1
|
May CJ, Ford NP, Welsh GI, Saleem MA. Biomarkers to predict or measure steroid resistance in idiopathic nephrotic syndrome: A systematic review. PLoS One 2025; 20:e0312232. [PMID: 39946431 PMCID: PMC11824968 DOI: 10.1371/journal.pone.0312232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2024] [Indexed: 02/16/2025] Open
Abstract
In this systematic review we have sought to summarise the current knowledge concerning biomarkers that can distinguish between steroid-resistant nephrotic syndrome and steroid-sensitive nephrotic syndrome. Additionally, we aim to select biomarkers that have the best evidence-base and should be prioritised for further research. Pub med and web of science databases were searched using "steroid resistant nephrotic syndrome AND biomarker". Papers published between 01/01/2012 and 10/05/2022 were included. Papers that did not compare steroid resistant and steroid sensitive nephrotic syndrome, did not report sensitivity/specificity or area under curve and reviews/letters were excluded. The selected papers were then assessed for bias using the QUADAS-2 tool. The source of the biomarker, cut off, sensitivity/specificity, area under curve and sample size were all extracted. Quality assessment was performed using the BIOCROSS tool. 17 studies were included, comprising 15 case-control studies and 2 cross-sectional studies. Given the rarity of nephrotic syndrome and difficulty in recruiting large cohorts, case-control studies were accepted despite their limitations. We present a range of candidate biomarkers along with scores relating to the quality of the original publications and the risk of bias to inform future investigations. None of the selected papers stated whether the authors were blinded to the patient's disease when assessing the index test in the cohort. Highlighting a key problem in the field that needs to be addressed. These candidate biomarkers must now be tested with much larger sample sizes. Using new biobanks such as the one built by the NURTuRE-INS team will be very helpful in this regard.
Collapse
Affiliation(s)
- Carl J. May
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | | | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
- Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
2
|
Hou S, Yang B, Chen Q, Xu Y, Li H. Potential biomarkers of recurrent FSGS: a review. BMC Nephrol 2024; 25:258. [PMID: 39134955 PMCID: PMC11318291 DOI: 10.1186/s12882-024-03695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a clinicopathological condition characterized by nephrotic-range proteinuria, has a high risk of progression to end-stage renal disease (ESRD). Meanwhile, the recurrence of FSGS after renal transplantation is one of the main causes of graft loss. The diagnosis of recurrent FSGS is mainly based on renal puncture biopsy transplants, an approach not widely consented by patients with early mild disease. Therefore, there is an urgent need to find definitive diagnostic markers that can act as a target for early diagnosis and intervention in the treatment of patients. In this review, we summarize the domestic and international studies on the pathophysiology, pathogenesis and earliest screening methods of FSGS and describe the functions and roles of specific circulating factors in the progression of early FSGS, in order to provide a new theoretical basis for early diagnosis of FSGS recurrence, as well as aid the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Bo Yang
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| | - Haiyang Li
- Hepatological surgery department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
3
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
4
|
Schlosser P, Surapaneni AL, Borisov O, Schmidt IM, Zhou L, Anderson A, Deo R, Dubin R, Ganz P, He J, Kimmel PL, Li H, Nelson RG, Porter AC, Rahman M, Rincon-Choles H, Shah V, Unruh ML, Vasan RS, Zheng Z, Feldman HI, Waikar SS, Köttgen A, Rhee EP, Coresh J, Grams ME. Association of Integrated Proteomic and Metabolomic Modules with Risk of Kidney Disease Progression. J Am Soc Nephrol 2024; 35:923-935. [PMID: 38640019 PMCID: PMC11230725 DOI: 10.1681/asn.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Key Points Integrated analysis of proteome and metabolome identifies modules associated with CKD progression and kidney failure. Ephrin transmembrane proteins and podocyte-expressed CRIM1 and NPNT emerged as central components and warrant experimental and clinical investigation. Background Proteins and metabolites play crucial roles in various biological functions and are frequently interconnected through enzymatic or transport processes. Methods We present an integrated analysis of 4091 proteins and 630 metabolites in the Chronic Renal Insufficiency Cohort study (N =1708; average follow-up for kidney failure, 9.5 years, with 537 events). Proteins and metabolites were integrated using an unsupervised clustering method, and we assessed associations between clusters and CKD progression and kidney failure using Cox proportional hazards models. Analyses were adjusted for demographics and risk factors, including the eGFR and urine protein–creatinine ratio. Associations were identified in a discovery sample (random two thirds, n =1139) and then evaluated in a replication sample (one third, n =569). Results We identified 139 modules of correlated proteins and metabolites, which were represented by their principal components. Modules and principal component loadings were projected onto the replication sample, which demonstrated a consistent network structure. Two modules, representing a total of 236 proteins and 82 metabolites, were robustly associated with both CKD progression and kidney failure in both discovery and validation samples. Using gene set enrichment, several transmembrane-related terms were identified as overrepresented in these modules. Transmembrane–ephrin receptor activity displayed the largest odds (odds ratio=13.2, P value = 5.5×10−5). A module containing CRIM1 and NPNT expressed in podocytes demonstrated particularly strong associations with kidney failure (P value = 2.6×10−5). Conclusions This study demonstrates that integration of the proteome and metabolome can identify functions of pathophysiologic importance in kidney disease.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Aditya L. Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Oleg Borisov
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Amanda Anderson
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruth Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter Ganz
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Anna C. Porter
- Renal Service, Wellington Regional Hospital, Wellington, New Zealand
| | - Mahboob Rahman
- Department of Kidney Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Vallabh Shah
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Mark L. Unruh
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ramachandran S. Vasan
- University of Texas Health Sciences Center, San Antonio, Texas
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Optimal Aging Institute, Departments of Population Health and Medicine, NYU Grossman School of Medicine, New York, New York
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| |
Collapse
|
5
|
Guo J, Zhang C, Zhao H, Yan Y, Liu Z. The key mediator of diabetic kidney disease: Potassium channel dysfunction. Genes Dis 2024; 11:101119. [PMID: 38523672 PMCID: PMC10958065 DOI: 10.1016/j.gendis.2023.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/11/2022] [Accepted: 06/04/2023] [Indexed: 03/26/2024] Open
Abstract
Diabetic kidney disease is a leading cause of end-stage renal disease, making it a global public health concern. The molecular mechanisms underlying diabetic kidney disease have not been elucidated due to its complex pathogenesis. Thus, exploring these mechanisms from new perspectives is the current focus of research concerning diabetic kidney disease. Ion channels are important proteins that maintain the physiological functions of cells and organs. Among ion channels, potassium channels stand out, because they are the most common and important channels on eukaryotic cell surfaces and function as the basis for cell excitability. Certain potassium channel abnormalities have been found to be closely related to diabetic kidney disease progression and genetic susceptibility, such as KATP, KCa, Kir, and KV. In this review, we summarized the roles of different types of potassium channels in the occurrence and development of diabetic kidney disease to discuss whether the development of DKD is due to potassium channel dysfunction and present new ideas for the treatment of DKD.
Collapse
Affiliation(s)
- Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- Research Center for Kidney Disease, Zhengzhou, Henan 450052, China
| | - Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- Research Center for Kidney Disease, Zhengzhou, Henan 450052, China
| | - Hui Zhao
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- Research Center for Kidney Disease, Zhengzhou, Henan 450052, China
| | - Yufan Yan
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- Research Center for Kidney Disease, Zhengzhou, Henan 450052, China
| | - Zhangsuo Liu
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052, China
- Research Center for Kidney Disease, Zhengzhou, Henan 450052, China
| |
Collapse
|
6
|
Garis M, Meyer MD, Lwigale P. Expression of Nephronectin in the Descemet's membrane of mouse corneas during development and adult homeostasis. Exp Eye Res 2024; 240:109797. [PMID: 38246333 DOI: 10.1016/j.exer.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Nephronectin (Npnt) is an extracellular matrix (ECM) protein with pleiotropic functions during organogenesis, disease, and homeostasis. Although the ECM plays a crucial role during development and homeostasis of the adult cornea, little is known about the expression of Npnt in the mammalian cornea. Here, we investigated the expression of Npnt during early embryonic and postnatal development, and in adult mouse corneas. We combined ultrastructural and immunohistochemical analyses to study the early formation of the Descemet's membrane and how the expression of Npnt relates to key basement membrane proteins. Our section in situ hybridization and immunohistochemical analyses revealed that Npnt mRNA is expressed by the nascent corneal endothelial cells at embryonic day (E) 14.5, whereas the protein is localized in the adjacent extracellular matrix. These expression patterns were maintained in the corneal endothelium and Descemet's membrane throughout development and in adult corneas. Ultrastructural analysis revealed discontinuous electron dense regions of protein aggregates at E18.5 that was separated from the endothelial layer by an electron lucent space. At birth (postnatal day, P0), the Descemet's membrane was a single layer, which continuously thickened throughout P4, P8, P10, and P14. Npnt was localized to the Descemet's membrane by E18.5 and overlapped with Collagens IV and VIII, Laminin, and Perlecan. However, the proteins subsequently shifted and formed distinct layers in the adult cornea, whereby Npnt localized between two Collagen VIII bands and anterior to Collagen IV but overlapped with Laminin and Perlecan. Combined, our results reveal the expression of Npnt in the mouse cornea and define its spatiotemporal localization relative to key basement membrane proteins during the formation of the Descemet's membrane and in the adult cornea. Understanding the spatiotemporal expression of Npnt is important for future studies to elucidate its function in the mammalian cornea.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biosciences, Rice University, Houston, TX, 77019, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, 77019, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, 77019, USA.
| |
Collapse
|
7
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Bharati J, Kumar M, Kumar N, Malhotra A, Singhal PC. MicroRNA193a: An Emerging Mediator of Glomerular Diseases. Biomolecules 2023; 13:1743. [PMID: 38136614 PMCID: PMC10742064 DOI: 10.3390/biom13121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding small RNAs that regulate the protein expression of coding messenger RNAs. They are used as biomarkers to aid in diagnosing, prognosticating, and surveillance of diseases, especially solid cancers. MiR-193a was shown to be directly pathogenic in an experimental mouse model of focal segmental glomerulosclerosis (FSGS) during the last decade. Its specific binding and downregulation of Wilm's tumor-1 (WT-1), a transcription factor regulating podocyte phenotype, is documented. Also, miR-193a is a regulator switch causing the transdifferentiation of glomerular parietal epithelial cells to a podocyte phenotype in in vitro study. Interaction between miR-193a and apolipoprotein 1 (APOL1) mRNA in glomeruli (filtration units of kidneys) is potentially involved in the pathogenesis of common glomerular diseases. Since the last decade, there has been an increasing interest in the role of miR-193a in glomerular diseases, including diabetic nephropathy and membranous nephropathy, besides FSGS. Considering the lack of biomarkers to manage FSGS and diabetic nephropathy clinically, it is worthwhile to invest in evaluating miR-193a in the pathogenesis of these diseases. What causes the upregulation of miR-193a in FSGS and how the mechanism is different in different glomerular disorders still need to be elucidated. This narrative review highlights the pathogenic mechanisms of miR-193a elevation in various glomerular diseases and its potential use in clinical management.
Collapse
Affiliation(s)
- Joyita Bharati
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| | - Megan Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Neil Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Pravin C. Singhal
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| |
Collapse
|
9
|
Barreiro K, Dwivedi OP, Rannikko A, Holthöfer H, Tuomi T, Groop PH, Puhka M. Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles-From Pre-Analytical Obstacles to Biomarker Research. Genes (Basel) 2023; 14:1415. [PMID: 37510317 PMCID: PMC10379145 DOI: 10.3390/genes14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Endocrinology, Abdominal Centre, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
10
|
Li C, Zhong H, Ma J, Liang Z, Zhang L, Liu T, Fan W. Notoginsenoside R1 can inhibit the interaction between FGF1 and VEGFA to retard podocyte apoptosis. BMC Endocr Disord 2023; 23:140. [PMID: 37415174 DOI: 10.1186/s12902-023-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a chronic condition resulting from microangiopathy in a high-glucose environment. The evaluation of vascular injury in DN has primarily focused on active molecules of VEGF, namely VEGFA and VEGF2(F2R). Notoginsenoside R1 (NGR1), a traditional anti-inflammatory medication, exhibits vascular activity. Therefore, identifying classical drugs with vascular inflammatory protection for the treatment of DN is a valuable pursuit. METHODS The "Limma" method was employed to analyze the glomerular transcriptome data, while the Spearman algorithm for Swiss target prediction was utilized to analyze the drug targets of NGR1. The molecular docking technique was employed to investigate the relationship between vascular active drug targets, and the COIP experiment was conducted to verify the interaction between fibroblast growth factor 1 (FGF1) and VEGFA in relation to NGR1 and drug targets. RESULTS According to the Swiss target prediction, the LEU32(b) site of the Vascular Endothelial Growth Factor A (VEGFA) protein, as well as the Lys112(a), SER116(a), and HIS102(b) sites of the Fibroblast Growth Factor 1 (FGF1) protein, are potential binding sites for NGR1 through hydrogen bonding. Additionally, the Co-immunoprecipitation (COIP) results suggest that VEGFA and FGF1 proteins can interact with each other, and NGR1 can impede this interaction. Furthermore, NGR1 can suppress the expression of VEGFA and FGF1 in a high-glucose environment, thereby decelerating podocyte apoptosis. CONCLUSION The inhibition of the interaction between FGF1 and VEGFA by NGR1 has been observed to decelerate podocyte apoptosis.
Collapse
Affiliation(s)
- ChangYan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, No.295, Xichang Road, Kunming, Yunnan Province, 650032, China
| | - HuaChen Zhong
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - JingYuan Ma
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, No.295, Xichang Road, Kunming, Yunnan Province, 650032, China
| | - Zhang Liang
- Department of Science and Technology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Tao Liu
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - WenXing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, No.295, Xichang Road, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
11
|
Saiki R, Katayama K, Dohi K. Recent Advances in Proteinuric Kidney Disease/Nephrotic Syndrome: Lessons from Knockout/Transgenic Mouse Models. Biomedicines 2023; 11:1803. [PMID: 37509442 PMCID: PMC10376620 DOI: 10.3390/biomedicines11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Proteinuria is known to be associated with all-cause and cardiovascular mortality, and nephrotic syndrome is defined by the level of proteinuria and hypoalbuminemia. With advances in medicine, new causative genes for genetic kidney diseases are being discovered increasingly frequently. We reviewed articles on proteinuria/nephrotic syndrome, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease/nephropathy, hypertension/nephrosclerosis, Alport syndrome, and rare diseases, which have been studied in mouse models. Significant progress has been made in understanding the genetics and pathophysiology of kidney diseases thanks to advances in science, but research in this area is ongoing. In the future, genetic analyses of patients with proteinuric kidney disease/nephrotic syndrome may ultimately lead to personalized treatment options.
Collapse
Affiliation(s)
- Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
12
|
Rederer A, Rose V, Krüger R, Schmittutz L, Swierzy I, Fischer L, Thievessen I, Bauer J, Friedrich O, Schiffer M, Müller-Deile J. Partner, Neighbor, Housekeeper and Dimension: 3D versus 2D Glomerular Co-Cultures Reveal Drawbacks of Currently Used Cell Culture Models. Int J Mol Sci 2023; 24:10384. [PMID: 37373531 DOI: 10.3390/ijms241210384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell-cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.
Collapse
Affiliation(s)
- Anna Rederer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Krüger
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Linda Schmittutz
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Izabela Swierzy
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Fischer
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ingo Thievessen
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
13
|
Kraus A, Rose V, Krüger R, Sarau G, Kling L, Schiffer M, Christiansen S, Müller-Deile J. Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques. Cells 2023; 12:cells12091245. [PMID: 37174644 PMCID: PMC10177567 DOI: 10.3390/cells12091245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.
Collapse
Affiliation(s)
- Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
| | - Victoria Rose
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - George Sarau
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany
- Leuchs Emeritus Group, Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Lasse Kling
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany
- Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
14
|
The context-dependent role of transforming growth factor-β/miR-378a-3p/connective tissue growth factor in vascular calcification: a translational study. Aging (Albany NY) 2023; 15:830-845. [PMID: 36787443 PMCID: PMC9970315 DOI: 10.18632/aging.204518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Vascular calcification (VC) constitutes an important vascular pathology with prognostic importance. The pathogenic role of transforming growth factor-β (TGF-β) in VC remains unclear, with heterogeneous findings that we aimed to evaluate using experimental models and clinical specimens. METHODS Two approaches, exogenous administration and endogenous expression upon osteogenic media (OM) exposure, were adopted. Aortic smooth muscle cells (ASMCs) were subjected to TGF-β1 alone, OM alone, or both, with calcification severity determined. We evaluated miR-378a-3p and TGF-β1 effectors (connective tissue growth factor; CTGF) at different periods of calcification. Results were validated in an ex vivo model and further in sera from older adults without or with severe aortic arch calcification. RESULTS TGF-β1 treatment induced a significant dose-responsive increase in ASMC calcification without or with OM at the mature but not early or mid-term VC period. On the other hand, OM alone induced VC accompanied by suppressed TGF-β1 expressions over time; this phenomenon paralleled the declining miR-378a-3p and CTGF expressions since early VC. TGF-β1 treatment led to an upregulation of CTGF since early VC but not miR-378a-3p until mid-term VC, while miR-378a-3p overexpression suppressed CTGF expressions without altering TGF-β1 levels. The OM-induced down-regulation of TGF-β1 and CTGF was also observed in the ex vivo models, with compatible results identified from human sera. CONCLUSIONS We showed that TGF-β1 played a context-dependent role in VC, involving a time-dependent self-regulatory loop of TGF-β1/miR-378a-3p/CTGF signaling. Our findings may assist subsequent studies in devising potential therapeutics against VC.
Collapse
|
15
|
Hayward S, Parmesar K, Welsh GI, Suderman M, Saleem MA. Epigenetic Mechanisms and Nephrotic Syndrome: A Systematic Review. Biomedicines 2023; 11:514. [PMID: 36831050 PMCID: PMC9953384 DOI: 10.3390/biomedicines11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Gavin I. Welsh
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| |
Collapse
|
16
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Sopel N, Müller-Deile J. Zebrafish Model to Study Podocyte Function Within the Glomerular Filtration Barrier. Methods Mol Biol 2023; 2664:145-157. [PMID: 37423988 DOI: 10.1007/978-1-0716-3179-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The zebrafish model has been used in many different fields of research because of its high homology to the human genome, its easy genetic manipulation, its high fecundity, and its rapid development. For glomerular diseases, zebrafish larvae have proven to be a versatile tool to study the contribution of different genes, because the zebrafish pronephros is very comparable to the human kidney in function and ultrastructure. Here we describe the principle and use of a simple screening assay based on the measurement of the fluorescence in the retinal vessel plexus of the Tg(l-fabp:DBP:eGFP) zebrafish line ("eye assay") to indirectly determine proteinuria as a hallmark of podocyte dysfunction. Furthermore, we illustrate how to analyze the obtained data and outline methods to attribute the findings to podocyte impairment.
Collapse
Affiliation(s)
- Nina Sopel
- Department of Medicine 4 - Nephrology and Hypertension, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander Universiät Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
18
|
Sakshi, Ragini, Saini A, Verma C, Mani I. Epigenetics in renal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:61-71. [DOI: 10.1016/bs.pmbts.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Glomerular Endothelial Cell-Derived miR-200c Impairs Glomerular Homeostasis by Targeting Podocyte VEGF-A. Int J Mol Sci 2022; 23:ijms232315070. [PMID: 36499397 PMCID: PMC9735846 DOI: 10.3390/ijms232315070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Deciphering the pathophysiological mechanisms of primary podocytopathies that can lead to end-stage renal disease and increased mortality is an unmet need. Studying how microRNAs (miRs) interfere with various signaling pathways enables identification of pathomechanisms, novel biomarkers and potential therapeutic options. We investigated the expression of miR-200c in urine from patients with different renal diseases as a potential candidate involved in podocytopathies. The role of miR-200c for the glomerulus and its potential targets were studied in cultured human podocytes, human glomerular endothelial cells and in the zebrafish model. miR-200c was upregulated in urine from patients with minimal change disease, membranous glomerulonephritis and focal segmental glomerulosclerosis and also in transforming growth factor beta (TGF-β) stressed glomerular endothelial cells, but not in podocytes. In zebrafish, miR-200c overexpression caused proteinuria, edema, podocyte foot process effacement and glomerular endotheliosis. Although zinc finger E-Box binding homeobox 1/2 (ZEB1/2), important in epithelial to mesenchymal transition (EMT), are prominent targets of miR-200c, their downregulation did not explain our zebrafish phenotype. We detected decreased vegfaa/bb in zebrafish overexpressing miR-200c and could further prove that miR-200c decreased VEGF-A expression and secretion in cultured human podocytes. We hypothesize that miR-200c is released from glomerular endothelial cells during cell stress and acts in a paracrine, autocrine, as well as context-dependent manner in the glomerulus. MiR-200c can cause glomerular damage most likely due to the reduction of podocyte VEGF-A. In contrast, miR-200c might also influence ZEB expression and therefore EMT, which might be important in other conditions. Therefore, we propose that miR-200c-mediated effects in the glomerulus are context-sensitive.
Collapse
|
20
|
Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract. Genes (Basel) 2022; 13:genes13101687. [PMID: 36292572 PMCID: PMC9601797 DOI: 10.3390/genes13101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The use of next-generation sequencing (NGS) has helped in identifying many genes that cause congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis (BRA) is the most severe presentation of CAKUT, and its association with autosomal recessively inherited genes is expanding. Highly consanguineous populations can impact the detection of recessively inherited genes. Here, we report two families harboring homozygous missense variants in recently described genes, NPNT and GFRA1. Two consanguineous families with neonatal death due to CAKUT were investigated. Fetal ultrasound of probands identified BRA in the first family and severe renal cystic dysplasia in the second family. Exome sequencing coupled with homozygosity mapping was performed, and Sanger sequencing was used to confirm segregation of alleles in both families. In the first family with BRA, we identified a homozygous missense variant in GFRA1: c.362A>G; p.(Tyr121Cys), which is predicted to damage the protein structure. In the second family with renal cystic dysplasia, we identified a homozygous missense variant in NPNT: c.56C>G; p.(Ala19Gly), which is predicted to disrupt the signal peptide site. We report two Saudi Arabian consanguineous families with CAKUT phenotypes that included renal agenesis caused by missense variants in GFRA1 and NPNT, confirming the role of these two genes in human kidney development.
Collapse
|
21
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
22
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
23
|
Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet Sci 2022; 9:vetsci9070312. [PMID: 35878329 PMCID: PMC9323928 DOI: 10.3390/vetsci9070312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diabetes is a chronic metabolic disease characterized by high blood glucose levels (hyperglycemia). Type 2 diabetes mellitus (T2DM) and its complications are a worldwide public health problem, affecting people from all developed and developing countries. Hyperglycemia can cause damage to the vascular system and dysfunction of organs, such as the kidneys, heart, retina of the eyes, and nerves. Diabetic nephropathy (DN) is one of the most severe micro-vascular complications, which can lead to ESRD (end-stage renal disease). Zebrafish are ideal for wide-scale analysis or screening, due to their small size, quick growth, transparent embryos, vast number of offspring, and gene similarity with humans, which combine to make zebrafish an ideal model for diabetes. The readily available tools for gene editing using morpholinos or CRISPR/Cas9, as well as chemical/drug therapy by microinjection or skin absorption, enable zebrafish diabetes mellitus models to be established in a number of ways. In this review, we emphasize the physiological and pathological processes relating to micro-vascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish. This study specifies the benefits and drawbacks and future perspective of using zebrafish as a disease model. Abstract Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
Collapse
|
24
|
Qiu D, Zhao N, Chen Q, Wang M. Knockdown of circ_CDYL Contributes to Inhibit Angiotensin II-Induced Podocytes Apoptosis in Membranous Nephropathy via the miR-149-5p/TNFSF11 Pathway. J Cardiovasc Pharmacol 2022; 79:887-895. [PMID: 35353073 DOI: 10.1097/fjc.0000000000001262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Circular RNAs (circRNAs) have been verified as vital regulators in various diseases, including membranous nephropathy (MN). Therefore, the role of circ_CDYL in podocyte apoptosis and MN was investigated. The real-time quantitative polymerase chain reaction was performed to measure the expression of circ_CDYL, microRNA-149-5p (miR-149-5p), and tumor necrosis factor superfamily member 11 (TNFSF11) in podocytes. In addition, angiotensin II (Ang II) was used to induce apoptosis of podocytes. The apoptosis-related protein expression was quantified by western blot assay. The apoptosis of podocytes was evaluated by flow cytometry assay. The interaction relationship between miR-149-5p and circ_CDYL or TNFSF11 was confirmed by dual-luciferase reporter assay. Circ_CDYL was significantly overexpressed in MN patients and Ang II-induced podocytes compared with control groups. Importantly, loss-of-functional experiments indicated that knockdown of circ_CDYL protected podocytes from Ang II-induced apoptosis. MiR-149-5p was verified as target of circ_CDYL and negatively correlated with circ_CDYL expression in MN patients. Knockdown of circ_CDYL-mediated effects on Ang II-induced podocyte cells were abolished by silencing miR-149-5p. Besides, the upregulation of miR-149-5p could suppress apoptosis in Ang II-induced podocyte cells by targeting TNFSF11. Under Ang II stimulation, the upregulation of TNFSF11 could increase the expression of TNFSF11 and induce apoptosis in circ_CDYL-silencing podocytes. Our results confirmed that circ_CDYL specifically targeted miR-149-5p/TNFSF11 pathway to regulate Ang II-induced apoptosis in podocytes, which might be useful diagnostic biomarkers in MN.
Collapse
Affiliation(s)
- Donghao Qiu
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | | | | | | |
Collapse
|
25
|
Zhu X, Tang L, Mao J, Hameed Y, Zhang J, Li N, Wu D, Huang Y, Li C. Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1941038. [PMID: 35693262 PMCID: PMC9175094 DOI: 10.1155/2022/1941038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Liping Tang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100091, China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jingyu Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Ning Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Danny Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
26
|
Ma J, Bi L, Spurlin J, Lwigale P. Nephronectin-Integrin α8 signaling is required for proper migration of periocular neural crest cells during chick corneal development. eLife 2022; 11:74307. [PMID: 35238772 PMCID: PMC8916771 DOI: 10.7554/elife.74307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells aggregate at tissue boundaries to form normal tissue architecture of organs. However, how cells are segregated into tissue precursors remains largely unknown. Cornea development is a perfect example of this process whereby neural crest cells aggregate in the periocular region prior to their migration and differentiation into corneal cells. Our recent RNA-seq analysis identified upregulation of nephronectin (Npnt) transcripts during early stages of corneal development where its function has not been investigated. We found that Npnt mRNA and protein are expressed by various ocular tissues, including the migratory periocular neural crest (pNC), which also express the integrin alpha 8 (Itgα8) receptor. Knockdown of either Npnt or Itgα8 attenuated cornea development, whereas overexpression of Npnt resulted in cornea thickening. Moreover, overexpression of Npnt variants lacking RGD-binding sites did not affect corneal thickness. Neither the knockdown nor augmentation of Npnt caused significant changes in cell proliferation, suggesting that Npnt directs pNC migration into the cornea. In vitro analyses showed that Npnt promotes pNC migration from explanted periocular mesenchyme, which requires Itgα8, focal adhesion kinase, and Rho kinase. Combined, these data suggest that Npnt augments cell migration into the presumptive cornea extracellular matrix by functioning as a substrate for Itgα8-positive pNC cells.
Collapse
Affiliation(s)
- Justin Ma
- Department of Biosciences, Rice University, Houston, United States
| | - Lian Bi
- Department of Biosciences, Rice University, Houston, United States
| | - James Spurlin
- Department of Biosciences, Rice University, Houston, United States
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
27
|
A Tight Control of Non-Canonical TGF-β Pathways and MicroRNAs Downregulates Nephronectin in Podocytes. Cells 2022; 11:cells11010149. [PMID: 35011710 PMCID: PMC8750045 DOI: 10.3390/cells11010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Nephronectin (NPNT) is an extracellular matrix protein in the glomerular basement membrane that is produced by podocytes and is important for the integrity of the glomerular filtration barrier. Upregulated transforming growth factor β (TGF-β) and altered NPNT are seen in different glomerular diseases. TGF-β downregulates NPNT and upregulates NPNT-targeting microRNAs (miRs). However, the pathways involved were previously unknown. By using selective inhibitors of the canonical, SMAD-dependent, and non-canonical TGF-β pathways, we investigated NPNT transcription, translation, secretion, and regulation through miRs in podocytes. TGF-β decreased NPNT mRNA and protein in cultured human podocytes. TGF-β-dependent regulation of NPNT was meditated through intracellular signaling pathways. Under baseline conditions, non-canonical pathways predominantly regulated NPNT post-transcriptionally. Podocyte NPNT secretion, however, was not dependent on canonical or non-canonical TGF-β pathways. The canonical TGF-β pathway was also dispensable for NPNT regulation after TGF-β stimulation, as TGF-β was still able to downregulate NPNT in the presence of SMAD inhibitors. In contrast, in the presence of different non-canonical pathway inhibitors, TGF-β stimulation did not further decrease NPNT expression. Moreover, distinct non-canonical TGF-β pathways mediated TGF-β-induced upregulation of NPNT-targeting miR-378a-3p. Thus, we conclude that post-transcriptional fine-tuning of NPNT expression in podocytes is mediated predominantly through non-canonical TGF-β pathways.
Collapse
|
28
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Xie L, Ma S, Ding N, Wang Y, Lu G, Xu L, Wang Q, Liu K, Jie Y, Zhang H, Yang A, Gao Y, Zhang H, Jiang Y. Homocysteine induces podocyte apoptosis by regulating miR-1929-5p expression through c-Myc, DNMT1 and EZH2. Mol Oncol 2021; 15:3203-3221. [PMID: 34057794 PMCID: PMC8564658 DOI: 10.1002/1878-0261.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and complex disease in kidneys which has been associated with an increased risk of renal cell carcinoma. Elevated homocysteine (Hcy) levels are known to influence the development and progression of CKD by regulating podocyte injury and apoptosis. To investigate the molecular mechanisms triggered in podocytes by Hcy, we used cbs+/- mice and observed that higher Hcy levels increased the apoptosis rate of podocytes with accompanying glomerular damage. Hcy-induced podocyte injury and apoptosis in cbs+/- mice was regulated by inhibition of microRNA (miR)-1929-5p expression. Overexpression of miR-1929-5p in podocytes inhibited apoptosis by upregulating Bcl-2. Furthermore, the expression of miR-1929-5p was regulated by epigenetic modifications of its promoter. Hcy upregulated DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, resulting in increased DNA methylation and H3K27me3 levels on the miR-1929-5p promoter. Additionally, we observed that c-Myc recruited DNMT1 and EZH2 to the miR-1929-5p promoter and suppressed the expression of miR-1929-5p. In summary, we demonstrated that Hcy promotes podocyte apoptosis through the regulation of the epigenetic modifiers DNMT1 and EZH2, which are recruited by c-Myc to the promoter of miR-1929-5p to silence miR-1929-5p expression.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Shengchao Ma
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Ning Ding
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yanhua Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Guanjun Lu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Lingbo Xu
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Qingqing Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yuzheng Jie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Hui Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Anning Yang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yujing Gao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Prenatal Diagnosis Center of General HospitalNingxia Medical UniversityYinchuanChina
| | - Yideng Jiang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| |
Collapse
|
30
|
Müller-Deile J, Sopel N, Ohs A, Rose V, Gröner M, Wrede C, Hegermann J, Daniel C, Amann K, Zahner G, Schiffer M. Glomerular Endothelial Cell-Derived microRNA-192 Regulates Nephronectin Expression in Idiopathic Membranous Glomerulonephritis. J Am Soc Nephrol 2021; 32:2777-2794. [PMID: 34716242 PMCID: PMC8806098 DOI: 10.1681/asn.2020121699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies. METHODS Kidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB. RESULTS Glomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p-containing exosomes in a paracrine manner. CONCLUSIONS Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Sopel
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Ohs
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marwin Gröner
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunther Zahner
- Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Schiffer
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Kwon CS, Daniele P, Forsythe A, Ngai C. A Systematic Literature Review of the Epidemiology, Health-Related Quality of Life Impact, and Economic Burden of Immunoglobulin A Nephropathy. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2021; 8:36-45. [PMID: 34692885 PMCID: PMC8410133 DOI: 10.36469/001c.26129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Introduction: This systematic literature review analyzed published evidence on IgA nephropathy (IgAN), focusing on US epidemiology, health-related quality of life (HRQoL), and economic burden of illness. Methods: Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, Embase®, MEDLINE®, Cochrane, and Econlit (January 2010 to June 2020) were searched, along with relevant congresses (2017-2020). Results: Of 123 epidemiologic studies selected for data extraction, 24 reported IgAN diagnosis rates ranging from 6.3% to 29.7% among adult and pediatric patients undergoing renal biopsy, with all reported US rates <15%. No US studies reported IgAN prevalence. A meta-analysis of US studies calculated an annual incidence of 1.29/100 000 people, translating to an annual US incidence of 4236 adults and children. Relative to Europe, the United States had more patients diagnosed with IgAN in later chronic kidney disease stages. US rates of transition to end-stage renal disease (ESRD) ranged from 12.5% to 23% during 3-3.9 years of observation, rising to 53% during 19 years of observation. Across 8 studies reporting HRQoL, pain and fatigue were the most reported symptoms, and patients consistently ranked kidney function and mortality as the most important treatment outcomes. Patients with glomerulopathy reported worse mental health than healthy controls or hemodialysis patients; proteinuria was significantly associated with poorer HRQoL and depression. Conclusion: While economic evidence in IgAN remains sparse, management of ESRD is a major cost driver. IgAN is a rare disease where disease progression causes increasing patient burden, underscoring the need for therapies that prevent kidney function decline and HRQoL deterioration while reducing mortality.
Collapse
|
32
|
The Zebrafish Model to Understand Epigenetics in Renal Diseases. Int J Mol Sci 2021; 22:ijms22179152. [PMID: 34502062 PMCID: PMC8431166 DOI: 10.3390/ijms22179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications are able to alter gene expression and include DNA methylation, different histone variants, and post-transcriptional modifications (PTMs), such as acetylation or phosphorylation, and through short/long RNAs, respectively. In this review, we focus on current knowledge concerning epigenetic modifications in gene regulation. We describe different forms of epigenetic modifications and explain how epigenetic changes can be detected. The relevance of epigenetics in renal diseases is highlighted with multiple examples and the use of the zebrafish model to study glomerular diseases in general and epigenetics in renal diseases in particular is discussed. We end with an outlook on how to use epigenetic modifications as a therapeutic target for different diseases. Here, the zebrafish model can be employed as a high-throughput screening tool not only to discover epigenetic alterations contributing to disease, but also to test novel substances that change epigenetic signatures in vivo. Therefore, the zebrafish model harbors the opportunity to find novel pathogenic pathways allowing a pre-selection of potential targets and compounds to be tested for renal diseases.
Collapse
|
33
|
Xu M, Yi M, Li N. MicroRNA-17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1402-1411. [PMID: 33835671 DOI: 10.1002/tox.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Glomerulonephritis, also known as nephritis syndrome (nephritis for short), is a common kidney disease. Previous research has proved that microRNAs (miRNAs) frequently regulate various diseases including nephritis. Nonetheless, the biological function and molecular mechanism of miR-17-5p are unclear in nephritis. In the current study, RT-qPCR analysis showed that miR-17-5p was downregulated in Ang II-induced podocytes. Also, according to the results from RT-qPCR analysis, CCK-8 assay, flow cytometric analysis, western blot analysis, and ELISA miR-17-5p elevation alleviated Ang II-induced podocyte injury. Besides, luciferase reporter assay, western blot and RT-qPCR analyses revealed that SMOC2 was targeted by miR-17-5p in Ang II-induced podocytes. Additionally, rescue assays demonstrated that overexpressed SMOC2 counteracted the influence of overexpressed miR-17-5p on cell injury of Ang II-induced podocytes. Moreover, our data suggested that miR-17-5p-SMOC2 axis regulated TGFβ and NF-κB signaling activation in Ang II-induced podocytes. SMOC2 regulated cell viability, apoptosis and extracellular matrix (ECM) deposition in Ang II-induced podocytes via TGFβ signaling, and SMOC2 regulated inflammation in Ang II-induced podocytes through NF-κB signaling. Overall, our study demonstrated that miRNA-17-5p restrained the dysfunction of Ang-II induced podocytes by suppressing SMOC2 via the NF-κB and TGFβ signaling.
Collapse
Affiliation(s)
- Mingzhu Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Mengqiu Yi
- Intensive Care Unit, Songyuan Jilin Oilfield Hospital, Jilin, China
| | - Na Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
34
|
Dong Z, Gu H, Guo Q, Liang S, Xue J, Yao F, Liu X, Li F, Liu H, Sun L, Zhao K. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer's Disease. Mol Neurobiol 2021; 58:3084-3094. [PMID: 33629272 DOI: 10.1007/s12035-021-02323-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.
Collapse
Affiliation(s)
- Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China.
| | - Hongjun Gu
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 201599, China
| | - Shuang Liang
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Jian Xue
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Feng Yao
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Xianglu Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Feifei Li
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Huiling Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Kewen Zhao
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
35
|
Dhandapani MC, Venkatesan V, Pricilla C. MicroRNAs in childhood nephrotic syndrome. J Cell Physiol 2021; 236:7186-7210. [PMID: 33819345 DOI: 10.1002/jcp.30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues of research to understand the molecular basis of a number of diseases. Because of their conservative feature in evolution and important role in the physiological function, microRNAs could be treated as predictors for disease classification and clinical process based on the specific expression. The identification of novel miRNAs and their target genes can be considered as potential targets for novel drugs. Furthermore, currently, the circulatory and urinary exosomal miRNAs are gaining increasing attention as their expression profiles are often associated with specific diseases, and they exhibit great potential as noninvasive or minimally invasive biomarkers for the diagnosis of various diseases. The remarkable stability of these extracellular miRNAs circulating in the blood or excreted in the urine underscored their key importance as biomarkers of certain diseases. There is voluminous literature concerning the role of microRNAs in other diseases, such as cardiovascular diseases, diabetic nephropathy, and so forth. However, little is known about their diagnostic ability for the pediatric nephrotic syndrome (NS). The present review article highlights the recent advances in the role of miRNAs in the pathogenesis and molecular basis of NS with an aim to bring new insights into further research applications for the development of new therapeutic agents for NS.
Collapse
Affiliation(s)
- Mohanapriya C Dhandapani
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Charmine Pricilla
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
36
|
Müller-Deile J, Sarau G, Kotb AM, Jaremenko C, Rolle-Kampczyk UE, Daniel C, Kalkhof S, Christiansen SH, Schiffer M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci Rep 2021; 11:4577. [PMID: 33633212 PMCID: PMC7907124 DOI: 10.1038/s41598-021-83883-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, "the" actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient's serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Ahmed M Kotb
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyût, Egypt
| | - Christian Jaremenko
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Institute of Optics, Information and Photonics, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany.,Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Silke H Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
37
|
Hong W, Kong M, Qi M, Bai H, Fan Z, Zhang Z, Sun A, Fan X, Xu Y. BRG1 Mediates Nephronectin Activation in Hepatocytes to Promote T Lymphocyte Infiltration in ConA-Induced Hepatitis. Front Cell Dev Biol 2021; 8:587502. [PMID: 33553140 PMCID: PMC7858674 DOI: 10.3389/fcell.2020.587502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatitis (FH) is a major cause of acute liver failure. Concanavalin A (ConA) belongs to the lectin family and is frequently used as an inducer of FH in animal models. ConA induced FH is characterized by massive accumulation of T lymphocytes in the liver. A host of chemoattractive substances are known to promote T cell homing to the liver during acute hepatitis. Here we investigated the involvement of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in FH. BRG1-flox mice were crossed to Alb-Cre mice to generate hepatocyte conditional BRG1 knockout (LKO) mice. The mice were peritoneally injected with a single dose of ConA to induce FH. BRG1 deficiency mitigated ConA-induced FH in mice. Consistently, there were fewer T lymphocyte infiltrates in the LKO livers compared to the wild type (WT) livers paralleling downregulation of T cell specific cytokines. Further analysis revealed that BRG1 deficiency repressed the expression of several chemokines critical for T cell homing including nephronectin (Npnt). BRG1 knockdown blocked the induction of Npnt in hepatocytes and attenuated T lymphocyte migration in vitro, which was reversed by the addition of recombinant nephronectin. Mechanistically, BRG1 interacted with β-catenin to directly bind to the Npnt promoter and activate Npnt transcription. Importantly, a positive correlation between infiltration of CD3+ T lymphocyes and nephronectin expression was detected in human acute hepatitis biopsy specimens. In conclusion, our data identify a novel role for BRG1 as a promoter of T lymphocyte trafficking by activating Npnt transcription in hepatocytes. Targeting the BRG1-Npnt axis may yield novel therapeutic solutions for FH.
Collapse
Affiliation(s)
- Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Mengwen Qi
- Laboratory Center for Experimental Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Aijun Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
38
|
Kwon CS, Daniele P, Forsythe A, Ngai C. A Systematic Literature Review of the Epidemiology, Health-Related Quality of Life Impact, and Economic Burden of Immunoglobulin A Nephropathy. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2021. [PMID: 34692885 DOI: 10.36469/jheor.2021.26129] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Introduction: This systematic literature review analyzed published evidence on IgA nephropathy (IgAN), focusing on US epidemiology, health-related quality of life (HRQoL), and economic burden of illness. Methods: Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, Embase®, MEDLINE®, Cochrane, and Econlit (January 2010 to June 2020) were searched, along with relevant congresses (2017-2020). Results: Of 123 epidemiologic studies selected for data extraction, 24 reported IgAN diagnosis rates ranging from 6.3% to 29.7% among adult and pediatric patients undergoing renal biopsy, with all reported US rates <15%. No US studies reported IgAN prevalence. A meta-analysis of US studies calculated an annual incidence of 1.29/100 000 people, translating to an annual US incidence of 4236 adults and children. Relative to Europe, the United States had more patients diagnosed with IgAN in later chronic kidney disease stages. US rates of transition to end-stage renal disease (ESRD) ranged from 12.5% to 23% during 3-3.9 years of observation, rising to 53% during 19 years of observation. Across 8 studies reporting HRQoL, pain and fatigue were the most reported symptoms, and patients consistently ranked kidney function and mortality as the most important treatment outcomes. Patients with glomerulopathy reported worse mental health than healthy controls or hemodialysis patients; proteinuria was significantly associated with poorer HRQoL and depression. Conclusion: While economic evidence in IgAN remains sparse, management of ESRD is a major cost driver. IgAN is a rare disease where disease progression causes increasing patient burden, underscoring the need for therapies that prevent kidney function decline and HRQoL deterioration while reducing mortality.
Collapse
|
39
|
Jiang L, Cui H, Ding J, Yang A, Zhang Y. Puromycin aminonucleoside-induced podocyte injury is ameliorated by the Smad3 inhibitor SIS3. FEBS Open Bio 2020; 10:1601-1611. [PMID: 32583562 PMCID: PMC7396432 DOI: 10.1002/2211-5463.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 11/05/2022] Open
Abstract
Smad3 signaling and transgelin expression are often activated during puromycin aminonucleoside (PAN)‐induced podocyte injury. Here, we investigated whether the Smad3 inhibitor SIS3 can ameliorate damage to injured podocytes. A model of PAN‐induced podocyte injury was constructed using the MPC5 cell line. The effects of SIS3 on the expression of the podocyte cytoskeletal proteins transgelin, p15INK4B, phosphor‐smad3, phosphor‐JAK/stat3, the apoptotic marker cleaved caspase 3, and c‐myc were investigated using western blot. The distribution of F‐actin in PAN‐induced podocyte injury was observed under an immunofluorescence microscope. PAN‐induced podocyte injury altered the distribution of F‐actin and transgelin, and colocalization of these two proteins was observed. Transgelin expression and Smad3 phosphorylation were increased in the MPC5 cell line with prolonged PAN treatment. In addition, c‐myc expression, p15INK4B, and JAK phosphorylation were all increased after treatment with PAN. Treatment with the Smad3 inhibitor SIS3 reversed these phenomena and protected against PAN‐induced podocyte injury. Moreover, stimulating podocytes directly with TGFβ‐1 also led to enhanced expression of transgelin or phosphor‐JAK/stat3, and this could be inhibited by SIS3. In conclusion, transgelin expression was induced through the Smad3 signaling pathway during PAN‐induced podocyte injury, and the resulting abnormal distribution of F‐actin and the enhanced expression of transgelin could be reversed by blockade of this pathway.
Collapse
Affiliation(s)
- Lina Jiang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Hong Cui
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Aijun Yang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yingchao Zhang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Ni W, Zhou H, Ding H, Tang L. Berberine ameliorates renal impairment and inhibits podocyte dysfunction by targeting the phosphatidylinositol 3-kinase-protein kinase B pathway in diabetic rats. J Diabetes Investig 2020; 11:297-306. [PMID: 31336024 PMCID: PMC7078081 DOI: 10.1111/jdi.13119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Amelioration of renal impairment is the key to diabetic nephropathy (DN) therapy. The progression of DN is closely related to podocyte dysfunction, but the detailed mechanism has not yet been clarified. The present study aimed to explore the renal impairment amelioration effect of berberine and related mechanisms targeting podocyte dysfunction under the diabetic state. MATERIALS AND METHODS Streptozotocin (35 mg/kg) was used to develop a DN rat model together with a high-glucose/high-lipid diet. Renal functional parameters and glomerular ultrastructure changes were recorded. The alterations of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and phosphorylated Akt in the kidney cortex were determined by western blot. Meanwhile, podocyte dysfunction was induced and treated with berberine and LY294002. After that, podocyte adhesion functional parameters, protein biomarker and the alterations of the PI3K-Akt pathway were detected. RESULTS Berberine reduces the increased levels of biochemical indicators, and significantly improves the abnormal expression of PI3K, Akt and phosphorylated Akt in a rat kidney model. In vitro, a costimulating factor could obviously reduce the podocyte adhesion activity, including decreased expression of nephrin, podocin and adhesion molecule α3β1 levels, to induce podocyte dysfunction, and the trends were markedly reversed by berberine and LY294002 therapy. Furthermore, reduction of PI3K and phosphorylated Akt levels were observed in the berberine (30 and 60 μmol/L) and LY294002 (40 μmol/L) treatment group, but the Akt protein expression showed little change. CONCLUSIONS Berberine could be a promising antidiabetic nephropathy drug through ameliorating renal impairment and inhibiting podocyte dysfunction in diabetic rats, and the underlying molecular mechanisms might be involved in the regulation of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Wei‐Jian Ni
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hong Zhou
- Department of PharmacyAnhui Provincial Cancer HospitalWest District of The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hai‐Hua Ding
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
| | - Li‐Qin Tang
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
41
|
Kon S, Honda M, Ishikawa K, Maeda M, Segawa T. Antibodies against nephronectin ameliorate anti-type II collagen-induced arthritis in mice. FEBS Open Bio 2019; 10:107-117. [PMID: 31705832 PMCID: PMC6943231 DOI: 10.1002/2211-5463.12758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix protein nephronectin (Npnt) is known to be critical for kidney development, but its function in inflammatory diseases is unknown. Here, we developed a new enzyme‐linked immunosorbent assay system to detect Npnt in various autoimmune diseases, which revealed that plasma Npnt levels are increased in various mouse autoimmune models. We also report that antibodies against the α8β1 integrin‐binding region of Npnt protect mice from anti‐type II collagen‐induced arthritis, suggesting that Npnt may be a potential therapeutic target molecule for the prevention of autoimmune arthritis.
Collapse
Affiliation(s)
- Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Japan
| | - Machiko Honda
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Japan
| | | | | | | |
Collapse
|
42
|
Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D, Pezzolesi MG, McKeigue PM, Hiraki LT, Qiu C, Nair V, Di Liao C, Cao JJ, Valo E, Onengut-Gumuscu S, Smiles AM, McGurnaghan SJ, Haukka JK, Harjutsalo V, Brennan EP, van Zuydam N, Ahlqvist E, Doyle R, Ahluwalia TS, Lajer M, Hughes MF, Park J, Skupien J, Spiliopoulou A, Liu A, Menon R, Boustany-Kari CM, Kang HM, Nelson RG, Klein R, Klein BE, Lee KE, Gao X, Mauer M, Maestroni S, Caramori ML, de Boer IH, Miller RG, Guo J, Boright AP, Tregouet D, Gyorgy B, Snell-Bergeon JK, Maahs DM, Bull SB, Canty AJ, Palmer CNA, Stechemesser L, Paulweber B, Weitgasser R, Sokolovska J, Rovīte V, Pīrāgs V, Prakapiene E, Radzeviciene L, Verkauskiene R, Panduru NM, Groop LC, McCarthy MI, Gu HF, Möllsten A, Falhammar H, Brismar K, Martin F, Rossing P, Costacou T, Zerbini G, Marre M, Hadjadj S, McKnight AJ, Forsblom C, McKay G, Godson C, Maxwell AP, Kretzler M, Susztak K, Colhoun HM, Krolewski A, Paterson AD, Groop PH, Rich SS, Hirschhorn JN, Florez JC. Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. J Am Soc Nephrol 2019; 30:2000-2016. [PMID: 31537649 PMCID: PMC6779358 DOI: 10.1681/asn.2019030218] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although diabetic kidney disease demonstrates both familial clustering and single nucleotide polymorphism heritability, the specific genetic factors influencing risk remain largely unknown. METHODS To identify genetic variants predisposing to diabetic kidney disease, we performed genome-wide association study (GWAS) analyses. Through collaboration with the Diabetes Nephropathy Collaborative Research Initiative, we assembled a large collection of type 1 diabetes cohorts with harmonized diabetic kidney disease phenotypes. We used a spectrum of ten diabetic kidney disease definitions based on albuminuria and renal function. RESULTS Our GWAS meta-analysis included association results for up to 19,406 individuals of European descent with type 1 diabetes. We identified 16 genome-wide significant risk loci. The variant with the strongest association (rs55703767) is a common missense mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural component of the glomerular basement membrane (GBM). Mutations in COL4A3 are implicated in heritable nephropathies, including the progressive inherited nephropathy Alport syndrome. The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of diabetic kidney disease, including albuminuria and ESKD, and demonstrated a significant association with GBM width; protective allele carriers had thinner GBM before any signs of kidney disease, and its effect was dependent on glycemia. Three other loci are in or near genes with known or suggestive involvement in this condition (BMP7) or renal biology (COLEC11 and DDR1). CONCLUSIONS The 16 diabetic kidney disease-associated loci may provide novel insights into the pathogenesis of this condition and help identify potential biologic targets for prevention and treatment.
Collapse
Affiliation(s)
- Rany M Salem
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Jennifer N Todd
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Niina Sandholm
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Joanne B Cole
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Wei-Min Chen
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Diabetes and Metabolism Center, University of Utah, Salt Lake City, Utah
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics and
| | - Linda T Hiraki
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chengxiang Qiu
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine and
| | - Chen Di Liao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jing Jing Cao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erkka Valo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Stuart J McGurnaghan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jani K Haukka
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Valma Harjutsalo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Ahlqvist
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | | - Maria Lajer
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Maria F Hughes
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Jihwan Park
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jan Skupien
- Joslin Diabetes Center, Boston, Massachusetts
| | | | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Hyun M Kang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Ronald Klein
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Xiaoyu Gao
- The George Washington University, Washington, DC
| | | | - Silvia Maestroni
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Rachel G Miller
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Jingchuan Guo
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | | | - David Tregouet
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Beata Gyorgy
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | | | - David M Maahs
- Department of Pediatrics-Endocrinology, Stanford University, Stanford, California
| | - Shelley B Bull
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lars Stechemesser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Raimund Weitgasser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
- Department of Medicine, Diakonissen-Wehrle Hospital, Salzburg, Austria
| | | | - Vita Rovīte
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Valdis Pīrāgs
- University of Latvia, Riga, Latvia
- Pauls Stradins University Hospital, Riga, Latvia
| | | | - Lina Radzeviciene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nicolae Mircea Panduru
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2nd Clinical Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leif C Groop
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, 1 DNA Way, South San Francisco, California
| | - Harvest F Gu
- Department of Clinical Science, Intervention and Technology and
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Anna Möllsten
- Division of Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Finian Martin
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Tina Costacou
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Michel Marre
- Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Paris, France
- UFR de Médecine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Samy Hadjadj
- Department of Endocrinology and Diabetology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- INSERM CIC 1402, Poitiers, France
- L'institut du thorax, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Amy J McKnight
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Carol Forsblom
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Gareth McKay
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - A Peter Maxwell
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joel N Hirschhorn
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts;
- Center for Genomic Medicine and
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Jin X, Deng B, Ye K, Ye D, Huang Y, Chen X, Yang Z, Chen Y. Comprehensive expression profiles and bioinformatics analysis reveal special circular RNA expression and potential predictability in the peripheral blood of humans with idiopathic membranous nephropathy. Mol Med Rep 2019; 20:4125-4139. [PMID: 31545426 PMCID: PMC6798000 DOI: 10.3892/mmr.2019.10671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The etiology of idiopathic membranous nephropathy (IMN) is considered to be closely associated with immunoregulation and genetic factors. Circular RNAs (circRNAs) have been found to regulate gene expression in various organisms, and to play an important role in multiple physiological and pathological processes, which may be involved in the pathogenesis of IMN. The purpose of the present study was to investigate the potential relationship between circRNAs in peripheral blood and disease. The diagnoses of IMN were confirmed using electron microscopy and immunofluorescence. Total RNA was isolated and microarray analysis was used to detect the expression levels of circRNAs in the peripheral blood of patients with IMN and in normal subjects. Selected genes from the microarray were selected and verified by reverse transcription‑quantitative (RT‑q)PCR. Bioinformatics tools were applied for further functional evaluation, and the potential disease predictability of circRNAs was determined using receiver‑operating characteristic (ROC) curves. The results showed that a total of 955 differentially expressed circRNAs were found in blood samples, 645 of which were upregulated and 310 which were downregulated. In total, five candidate circRNAs were validated using RT‑qPCR analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified numerous types of target genes and their corresponding microRNAs (miRNAs). The miRNAs identified were involved in biological processes and enriched in multiple important pathways, including the mitogen‑activated protein kinase, transforming growth factor‑β and Ras signaling pathways. The levels of circ_101319 were significantly higher (P<0.001) and exhibited promising diagnostic value in patients with IMN (area under ROC =0.89). The co‑expression network constructed for circ_101319 indicated that it may be associated with membranous nephropathy‑related pathways by mediating miRNAs. In conclusion, the present study revealed the expression and functional profile of differentially expressed circRNAs in the peripheral blood of patients with IMN, and provided new perspectives to predict and elucidate the development of IMN.
Collapse
Affiliation(s)
- Xuefeng Jin
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Bi Deng
- Drug Clinical Trial Office, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Kun Ye
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Dongmei Ye
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yiyun Huang
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyu Chen
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Zhousheng Yang
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Ying Chen
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
44
|
A zebrafish tale of parabiosis, podocytes, and proteinuria. Kidney Int 2019; 96:272-275. [PMID: 31331464 DOI: 10.1016/j.kint.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022]
Abstract
Glomerular damage is a harbinger of kidney dysfunction. Circulating permeability factors are implicated in causing primary and secondary damage to podocytes, leading to proteinuria and eventual progression to the nephrotic syndrome, but the mechanisms are not well understood. Müller-Deile et al. employed parabiosis with zebrafish embryos and found that a damaged glomerulus can impact a healthy one in a shared circulatory system. This methodology shows promise for elucidating kidney injury pathways in response to systemic disease.
Collapse
|
45
|
Müller-Deile J, Dannenberg J, Liu P, Lorenzen J, Nyström J, Thum T, Schiffer M. Identification of cell and disease specific microRNAs in glomerular pathologies. J Cell Mol Med 2019; 23:3927-3939. [PMID: 30950172 PMCID: PMC6533525 DOI: 10.1111/jcmm.14270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) are small non‐coding RNAs that regulate gene expression in physiological processes as well as in diseases. Currently miRs are already used to find novel mechanisms involved in diseases and in the future, they might serve as diagnostic markers. To identify miRs that play a role in glomerular diseases urinary miR‐screenings are a frequently used tool. However, miRs that are detected in the urine might simply be filtered from the blood stream and could have been produced anywhere in the body, so they might be completely unrelated to the diseases. We performed a combined miR‐screening in pooled urine samples from patients with different glomerular diseases as well as in cultured human podocytes, human mesangial cells, human glomerular endothelial cells and human tubular cells. The miR‐screening in renal cells was done in untreated conditions and after stimulation with TGF‐β. A merge of the detected regulated miRs led us to identify disease‐specific, cell type‐specific and cell stress‐induced miRs. Most miRs were down‐regulated following the stimulation with TGF‐β in all cell types. Up‐regulation of miRs after TGF‐β was cell type‐specific for most miRs. Furthermore, urinary miRs from patients with different glomerular diseases could be assigned to the different renal cell types. Most miRs were specifically regulated in one disease. Only miR‐155 was up‐regulated in all disease urines compared to control and therefore seems to be rather unspecific. In conclusion, a combined urinary and cell miR‐screening can improve the interpretation of screening results. These data are useful to identify novel miRs potentially involved in glomerular diseases.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Jan Dannenberg
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Peidi Liu
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Lorenzen
- Department of Medicine/Nephrology, University of Zurich, Zurich, Switzerland
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Müller-Deile J, Schenk H, Schroder P, Schulze K, Bolaños-Palmieri P, Siegerist F, Endlich N, Haller H, Schiffer M. Circulating factors cause proteinuria in parabiotic zebrafish. Kidney Int 2019; 96:342-349. [PMID: 31076096 DOI: 10.1016/j.kint.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 01/17/2023]
Abstract
Proteinuria can be induced by impairment of any component of the glomerular filtration barrier (GFB). To determine the role of circulating permeability factors on glomerular damage, we developed a parabiosis-based zebrafish model to generate a common circulation between zebrafish larvae. A morpholino-mediated knockdown of a podocyte specific gene (nephronectin) was induced in one zebrafish larva which was then fused to an un-manipulated fish. Notably, proteinuria and glomerular damage were present in the manipulated fish and in the parabiotically-fused partner. Thus, circulating permeability factors may be induced by proteinuria even when an induced podocyte gene dysregulation is the initiating cause.
Collapse
Affiliation(s)
- J Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - H Schenk
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - P Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - K Schulze
- Institute for Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany
| | - P Bolaños-Palmieri
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - F Siegerist
- Institute for Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany
| | - N Endlich
- Institute for Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany
| | - H Haller
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - M Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| |
Collapse
|
47
|
Müller-Deile J, Schenk H, Niggemann P, Bolaños-Palmieri P, Teng B, Higgs A, Staggs L, Haller H, Schroder P, Schiffer M. Mutation of microphthalmia-associated transcription factor (mitf) in zebrafish sensitizes for glomerulopathy. Biol Open 2019; 8:bio.040253. [PMID: 30718228 PMCID: PMC6451330 DOI: 10.1242/bio.040253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different glomerular diseases that affect podocyte homeostasis can clinically present as nephrotic syndrome with massive proteinuria, hypoalbuminemia, hyperlipidemia and edema. Up to now, no drugs that specifically target the actin cytoskeleton of podocytes are on the market and model systems for library screenings to develop anti-proteinuric drugs are of high interest. We developed a standardized proteinuria model in zebrafish using puromycin aminonucleoside (PAN) via treatment in the fish water to allow for further drug testing to develop anti-proteinuric drugs for the treatment of glomerular diseases. We noticed that fish that carry the nacre-mutation show a significantly higher susceptibility for the disruption of the glomerular filtration barrier following PAN treatment, which results in a more pronounced proteinuria phenotype. Nacre zebrafish inherit a mutation yielding a truncated version of microphthalmia-associated transcription factor/melanogenesis associated transcription factor (mitf). We hypothesized that the nacre mutation may lead to reduced formin expression and defects in cytoskeletal rearrangement. Based on the observations in zebrafish, we carried out a PAN treatment on cultured human podocytes after knockdown with MITF siRNA causing a rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Heiko Schenk
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Philipp Niggemann
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Bolaños-Palmieri
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Beina Teng
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Alysha Higgs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Lynne Staggs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Schroder
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany .,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| |
Collapse
|
48
|
Hochane M, van den Berg PR, Fan X, Bérenger-Currias N, Adegeest E, Bialecka M, Nieveen M, Menschaart M, Chuva de Sousa Lopes SM, Semrau S. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol 2019; 17:e3000152. [PMID: 30789893 PMCID: PMC6400406 DOI: 10.1371/journal.pbio.3000152] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2019] [Indexed: 01/30/2023] Open
Abstract
The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.
Collapse
Affiliation(s)
- Mazène Hochane
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | | | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esmée Adegeest
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
49
|
Barbagallo C, Passanisi R, Mirabella F, Cirnigliaro M, Costanzo A, Lauretta G, Barbagallo D, Bianchi C, Pagni F, Castorina S, Granata A, Di Pietro C, Ragusa M, Malatino LS, Purrello M. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J Cell Physiol 2018; 234:12625-12636. [PMID: 30515781 DOI: 10.1002/jcp.27851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Passanisi
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy
| | - Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arianna Costanzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| | - Sergio Castorina
- Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Antonio Granata
- Unit of Nephrology, Ospedale S. Giovanni di Dio, Agrigento, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Lorenzo S Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
50
|
Liu D, Liu F, Wang X, Qiao Y, Pan S, Yang Y, Hu Y, Zhang Y, Tian F, Liu Z. MiR-130a-5p prevents angiotensin II-induced podocyte apoptosis by modulating M-type phospholipase A2 receptor. Cell Cycle 2018; 17:2484-2495. [PMID: 30394845 DOI: 10.1080/15384101.2018.1542901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Podocyte apoptosis is considered as the important element that promotes the development and progress of membranous nephropathy (MN). Unfortunately, the underlying mechanism of podocytes apoptosis in MN remains elusive. We compared the renal expressions of miR-130a-5p and M-type phospholipase A2 receptor (PLA2R) between MN patients (n = 30) and 30 controls by qRT-PCR and western blot, respectively. The podocyte damage model in vitro was established by angiotensin II (Ang II, 100 nmol/L) exposure for 24 h. Interaction between miR-130a-5p and PLA2R was determined using dual-luciferase reporter gene assay. MN mice were induced by intravenous injection of cBSA. In this study, miR-130a-5p expression was significantly decreased both in the renal biopsy specimens from MN patients and podocyte cell line AB8/13 following stimulation of Ang II. Overexpressed miR-130a-5p in AB8/13 cells significantly attenuated the Ang II induced-apoptosis in vitro. In contrast, down-regulated miR-130a-5p induced podocyte apoptosis. PLA2R was identified as the target of miR-130a-5p in AB8/13 cells. And up-regulated or down-regulated PLA2R could obviously attenuate the effect of miR-130a-5p overexpression or knockdown on the apoptosis of AB8/13 cells. Furthermore, it was also observed that overexpressed miR-130a-5p by miR-130a-5p agomir could obviously alleviate renal injury in MN mice. In conclusion, decreased miR-130a-5p was contributed to the pathological mechanism of MN through increasing PLA2R expression, which induced podocyte apoptosis.
Collapse
Affiliation(s)
- Dongwei Liu
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Fengxun Liu
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Xutong Wang
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yingjin Qiao
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Shaokang Pan
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yang Yang
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yifang Hu
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yilin Zhang
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Fei Tian
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Zhangsuo Liu
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| |
Collapse
|