteritis virus Miller strain. It is the first report on the development of RT-PCR assays allowing the detection and differentiation of all major types of US PEDV variants.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
29
|
Wang FX, Yuan DY, Jin YN, Hu L, Sun ZY, He Q, Zhao SH, Zhan SB, Wen YJ. Reverse Transcription Cross-Priming Amplification-Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:24702. [PMID: 27090105 PMCID: PMC4835727 DOI: 10.1038/srep24702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/04/2016] [Indexed: 12/04/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease particularly in neonatal piglets. In this study, a rapid method for detecting PEDV was developed based on cross-priming amplification and nucleic acid test strip(CPA-NATS). Five primers specific for the N gene sequence of PEDV were used for the cross-priming amplification. Detection of amplification products based on labeled probe primers was conducted with strip binding antibody of labeled markers. The CPA method was evaluated and compared with a PCR method. The reverse transcription CPA system was further optimized for detecting PEDV RNA in clinical specimens. Results showed that the method was highly specific for the detection of PEDV, and had the same sensitivity as PCR, with detection limit of 10−6 diluted plasmid containing the target gene of PEDV. It was also successfully applied to detecting PEDV in clinical specimens. The reverse transcription CPA-NATS detection system established in this study offers a specific, sensitive, rapid, and simple detection tool for screening PEDV, which can contribute to strategies in the effective control of PEDV in swine.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China
| | - Dan-Yi Yuan
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Ya-Nan Jin
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Lin Hu
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Zhi-Yong Sun
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Qian He
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Shi-Hua Zhao
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Shu-Bai Zhan
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Yong-Jun Wen
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China.,Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| |
Collapse
|
30
|
Zhang J, Tsai YL, Lee PYA, Chen Q, Zhang Y, Chiang CJ, Shen YH, Li FC, Chang HFG, Gauger PC, Harmon KM, Wang HTT. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus. J Virol Methods 2016; 234:34-42. [PMID: 27060624 PMCID: PMC7113669 DOI: 10.1016/j.jviromet.2016.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
A new PEDV RT-iiPCR method could detect PEDV sensitively and specifically. A new PDCoV RT-iiPCR method could detect PDCoV sensitively and specifically. A new duplex rRT-PCR could detect and differentiate PEDV and PDCoV simultaneously. A portable automatic extraction method worked well with PEDV and PDCoV RT-iiPCRs. The RT-iiPCRs are potentially useful tools for on-site PEDV and PDCoV detection.
Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect the two viruses and differentiate PEDV from PDCoV.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
| | | | | | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Yan Zhang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, OH, USA
| | | | | | | | | | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
31
|
Perez AM, Alba A, Goede D, McCluskey B, Morrison R. Monitoring the Spread of Swine Enteric Coronavirus Diseases in the United States in the Absence of a Regulatory Framework. Front Vet Sci 2016; 3:18. [PMID: 27014703 PMCID: PMC4789556 DOI: 10.3389/fvets.2016.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The reporting and monitoring of swine enteric coronavirus diseases (SECD), including porcine epidemic diarrhea virus and porcine delta coronavirus, in the United States have been challenging because of the initial absence of a regulatory framework and the emerging nature of these diseases. The National Animal Health Laboratory Network, the Emergency Management and Response System, and the Swine Health Monitoring Project were used to monitor the disease situation between May 2013 and March 2015. Important differences existed between and among them in terms of nature and extent of reporting. Here, we assess the implementation of these systems from different perspectives, including a description and comparison of collected data, disease metrics, usefulness, simplicity, flexibility, acceptability, representativeness, timeliness, and stability. This assessment demonstrates the limitations that the absence of premises identification imposes on certain animal health surveillance and response databases, and the importance of federally regulated frameworks in collecting accurate information in a timely manner. This study also demonstrates the value that the voluntary and producer-organized systems may have in monitoring emerging diseases. The results from all three data sources help to establish the baseline information on SECD epidemiological dynamics after almost 3 years of disease occurrence in the country.
Collapse
Affiliation(s)
- Andres M Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , St. Paul, MN , USA
| | - Anna Alba
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , St. Paul, MN , USA
| | - Dane Goede
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , St. Paul, MN , USA
| | - Brian McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture , Fort Collins, CO , USA
| | - Robert Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , St. Paul, MN , USA
| |
Collapse
|
32
|
Tun HM, Cai Z, Khafipour E. Monitoring Survivability and Infectivity of Porcine Epidemic Diarrhea Virus (PEDv) in the Infected On-Farm Earthen Manure Storages (EMS). Front Microbiol 2016; 7:265. [PMID: 27014197 PMCID: PMC4783413 DOI: 10.3389/fmicb.2016.00265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, porcine epidemic diarrhea virus (PEDv) has caused major epidemics, which has been a burden to North America’s swine industry. Low infectious dose and high viability in the environment are major challenges in eradication of this virus. To further understand the viability of PEDv in the infected manure, we longitudinally monitored survivability and infectivity of PEDv in two open earthen manure storages (EMS; previously referred to as lagoon) from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to 9 months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 105 copies/ml of EMS, independent of EMS temperature and pH. In both studied EMS, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMS, which was suggestive of presence of potential alternative hosts for PEDv within the EMS. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMS.
Collapse
Affiliation(s)
- Hein M Tun
- Department of Animal Science, University of Manitoba, Winnipeg MB, Canada
| | - Zhangbin Cai
- Department of Animal Science, University of Manitoba, Winnipeg MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, WinnipegMB, Canada; Department of Medical Microbiology, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
33
|
Animal Coronaviruses: A Brief Introduction. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7120424 DOI: 10.1007/978-1-4939-3414-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
34
|
Miller LC, Crawford KK, Lager KM, Kellner SG, Brockmeier SL. Evaluation of two real-time polymerase chain reaction assays for Porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs. J Vet Diagn Invest 2015; 28:20-9. [PMID: 26699519 DOI: 10.1177/1040638715621949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In April 2013, a Porcine epidemic diarrhea virus (PEDV) epidemic began in the United States. As part of the response, real-time reverse transcription polymerase chain reaction (RT-PCR) assays to detect PEDV were developed by several veterinary diagnostic laboratories. Our study evaluated RT-PCR PEDV assays that detect the N gene (gN) and S gene (gS) for their ability to detect PEDV infection and the transmission potential of pigs experimentally exposed to PEDV. Detection limits and quantification cycle (Cq) values of real-time RT-PCR were assayed for PEDV samples and positive controls for both gN and gS. The limit of detection for the gN assay was 10(-6) (mean Cq: 39.82 ± 0.30) and 10(-5) (mean Cq: 39.39 ± 0.72) for the gS assay with PEDV strain USA/Colorado/2013. Following recommended guidelines, rectal swabs (n = 1,064) were tested; 354 samples were positive by gN assay and 349 samples were positive by gS assay (Cq ≤ 34.99), 710 samples were negative by gN assay and 715 were negative by gS assay (Cq > 34.99) of which 355 and 344 were "undetermined" (i.e., undetected within a threshold of 40 RT-PCR cycles, by gN and gS assays, respectively). The coefficient of variation (intra-assay variation) ranged from 0.00% to 2.65% and interassay variation had an average of 2.75%. PEDV could be detected in rectal swabs from all pigs for ~2 weeks postinfection at which time the prevalence began to decrease until all pigs were RT-PCR negative by 5 weeks postinfection. Our study demonstrated that RT-PCR assays functioned well to detect PEDV and that the gN assay was slightly better.
Collapse
Affiliation(s)
- Laura C Miller
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA
| | - Kimberly K Crawford
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA
| | - Kelly M Lager
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA
| | - Steven G Kellner
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA
| | - Susan L Brockmeier
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA
| |
Collapse
|
35
|
Wang J, Chen J, Wei F, Dong Y, Zhu L, Han W, Wang L, Shen Z. Prokaryotic Expression of Truncated S1 Protein of Porcine Epidemic Diarrhea Virus and Production of Monoclonal Antibodies to Recombinant Protein. Monoclon Antib Immunodiagn Immunother 2015; 34:327-333. [PMID: 26492620 DOI: 10.1089/mab.2015.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Monoclonal antibodies are known to have several applications in clinical diagnosis and therapy. In the present study, the truncated S1 gene, encoding the exterior of the viral spike protein of porcine epidemic diarrhea virus (PEDV), was subcloned into prokaryotic expression vector pET32a (+) and expressed as a recombinant protein in Escherichia coli BL21(DE3). Female BALB/c mice were immunized with the purified recombinant truncated S1 protein, and three monoclonal antibodies (MAb designated as E3, G8, and G9) against the truncated S1 protein obtained by hydridoma technique. Further characterization demonstrated that the three MAbs (E2, G8, and G9) belong to IgG1 subclass and have different affinities (G9 > G8 > E3). Furthermore, all of the three MAbs reacted with PEDV in the fluorescent antibody assay. Our study suggests that purified truncated S1 protein and the three developed MAbs could be useful in the development of a diagnostic assay for anti-PEDV antibodies and PEDV antigen, respectively.
Collapse
Affiliation(s)
- Jinliang Wang
- 1 Postdoctoral Program, Shandong Binzhou Animal Science and Veterinary Medicine Academy , Binzhou, China
- 2 Postdoctoral Program, Jilin University , Changchun, China
| | - Jinlong Chen
- 3 Shandong Lvdu Biological Technology Co. , Binzhou, China
| | - Feng Wei
- 4 Shandong Binzhou Animal Science and Veterinary Medicine Academy , Binzhou, China
| | - Yankai Dong
- 3 Shandong Lvdu Biological Technology Co. , Binzhou, China
| | - Lichuang Zhu
- 3 Shandong Lvdu Biological Technology Co. , Binzhou, China
| | - Wenyu Han
- 2 Postdoctoral Program, Jilin University , Changchun, China
| | - Leyi Wang
- 5 Animal Disease Diagnostic Laboratory , Ohio Department of Agriculture, Reynoldsburg, Ohio
| | - Zhiqiang Shen
- 1 Postdoctoral Program, Shandong Binzhou Animal Science and Veterinary Medicine Academy , Binzhou, China
- 3 Shandong Lvdu Biological Technology Co. , Binzhou, China
- 4 Shandong Binzhou Animal Science and Veterinary Medicine Academy , Binzhou, China
| |
Collapse
|
36
|
Yu X, Shi L, Lv X, Yao W, Cao M, Yu H, Wang X, Zheng S. Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol J 2015; 12:76. [PMID: 25972083 PMCID: PMC4459462 DOI: 10.1186/s12985-015-0297-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/09/2015] [Indexed: 01/21/2023] Open
Abstract
Background Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease characterized by severe enteritis, vomiting and watery diarrhea in swine. Recently, the outbreak of the epidemic disease has been a serious problem in swine industry. The objective of this study is to develop a rapid, sensitive, and real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of porcine epidemic diarrhea virus (PEDV) in less equipped laboratories. Results The optimal reaction condition of the current real-time RT-LAMP for PEDV was 62 °C for 45 min. It was capable of detecting PEDV from clinical samples and differentiating PEDV from several related porcine viruses, while it did not require additional expensive equipment. The minimum detection limit of the real-time RT-LAMP assay was 0.07PFU per reaction for PEDV RNA, making this assay approximately 100-fold more sensitive than that of one-step RT-PCR. By screening a panel of clinical specimens, the results showed that this method presented a similar sensitivity with real-time RT-PCR and was somewhat sensitive than one-step RT-PCR in detection of clinical samples. Conclusions In this study, we have developed a new real-time RT-LAMP method, which is rapid, sensitive and efficient to detect PEDV.This method holds great promises not only in laboratory detection and discrimination of PEDV but also in large scale field and clinical studies.
Collapse
Affiliation(s)
- Xuewu Yu
- College of Veterinary Medicine, Northeast Agricultural University, No.59, Mucai street, Xiangfan District, Harbin, 150030, China. .,Animal Epidemic Diseases Control and Prevention Center of Liaoning Province, Shenyang, China.
| | - Lin Shi
- College of Veterinary Medicine, Northeast Agricultural University, No.59, Mucai street, Xiangfan District, Harbin, 150030, China. .,Animal Epidemic Diseases Control and Prevention Center of Liaoning Province, Shenyang, China.
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, No.59, Mucai street, Xiangfan District, Harbin, 150030, China.
| | - Wei Yao
- Animal Epidemic Diseases Control and Prevention Center of Liaoning Province, Shenyang, China.
| | - Minghui Cao
- China Institute of Veterinary Drugs Control, Beijing, China.
| | - Hanxun Yu
- Animal Epidemic Diseases Control and Prevention Center of Dalian city, Dalian, China.
| | - Xiurong Wang
- Animal Influenza Laboratory of the Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, No.59, Mucai street, Xiangfan District, Harbin, 150030, China.
| |
Collapse
|
37
|
Goede D, Murtaugh MP, Nerem J, Yeske P, Rossow K, Morrison R. Previous infection of sows with a "mild" strain of porcine epidemic diarrhea virus confers protection against infection with a "severe" strain. Vet Microbiol 2014; 176:161-4. [PMID: 25601801 DOI: 10.1016/j.vetmic.2014.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDv) infected approximately 50% of the US swine breeding herds from July 2013 to July 2014 as estimated by the Swine Health Monitoring Project. In the absence of effective vaccines or standard control protocols, there is an urgent need for evidence of cross-protective immune countermeasures. Here, we evaluated the response of 3-day-old piglets born to sows exposed seven months earlier to a mild strain of PEDv to challenge with a virulent PEDv isolate. Piglet survival to one week of age was 100% compared to 67% in piglets born to sows not previously exposed, and morbidity was 43% compared to 100%, respectively. At necropsy at 7 days of age, the PEDv Ct value was 23.6 (range 16.6-30.6) in intestinal contents, compared to 17.2 (range 15.9-18.5) (p<0.06) in litters from sows with no previous exposure to PEDv. The findings indicated that durable lactogenic immunity was present in sows previously exposed to a mild strain of PEDv and this immunity induced cross-protection to representative virulent PEDv. Thus, a naturally attenuated form of PEDv provided significant passive immune protection for seven months against piglet challenge with virulent PEDv.
Collapse
Affiliation(s)
- Dane Goede
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Joel Nerem
- Pipestone Veterinary Clinic, Pipestone, MN, United States
| | - Paul Yeske
- Swine Vet Center, St. Peter, MN, United States
| | - Kurt Rossow
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Robert Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|